
Definiciones currificadas en ISetL

Sea la definición de la función f dada en Discusión 4:
f: N -> N -> Bool
f(n) = f1 donde f1: N -> Bool
 f1(m) = (odd ° mod1) (n,m).

Para definirla en ISetL, necesitamos definir la composición de funciones y la
funcion mod1:

co1:=func(f,g);
 if is_func(f) and is_func(g) then
 return func(x);
 return f(g(x));
end; end; end;

mod1:=func(n,m);
 if is_integer(n) and is_integer(m) then
 return n mod m;
 end;end;

Recordemos que mod1 es la versión prefija de mod y la definición de co1
que hemos dado arriba es la versión prefija de °

La expresión (odd ° mod1) (56,15) seria en ISetL co1 (odd, mod1) (56,15),
cuya evaluación de acuerdo a la definición de co1 seria f(g(x)), es decir,
odd (mod1(56, 15)).

Sin embargo, nos encontramos con otra limitación del lenguaje ISetL:
no permite que una variable represente cualquier elemento de cualquier
conjunto. Así, la variable x en la definición de co1, no puede representar un
par, y la expresión co1 (odd, mod1) (56,15) resulta en el error “!Error: Too
many arguments”, ya que ISetL no considera al par (56,15) como un
argumento sino como dos.

Lo que necesitamos es una versión currificada de mod, para poder aplicarla a
un número y no a un par:
En matemática es:

mod2: N -> N -> N
mod2 (n) = f donde f : N -> N

 f (m) = n mod m

En ISetL:

mod2:=func(n);
 if is_nat(n) then
 return func(m);

 if is_nat(m) then
 return n mod m;

 end;end;
end;end;

Evalúe en ISetL:

mod2(56);
mod2(56)(12);

Responda:
1. ¿Cual es el dominio de la función mod2(56)?
2. ¿Cual es la expresión de la definición de mod2 arriba que representa

dicha función?
3. ¿Existe una definición correspondiente en matemática?

Usando la definición de la función is_nat pedida en el ejercicio 5 de
Evaluación 2, la función f puede implementarse así en ISetL:

f:=func(m);
if is_nat(m) then
return func(n);
 if is_nat (n) then
 return co1(odd,mod2(n))(m);
 end; end;

 end;end;

Observar que la expresión

func(n);
 if is_nat (n) then
 return co1(odd,mod2(n))(m);
 end; end;

corresponde a “donde f1 …" en la definición matemática de f, con la
diferencia de que en matematica necesitamos darle un nombre f1 a la
función, mientras que en ISetL, las expresiones que comienzan con la
palabra reservada func y contienen la palabra reservada return, representan

funciones y pueden ser usadas sin asignarles un nombre, como expresión
que devuelve una función,
Observar que la expresión debe terminarse con end; así como también la
cláusula if.

1. ¿Cuales son las funciones que se componen en
 co1 (odd, mod2 (56)) (12);?
2. Escriba una definición currificada de la composición, es decir, que

pueda aplicarse asi: co (odd) (mod2 (56)) (12); Llámele co y guárdela.

Evalue en ISetL:

f (56);
f (56) (15);
f (18);
f (18) (4);

Observe que f (56) y f (18) son funciones. ¿Cual es su dominio y su co-
dominio?

Observe que f (56) es la función f1 y f (18) es la función f2 introducidas en
Discusión 4.

Observe que teniendo una definición de una función que soluciona un
problema general, es posible definir funciones para casos particulares sin
necesidad de introducir nuevas funciones para eso, sino que se obtienen
aplicando la función general a los casos particulares. Así, teniendo la
función f, f(56) es f1 y f(18) es f2.
Si definimos (observar el orden de los argumentos):

 mod3:=func(n);
 if is_nat(n) then
 return func(m);

 if is_nat(m) then
 return m mod n;

 end;end;
end;end;

podemos definir mod3(2) como la función que dado cualquier natural m
devuelve el resto de la división de m por 2, y podemos también darle un
nombre:

resto_2:= mod3(2);

y usarla en expresiones, por ejemplo:

resto_2 (5);

que es equivalente a mod3(2)(5)

Con una definición cuprificada de la función suma, por ejemplo, podemos
definir una función que dado un natural, lo incremente en 1, otra que lo
incremente en 2, etc, sin necesidad de definir funciones nuevas:

mas:=func(n);
 if is_nat (n) then
 return func(m);
 if is_nat (m) then
 return n + m;
 end;end;end;end;

Las funciones que incrementan en 1 y en 2,se obtienen aplicando la función
mas a 1 y a 2 respectivamente: mas(1) y mas(2).
Podemos definir nuevas funciones:

incr_1:=mas(1) ;
co1 (incr_1, resto_2);

Los nombres incr_1 y resto_2 para las funciones mas(1) y mod3(2)
respectivamente, pueden obviarse y escribir directamente:

co1(mas(1), mod3(2));

Introduzca en ISetL las definiciones anteriores y evalúe todas las
expresiones.

Ejercicios

El ejercicio 6 de la Actividad 2 pide:

Defina matemáticamente una función mul_con_tope que tome un par
de naturales y devuelva el conjunto de los múltiplos del primero,
menores que el segundo. Por ejemplo:

mul_con_tope(15,312) = {60, 75, 90, 105, 0, 15, 45, 30, 285,
300, 270, 255, 240, 120, 135, 165, 150, 225, 210, 195, 180}

En Evaluación 2 se pide una implementación de la misma.

Dar una definición matemática y una implementación en ISetL de la función
mul_con_tope con los siguientes dominio y co-dominio:

mul_con_tope : N -> N -> P(N)

Esta función puede ser aplicada así:

mul_con_tope (12) (324);
mul_con_tope (12) (218);
mul_con_tope (17) (218);

Qué tipo de objetos son:

mul_con_tope(12)
(mul_con_tope ° abs) (12) (324)

Escriba una función currificada en ISetL que dados dos números enteros
n y m, devuelva (mul_con_tope ° abs) (n) (m).

