
Definiciones currificadas en ISetL

Sea la definición de la función f dada en Discusión 4:
f: N -> N -> Bool
f(n) = f1 donde f1: N -> Bool
                         f1(m) = (odd ° mod1) (n,m).

Para definirla en ISetL, necesitamos definir la composición de funciones y la 
funcion mod1: 

co1:=func(f,g);
 if is_func(f) and is_func(g) then
 return func(x);
        return f(g(x));
end; end; end;

mod1:=func(n,m);
        if is_integer(n) and is_integer(m) then
        return n mod m;
      end;end;

Recordemos que mod1 es la versión prefija de mod y la definición de co1 
que hemos dado arriba es la versión prefija de °

La expresión  (odd ° mod1) (56,15) seria en ISetL co1 (odd, mod1) (56,15), 
cuya evaluación de acuerdo a la definición de co1 seria f(g(x)), es decir, 
odd (mod1(56, 15)).

Sin embargo, nos encontramos con otra limitación del lenguaje ISetL: 
no permite que una variable represente cualquier elemento de cualquier 
conjunto. Así, la variable x en la definición de co1, no puede representar un 
par, y la expresión co1 (odd, mod1) (56,15) resulta en el error “!Error: Too 
many arguments”, ya que ISetL no considera al par (56,15) como un 
argumento sino como dos.

Lo que necesitamos es una versión currificada de mod, para poder aplicarla a 
un número y no a un par: 
En matemática es:

mod2: N -> N -> N
mod2 (n) = f donde f : N -> N



         f (m) = n mod m

En ISetL: 

mod2:=func(n);
        if is_nat(n) then
        return func(m);

                       if is_nat(m) then
                 return n mod m;

                     end;end;
end;end;

Evalúe en ISetL:

mod2(56);
mod2(56)(12);

Responda:
1. ¿Cual es el dominio de la función mod2(56)? 
2. ¿Cual es la expresión de la definición de mod2 arriba que representa 

dicha función? 
3. ¿Existe una definición correspondiente en matemática?

Usando la definición de la función is_nat pedida en el ejercicio 5 de 
Evaluación 2, la función f puede implementarse así en ISetL:

f:=func(m);
if is_nat(m) then
return func(n);
         if is_nat (n) then
         return co1(odd,mod2(n))(m);
       end; end; 

    end;end;

Observar que la expresión 

func(n);
         if is_nat (n) then
         return co1(odd,mod2(n))(m);  
       end; end; 

corresponde a “donde f1 …" en la definición matemática de f, con la 
diferencia de que en matematica necesitamos darle un nombre f1 a la 
función, mientras que en ISetL, las expresiones que comienzan con la 
palabra reservada func y contienen la palabra reservada return,  representan 



funciones y pueden ser usadas sin asignarles un nombre, como expresión 
que devuelve una función, 
Observar que la expresión debe terminarse con end; así como también la 
cláusula if.

1. ¿Cuales son las funciones que se componen en 
     co1 (odd, mod2 (56)) (12);?
2. Escriba una definición currificada de la composición, es decir, que 

pueda aplicarse asi: co (odd) (mod2 (56)) (12); Llámele co y guárdela.

Evalue en ISetL:

f (56); 
f (56) (15);
f (18);
f (18) (4);

Observe que f (56) y f (18) son funciones. ¿Cual es su dominio y su co-
dominio?

Observe que f (56) es la función f1 y f (18) es la función f2 introducidas en 
Discusión 4.  

Observe que teniendo una definición de una función que soluciona un 
problema general, es posible definir funciones para casos particulares sin 
necesidad de introducir nuevas funciones para eso, sino que se obtienen 
aplicando la función general a los casos particulares. Así, teniendo la 
función f, f(56) es f1 y f(18) es f2.
Si definimos (observar el orden de los argumentos):

 mod3:=func(n);
        if is_nat(n) then
        return func(m);

                       if is_nat(m) then
                 return m mod n;

                     end;end;
end;end;



podemos definir mod3(2) como la función que dado cualquier natural m 
devuelve el resto de la división de m por 2, y podemos también darle un 
nombre:

resto_2:= mod3(2);

y usarla en expresiones, por ejemplo:

resto_2 (5); 

que es equivalente a mod3(2)(5)

Con una definición cuprificada de la función suma, por ejemplo, podemos 
definir una función que dado un natural, lo incremente en 1, otra que lo 
incremente en 2, etc, sin necesidad de definir funciones nuevas:

mas:=func(n);
            if is_nat (n) then 
            return func(m);
                         if is_nat (m) then 
                         return n + m;
           end;end;end;end;

Las funciones que incrementan en 1 y en 2,se obtienen aplicando la función 
mas a 1 y a 2 respectivamente: mas(1) y mas(2).
Podemos definir nuevas funciones:

incr_1:=mas(1) ;
co1 (incr_1, resto_2);

Los nombres incr_1 y resto_2 para las funciones mas(1) y mod3(2) 
respectivamente, pueden obviarse y escribir directamente:

co1(mas(1), mod3(2));

Introduzca en ISetL las definiciones anteriores y evalúe todas las 
expresiones.



Ejercicios

El ejercicio 6 de la Actividad 2 pide:

Defina matemáticamente una función mul_con_tope que tome un par 
de naturales y devuelva el conjunto de los múltiplos del primero, 
menores que  el segundo. Por ejemplo:

mul_con_tope(15,312) = {60, 75, 90, 105, 0, 15, 45, 30, 285, 
300, 270, 255, 240, 120, 135, 165, 150, 225, 210, 195, 180}

En Evaluación 2 se pide una implementación de la misma.

Dar una definición matemática y una implementación en ISetL de la función 
mul_con_tope con los siguientes dominio y co-dominio:

mul_con_tope : N -> N -> P(N)

Esta función puede ser aplicada así:

mul_con_tope (12) (324);
mul_con_tope (12) (218);
mul_con_tope (17) (218);

Qué tipo de objetos son:

mul_con_tope(12)
(mul_con_tope ° abs) (12) (324)

Escriba una función currificada en ISetL que dados dos números enteros 
n y m, devuelva (mul_con_tope ° abs) (n) (m).



 


