
INTRODUCCIÓN

“Debo contarles un interesante y revelador incidente-dijo Malcolm-. A un estudiante le pidieron en un 
examen de Geometría que demostrase el teorema de Pitágoras. Entregó su escrito, y el Profesor de 
Matemática se lo devolvió con un 1 y el comentario:”¡Esto no es una demostración!”. Más adelante, el 
chico fue a ver al Profesor y le dijo:”¿Cómo puede decir que lo que le he entregado no es una 
demostración?. Durante el curso usted nunca ha definido qué es una demostración. Ha sido 
admirablemente preciso en sus definiciones de triángulos, paralelismo, perpendicularidad y otras nociones 
geométricas, pero ni una sola vez ha definido exactamente lo que quiere decir con la palabra 
“demostración”. ¿Cómo puede entonces afirmar con tanta seguridad que lo que le he entregado no es una 
demostración?. ¿Cómo demostraría que no es una demostración?.
  ¿La dama o el tigre?,  Raymond Smullyan

No es novedad que como profesores de matemática las demostraciones sean el pan de cada día en el 
desarrollo de los cursos que impartimos pero tampoco es novedad que difícilmente podríamos dar una 
definición de lo que es una demostración. 
Podríamos reconocer si algunas demostraciones son correctas al analizarlas, así como seríamos capaces de 
detectar algunos razonamientos incorrectos.
En caso de querer aclarar en algo las cosas tenemos la idea de que deberíamos recurrir a la lógica.
Lógica justamente es el tema elegido por estos profesores de matemática sobre el cual hacer el trabajo 
final del curso de ISETL: matemática - lógica - ISETL

Pero ¿qué es la lógica?. 
En una primera instancia se podría decir que es un lenguaje, o sea, un sistema de signos con reglas para 
su empleo.
Esta primera respuesta, muy general,  también hubiera servido ante ¿qué es la matemática? o ¿qué es 
ISETL?
Nuevamente matemática – lógica – ISETL  juntos, ahora como lenguajes artificiales o sea: muy 
específicos, construidos por especialistas, diferenciados de un lenguaje natural. 

Otra respuesta tentativa a ¿qué es la lógica? diría que es la ciencia que estudia la estructura formal de las 
proposiciones y el razonamiento deductivo, mediante un método que, haciendo abstracción del 
contenido de las mismas, solo trata de su forma.

Esto nos llevaría a tener claro qué es una proposición, qué un razonamiento, ¿es que hay razonamientos 
que no son deductivos? y en caso afirmativo ¿no los estudia la lógica?.



Por algún lado habrá que empezar, así que, allá vamos:

PROPOSICIONES

Si consideramos las siguientes oraciones:
- ¿Quién viene?.
- Deténgase.
- El calor dilata los cuerpos.
- 4 es un número impar.
- Pedrito ama la música.
- La música es amada por Pedrito.  
Tenemos seis oraciones diferentes: una pregunta, una orden y cuatro declaraciones. De las dos primeras 
no podemos decir que sean verdaderas ni falsas: una pregunta puede hacerse o no y una orden puede ser 
cumplida o no.  En  cambio, de las cuatro últimas que son declarativas, tiene sentido decir si son 
verdaderas o falsas. A éstas las llamaremos proposiciones.

Proposición es toda oración respecto de la cual podemos decir si es verdadera o falsa.

1.- Indicar cuáles expresiones son proposiciones.
a) Llueve.
b) Lluvia.
c) ¿Cuánto hace que llueve?.
d) 7 x 5 = 35
e) 6 – 3
f) Déjese de molestar.
g) ¡Arriba Huracán que no ni no!.
h) El ISETL es un programa maravilloso.
i) x + 5 es un número entero positivo. 

Vamos a investigar que responde ISETL respecto de si las expresiones de 1.- son proposiciones o no, en 
otras palabras si su valor de verdad es true o false:

llueve;
OM;
La respuesta OM significa que para ISETL llueve es una variable indefinida, o sea que ISETL no puede 
reconocer.
Si consideramos la expresión llueve en otro contexto, en Montevideo, en la costa norte de las Islas Azores 
o en la esquina, ahí si podremos saber si es verdadero o falso, por tanto en cualquiera de dichos contextos 
llueve será una proposición. 

7*5=35;
true;

6-3;
3;
En este caso ISETL nos da el resultado de la resta, nos devulve el resultado correcto de dicha resta. 
No debemos confundir esta respuesta correcta con la pregunta que nos estábamos haciendo: ¿es 6 –3 una 
proposición? La respuesta es NO pues no podemos decir si dicha afirmación es verdadera o falsa.

x+5>0;
!Error: Bad arguments in:



OM + 5;
Aquí se hace más patente la necesidad de darle un contexto a las expresiones que queremos saber si son 
proposiciones. En este caso es imprescindible que aclaremos el conjunto en que estamos considerando los 
x.

PREDICADOS o FUNCIONES PROPOSICIONALES

Si consideramos la expresión 
p(x): x es impar

   es claro que no es una proposición, ya que a menos que 
especifiquemos quien es x no podremos decir nada acerca de su verdad o falsedad.
Sin embargo, para cada valor que le asignemos a x dicha expresión es una proposición, por ejemplo:

p(5): 5 es impar es V
p(4): 4 es impar es F

A este tipo de expresiones le llamaremos 

predicado o función proposicional: son funciones cuyo dominio es un conjunto A cualquiera y cuyo 
codominio es Bool = {Verdadero,Falso}.

En Isetl hay varias funciones proposicionales predefinidas:
is_integer
even
odd
todas estas funciones de :Z→Bool= {true, false}

La sintaxis en ISETL es por ejemplo:
even(2);   
true;

Observemos que en estas funciones la sintaxis de ISETL es la misma que en MATEMÁTICA  usamos para 
hallar el valor numérico de una función en determinado valor.

También se pueden presentar funciones proposicionales en dos variables
p(x,y): x es divisor de y

Aunque especifiquemos que x,y pertenecen al conjunto de los números naturales la expresión p(x,y) no es 
una proposición, sin embargo si asignamos valores a x,y pasamos a obtener proposiciones:

p(2,6): 2 divide a 6 es V
p(3,7): 3 divide a 7 es F

En Isetl también contamos con funciones proposicionales predefinidas de ZxZ→ Bool de este tipo:
<
>

La sintaxis en ISETL es, por ejemplo:
5<3;
false;

También contamos con otros tipos de funciones proposicionales de AxP(A) → Bool como:
in



La sintaxis en ISETL es, por ejemplo:
2 in {1,2,3,4};
true;
Como se habrá notado ‘in’ significa pertenece por lo que nuevamente es de resaltar que la sintaxis de 
ISETL es idéntica a la MATEMÄTICA. 

2.- Averiguar si las siguientes proposiciones son verdaderas o falsas. Usar ISETL para verificar.
a) 123 4 es un número impar.
b) El cociente de dividir 2356 entre 356 es 7.
c) El resto de dividir 6543 entre 3456 es 3087.
d) 2,4 es un número entero.
e) 252 < 225.

3.- i) Para cada función proposicional, asignándole valores y cuando sea posible, obtener una proposición 
        V y otra F.
      ii) con los valores hallados en i), verificar con ISETL.
      a) p(x): x + 5 = 3 Dominio = N
      b) q(x): x + 5 = 3 Dominio = Z
      c) r(x,y): x es múltiplo de y Dominio = Z
      d) s(x,y): x divide a x+y Dominio = Z
      e) t(x,y): x divide a x.y Dominio = Z
      f) u(x,y): x2 +2x – 3 = 0 Dominio = {-4,-3,-2,-1,0}

4.- Investiga, experimentando con ISETL, y explica cuál es el cometido de la función predefinida:   
     mod:ZxZ → Z. La sintaxis de la misma es: 
                                                                            x mod y;

5.- Para crear una función en ISETL que calcule el máximo común divisor entre dos números naturales   
     nos basaremos en el Algoritmo de Euclides. Por ejemplo: Queremos calcular el MCD de 2 números x e 
     y. Si x es múltiplo de y entonces MCD(x,y)=y. Si uno de ellos no es múltiplo del otro entonces 
     dividimos x entre y y obtenemos un resto r tal que MCD(x,y)=MCD(y,r). Repetimos el razonamiento 
     con los números r e y (que son menores que los anteriores) y así sucesivamente hasta llegar a obtener 
     un resto 0. El último resto distinto de 0 será el MCD(x,y).
     Basándonos en esto la función quedaría definida de la siguiente forma:

    $ MCD: NxN → N;
    MCD:= func (x,y);
               if is_integer(x) and x>=0 and is_integer(y) and y>=0
               then if x mod y =0 then return y
               else return MCD(y, x mod y); end; end;
               end;

   Por ejemplo, si queremos hallar el MCD de 36 y 60 la sintaxis en ISETL es, después de tener creada la 
función anterior en ISETL:
        MCD(36,60);
        12;
    Utilizando la función recién creada investigar si las siguientes proposiciones son verdaderas o falsas:

a) El máximo común divisor de 45 y 50 es 10.
b) El máximo común divisor de 48 y 36 es mayor que el máximo común divisor de 38 y 24.

6.- Se implementará la función que nos permite testear si un número natural  es primo o no: “es_primo”.
     Definición: Un número es primo si tiene solamente dos divisores (1 y el mismo número).
     $ es_primo: N→ Bool



        es_primo:= func(x);
     local divisores;
     divisores:= func(x);
     return {y:y in [1..x] | x mod y = 0}; end;
     return (divisores (x) = {1,x}); end;
     end;
     Por ejemplo, si queremos investigar si 27 es un número primo, la sintaxis en ISETL es:
     es_primo(27);
     false;
    
     Utilizando la función recién definida investigar si las siguientes proposiciones son verdaderas o falsas:

a) 17 es primo                                  b) 111 es primo                     c) MCD( 26, 39) es primo.

CONECTIVOS LÓGICOS

Veamos estas otras oraciones:
-  Si se porta bien le van a comprar la pelota que quería para su cumpleaños.
-  2 x 3 = 7 y 8 es un número primo.

Si prestamos atención hay cierta diferencia entre ellas y las proposiciones vistas antes: estas últimas son 
proposiciones, que a su vez están formadas por proposiciones que están vinculadas de cierta forma. A las 
primeras llamaremos atómicas y a estas últimas proposiciones moleculares. 
Para representar cada proposición atómica usaremos: p, q, r ... que llamaremos variables 
proposicionales y a los símbolos mediante los cuales las vincularemos les vamos a llamar conectivos 
lógicos ( funciones constructoras, conectores, operaciones, operadores) y son:

Conectivo                                Operación                                    Significado  
  
    -                                   Negación                          no p
   ∧              Conjunción                              p  y  q
   ∨           Disyunción                              p  o  q
   →           Condicional si p entonces q, q condicionado a p
   ↔           Bicondicional                           p si y sólo si q
.                                                                                                                                   .  

Negación

Negación de la proposición p en la proposición  -p (no p) cuya tabla de valores de verdad es

p         -p
V F
F             V  

‘4 es un número par’ es una proposición verdadera. Su negación es ‘4 no es un número par’ siendo esta 
una proposición falsa. 

Conjunción

Conjunción de las proposiciones p y q es la proposición p ∧q ( p y q) y la  tabla de valores de verdad es

p             q             p  ∧  q  



V V   V
V F   F
F V   F
F             F        F  

‘Hoy es lunes y mañana es viernes’ es una proposición falsa ya que es la conjunción de las proposiciones 
‘hoy es lunes’ con la proposición ‘mañana es viernes’ y estas dos proposiciones nunca pueden ser 
verdaderas a la vez.

Disyunción

p             q       p  ∨   q  

V V V
V F V
F V V
F             F      F  

‘Regalo los libros viejos o que no me sirven’ debe entenderse como el vínculo de las proposiciones 
‘regalo los libros viejos’ con ‘regalo los libros que no me sirven’ mediante un “o” no excluyente. Si 
regalo un libro que es viejo,  si regalo un libro que no me sirve y si regalo un libro que es viejo y además 
no me sirve la proposición es verdadera.

Condicional

p             q       p  →  q  

V V V
V F F
F V V
F             F      V  

Las proposiciones p y q se llaman antecedente y consecuente respectivamente del condicional.
‘SI salvo el examen, ENTONCES te presto los apuntes’ es el condicional entre las proposiciones
p : ‘apruebo el examen’
q: ‘te presto los apuntes’
Interesa inducir la verdad o falsedad de la proposición molecular a partir de las proposiciones atómicas 
p y q. La proposición molecular puede pensarse como un compromiso, si p es F, es decir si no salvo el  
examen, quedo liberado del compromiso y preste o no preste los apuntes la proposición molecular será 
V.
En caso de que p sea V, es decir si apruebo el examen, y no presto los apuntes, el compromiso no se 
cumple y la proposición molecular será F. En caso de que p y q sean V entonces el condicional es V 
porque el compromiso se cumple.

Bicondicional



p             q       p  ↔  q  

V V V
V F F
F V F
F             F      V  

El bicondicional es V solo si las dos proposiciones tienen el mismo valor de verdad.
‘ ABC es triángulo equilátero si y sólo si cada ángulo del triángulo ABC mide 60º’, es el bicondicional de 
las proposiciones 
p : ABC es triángulo equilátero
q: cada ángulo del triángulo ABC mide 60º. 
Si toda vez que p es V también lo es q y cada vez que p sea F también lo es q, el bicondicional es V.

7.- Abstraer la forma lógica de cada proposición:
a) Margarita va al cine.
b) Rogelio no es soltero.
c) No es cierto que Laura estudia mucho.
d) David es arquitecto y José es abogado.
e) David y José son primos.
f) José no estudia pero trabaja.
g) David estudia, sin embargo no trabaja.
h) No es cierto que Pablo haya viajado a Salto y Rivera.
i) Pablo no viajó a Salto y no viajó a Rivera.
j) Juan viajará a Salto o Rivera.
k) Si sale irá al cine o al teatro.
l) Si Huracán desciende, sus simpatizantes exigirán una asamblea ay los dirigentes no continuarán en 

el cargo, entonces se constituirá una nueva comisión directiva y se designará un nuevo director 
técnico.

8.- Siendo  p: ‘Archibaldo es astronauta’ y  q: ‘Dorotea es profesora de historia’, interpretar las siguientes 
     formas proposicionales.

a) p ∧ q
b) - p ∧ -q
c) - p ∧ q
d) p ∧ -q
e) - ( p ∧ q )
f) p → -q
g) - p → q
h) - (p → q)
i) p ∨ q
j) - p ∨  -q
k) p ↔ q
l) (p → q) ∧ ( q → p )

9.- i) Buscar pares de proposiciones en el ej. 7 que tengan el mismo significado. 

10.- Teniendo en cuenta la tabla de verdad de p→ q, razonar sobre la siguiente situación:
     Se asegura que las siguientes dos frases son ciertas:

• si Pedro fue al cine, entonces Antonio vio el partido;



• si Pedro fue al cine, entonces Antonio no vio el partido;

¿Puede saberse si Pedro fue o no al cine?

11.- Se asegura que las cuatro frases que siguen son ciertas (A, B, C son nombres de personas):
• B no es policía o C es el asesino;
• Si B no es policía, entonces A llamó por teléfono;
• Si C es el asesino, entonces A no llamó por teléfono;
• Si B no es policía, entonces A no llamó por teléfono;

Se puede saber si B es o no policía, si A llamó o no llamó por teléfono y si C es o no el asesino? 

 

En ISETL los conectivos lógicos tienen la siguiente notación:

Negación       not                   
Conjunción                            and 
Disyunción                             or  
Condicional impl
Bicondicional                         iff  

Si queremos saber el valor de verdad de la proposición:
Si 14 es par y 5 impar entonces (14+5) es impar,
en ISETL la sintaxis es la siguiente:

(even(14) and odd(5)) impl odd(14+5);
true;

12.-  En cada caso
      i) Investigar si son V o F. 
     ii) Usar ISETL para verificar las respuestas.  

a) 13 es un número impar o 13 es un número primo.
b) Si 3 = -3 entonces 32 = (-3)2.
c) 17 es un número impar o 16 es un número primo.
d) 5 ∈ {3,4,5,7} si y sólo si  {4} ⊂  {3,{3,4},4,8}
e) 15 es múltiplo de 3 y 3 es divisor de 21.
f) Si 150 es múltiplo de 10 y 10 es múltiplo de 5 entonces 150 es múltiplo de 5.
g) Si 150 es múltiplo de 10 y 10 es múltiplo de 3 entonces 150 es múltiplo de 5.
h) 12 es primo si y sólo si 12 es impar.

13.- Determinar,  en cada caso, si la información que se tiene alcanza para  conocer el valor de verdad de 
       las proposiciones. Justificar en c/caso.
       a) r es V   ( p → q) → r
       b) q es V   (p ∨ q) ↔ (-p ∧ y –q)
       c) p es V, r es V   (p ∧ q) → ( p ∨ r)
       d) p → r es V    p ∧ (q → r)

       Veamos como resolver la parte a) usando ISETL:
    
      for r in [true,true] ,  p , q in [true,false] do writeln (p impl q) impl r;end;



      true
      true
      true
      true
      true
      true
      true
      true

14.- En una plaza están sentados un chico y una chica.
        “Yo soy un chico”, dice la persona rubia.
        “Yo soy una chica”, dice la persona pelirroja.
        Si al menos uno de los dos ha mentido, ¿quién es pelirrojo y quién es rubio?

15.- Se ha cometido un gran robo a un banco. El o los criminales escaparon en un auto. Tres famosos 
       criminales A, B y C fueron llevados a la Jefatura de Policía para ser interrogados.
       Fueron constatados los siguientes hechos:

• Ninguna otra persona aparte de A, B o C estuvo involucrada en el robo.
• B no sabe manejar.
• C nunca realiza un “trabajo” si no lo acompaña A.
A, ¿es inocente o culpable?

16.- “¿Qué puedes hacer con estos cuatro hechos?”, le preguntó el Inspector al Sargento.
• Si A es culpable y B es inocente, entonces C es culpable.
• A nunca “trabaja” con C.
• C nunca “trabaja” sólo.
• Nadie más que A, B o C estuvieron involucrados y por lo menos uno de ellos es culpable.

       El Sargento contestó, “No mucho, me temo. ¿Puede usted inferir quiénes son inocentes y quiénes  
       culpables?”
       “No”, respondió el Inspector, “pero hay evidencias suficientes para incriminar a uno de ellos”. 
       ¿Quién de ellos es necesariamente culpable?

17.- Una enorme cantidad de joyas fueron robadas. A, B y C son traídos a Jefatura de Policía para ser
        interrogados. Se llegaron a las siguientes conclusiones:

• Nadie más que A, B o C estuvieron involucrados.
• A nunca “trabaja” sólo.
• C es inocente.
B, ¿es inocente o culpable?

18.- Un individuo miente siempre en los días martes, jueves y sábados, mientras que es totalmente veraz
        los demás días. Si un día particular mantenemos el siguiente diálogo:
        Pregunta: ¿Qué día es hoy?
        Respuesta: Sábado.
        Pregunta: ¿Qué día será mañana?
        Respuesta: Miércoles.
        ¿De qué día de la semana se trata?

19.- Después de hornear un pastel para sus dos sobrinas y dos sobrinos que vienen a visitarla, la tía 
       Natalia deja el pastel en la mesa de la cocina para que se enfríe. Luego ella va al centro comercial    
       para cerrar su tienda durante el reto del día. Al regresar, descubre que alguien se ha comido un cuarta 
       parte del pastel. Puesto que nadie estuvo en su casa ese día (excepto los cuatro visitantes), la tía 



       Natalia se pregunta cuál de sus sobrinos se comería esa parte del pastel. Los cuatro “sospechosos” le 
       dicen lo siguiente:
          Carlos: Jimena se comió el trozo de pastel.
          Delia: Yo no me lo comí.
          Jimena:            Toño se lo comió.
          Toño: Jimena mintió cuando dijo que yo me había comido el pastel.
       Si solo una de estas proposiciones es verdadera y sólo de ellos cometió el terrible crimen, ¿quién es el 
       culpable?.

En ISETL, si  queremos saber el valor de verdad de la proposición compuesta:
 32 es mayor que 23 o, si 135 es par entonces 5 es impar

tenemos que individualizar cada proposición simple, en nuestro caso:
32 es mayor que 23 
135 es par  
5 es impar

Definimos cada una de estas proposiciones en ISETL haciendo:
p:= 32 > 23; 
q:= even(135);   
r:= odd(5);

En ISETL alcanza que escriba p; ↵  para saber si dicha proposición es verdadera o falsa y de la misma 
forma con la proposición molecular:

p or (q impl r);

20.- i) Definir en ISETL las proposiciones:  p: ‘26 es menor que 62’ 
                        q:  ‘12345 3 es impar’  

                         r: ’29 es primo o 31 es impar’
           y verificar en ISETL el valor de verdad de cada una.
        ii) Usar ISETL para averiguar el valor de verdad de las siguientes proposiciones moleculares:          

a)  (p ∧ q) →r
b) - p ∧ (-q ∨ r)
c) - p ∧ r
d) p ∧ - r
e) q ∧ q 
f) p → -q
g) - p → r
h) - (r → q)
i) r ∨ q
j) - p ∨ –q
k) r ↔ q

21- i) Agregar operaciones de +,  -,  x, /, o paréntesis (el ‘o’ entiéndase como disyunción) 
          convenientemente para obtener proposiciones verdaderas.

a) 5 ... 6 ... 10 = 1 



b) 2 ... 3 ... 5 = 17
c) 48...2 < 24...2
d) 48...2 > 24...2 

     ii) Agregar conectivos lógicos ∧ , ∨ , → , ↔ o paréntesis para obtener proposiciones verdaderas.
a) 2 < 5......{3}∈ {2,3,4,5,6}
b) 44 es primo ......444 es impar
c) 5 < 2.....24 es múltiplo de 6....12x21 es impar.

     iii) Verificar  usando ISETL.

22.- a) Construir una tabla de verdad para este nuevo conectivo lógico: la disyunción excluyente, que 
           representaremos mediante’w’, y donde la verdad de p w q es V cuando una sola de las  
           proposiciones componentes es V.
β  b) Comparar la tabla obtenida con la de la disyunción.
       c) Dar un ejemplo donde la disyunción sea la operación apropiada y otro donde lo sea la disyunción 

excluyente.

23.- Determinar el valor de verdad de cada uno de los siguientes condicionales:
a) Si 3 + 4 = 12, entonces 3 + 2 = 6.
b) Si 3 + 3 = 6, entonces 3 + 6 = 9.
c) Si 3 + 3 = 6, entonces 3 + 4 = 9.
d) Si 2+3 = 6, entonces mi abuela tiene un biombo.

La parte a) en ISETL es:

(3+4=12) impl (3+2=6);
true;

En ISETL, cuando queremos crear una tabla de valores de verdad, contamos con la siguiente sentencia:

For (variables separadas por coma) in [true, false] do writeln (variables separadas por coma),(expresión 
de la cual queremos obtener la tabla de valores de verdad); end;

Por ejemplo, si queremos construir la tabla de valores de verdad para p ∧ q debemos escribir:

for p, q in [true, false] do writeln p, q, p and q; end;

 
24.-a)   Si p → q es F, indicar cual sería el valor de p ∧ q.

b)  Si  p ∧ q es V, indicar cual sería el valor de p ↔ q.
c) Si  p ∧ q es V, ¿cual el de p w q?.
d) Si  p → q es F, ¿cual sería el valor de p v q?.
e) Si  p ∨ q es F, ¿cómo es p → q?.
f) Si  p ∧ q es V, ¿cómo es p → q?.
g) Si  p → q es F, ¿cuál es el valor de verdad de – p ∨ q ?.
h)  Si  p → q es F, ¿cuál es el valor de verdad de p ∧ – q ?

En ISETL la parte a) sería:

for  p in [true,true],q in [false,false] do writeln (p and q); end;
     false
     false



     false
     false

25.- Usar ISETL para investigar donde poner los paréntesis para que la siguiente expresión booleana tenga 
        por  tabla de verdad:
         p         q          r        p∧q↔r

      true      true      true      true
      true      true     false     false
      true     false      true     false
      true     false     false      true
     false      true      true     false
     false      true     false      true
     false     false      true     false
     false     false     false      true

26.- Usar ISETL para investigar dónde agregar conectivos y paréntesis para que la expresión booleana  
       tenga la siguiente tabla:

        p         q          r        p…q…r

      true      true      true      true
      true      true     false     false
      true     false      true     false
      true     false     false     false
     false      true      true      true
     false      true     false      true
     false     false      true      true
     false     false     false      true

27.- i) Buscar pares de proposiciones en el ej. 8 que tengan el mismo significado. 
      ii) Para cada par encontrado usar ISETL para comparar sus tablas de verdad.

Tautología: es una proposición V para cualquier valor de las variables.

Ejemplo 1:  p→p

p             p        p  →  p  
V V V
F             F      V  .  

Ejemplo 2: p→(p∨ q)

p             q        p  ∨   q    p  →  (p  ∨  q)  
V V V V
V F V V
F V V V
F             F      F        V   .  

Contradicción es una proposición F para cualquier valor de las variables.



Ejemplo 1:  p ∧ -p

p             -p     p   ∧   -p  
V F F
F             V      F  .  

Ejemplo 2: p ∧ (-p ∧ q)

p             -p            q      -p   ∧   q              p   ∧   (-p   ∧   q)  
V F V F F
V F F F F
F V V V F
F             V      F        F                          F  .  

Podemos observar que la negación de una tautología es una contradicción y que la negación de una 
contradicción es una tautología.  

Contingencia es una proposición en cuya tabla de verdad aparece por lo menos un caso V y otro F.

28.- Estudiar, utilizando ISETL,  si las siguientes proposiciones son tautología, contradicción o  
       contingencia.

a) (( p → q ) ∧ p ) → q
b)  p → (q → r)
c) (p → q ) → r
d) (p → q ) → (q → p)
e) ( p ∧ q ) → p
f) q ↔ ( -p ∨–q)

 
29.- Demostrar, usando ISETL, que son tautologías:

a) No contradicción: -(p ∧ –p)
b) Tercero excluido: p ∨ –p
c) [p → (q →r)] →[ (p → q ) → (p → r)]

Veamos como se puede resolver el  siguiente ejercicio usando ISETL:

     Se asegura que las siguientes dos frases son ciertas:
• si Pedro fue al cine, entonces Antonio vio el partido;
• si Pedro fue al cine, entonces Antonio no vio el partido;

¿Puede saberse si Pedro fue o no al cine?

Pongamos  p y q, respectivamente, en lugar de “Pedro fue al cine” y ”Antonio vio el partido”. Son 
verdaderas  p→ q asi como p→ -q, lo que solamente ocurre, recordar la tabla del condicional, cuando p 
es falsa. Luego Pedro no fue al cine. 

Si queremos verificar el resultado obtenido usando ISETL hacemos:

for p, q in [true, false] do writeln ((p impl q) and (p impl (not q))) iff (not p);



end;
      true
      true
      true
      true

Equivalencia 

Si construimos la tabla de verdad para las proposiciones –p∨ q    y    p → q
p             -p            q         -p  ∨  q    p   →   q  
V F V V V
V F F F F
F V V V V
F             V      F        V             V  
vemos que son exactamente iguales

Diremos que dos  proposiciones A y B son  equivalentes, y lo notaremos A⇔B, cuando la proposición A 
es verdadera (respectivamente,  falsa) si y sólo si la proposición B es verdadera (respectivamente, falsa).
Si construimos la tabla del bicondicional entre estas dos proposiciones:

p             -p            q         -p  ∨  q    p   →   q          (  -p  ∨  q)   ↔   ( p   →   q)  
V F V V V V
V F F F F V
F V V V V V
F             V      F        V             V                          V                     .   vemos que es una tautología.

En otras palabras A⇔B cuando A ↔B es una  tautología.

Implicación 

Si analizamos el condicional que tiene  la proposición  p ∧ q como premisa  y  la proposición p como 
conclusión  

 p             q       p  ∧  q       (p  ∧  q)  →     p   
V   V   V      V
V   F   F              V
F    V   F              V
F             F             F                  V        .      vemos que es una tautología.
En otras palabras podemos decir que la verdad de la conclusión se infiere de la verdad de las premisas.
No es posible que la premisa sea verdadera y la conclusión falsa.

Diremos que una proposición A implica a otra B, y lo notaremos A⇒ B, cuando A→ B es una  tautología.

30.- Investigar, utilizando ISETL,  cuales de los siguientes pares de proposiciones son equivalentes:
a)  ( p → q ) ∧ (q → p ) con  p ↔q
b)  p ∨ p con p
c)  p ∧ p con p
d)  p ∨ (p ∧ p) con p
e)  p ∧ (p ∨ p) con p



31.- Estudiar , utilizando ISETL ,propiedades asociativa, conmutativa, existencia de neutro, existencia de 
       simétrico, absorbente, propiedad Hankeliana , idempotencia de c/u de los conectivos lógicos.
       Recordar que los conectivos lógicos son operaciones binarias de {V,F} x {V,F} → {V,F}
       Daremos algunos ejemplos con la operación disyunción (∨ )
        Propiedad conmutativa       p ∨ q  ⇔  q∨ p

 p q p ∨ q q ∨ p  (p ∨ q) ↔  (q ∨ p)
            V V    V    V                 V 
            V F    V    V                 V         
            F         V            V         V                 V    
            F F    F    F                 V 
         
         Existencia del neutro

           p       n         p ∨ n        n ∨ p       p ∨ n ↔ p       n ∨ p ↔ p
           V       F            V              V                     V                     V    
           F       F             F               F                     V                     V
                                                                                                               F es neutro de ∨ por la derecha y
                                                                                                                  por la izquierda.

 
           Probando previamente que V es el elemento absorbente de ∨ , podemos enunciar:

           Propiedad Hankeliana
           (p ∨ q ↔ V)    ↔   (( p ↔ V) ∨  (q ↔ V))

           ((p     ∨     q)     ↔     V)     ↔     (( p    ↔     V)    ∨    ( q    ↔    V))
             V     V     V      V      V       V         V     V      V    V       V    V     V
             V     V     F       V      V       V         V     V      V    V       F     V     V
             F      V    V       V      V       V         F      F      V    V       V     V    V
             F      F     F       F       V       V         F      F      V    V       F      F    V
        
  Veamos su demostración utilizando ISETL:

for p, q in [true,false], r in [true,true] do writeln ((p or q) iff r) iff ((p iff r) or (q iff r)); end;
      true
      true
      true
      true
      true
      true
      true
      true

           Con esta y otras propiedades se pueden plantear cierto tipo de ecuaciones, como por ejemplo:

• x ∨ V ↔  V                 S={F,V}     (por absorbente)
• x ∨ F  ↔  V                S={V}
• (x ∨ F) ∨ (x ∨ V) ↔  V
               (x ∨ F) ↔  V  ↔  (x ↔ V)



     ↔                    ∨                                                                   S={F,V}
               (x ∨ V) ↔  V   ↔  (x ↔ V) ∨ (x ↔ F)
    

32.- Negación de la conjunción y de la disyunción: Leyes de De Morgan. 
       Probar que son equivalentes, utilizando ISETL:

a) – ( p ∧ q)  con  -p ∨-q
b) – (p ∨ q)  con  -p ∧ -q

33.- a) ¿Cuál es la negación de la negación?.     
  b)¿Cuál es la negación del bicondicional?.
  c) Verificar a) y b) usando ISETL.

34.- Analicemos la negación del condicional.
        a) Probar que p → q     y    -( p ∧ –q) son equivalentes, usando ISETL.
        b) Si negamos ambas proposiciones, ¿siguen siendo equivalentes?, o sea ¿ -( p → q ) y  -(-(p ∧ –q))    
χ        son equivalentes?
δ   c) Es fácil ver, con ISETL, que -(-(p ∧ –q)) es equivalente a p ∧ –q. 
ε De lo visto antes podemos concluir: - (p → q) y  p ∧ –q son equivalentes.
      En resumen, la negación de una implicación no es una implicación, sino la conjunción del     
      antecedente con la negación del consecuente.
φ
35.- Estudiar distributivas de ∧ respecto de ∨  y de ∨ respecto de ∧.

a) (p ∧ q) ∨ r   ⇔ ...................
b) (p ∨ q ) ∧ r  ⇔ ...................

Implicaciones asociadas (condicionales asociados) a una dada
Si al condicional p→q le llamamos directo vamos a considerar otros condicionales vinculados con él:

q→p recíproco
                       -p→-q contrario
                       -q→-p contrarrecíproco

A los efectos de ver como se relacionan todos con todos puede ser útil el siguiente cuadro:
p→q  recíprocos q→p

con     contra  procos con
tra     reci tra
rios     contra  procos rios

-p→-q recíprocos -q→-p

36.- Usar ISETL para:
        a) Demostrar que los condicionales contrarrecíprocos son equivalentes.
        b) Demostrar que los condicionales contrarios no son equivalentes.
γ   c)¿Son equivalentes los condicionales recíprocos?

37.- a)¿Un condicional y su contrario se implican?, en otras palabras, ¿( p→q)→(-p→-q)?
       b)¿Y un condicional y su recíproco?.
       c) Usar ISETL en a) y b).



38.- Dadas las siguientes proposiciones:
p ABCD es un rombo
q ABCD es un cuadrado
r ABCD es un paralelogramo
s ABCD es un rectángulo

       Estudiar el valor de verdad de las siguientes proposiciones y sus asociadas.
a) p → q
b) q → r
c) (s ∧ p) → q
d) –r → (-q ∨ r)

39.- Si el máximo común divisor  de dos números naturales es par, entonces ambos son pares.
a) Escribir hipótes y tesis.
b) Enunciar el recíproco e investigar si es verdadero.
c) Enunciar el contrarrecíproco. ¿Es verdadero?

40.- Si dos números naturales son múltiplos de 12, entonces ambos son múltiplos de 3.
       Idem ejercicio 37.-

RAZONAMIENTOS   

Un razonamiento se define como un conjunto de proposiciones en el cual una de ellas se afirma a partir 
de las demás.
En forma más  sofisticada un razonamiento es un par ordenado ((pi), q) donde (pi) es un conjunto finito  
de proposiciones llamadas premisas y q una proposición llamada conclusión que se afirma deriva de las 
premisas.
Razonamiento no deductivo es aquel que solo ofrece algún fundamento a favor de la conclusión. En un 
razonamiento no deductivo aunque las premisas sean verdaderas la conclusión es simplemente probable.
El razonamiento no deductivo se divide en analógico e inductivo.
Razonamiento deductivo es aquel en que la conclusión se desprende necesariamente de las premisas.

41.- Indicar a qué tipo corresponde c/u de los siguientes razonamientos:

a) Los filósofos siempre se han interesado por la política. Porque Platón fue un filósofo que se 
interesó por la política; Séneca que participó en política también fue filósofo; y Marx fue filósofo 
y político.

b) Juan, Pedro y Luis son profesores de matemática, Juan y Pedro son casados, por lo tanto Luis 
también será casado.

c) Si invierte sus ahorros en ese negocio el riesgo es grande. Pero si el riesgo es grande, la tasa de 
ganancia es elevada. Entonces, si invierte sus ahorros en ese negocio, la tasa de ganancia es 
elevada.

42.- Idem
a) Si el perímetro de un triángulo equilátero es 3cm entonces cada lado mide 1cm.
b) Tú eres espectador de un partido de fútbol entre dos equipos de los cuales no has visto ni oído 

hablar anteriormente. Antes de empezar el partido concluyes que el equipo con camiseta roja 
ganará porque en un partido que viste la semana pasada ganó un equipo que tenía camiseta roja.

c) Al examinar 20 copos de maíz notas que todos tienen diferente forma. Concluyes entonces que 
todos los copos de maíz tienen diferente forma.  



Debemos saber cuando un razonamiento deductivo es válido, para ello analicemos los siguientes  
razonamientos:

(1) Todo uruguayo es americano
Todo salteño es uruguayo V
 Todo salteño es americano V

(2) Todo uruguayo es europeo
Todo francés es uruguayo F
Todo francés es europeo V

(3) Todo peruano es africano
Todo porteño es peruano F
Todo porteño es africano F

Los tres razonamientos tienen la misma forma:  (*)Todo B es C
      Todo A es B
      Todo A es C  

Si en (*) sustituimos en las premisas A, B, C por términos que hagan que las premisas sean verdaderas, 
la conclusión será inevitablemente verdadera. 
Una forma de razonamiento es válida cuando no puede haber  ningún razonamiento de esa forma que 
tenga premisas verdaderas y conclusión falsa.
Un razonamiento deductivo es válido cuando su forma es válida. 
Observemos que en un razonamiento válido es posible que obtengamos conclusiones verdaderas a partir 
de premisas falsas o una conclusión falsa a partir de premisas falsas.

Analicemos estos otros razonamientos:
(1) Todo francés es europeo

Todo parisino es europeo V
Todo parisino es francés V

(2) Todo francés es europeo
Todo inglés es europeo V
Todo inglés es francés F

                  (3)  Todo peruano es europeo
Todo limeño es europeo F
Todo limeño es peruano V

(4) Todo peruano es europeo
Todo uruguayo es europeo F
Todo uruguayo es peruano F

Los cuatro razonamientos tienen la misma forma: (**) Todo A es C
     Todo B es C
     Todo B es A



Esta es una forma no válida de razonamiento, no nos garantiza que la conclusión se desprenda de las 
premisas. Puede darse el caso que las premisas sean verdaderas y la conclusión falsa.
Lo que choca ahora es que pueda darse el caso que obtengamos conclusiones verdaderas a partir de 
premisas verdaderas.

Debemos distinguir un razonamiento de la forma del razonamiento. 
Para que un razonamiento sea válido o no lo que importa es su forma. .

La lógica proposicional tiene varios  métodos para saber si un razonamiento es válido o no.
El método llamado del condicional asociado nos permite afirmar que un razonamiento deductivo es  
válido cuando el condicional cuyo antecedente es la conjunción de las premisas, y el consecuente es la 
conclusión, es tautológico. 

43.- Usando el condicional asociado verificar que los siguientes razonamientos son válidos:
       a) Modus ponens: p → q

             p      .
             q

           Ejemplo: Tomemos p: el triángulo ABC tiene dos lados iguales (verdadera), 
                                           q: el triángulo ABC tiene dos ángulos iguales.
                           La implicación  p → q es verdadera  por un teorema bien conocido; entonces q es   
                           verdadera.

      b) Modus tollens: : p → q
            -q      .
            -p

          Ejemplo: Tomemos p: el triángulo ABC tiene dos lados iguales 
                                           q: el triángulo ABC tiene dos ángulos iguales.
                           La implicación  p → q es verdadera y si q es falsa, tiene que ser p falsa.

      c) Silogismo hipotético:    p → q
                   q   →   r     

             p → r
          Ejemplo: De “si n es primo distinto de 2, entonces es impar” y “si n es impar, entonces no es 
                          múltiplo de 6”, deducimos “si n es primo distinto de 2, entonces no es múltiplo de 6”.

       
      d) Silogismo disyuntivo:   p ∨ q

            -p    .   
             q

          Ejemplo: tomemos p: “n es un número par” , q:”n es natural impar” 
  “n es par o impar” es verdadera y si “n no es par”, entonces “n es impar”.

Analicemos estos dos razonamientos:
a) Todo hombre es animal

Todo animal es ser vivo
Todo hombre es ser vivo 

b) Todo hombre es mortal
Todo hombre es racional
Todo mortal es racional



Si abstraemos la forma de cada razonamiento vemos que el primero tiene una forma válida y el segundo 
tiene una forma no válida.

Ambos razonamientos son de la forma:
p
q
r

en caso de usar el condicional asociado: (p ∧ q) → r    nos encontramos que ambos son  contingencias.
En  otras palabras: el método del condicional asociado no puede decirnos si este razonamiento es válido 
o no. Con esto podemos ver que la lógica proposicional tiene límites por lo que tendremos que analizar 
la estructura, el interior de cada proposición. Ya no nos debe interesar como están vinculadas las 
proposiciones sino como está formada cada proposición.
Surge así la necesidad de la cuantificación de predicados.

CUANTIFICACIÓN de PREDICADOS ( o FUNCIONES PROPOSICIONALES) 

Retomemos la expresión
    p(x): x es impar
Hasta ahora hemos visto  que esta expresión no es una proposición a menos que se le asignen valores 
específicos a x.  
Si en cambio decimos:
                                    Para todo x, se verifica p(x)    (1)
                                                                         y
                                    Existe, por lo menos, un x tal que se verifica p(x)   (2)

estas dos expresiones son proposiciones ya que podemos sin duda afirmar que (1) es falsa y que (2) es 
verdadera. No dejemos de recalcar que es imprescindible especificar en qué conjunto estamos 
trabajando, en los ejemplos que estamos viendo se sobreentiende que dicho conjunto es el de los números 
enteros.

Lo que hemos hecho es cuantificar la función proposicional mediante las expresiones: 
“para todo”, que se representará con el símbolo ∀ y lo  llamaremos  cuantificador universal,
“existe”, que se representará con el símbolo ∃ y lo llamaremos cuantificador existencial.

De acuerdo a estos nuevos símbolos que acabamos de introducir, notaremos las expresiones (1) y (2) de 
la siguiente forma:

∀x : p(x)
∃ x / p(x).

Una función proposicional cuantificada pasa a ser una proposición.

Si el dominio de p(x) es e conjunto de los números naturales tendríamos:



“Todos los naturales son impares” (1)
“Cualquiera sea x natural, x es impar”

Es una proposición referida ahora a todos los números naturales. 

La expresión (2) dice
“Existe x tal que x es impar”
“Existen naturales que son impares”

Es una expresión referida a algunos números naturales.

Si queremos expresar las proposiciones anteriores en lenguaje ISETL surge el inconveniente de que por 
ser el conjunto N infinito la proposición pasa a ser indecidible en ISETL por lo que tendremos que 
considerar un conjunto finito.
La sintaxis sería:

forall x in {1..100}| even(x);
exists x in {1..100}| even(x);

44.- Investigar el valor de verdad de cada proposición usando ISETL.(Recordar que N y Z deben ser 
sustituidos por conjunto finitos).

a) )xxNx(:x
•

=−∧∈∀ 33

b) )xZx/(x 01 =+∧∈∃
c) )xNx(:x 10 =+→∈∀

d) ))x(xNx/(x
•

≠+→∈∃ 21

e)   )xxNx(:x 0232 =+−∧∈∀
       f)  ))x(xZx/(x 33 11 +=+∧∈∃
La parte a) en ISETL sería:

A:={1..20};
forall x in A | (x**3-x) mod 3 =0;
true;

45.- i) Escribir las siguientes proposiciones en lenguaje matemático e investigar su valor de verdad.
        ii) Agrupar las que sean equivalentes.
        iii) Escribir dichas proposiciones en lenguaje ISETL y corroborar los valores de verdad obtenidos en 
              i) para el conjunto { }1001 ≤≤∈= x/NxA

a) No todos los números primos son impares.
b) No todos los números primos son pares.
c) Todos los números primos son pares.
d) Todos los números primos son impares.
e) Ningún número primo es par.
f) Ningún número primo es impar.
g) Hay, al menos, un número primo impar.
h) Hay, al menos, un número primo par.
i) Algún número primo no es impar.
j)   Algún número primo no es par.

46.- Para el conjunto { }100100 ≤≤−∈= x/ZxA sean las proposiciones:
p(x): x>0
q(x): x es par
r(x): x es un cuadrado perfecto



s(x): x es divisible entre 4
t(x): x es divisible entre 5

1)Expresar en palabras cada una de las siguientes proposiciones e investigar su valor de verdad:
a) ))x(p)x(r(x →∀
b) ))x(q)x(s(x →∀
c) ))x(t)x(s(x −→∀
d) ))x(r)x(s(x −∧∃
2) Usar ISETL para verificar lo hallado en 1).

La parte 2) c) en ISETL sería:
A:={-100..100};
forall x in A | (x mod 4 =0) impl (not(x mod 5=0));
false;

3) ¿Se obtienen los mismos valores de verdad si trabajamos en el conjunto 
{ }1000 ≤<∈= x/NxB ? ¿Y en el conjunto C={2,5}?

Algo que importa es la negación de funciones proposicionales cuantificadas.

Por ej. la negación de (1) es
“No todos los naturales son impares”  

                         o sea “Existen naturales que no son impares”
y en símbolos ∃x / -p(x)

La negación de (2) es “No existen naturales impares”
 o sea “Cualquiera que sea el natural, no es impar”

y en símbolos ∀x : -p(x)

En resumen tenemos - [∀x : p(x)]  ⇔  ∃ x / -p(x)
      - [∃ x / p(x)]   ⇔  ∀x : -p(x)

Para hallar la negación de una función proposicional cuantificada hay que sustituir:
• ∀  por  ∃
• ∃  por  ∀
• p(x) por  –p(x)

Veamos un ejemplo: 
Tenemos la proposición   ∃ x/(x∈N ∧  x+1=0) y queremos efectuar su negación.
Es de la forma ∃x / P(x), siendo P(x): x∈N ∧  x+1=0. 



-P(x) será entonces: -  
qp

)x()Nx( 01 =+−∨∈−
−

 y esto equivale a )x(Nx 01 =+−→∈ que es lo mismo 

que escribir )x(Nx 01 ≠+→∈ .
Sustituyendo en la expresión original tendremos que la negación de ∃ x/(x∈N ∧  x+1=0) es

∀ x : ( )x(Nx 01 ≠+→∈ )

47.- i) Escribe la negación de cada una de las proposiciones del ejercicio 45) en lenguaje matemático.
       ii) Escribir dichas proposiciones en lenguaje ISETL e investigar sus valores de verdad.

48.- i)Negar cada una de las proposiciones del ejercicio 44)
       ii)Escribirlas en lenguaje ISETL y decir su valor de verdad.

Si p(x) y q(x) son predicados definidos para un universo dado.

Los predicados p(x) y q(x) son equivalentes, y escribimos ∀x[p(x)⇔q(x)] cuando el bicondicional 
p(a) ↔q(a) es V para cada elemento del  universo dado.

Decimos que el predicado p(x) implica a q(x), y escribiremos ∀x[p(x)⇒q(x)] cuando la implicación  
p(a)→q(a) es V para cada elemento del universo. 

Sobre el conjunto A = { x∈Z/ -100≤ x≤ 100} consideremos los predicados p(x): 2x+1=5 y q(x): x2 = 9.
Veamos si son equivalentes las proposiciones ∃x[p(x)∧q(x)]  y  ∃xp(x)∧∃xq(x)
La proposición ∃x[p(x)∧q(x)] es F, ya que no existe un entero a/ 2a+1= 5 y a2=9. 
Sin embargo, existe un entero b/ 2b+1=5 y existe un segundo entero c/ c2 = 9, por lo tanto la proposición 
∃xp(x)∧∃xq(x) es V.

En resumen el cuantificador existencial ∃x  no distribuye sobre la conectiva lógica ∧, en otras palabras :
 ∃x[p(x)∧q(x)]  no es equivalente a  ∃xp(x)∧∃xq(x)
De paso esto nos sirve para ver que ∃xp(x)∧∃xq(x) no implica a  ∃x[p(x)∧q(x)]
pero sin embargo si se cumple que  ∃x[p(x)∧q(x)] ⇒ [∃xp(x)∧∃xq(x)]

Podemos verificarlo usando ISETL asi:

A:= {-100..100};
(exists x in A|((2*x+1=5 and x**2=9))) iff ((exists x in A|2*x+1=5) and (exists x in A|x**2=9));
false;

((exists x in A|2*x+1=5) and (exists x in A|x**2=9)) impl (exists x in A|((2*x+1=5 and x**2=9)));
false;

(exists x in A|((2*x+1=5 and x**2=9))) impl ((exists x in A|2*x+1=5) and (exists x in A|x**2=9));
true;

49.- Definirse como dominio un conjunto finito de enteros y dos predicados p(x) y q(x).
Verificar usando ISETL las siguientes equivalencias e implicaciones:

a) ∃x[p(x)∨q(x)] ⇔ [ ∃xp(x) ∨∃xq(x)]



b) ∀x[p(x)∧q(x)] ⇔ [∀xp(x)∧∀xq(x)]
c) [∀xp(x)∨∀xq(x)] ⇒∀x[p(x) ∨q(x)] 

Conmutación de cuantificadores.

Analizaremos que sucede cuando a una función proposicional se le aplican varios cuantificadores.
 
• Dos cuantificadores de la misma clase (ambos universales o ambos existenciales) conmutan.

                    )y,x(p:x,yy)y,x(p:y,x ∀∀∀∀
     significan lo mismo: “para todo x y todo y se verifica p(x,y)”.
   
                    )y,x(p/x,yy)y,x(p/y,x ∃∃∃∃
     significan: “existen un x y un y tales que verifican p(x,y)”.

Si consideramos los conjuntos A = { x∈Z/ -100≤ x≤ 100}y B = { x∈Z/ -50≤ x≤ 50} y el predicado 
p(x,y): x + y = 6 veamos usando ISETL la equivalencia de )y,x(p/x,yy)y,x(p/y,x ∃∃∃∃

En ISETL la sintaxis es:

A:= {-100..100};
B:={-50..50};
(exists x in A|exists y in B|x+y=6) iff (exists y in B|exists x in A|x+y=6);
true;

• Dos cuantificadores de distinta clase no conmutan. 

Trabajando con el conjunto C = {x∈N/ 0≤ x≤ 10} y D={x∈Z/ -4≤ x≤ 6}  y el mismo predicado anterior  
veamos que
∀x∈C∃  y∈D/ x+y=6 es una proposición verdadera ya que para cada x de C  podemos encontrar un 
 y=6-x de D de forma que x+y=x+(6-x)=6.
Sin embargo la proposición ∃  y∈D∀x∈C/x+y=6 es falsa ya que una vez elegido el entero y, el único 
valor que x puede tener es 6-y para satisfacer la igualdad, por lo que no es∀x del conjunto.
Vemos así que ambas proposiciones no son equivalentes.

Hagámoslo ahora en ISETL

C:={0..10};
D:={-4..6};
(forall x in C|exists y in D|x+y=6) iff (exists y in D|forall x in C|x+y=6);
false;

Nos limitaremos a señalar que vale la implicación:
                             )y,x(p/y:x)y,x(p:x/y ∃∀→∀∃
(exists y in D|forall x in C|x+y=6) impl (forall x in C|exists y in D|x+y=6);



true;

pero no la implicación en sentido contrario:

(forall x in C|exists y in D|x+y=6) impl (exists y in D|forall x in C|x+y=6);
false;

50.- Si consideramos los conjuntos A = { x∈Z/ -100≤ x≤ 100} y  B = { x∈Z/ -50≤ x≤ 50} y 
       el predicado  p(x,y): x + y = 6, 

¿sigue siendo cierta la implicación  )y,x(p/y:x)y,x(p:x/y ∃∀→∀∃ ?

51.- Sean A={x∈N/ 0<x≤ 100} y el predicado p(x,y): “x divide a y”: 
a) Determinar el valor de verdad de cada una de las siguientes proposiciones.
b) Verificar las respuestas obtenidas usando ISETL.

i) p(3,7)
ii) p(7,3)
iii) p(3,27)
iv) ∀y∈A/p(1,y)
v) ∀x∈A/p(x,0)
vi) ∀x∈A/p(x,x)
vii) ∀y∈A∃  x∈A/p(x,y)
viii) ∃  y∈A ∀x∈A /p(x,y)
ix) ∀x∈A∀y∈A[p(x,y) ∧p(y,x) → (x=y)]
x) ∀x∈A∀y∈A∀z∈A [p(x,y) ∧p(y,z) → p(x,z)]

Veamos como negar proposiciones donde aparezcan más de un cuantificador.
Por ejemplo:
Si tenemos la proposición:   ( ) ( )[ ]0>−→>∈∀∈∀ yxyxZyZx

Su negación es: -[ ( ) ( )[ ]0>−→>∈∀∈∀ yxyxZyZx ]

                          ( ) ( )( )( )[ ]0>−→>∈∀−∈∃⇔ yxyxZyZx

                          ( ) ( )( )[ ]0>−→>−∈∃∈∃⇔ yxyxZyZx

                          ( ) ( )[ ]0>−−∧>∈∃∈∃⇔ yxyxZyZx

                          ( ) ( )[ ]0≤−∧>∈∃∈∃⇔ yxyxZyZx

Verifiquemos la negación anterior usando ISETL. Para ello consideraremos  en vez de Z un conjunto 
finito.

A:={-5..5};
not (forall x in A |forall y in A| (x>y) impl (x-y>0)) iff (exists x in A| exists y in A| (x>y) and (x-y<=0));
true;

Analicemos otro ejemplo. La definición de límite de una función es:

( ) ( )[ ]εδδε <−→<−<∀>∃>∀⇔=
→

L)x(faxxL)x(flim
ax

000

Veamos su negación:



( ) ( )[ ])L)x(faxx(L)x(flim
ax

εδδε <−→<−<∀>∃>∀−⇔≠
→

000

                        ( ) ( )[ ]εδδε <−→<−<−∃>∀>∃⇔ L)x(faxx 000

                        ( ) ( )[ ]εδδε <−−∧<−<∃>∀>∃⇔ L)x(faxx 000

                        ( ) ( )[ ]εδδε ≥−∧<−<∃>∀>∃⇔ L)x(faxx 000

52.- Negar la definición de límite de una sucesión.



MÉTODOS DE DEMOSTRACIÓN

Los pensadores griegos, en el tema científico y en particular las matemáticas, han profundizado en 
dos direcciones. En relación con la argumentación política, jurídica o filosófica, y en relación con las 
matemáticas egipcias y babilonias. Los matemáticos griegos plantearon dos exigencias.

Los filósofos, los políticos y los juristas griegos sobresalían en el arte de la persuasión, pero en su 
ejercicio tenían límites, si podemos así decirlo. La persuasión no anula totalmente la duda. Las 
matemáticas exigieron algo más allá de la simple persuasión. ¡Exigieron la irrefutabilidad! Querían 
convencer de forma tal que nadie pudiera refutar lo que planteaban, porque tenían la pretensión de aportar 
en todo momento justificaciones que disiparan cualquier duda. ¡Querían pruebas absolutas! Los 
matemáticos griegos con eso se desmarcaron de los otros contemporáneos que presentaban pruebas.

Y se desmarcaron de sus predecesores babilonios y egipcios rechazando que la intuición bastase 
para legitimar verdades matemáticas, rechazando igualmente las pruebas numéricas. Me convenzo de una 
cosa porque la veo y te convenzo porque te la muestro. Ésa era la prueba concreta usada a orillas del 
Éufrates y del Nilo. Los matemáticos griegos rehusaron conformarse con ese tipo de pruebas materiales, y 
exigieron algo más: la demostración.
  -¿No había demostración antes de ellos? – preguntó Léa sorprendida.
   -No. Fueron ellos quienes la inventaron. 

Una implicación  p → q es V cuando p y q son V
   y cuando p es F.

Para probar que una implicación  p → q es V hay varios métodos.

Demostración directa

Asumiendo que p es V, mostrar que q debe ser V.
Este método se basa en el hecho de que la única línea de la tabla de verdad de p → q que es F se da 
cuando p es V y q es F. Este método de demostración lo que hace es descartar esa posibilidad,  
suponiendo que p es V y probando que q también lo es.
Se considera que la hipótesis p es V y se ve que la tesis q es V, por lo que otro caso no puede darse.

No hay nada escrito de Pitágoras,  como sucede con Tales, y ni siquiera se sabe la fecha exacta de 
su nacimiento o de su muerte. Sabemos solamente que vivió en el siglo VI a.C., nació en la isla de Samos, 
en el mar Egeo, y que murió en Crotona, en el sur de Italia.

A los dieciocho años, Pitágoras participó en los Juegos Olímpicos. Ganó todas las competiciones 
de pugilato.



Tras su triunfo decidió viajar. Pasó algunos años en la cercana Jonia con Tales y su alumno 
Anaximandro. Después fue a Siria, donde permaneció junto a los Sabios fenicios que le iniciaron en los 
misterios de Biblos. Luego pasó al monte Carmelo, en el actual Líbano, desde donde embarcó hacia 
Egipto, país en el que vivió por espacio de veinte años. Tuvo todo el tiempo necesario para asimilar la 
sabiduría de los sacerdotes egipcios, en los templos a orillas del Nilo.

            Cuando los persas invadieron el país, cayó prisionero y lo enviaron a Babilonia, donde no perdió el 
tiempo. Durante los doce años que pasó en la capital mesopotámica adquirió los inmensos conocimientos 
de los escribas y magos babilonios. Regresó a Samos, de donde había salido cuarenta años antes, en 
plenitud de juicio y raciocinio.

Sin embargo, el tirano Policrato reinaba en Samos, y Pitágoras odiaba a los tiranos. Por eso se 
volvió a marchar. Esta vez hacia las costas de la Magna Grecia, en el oeste. Desembarcó en el sur de 
Italia, en la ciudad de Sibaris, ¡la célebre ciudad de la antigüedad clásica, donde todos los placeres tenían 
su asiento! Por eso Pitágoras se instaló en la cercana población de Crotona, y allí fundó su <Escuela>.

.....
 -Pitágoras empezó por establecer una primera clasificación de los 
números. Hoy nos parece tan natural que podría haber existido siempre. 
Sin embargo, fue una gran novedad. Agrupó los números en dos 
categorías, los pares y los impares. Es decir, en los que son divisibles 
por dos y los que no lo son.

En el silencio que siguió a esas  palabras se oyó una voz trágica 
declamar:

-¡Los que creían en Dos y los que no creían!
Era Léa, que no pudo evitar el comentario.
<¡No podía ser otra!>, pensó Ruche. <Un talento diabólico para 

sacar punta a todo. No me gustaría que se dedicase a la publicidad.> Y, a 
continuación, siguió:

-Pitágoras estableció las reglas de cálculo que concernían a la 
paridad.

Sinfuturo intervino: Pitágoras (Siglo VI a.C.)

-Par más par, es igual a par. Impar más impar, es igual a par. 
Par más impar, igual a impar.  

Ejemplo 1: Si m y n son enteros impares, entonces m + n es un entero par.

m es impar → m = 2h + 1 para algún entero h
n es impar → n = 2k + 1 para algún entero k   entonces

m + n = (2h + 1) + (2k + 1) = 2(h + k + 1), pero como h y k son enteros también lo es i = h + k + 1
por lo que m + n = 2i, de donde m + n es par.
En la demostración intervinieron las definiciones de entero par e impar así como las propiedades 
conmutativa y asociativa de la suma de enteros y la distributiva de la multiplicación respecto de la suma.

Ejemplo 2:¿Recuerdas qué decía el teorema de Pitágoras?.

Elisha Scott Loomis, profesor de matemática en Cleveland, Ohio (Estados Unidos) era un verdadero 
apasionado del teorema de Pitágoras. Durante 20 años, de 1907 a 1927, coleccionó demostraciones de este 
teorema, las agrupó y organizó en un libro, al que llamó “La Proposición de Pitágoras”. La primera 



edición, en 1927, contenía 230 demostraciones. En la segunda edición, publicada en 1940, este  número 
fue aumentado a 370 demostraciones.
  
Habiendo tantas demostraciones del teorema de Pitágoras, ¿te animas a buscar una?.

Ejemplo 3: Si n es un entero par  → n + 7 es impar.

n es par → n = 2k  para algún entero k.   
n + 7 = 2k + 7 = 2k + (6 + 1) = (2k + 6) + 1 = 2(k + 3) + 1  → n + 7 es impar.

Ejemplo 4: Si (ABCD) paralelogramo  → AB = CD y AD = BC.

Consideramos los triángulos (ABD) y (CDB) que tienen:
BD en común

∧∧
= CDBABD  por ser alternos internos entre las paralelas AB y CD

∧∧
= CBDADB  por ser alternos internos entre las paralelas AD y BC

Usando el 2º criterio de igualdad de triángulos podemos decir que (ABD) = (CDB) por lo que AB = CD y 
AD = BC.

Ejercicios: 

Un número entero es par si es divisible entre 2; es decir, n es par si existe un entero r tal que n = 2r.
Un entero es impar si  no es par, o sea, si existe un entero s tal que n = 2s + 1.
 1.- a) Si consideramos dos enteros pares, ¿qué pasa con su suma? 

 b) ¿Y si uno es par y el otro impar?

2.- ¿Qué pasa con el producto de dos enteros?. Analizar todos los casos posibles.

3.- a) ¿Si le sumamos 77 a un entero par obtenemos un impar?
     b) ¿Y si le sumamos 1231 a un entero impar? 

4.- Si un entero es divisible por 15, ¿es divisible por 3?

5.- Si n es un natural cualquiera y 6 divide a n + 6, ¿divide a n?

6.- a) Si el MCD de dos naturales es par, ¿podemos saber si cada uno de ellos es par o impar? 
     b) ¿El enunciado recíproco es verdadero?

7.- a) Comparar las expresiones x + y , x+y  siendo x, y números reales.
     b) Demostrar lo hallado en a).

8.- Demostrar que si 1<x , entonces x < -1 o 1<x, con x ∈ R.

9.- a) Buscar enteros x e y de forma que se cumpla la igualdad 6x + 9y = 101.
     b) Demostrar que si 6x + 9y = 101, entonces x o y no es entero.



10.- Paralelogramo es un cuadrilátero con los lados opuestos paralelos. 
      a) ¿ Qué se puede decir de sus ángulos opuestos?
      b) Demostrar que sus diagonales se cortan en su punto medio.

11.- Rectángulo es un paralelogramo con los cuatro ángulos rectos.
 a) ¿Cómo son sus diagonales?

      b) ¿Alcanza que las diagonales de un paralelogramo sean iguales para decir que es un rectángulo?  

Demostración indirecta o del contrarrecíproco
Este método de demostración está basado en el hecho de que  p → q es equivalente a  - q → - p.
Para probar que  p → q  probamos que - q → - p.
Asumiendo que q es F, mostrar que p debe ser F. 
Si p es la conjunción de varias premisas tenemos que demostrar 

( p1 ∧ p2 ∧ p3 ∧...∧ pn ) → q 
cuyo contrarrecíproco es - q → - ( p1 ∧ p2 ∧ p3 ∧...∧ pn ) 
que es equivalente a   - q → ( - p1 ∨ - p2 ∨ - p3 ∨...∨ - pn )
y para probar esto último alcanza con probar  

- q → - pi  para al menos un i entre 1 y n. 

Ejemplo 1: Si n2 es par, entonces n es par.

El enunciado contrarrecíproco dice: si n es impar, entonces n2 es impar.
Si n es impar → n = 2h + 1 para algún h → n2 = (2h +1)2 = 4h2 + 4h +1 = 2(2h2 + 2h) + 1→ n2 es impar.

Ejemplo 2: Si n es un número primo distinto de 2, entonces n es impar.

El enunciado contrarrecíproco dice: si n es par, entonces n = 2 o n no es un número primo.
Si n es par, entonces n = 2.p para algún natural p<n. Ahora p=1 ó p>1. Si p=1, entonces n=2. Si p>1, 
entonces n=2.p con 1<p<n, por lo que n es divisible por p, por lo que no es primo.

Ejemplo 3 Si n es un entero par  → n + 7 es impar.

El contrarrecíproco dice: si n + 7 es par entonces n es impar.
Si n + 7 es par entonces n + 7 = 2k para algún entero k por lo que n = 2k – 7 = 2k – 8 +1 = 2(k-4) + 1, 
donde k-4 es entero, por lo que n es impar.

Ejercicios

12.- a) Demostrar usando el contrarrecíproco el ejemplo 1 de demostración directa.
       b)  Idem para el ejercicio 1 de demostración directa.
13.- Demostrar usando el contrarrecíproco lo demostrado en el ejercicio 2 de demostración directa.

14.- a) ¿Un entero par, se puede descomponer en la suma de uno par y otro impar?.
       b) ¿Y uno impar?

15.- ¿Y si en el ej.3 consideramos el producto en vez de la suma?



16.- Si el cuadrado de un número es impar, ¿podemos saber si el número es par o impar?

17.- Demostrar el ej.3 de demostración directa, ahora usando el contrarrecíproco.

18.- Idem con el ej.4.

19.- Si el producto de dos números reales es mayor que 25, ¿tiene que ser cada uno de ellos mayor que 5? 

Demostración por contradicción o por reducción al absurdo 

Este método de demostración de una implicación  p → q  muestra que considerando que q es F  junto a
 p es V  llegamos a una contradicción. 
Recordando lo visto en el ej 34  - ( p →  q ) es equivalente a ( p∧ - q )

por lo que   ( p → q ) es equivalente a -( p∧ - q )
Si probamos que (  p∧ - q ) es una contradicción, su negación -( p∧ - q ) es una tautología y por la  
equivalencia ( p → q ) es una tautología.

...la escuela pitagórica duró cerca de 150 años y hubo 218 pitagóricos, ni uno más ni uno menos. Los más 
conocidos fueron: Hipócrates de Quíos, Teodoro de Cirene, Filolao, Arquitas de Tarento. Y, por supuesto, 
Hipaso.
...

Hipócrates de Quíos escribió, ciento cincuenta años antes de Euclides, los primeros Elementos de 
la historia de la matemática. No debemos confundir este Hipócrates con el padre de la medicina, el del 
juramento. Ambos vivieron en el siglo V a.C., pero el matemático nació en la isla de Quíos y el médico en 
la de Cos.

Hipócrates fue, después de Aristóteles, uno de los más grandes geómetras que existieron, pero para 
lo demás era <tonto y estúpido>. Una anécdota refleja su talante. Empezó su vida como comerciante 
marítimo. En el curso de un viaje por mar, recaudadores de impuestos de Bizancio le requisaron todo el 
dinero. Tales también se ocupaba de lo mismo, recordaba Ruche, pero jamás le hubiera ocurrido una 
desgracia como  ésa, ya que era suficientemente astuto para evitarla. Hipócrates, arruinado, no encontró 
nada mejor que hacer: se hizo matemático. ¡Si todos los arruinados del mundo hiciesen lo mismo! ¡Sólo 
en Montmartre habría suficiente personal para fundar una Academia!

Y como producto creativo de bobos y estúpidos, se afirma que Hipócrates fue el inventor del 
razonamiento por reducción al absurdo. ¡Casi nada! El razonamiento por el absurdo es una de las armas 
más temibles de la Lógica. Permite establecer la verdad de una proposición demostrando que la 
proposición contraria conduce a un absurdo del tipo <un número que es a la vez par e impar>, <dos 
paralelas se cortan>, <un triángulo equilátero tiene todos sus ángulos diferentes>, etc.

Si Ruche sentía un afecto especial por ese tipo de razonamiento era porque partía de una hipótesis 
falsa...¡para llegar a una conclusión verdadera! Eso le había hecho siempre pensar en el proverbio:<con 
una mentira sacarás una verdad.>

<Si quieres demostrar que una proposición es verdad, toma su contraria y considérala como 
verdadera. Extrae consecuencias. Si son absurdas, prueban el “fallo” de tu hipótesis. ¡Menudas 
consecuencias tan disparatadas se producen si es falsa! Y si es falsa, la verdad es su contraria, 
¡exactamente lo que querías demostrar!

Muchas veces se confunde las demostraciones por absurdo con las demostraciones usando el 
contrarrecíproco. Para que se aprecie la diferencia hagamos por absurdo la demostración del ejemplo 1 
de contrarrecíproco:



Ejemplo 1: Si n2 es par, entonces n es par.

Partiendo de que n es impar y que n2 es par tenemos que llegar a una contradicción.
Si n es impar → n = 2h + 1 para algún h → n2 = (2h +1)2 = 4h2 + 4h +1 = 2(2h2 + 2h) + 1→ n2 es impar. 
Pero por otro lado estamos considerando que n2 es par, ahí es donde surge la contradicción: n2 no puede 
ser  par e impar a la vez.

Otra forma de ver el fundamento de este método es:
 -  p →  ( q ∧ - q ) es equivalente(contrarrecíproco) a   -( q ∧ - q )  → - ( - p)

 que es equivalente a                       (- q∨ q )  →    p
Si probamos que  - p →  ( q ∧ - q ) es V, entonces (- q ∨  q ) →  p es V.
Pero prestemos atención a que (- q ∨ q ) es siempre V, es una tautología, y si (- q ∨ q ) →  p es V,  
recordando  la tabla de verdad del condicional, debe ser p V.

Primer acto: ¡Todo es número!.
-¡Pitágoras veía números por todas partes! Todo cuanto existía era número para él. Lo descubrió 

por vez primera en la música.
La voz de Sinfuturo se quebró de nuevo.
Ruche tomó el relevo.
-Con la ayuda de este simple dispositivo, Pitágoras hizo un descubrimiento espectacular: ¡un 

intervalo musical es una relación entre dos números! El intervalo de octava producido por el jarrón vacío 
y el medio lleno se expresaba por la relación ½, el de quinta por 2/3, y el de cuarta por ¾. ¿Conocéis 
relaciones numéricas más simples que estas tres? –preguntó Ruche.

-De este modo –prosiguió Ruche- las relaciones numéricas eran capaces de producir armonías 
musicales. O sea, la Armonía misma era la realización en sonidos de las relaciones numéricas. ¡La escala 
era número y la música matemáticas! Pero no sólo era la música. Para los pitagóricos la Armonía se 
extendía al universo; el mismo orden del cielo se expresaba por una escala musical. ¡La música de las 
esferas!  Necesitaban una palabra para expresar esto, Pitágoras la inventó:¡cosmos! El Orden y la Belleza. 
Y la historia del mundo se expresó como la lucha del cosmos contra el caos. 

Dar una base numérica al conocimiento de la naturaleza, ése era el proyecto de los pitagóricos. 
Para llegar a ello tenían que estudiar los números por sí mismos. Así fue la fundación de la aritmética, la 
ciencia de los números, que ellos diferenciaron de la logística, el arte puro del cálculo. Con esta 
separación, elevaron la aritmética por encima de las necesidades de los mercaderes.

Ejemplo 2: 
Segundo acto: ¡Si un número representa el lado de un cuadrado, ningún número podrá representar su 
diagonal! ¡Diagonal y lado son inconmensurables!

Si consideramos un cuadrado de lado 1 y queremos calcular su diagonal en función del lado podemos 
recurrir al teorema de Pitágoras:

   d2 =  12 + 12 
   d2 =  2 

He aquí la información capital: ¡la longitud de la diagonal es un número cuyo cuadrado es 2!
-¿Cuál es ese número? Obviamente los griegos lo buscaron. ¡Ninguno era idóneo! ¡Ningún natural, 

ninguna fracción! La pregunta surgió: ¿existe ese número? Y, si existe, ¿cómo estar seguros de él?
Para asegurarse que una cosa existe es suficiente exhibirla. Pero si no existe, ¿qué hacer?...¡Es 

imposible exhibir la no existencia! ¿Y bien? El único modo de afirmar que una cosa no existe es probar 
que NO PUEDE EXISTIR. Es decir, hay que pasar de la imposibilidad de encontrar la cosa en cuestión a 
la seguridad de que esa cosa no existe. Este paso tiene un precio fuerte, exige una demostración. ¡Una 
demostración de imposibilidad!



Eso es lo que hicieron los pitagóricos. Demostraron que no puede existir un número racional cuyo 
cuadrado sea 2. 

Veamos cómo lo hicieron. 
Estábamos en que 

   d2 =  2 
por lo que d = √2

Demostremos que      √2 es irracional
o sea que     √2 no es racional

en otras palabras que     no existen naturales a y b de modo que su máximo común divisor (MCD)sea 1 y 
   de forma que a/b = √2

Para ello vamos a negar la afirmación anterior, consideremos que 
 existen naturales a y b con MCD(a,b) = 1 y que a/b = √2
y a partir de dicha negación veamos que pasa.
Si a/b = √2  → a2/b2 = 2 → a2 = 2.b2 (*)→ a2 es par → a es par→ a = 2.h para algún h 
Si sustituimos ese valor de a en (*): (2.h)2 =2.b2 → 4.h2 = 2.b2 → 2.h2 = b2  → b2 es par → b es par
Veamos lo que tenemos hasta aquí, si a es par y b es par → MCD(a,b) = 2
Pero si recordamos que estábamos considerando a y b con MCD(a,b) = 1, salta la contradicción.

Fin del segundo acto:
-Mirad la figura. ¿SE VE que la diagonal y el lado son inconmensurables? ¡No! No se descubre 

ningún indicio que nos ponga la mosca en la oreja. Esta imposibilidad no se refleja en nada. ¡La 
inconmensurabilidad no es visible! La figura es muda, y sólo el razonamiento nos la puede revelar.
 
Tercer acto: ¡Existen magnitudes que no pueden ser expresadas por ningún número!
Este simple cuadrado dibujado en el papel encierra un abismo en el que naufragan las certezas. La 
relación capital entre números y magnitudes, que estableció la coherencia del universo de los pitagóricos, 
se rompió brutalmente. Para colmo, el golpe había sido asestado por la aplicación de las más célebres 
creaciones de los pitagóricos, el teorema del mismo Pitágoras y la separación de los números naturales en 
pares e impares.

¿Qué quiere decir, con exactitud, inconmensurable? ¡Que el lado y la diagonal de un mismo 
cuadrado no admiten ninguna medida común! ¡Si un número mide a uno ninguno medirá al otro! Eso 
quiere decir que no se pueden conocer los dos a la vez, sin embargo, a nuestros ojos, ambos se presentan 
con el mismo grado de...-buscó la palabra-, de realidad. La coexistencia de estas dos magnitudes prueba 
que la realidad es más rica que los números.

¡Se había construido la diagonal y no se podía medir!. Hasta entonces todo lo que podía 
construirse podía medirse. Había acabado la solidaridad entre construcción y medida..

La revelación consistió en esto: ¡no había números para designar algunas magnitudes! 

Ejemplo 3: unicidad del límite de una sucesión.
lim an = b → b es único.

Si consideramos que b no es único, entonces tiene que existir otro límite b’ ≠  b. Sea b < b’.
Como lim an = b → ∀ ε  >0 ∃  n0 ∈ N / ∀ n ≥  n0 se cumple b - ε  < an < b + ε .
Como lim an = b’ → ∀ ε  >0 ∃  n1 ∈ N / ∀ n ≥  n1 se cumple b’ - ε  < an < b’ + ε .
Como es ∀ ε  >0 podemos elegir  ε  /  b + ε  < b’ - ε

     2ε  < b’ - b
       ε  < (b’ – b)/2

y ∀ n ≥  máximo {n0 , n1 } tenemos: an < b + ε  < b’ - ε   < an 
Ahí está la contradicción: an < an



Ejemplo 4: Si n es un número primo distinto de 2, entonces n es impar.

Si P(n) es la proposición “n es un número primo distinto de 2” y Q(n) la proposición “n es impar”.
Para hacer una demostración por absurdo debemos considerar P(n) y la negación de Q(n) y llegar a una 
contradicción.
Si n es primo distinto de 2 y n es par.
Tenemos, por ser n par, que n = 2.p  para algún natural p. Si p=1, entonces n=2. Si p>1, entonces n no es 
primo  porque n es divisible por p, con p>1. En cada caso se obtiene una contradicción, por lo que la 
implicación original es Verdadera.

Ejemplo 5: Si n es un entero par, entonces n + 7 es impar.

Consideremos que n es par y que n + 7 también es par.
Si n + 7 es par, entonces n + 7 = 2.k para algún natural k, de donde n = 2k – 7 = 2k – 8 + 1= 2(k-4) + 1 
donde k-4 es natural, por lo que n es impar. Ahí es donde aparece la contradicción: empezamos con n par 
y llegamos a n impar. ¿Por qué apareció la contradicción?. Porque cometimos un error. ¿Cuál?. El suponer 
que n + 7 es par. Como n + 7 es par es falso, su negación es verdadera: n + 7 es impar.

Ejercicios
 
20.- Analizar la posibilidad de hacer una demostración por absurdo de cada uno de los ejercicios   
       planteados para demostrar usando el contrarrecíproco.

21.- Euclides, matemático griego del siglo III a.C., que enseñó en   
       Alejandría durante el reinado de Ptolomeo I, fue quien ‘rescribió’ la 
       matemática conocida hasta ese momento. Lo hizo basándose en    
       unos pocos axiomas y definiciones, deduciendo a partir de ellos la 
       mayoría de los resultados conocidos hasta ese momento. En los 13 
       libros que componen sus Elementos, se abordan temas de geometría 
       plana, de geometría del espacio y de aritmética. En la proposición 
       20 del libro IX aparece demostrado que los números primos son 
       infinitos.

       Busca una demostración de que los números primos son infinitos.

Demostración de existencia 

Muchas veces tenemos que decidir la Verdad o Falsedad de proposiciones de la forma  ∃x / P(x). Este  
tipo de proposición afirma la existencia de al menos un x para el cual el predicado P(x) es V. En general 
la demostración de esta proposición es constructiva o sea que la demostración es dar el algoritmo que 
nos permita hallar algún x.

Ejemplo 1: Existe x∈R tal que x2 = 121.



Para probar que la proposición es verdadera alcanza que hallemos un número real que al ser sustituido en 
la expresión haga que la igualdad se cumpla. 
Extrayendo la raíz cuadrada a ambos miembros de la igualdad podemos hallar x = 11 o x = -11 .
 
Es muy común que en los repartidos entregados a los alumnos aparezcan ejercicios del tipo:
Resolver en N, Z, Q, R, o C la siguiente ecuación o inecuación: ...
Lo que estamos pidiendo es que de los elementos de un determinado conjunto se hallen aquellos que 
cumplen cierta condición, en otras  palabras que se haga explícito el algoritmo que nos permite hallar 
dichos elementos.

Demostración por exhaución 

Se analizan todos los casos posibles que se presenten y demostrando en c/uno por alguno de los otros 
métodos.

Ejemplo 1: Si m, n ∈ N y m ≤  2 y n ≤  2, entonces. m.n ≤  4.

Si hacemos un cuadro para las distintas posibilidades de m y n:
m            n        m.n  
0 0 0
0 1 0
0 2 0
1 0 0
1 1 1
1 2 1
2 0 0
2 1 2
2             2             4 .  

Ejemplo 2: Demostremos nuevamente que √2 es irracional.

La demostración va a ser hecha por absurdo, pero ahora combinándola con el método de exhaución.
Si consideramos que existen naturales a y b con MCD(a,b) = 1 y que a/b = √2  → a2/b2 = 2 → a2 = 2b2 

Si hacemos una tabla con todas las cifras en que pueden terminar a, b, a2, b2, 2b2 tenemos:

a              b             a  2            b  2            2b  2  
0 0 0 0 0
1 1 1 1 2
2 2 4 4 8
3 3 9 9 8
4 4 6 6 2
5 5 5 5 0
6 6 6 6 2
7 7 9 9 8
8 8 4 4 8
9             9             1             1             2  .  

Si comparamos las columnas correspondientes a a2 y 2b2 vemos que a2 = 2b2 sólo si ambos miembros de la 
igualdad terminan en 0, y esto sucede únicamente si a termina en 0 y b termina en 0 o en 5; en cualquier 

caso a y b serían múltiplos de 5, o sea MCD(a,b) =
•
5 .



Pero simultáneamente estábamos considerando que MCD(a,b) = 1, con lo cual llegamos a una 
contradicción.

Ejercicios

22.- Alcuino de York (735+69=804) era considerado uno de los hombres más sabios de su tiempo y fue el 
       asesor cultural del emperador Carlomagno. Su obra principal es una colección de problemas titulada 
       Para desarrollar el ingenio de los jóvenes.
       En dicha colección aparece el siguiente problema:

       Se reparten 100 kilos de trigo entre 100 personas. Los hombres reciben 3 kilos cada uno, las mujeres 
       2 y los niños medio kilo. ¿Cuántos hombres, mujeres y niños había?

        La solución que da Alcuino es : 11 hombres ,15 mujeres y 74 niños. 
        ¿Hay otras posibilidades?

23.- ¿Podremos escribir cada natural par entre 4 y 38 como la suma de dos números primos?

       En una carta de 1742 a L.Euler, el matemático ruso Christian Goldbach (1690+74=1764) conjeturó 
       que todo número par mayor que 2 es igual a la suma de dos números primos.
       La conjetura de Goldbach ha sido verificada por computadora para todos los números pares hasta 100 
       millones pero, a pesar de los esfuerzos de los mejores matemáticos desde 1742 hasta nuestros días,   
       todavía no ha podido ser demostrada en general.
       En 1937, otro matemático ruso: I.M.Vinogradov, demostró que todo número par ‘suficientemente 
       grande’, se puede expresar como la suma de, a lo más, cuatro primos. 

24.- ¿Podremos escribir los naturales impares hasta el 27 inclusive, a partir de uno que hallarás, como 
        suma de tres números primos?

        El mismo I.M.Vinogradov demostró que todo natural impar ‘suficientemente grande’ se puede  
        escribir como suma de tres números primos.

25.- 2 = 1 + 1
4 = 22

6 = 22 + 1 + 1
8 = 22 + 22

          10 = 32 + 1
En la lista aparecen los primeros números pares escritos como la suma de no más de 3 cuadrados 
perfectos. ¿Podremos seguir la lista hasta 22?

26.- Llamaremos números triangulares a:
         

                                           
                                                  

                                    
                         

                . . . .

1  3    6       10   15       21

a) ¿Cuál es el siguiente número triangular?
b) ¿Podrás hallar una expresión para el número triangular que ocupa el lugar n? 



c) Demuestra que los números naturales, hasta el 25 inclusive, se pueden escribir como suma de tres 
números triangulares. 

Carl F.Gauss (1777+78=1855), llamado ‘Príncipe de las matemáticas’, dominó el 
siglo XIX en matemáticas. Desde niño demostró una prodigiosa habilidad con los 
números. A los 19 años empezó un diario personal. Dicho diario contiene 146 
anotaciones que muestran resultados que otros matemáticos descubrieron y 
publicaron mucho después sin saber que Gauss se les había adelantado.
El 10 de julio de 1796 escribió lo siguiente:

Número =  +   + 
que indica que todo número natural puede escribirse como suma de tres números 
triangulares. 

27.- ¿Podremos escribir los naturales, hasta el 50 inclusive, como suma de a lo 
máximo cuatro cuadrados?

        J.L.Lagrange (1736+77=1813), nació en Turín, donde su padre era un 
        próspero negociante. En 1776, cuando Euler renunció a su puesto en la 
       Universidad de Berlín, el rey Federico el Grande escribió a Lagrange 
       diciéndole que el rey más grande de Europa quería tener en su corte al 
       matemático más grande de Europa. Lagrange aceptó la invitación y 
       durante 20 años ocupó el puesto que había dejado Euler. En 1797 se creó  
       en Francia l’Ecole Polytechnique, cuna de los más grandes matemáticos 
       franceses, Lagrange fue quien organizó los programas de matemáticas y 
       fue su primer profesor.

       En 1770, Lagrange probó que todo natural puede ser escrito como la   
       suma de a lo máximo cuatro cuadrados.

28.- Completa de todas las formas posibles los siguientes esquemas de división entera ( D = d.q + r, r < d )
a) 32 = d.5 + r
b) 81 = d.q + 2
c) D = 6.q + 8
d)  D = d.3 + 2

29.- Halla todos los naturales menores que 200, sabiendo que divididos entre ‘d’ dan cociente 5 y resto 30. 

30.- Siendo A y B puntos sobre un eje orientado, las medidas de los segmentos orientados AB y BA   
       cumplen que: med(AB) + med(BA) = 0. 
       Prueba que si A, B, C son tres puntos sobre un eje orientado, se cumple

 med(AB) + med(BC) + med(CA) = 0 (teorema de Chasles).    

31.- El máximo es una función de ZxZ → Z.
     Por ej.: max(4,2) = 2, max(3,7) = 7.
     a) Demuestra que la operación binaria máximo es asociativa.
     b) ¿Es conmutativa? ¿Tiene neutro? ¿Y simétrico?
 
32.-  Andrea - Tengo tres hijas cuyas edades multiplicadas dan 36. ¿Me sabrías decir qué edades tienen?
      Belicia - Pero me faltan datos.
      Andrea - ¡Tienes razón!. La suma de sus edades es igual...¡al número de ventanas del edificio de



                     enfrente!
      (Por supuesto, Belicia conoce ese número, pero nosotros no).
      Belicia - Me siguen faltando datos.
      Andrea - Mi hija menor tiene ojos celestes.

      ¿Cómo podríamos resolver este problema?

Demostración vacía 

La tabla de verdad de  p → q es V cuando p es F. 
Este método de demostración consiste en probar que p es siempre F.

Ejemplo 1: El conjunto vacío está incluido en todos los conjuntos
∅ ⊂  A,  ∀A

Si recordamos la definición de inclusión
       ∀ x  ∈∅   → x∈A

 F
       .                               .

       V
Si el antecedente de un condicional es F, dicho condicional es V, sin importar el valor de verdad del 
consecuente.

Demostración por contraejemplos 

Otras veces tenemos que decidir la Verdad o Falsedad de proposiciones de la forma ∀x : P(x).
Para demostrar la falsedad de una proposición de esta forma alcanza con hallar un valor de x que no 
satisfaga el predicado P(x).

Ejemplo 1: 

En una carta de diciembre de 1729 a Leonard Euler (1707+76=1783), su colega Goldbach le decía:

“¿Es la observación de Fermat conocida para usted, a saber que los números 
de la forma 

122 +
n son primos para todo n?. Él también dijo que no lo pudo probar, y 

tampoco es de mi conocimiento que alguien lo haya podido hacer.”

Al principio Euler no le prestó demasiada atención a la carta de Goldbach, 
hasta que en junio de 1730, repentinamente se interesó por los trabajos de 



Pierre de Fermat (1601+64 =1665), quién había conjeturado el resultado anterior alrededor de 1640. Fue 
en ese momento que decidió atacar el problema.
Para  

n = 0 tenemos 3
n = 1 “ 5
n = 2 “ 17
n = 3 “ 257
n = 4 “ 65537, todos estos números primos.

Lo que hizo Euler fue mostrar que para 
n = 5 tenemos 4.294.967.297 = 641 x 6.700.417, que es un número compuesto.

De esta forma quedó demostrado que la conjetura de Fermat era falsa. 

Ejemplo 2: 

El mismo Fermat, leyendo una reedición de la Aritmética de Diofanto, matemático griego del siglo III, se 
encuentra con el siguiente problema: 

“Descomponer un cuadrado dado en suma de dos cuadrados”[Libro 2, 
Problema 8]. 
El problema inspiró a Fermat en su conjetura de que la ecuación x n + y  n = z 
n no admite solución (x, y, z) entera para ningún n >2. Ya es sabido que 
dicha conjetura recién pudo ser demostrada en la última década, o sea que 
esquivó una demostración alrededor de tres siglos y medio.

La conjetura, hoy teorema, de Fermat inspiró a Euler, alrededor de 1772, en 
la siguiente conjetura, que generalizaba el resultado previsto por Fermat:

“La ecuación x1
n + x2

n + ...+xm
n = yn  con 1<m<n , 2<n,  no admite solución entera”

En 1967, más de 200 años después, J.Lander y T.Parkin demostraron que la conjetura era falsa al mostrar 
el siguiente contraejemplo:

275 + 845 + 1105 + 1335 = 1445.
En agosto de 1987, el joven matemático Noam D. Elkies de la Universidad de Harvard encontró un 
contraejemplo para n = 4:

26824404 + 153656394 + 187967604 = 206156734.
¿Cómo lo hizo?...¡Con la incomparable ayuda del computador!

En 1989, Roger Frye realizó una búsqueda exhaustiva de los mínimos naturales que verifican la ecuación 
anterior. Los halló después de 110 horas de computación:

958004   +  2175194  +  4145604   =  4224814

Ejercicios

33.- En los ejs. 1 y 2 de demostración directa analizamos qué pasaba con la suma o con el producto de dos 



        naturales. 
        Si ahora consideramos la división entera ( a = b.q + r  y r < b) de dos naturales, ¿podremos saber 
        cómo es el cociente (par o impar), sabiendo cómo son el dividendo y el divisor?

34.- ¿Y el resto?.

35.- En el ej.4 de demostración por exhaución vimos que los primeros naturales pares se podían escribir 
       como la suma de tres cuadrados como máximo.
       ¿Todos los números pares se pueden escribir de esa forma?

36.- ¿Y los impares?

37.- En una memoria publicada en 1772, L.Euler presentó los siguientes polinomios:
f(x) = x2 + x + 17   
g(x) = x2 + x + 41   
h(x) = 2x2 + 29   
i (x) = x2 - x + 41

      ¿Para todo valor natural de x dichos polinomios producen números primos?   

       En 1752, Christian Goldbach había demostrado que no existe un polinomio sobre los enteros que    
       genere el conjunto de los números primos.

38.- Wilhelm Leibniz (1646+70=1716) demostró que n3-n es múltiplo de 3 para todo natural n.
        También observó que n5-n es múltiplo de 5 para todo natural n, lo que le llevó a pensar que 
        nk – n es múltiplo de k para todo natural n y para todo natural impar k.
        a) ¿Estaba Leibniz en lo cierto?
        b) ¿Por qué consideró Leibniz sólo los k impares? 

Demostración por inducción completa 

este método de demostración es útil para probar la Verdad de proposiciones de la forma 
∀n ∈ N : P(n) 

para ello debemos probar:
1) P(0) es V
2) Si P(n) es V → P(n+1) es V

Ejemplo 1: 
Cuando Gauss tenía diez años, su maestro de escuela, que quería paz en la clase, ordenó a los niños que 
sumaran todos los números del 1 al 100. Gauss, casi inmediatamente, escribió el resultado en su pizarra: 
5050. Es muy probable que haya visto que las dos sumas siguientes son iguales

                                           1 +   2 +   3 +   4 + ...+ 97 + 98 + 99 + 100



                                       100 + 99 + 98 + 97 + ...+   4 +   3 +   2 +     1
                101 +101+101+101+... +101+101+101+101 

que es lo mismo que       100x101 
por lo que una sola suma es 50x101=5050.

Probar que ∀n ∈ N se cumple   0 + 1+2 + 3 +...+ n = n(n+1)/2

P(0) es 0 = 0(0+1)/2 que es V

P(n) es  1+2 + 3 +...+ n = n(n+1)/2
Aceptando que P(n) es V debemos probar que P(n+1) es V.
P(n+1) es 1+2 + 3 +...+ n + (n+1) = (n+1)(n+2)/2
Como estamos aceptando que P(n) es V podemos escribir
n(n+1)/2 + (n+1) = (n+1)(n+2)/2
que haciendo cuentas podemos verificar que es V.

Ejemplo 2:  Si a∈R+  y  n∈N definimos  a0 = 1
             a n + 1 = an.a

Demostrar que ∀m∈N ∀n∈N [am.an = am + n ].

Para m cualquiera
Si n = 0 entonces am.an = am.a0 = am.1 = am = am + 0 = am + 0.

Si am.an = am + n tenemos que  am.an+1 = am.(an.a) = (am.an ).a =  (am + n ).a = a (m + n) +1 = a m + ( n+1)

También sirve para proposiciones de la forma  
∀n ≥  k con n, k ∈ N: P(n)

En dicho caso tenemos que probar
1) P(k) es V
2) ∀n ≥  k, si P(n) es V → P(n+1) es V

Ejemplo 3: 
Si prestamos atención a la desigualdad   n2 < 2 n vemos que se cumple para n = 0 y 1 pero no 
se cumple para n = 2, 3 y 4 y nuevamente se vuelve a cumplir para n = 5, 6, 7. 
¿Se seguirá cumpliendo para todos los naturales siguientes?.
Tendríamos que demostrar que  ∀n ≥  5, si  n2 < 2 n es V → (n+1)2 < 2 n+1 es V
(n+1)2 = n2 + 2n + 1 < 2 n+1 = 2 n.2 = 2 n + 2 n, donde n2 < 2 n es V, por lo que tendríamos que demostrar que 
2n + 1 <  2 n   ∀n ≥  5, lo que nos lleva a una nueva I.C.
Si n=5 se cumple que 11< 32
Sabiendo que  2n + 1 < 2 n es V tenemos ahora que probar que 2(n+1) + 1 < 2 n+1 es V.
2(n+1) + 1 = 2n + 2 + 1 < 2 n+1 =  2 n.2 = 2 n + 2 n donde 2n + 1 < 2 n es V, por lo que restaría probar que 
2 < 2 n ∀n ≥  5, pero esta desigualdad podemos aceptar como V, ¿no?.

También usaremos la inducción completa en esta otra forma:
a. Si P(n0), P(n0 + 1), P(n0 + 2), ..., P(n1 – 1) y P(n1) son V para n0 ≤  n1.



b. Siempre que P(n0), P(n0 + 1), P(n0 + 2), ..., P(n – 1) y P(n) sean V para algún n ≥  n1,  
entonces la proposición P(n +1) también es V  

entonces P(n) es V  para todo n ≥  n0.

Ejemplo 4: Si consideramos la proposición
 P(n): “Todo número natural mayor o igual a 4 se puede expresar como suma de doses y cincos.”

P(4): 4 = 2 + 2
P(5): 5 = 5
P(6): 6 = 2 + 2 + 2
P(7): 7 = 2 + 5
P(8): 8 = 2 +2 +2 + 2
P(9): 9 = 2 + 2 + 5
Vemos que P(n) = P(n-2) + 2 siendo n ≥  6.
De alguna forma estamos viendo que la Verdad de P(n) está vinculada con la Verdad de P(n-2), por lo que 
la verdad de P(n+1) va a estar vinculada a la Verdad de P(n-1). 
Se nota la diferencia con las formas anteriores en que usamos la inducción completa, donde la Verdad de 
P(n+1) estaba relacionada con la Verdad de P(n), el paso inmediato anterior.
Ahora la Verdad de P(n+1) va a estar garantizada por la verdad de todas las proposiciones anteriores a 
partir de un determinado valor. Como se puede ver las exigencias ahora son mayores.  
1) P(4) es V
    P(5) es V
2) Si P(4), P(5), ..., P(n-1), P(n) son V para algún n ≥  5, entonces P(n+1) es V.       (*)
   P(n+1): n + 1 se puede escribir como suma de doses y cincos.
Vemos que n + 1 = (n – 1) + 2 y sabemos que n – 1 se puede escribir como suma de doses y cincos por lo 
que si le sumamos un dos n + 1 también se puede escribir como suma de doses y cincos.
Al cumplirse 1) y 2) podemos decir que P(n) se cumple ∀n ≥  4 

Ejemplo 5: Si consideramos la sucesión a0 = 3
       a1= 7
       an = 3an-1 – 2an-2

Vamos a probar la proposición P(n):  an = 2n+2 – 1  ∀n ∈ N.

1) P(0) es V ya que  a0 = 3 = 20+2 – 1
    P(1) es V ya que  a1 = 7 =21+2 – 1  
2) Tenemos que probar ahora que si  P(0), P(1), ..., P(n-1), P(n) son V para algún n ≥  1, entonces P(n+1) 
es V.       (*)

 a n+1 = 3an – 2an-1  = 3[2 n + 2 – 1] - 2[ 2 ( n – 1 ) + 2 – 1] =   
      = 3.2 n + 2 – 3  - 2 ( n - 1) + 3 + 2  =   
      = 3.2 n + 2 - 2  n + 2  - 1  =

         = 2.2 n + 2  - 1  =
      = 2 n + 3  - 1  =
      = 2 ( n + 1 ) + 2  - 1  

Vemos que en (*) nos basamos en la Verdad de P(n) y P(n-1) a la vez.



Ejercicios

39.-Hallar una expresión general para las siguientes igualdades y luego demostrarla:
  
  1 = 1
     1 + 3 = 4
    1 + 3 + 5 = 9
    1 + 3 + 5 + 7 = 16

40.-a) Completar la tabla: número de lados suma de sus  
del polígono                                 ángulos interiores  

3
4
5
...

.              n                                                                        .  

       b) Demostrar la expresión hallada en a).
       c) ¿Cuántos lados tiene un polígono si la suma de sus ángulos interiores es 38880º? 
       d) ¿Es posible que la suma de los ángulos interiores de un polígono sea 2000º?
 
41.- Considerar el predicado P(n): “n2 – 7n – 8 ≤  0”.
       a) Demostrar que es Verdadero para n=0, n=1, n=2, n=3, n=4, n=5, n=6, n=7 y n=8.
       b) ¿Se puede inducir que la afirmación sea Verdadera  ∀n ∈ N?. Justificar.

42.- Hallar un valor a partir del cual se verifiquen las siguientes desigualdades y con el valor hallado   
       demostrar que se cumplen para todo natural mayor.

a) 2n < n!
b) n3 < 2n

c) n – 2 < (n2 – n)/12 

43.- Considerando la siguiente proposición
P(n): “ 1 + 2 + 3 + ...+ n = (n2 + n + 2) / 2 ”.

a) Demostrar que si P(n) es V, entonces P(n+1) es V.
b) ¿Es P(n) Verdadera ∀n ∈ N?.

44.- En el ej.6 de demostración por   
       contraejemplos se dijo que Leibniz demostró 
       que n3-n es múltiplo de 3 y que n5-n es 
       múltiplo de 5  para todo natural n.
       Demostrar las afirmaciones de Leibniz.

45.- Se considera la sucesión  a0 = 1
             a1 = 2



 a2 = 3
  an = an-1 + an-2 + an-3   ∀n ≥  3

        Probar que   a n  ≤  3 n  ∀n ∈ N.

46.- Considerar el predicado P(n): “7n2 + 3n + 5 es par”
      a) Demostrar que si la proposición es Verdadera para  n∈N, entonces también es Verdadera para n +1.
      b) Demostrar que la igualdad es falsa si n = 100. ¿Cómo se explica este resultado y el obtenido en a)?
      c) Demostrar que la proposición es falsa ∀n ∈ N.

47.- De la ecuación 14 = 3 + 3 + 8 vemos que podemos expresar  el número 14 usando solamente treses y 
       ochos como sumandos.
       ¿Podremos escribir los números 15, 16, 17 de la misma forma?
       ¿Y cualquier natural mayor?. 

Fortalezas y debilidades del Isetl en relación 
al Proyecto LOGICA- ISETL.

1)Fortalezas

a)La sintaxis de Isetl es muy similar a la del lenguaje matemático. Esto,
por un lado, facilita la comunicación del alumno con el intérprete y por
otro, exige que el alumno utilice correctamente el lenguaje matemático. En
particular, se enfatiza el adecuado uso de los cuantificadores. 
b)Para utilizar Isetl no se necesitan conocimientos de programación.
c)En el caso de este proyecto, se utilizan en su mayoría las funciones que
ya vienen predeterminadas y las que no, se le dan los programas prontos al
alumno para que los utilice. 
d)Este proyecto de lógica permite establecer una coordinación entre
materias como filosofía y matemática.
La unidad de lógica figura en la asignatura filosofía de 5º año en todas
las orientaciones. Por lo tanto se presenta una excelente oportunidad para
realizar una actividad interdisciplinaria.
Las actividades diseñadas en el proyecto son aptas para cualquier
orientación y los conocimientos necesarios de matemática que se requieren
son los que tiene un alumno que egresó de 4º año, razones que hacen que
este proyecto de logica sea de alta aplicabilidad.
e)Este proyecto permite implementar un curso de lógica para estudiantes de
5º año en unas 20 horas y brindaría a los alumnos los conocimientos de
lógica necesarios para poder afrontar con mayor eficacia los cursos de
matematica de bachillerato.

2)Debilidades.

El programa Isetl permite trabajar solamente con conjuntos finitos.
Esto podría llevar al alumno a pensar que si una propiedad es cierta para
unos cuantos casos particulares, esto alcanzaría para generalizar su
validez, por lo que sería importante introducir la necesidad de la



demostración en matemática.
Podemos convertir esta debilidad en fortaleza, planteando propiedades que
se cumplan para ciertos casos particulares y cuando queremos generalizarlas
fallan, como por ejemplo el trabajo con los polinomios de Euler para
generar números primos.
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