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Abstract: We study, from the ergodic viewpoint, the asymptotic dynamics in the future of a full
Lebesgue set of initial states. The dynamical systems under research are deterministic and evolving with
discrete time n ∈ N by the forward iterations of any continuous map f : M 7→ M acting on a finite-
dimensional, compact and Riemannian manifold M . First, we revisit the classic definition of physical
or SRB probability measures, and its generalized notion of weak physical probabilities. Then, inspired
in the statistical meaning of the ergodic attractors defined by Pugh and Schub, which support ergodic
physical measures, we define the more general concept of ergodic-like attractor. We prove that any such
generalized attractor is the support of weak physical probabilities and conversely. Then, we revisit the
proof of existence of weak physical probabilities and conclude that any continuous dynamics exhibits at
least one ergodic-like attractor.
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1 Introduction

We consider, as the phase space where a dynam-
ical system evolves, any finite dimensional, com-
pact and Riemannian manifold M . We investi-
gate the dynamics, evolving on M deterministi-
cally in the future, with discrete time n ∈ N.
Precisely, the system is obtained by iteration
fn := f ◦ f ◦ . . . ◦ f, for all n ≥ 0, of a continu-
ous map f : M 7→ M . In the sequel we refer to
it, as a continuous dynamical system, and denote
it in brief, with f . We will focus in the abstract
general scenario of all the continuous dynamical
systems, from the viewpoint of the Ergodic The-

ory [2, 9, 14, 20, 31]. Namely, we will search for
theoretical probability measures, determined by
the dynamics in regime, i.e. f -invariant, that are
representative of the asymptotic behavior of the
orbits, for a Lebesgue-positive set of initial states
in M .

We assume that the compact space M is pro-
vided with a reference Borel probability measure
m, which is given independently of the dynam-
ics. So, m is not necessarily f -invariant, or in
other words, we do not restrict the theory to the
so called conservative systems. The role of the
given reference measure m is to describe how the
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initial states that define the different orbits of the
system, are physically chosen.

Precisely, the probability distribution that m
provides, states a criteria to measure all the bore-
lian subsets B ⊂ M of the space, according to
the larger or smaller chance in which the initial
state drops in B. But notice that m does not
usually describe which portions of the space are
more or less visited by the future states of the
dynamical system, computed on times n ≥ 1, i.e.
after the deterministic dynamics f is acting. It
is just a given initial distribution of the points of
the space, before the dynamical system f starts
its action.

One of the major problems of the modern
Ergodic Theory is the existence of the so called
physical or SRB (Sinai–Ruelle–Bowen) measures.
Historically, these probability measures were de-
fined forty years ago in [5, 28, 30], to describe
the asymptotical statistics of deterministic dy-
namical systems exhibiting uniform hyperbolicity.
Nevertheless, the general problem of existence of
SRB measures is still open for most determin-
istic chaotic dynamical systems. Its relevance,
from the theoretical viewpoint as well as for its
applications, is exposed in [35]. First, let us re-
call the relevance of this subject in the recent re-
search of theoretical mathematics. On the one
hand, the observer may focus on the non singu-
lar properties of the SRB probabilities with re-
spect to the Lebesgue measure. In this case, the
study of the SRB measures is restricted to sys-
tems that are more than C1-regular [12]. They
exist for hyperbolic non invertible endomorphisms
[33], for expansive (i.e. topologically hyperbolic)
C2-diffeomorphisms [19], and also for piecewise
expanding maps [16]. In most of such cases they
are stochastically stable, namely, they persist un-
der the addition of noise [7]. On the other hand,
one may focus on the asymptotical and statistical
behaviour (called physical properties) of Lebesgue
almost all the orbits, disregarding the non singu-
lar characteristics of the probability measure un-

der research. In this latter case, recent results
have proved the existence and uniqueness of an
SRB probability with such physical properties,
for C1 generic dynamics with hyperbolic attrac-
tors [25]. Also from this viewpoint, generalized
SRB measures have been found for a wider class
of diffeomorphisms [34], and even the existence of
SRB-like, physical-like or observable probability
measures for the family of all the C0 endomor-
phisms on a compact manifold [6]. Second, but
not less important, let us summarize the relevance
of the existence of such probability measures from
the viewpoint of its applications. Historically, the
problem of their existence was born in the theoret-
ical physics to study the thermodynamical prop-
erties and the mechanical statistics of dynamical
systems with very large number of particles. The
existence of a good macroscopic probability mea-
sure that describes the distribution on the space of
the attractors, provides a strong theoretical tool
to study the dynamical statistics of almost all the
orbits, particularly if the system is chaotic and
difficult to predict from numerical experimenta-
tion. On the one hand, the theoretical general
tools that we develop along this paper are new
results obtained from the abstract analysis of gen-
eral continuous dynamical systems, of any finite
(arbitrarily large) dimension. Thus, they are par-
ticularly applicable to chaotic complex systems.
On the other hand, the mathematical abstract
modeling of applied systems in many fields of sci-
ence and technology, make the general results on
dynamical systems potentially applicable to them.
For instance, recent research have modeled as dy-
namical systems the complexity of Internet net-
works [22], the problem of avoiding obstacles in
the robotics with artificial sight [29], dynamical
problems of control engineering [10], the evolution
of populations [21] and also dynamics of models
in psychological and other human sciences [32].

To construct the SRB measures, the given ref-
erence probability m in the space M is assumed
to be the Lebesgue measure, or equivalent to it
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in the theoretical measure sense, and after a re-
scaling to make m(M) = 1. In the sequel, we will
denote m to such re-scaled measure, and still call
it Lebesgue. We agree to say that a property or
conclusion about the dynamics in the future, and
in particular about the attractors of the system,
is relevant or observable, if and only if it holds
for all the initial states belonging to a borelian
set B ⊂ M satisfying m(B) > 0, namely, for a
m-positive probable set of initial conditions. Be-
sides, we say that the property or conclusion is
full probable, or globally observable, if and only if
m(B) = 1. Thus, even being usually B 6= M (i.e.
B is properly contained in M), if m(B) = 1 then a
dynamical property P satisfied by the orbits with
initial state in B, is almost always observed. The
property P is full probable in this case. On the
contrary, if m(B) = 0 then the orbits that sat-
isfy P come from initial conditions in a set of zero
m-probability. In this case the property P is zero-
probable or non observable.

The purpose of the Ergodic Theory is to study
the properties of the system in relation with the
f - invariant probabilities µ. All the continuous
dynamical systems on a compact metric space M
do exhibit invariant probabilities (see for instance
[2, 12, 14, 31]), and the large majority of such sys-
tems exhibit non countably many invariant prob-
abilities. But at the same time, most continuous
dynamical systems are not conservative, i.e. the
reference Lebesgue measure m according to which
the initial state distribute in the space M , is not
invariant by f .

Any invariant measure µ describes a spacial
distribution of the states, after the system has
evolved in time asymptotically to the future, i.e.
taking media temporal sequences depending on
time n, and then n → +∞. This latter is the
main consequence of the Ergodic Decomposition
Theorem (see for instance [2, 12, 14, 31]). But
only a few dynamical systems, even if one restricts
the analysis to the C1 differentiable dynamical
systems, possess relevant invariant measures µ,

so called physical or SRB measures. (See for in-
stance [4, 18] to find the open questions about
the existence and the properties of the SRB mea-
sures.) These latter measures describe the asymp-
totical spacial distribution of the orbits with their
initial states that belong to some m-positive por-
tion of the space. Precisely, if an invariant mea-
sure µ is supported in an attractor A whose basin
includes a m-positive probable set B, then µ is
called a physical measure.

One of the major subjects of research in the
modern Differentiable Ergodic Theory, is to find
sufficient conditions (if possible generic condi-
tions) of a dynamical system to allow the exis-
tence of physical invariant measures. The global
conjecture for generic differentiable dynamical
systems in [23], the results posed in the book [4],
and the state of the art, focused from the Ergodic
Theory viewpoint as stated in [35], show the rel-
evance of the problems in this subject. Particu-
larly, for systems that are not sufficiently differen-
tiable, most questions about the existence of SRB
or physical measures remain open.

For most C0 systems (i.e. continuous dynam-
ical systems), even for those that are C1 (differ-
entiable ones), a single f -invariant measure is not
in general enough to describe probabilistically the
asymptotic dynamics of some relevant (or observ-
able) portion B of the space M (i.e. satisfying
m(B) > 0). In fact, some continuous dynam-
ical systems may need infinitely many of its f -
invariant measures µ to describe the asymptotic
behavior from initial states in a subset B ⊂ M ,
such that m(B) > 0. As a consequence, there is
no hope to find physical or SRB measures, nor
ergodic attractors as defined in [24], for generic
C0 dynamical systems. That is why in this pa-
per we revisit the weaker definition of observable
weak physical or SRB-like measures that was in-
troduced in [6] (see Definition 3.8). We construct
generalized attractors that support those mea-
sures, which we call ergodic-like attractors.

The first purpose of this paper is to prove that
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the ergodic-like attractors have the same proper-
ties of attraction in mean as the egodic attractors,
even if physical or SRB measures do not exist.
(Theorems 4.7 and 4.9). The second purpose is
to prove that any continuous dynamical system
exhibits ergodic-like attractors (Corollary 4.10).
To prove those theorems we will revisit the result
of existence of observable or weak physical proba-
bilities (Theorem 3.9), taken from [6]. We call all
those new results Ergodic Theorems with respect
to Lebesgue because they relate the asymptotic
time averages of the orbits of a full Lebesgue set
of initial states, with the probability distributions
in the ambient manifold M , which are spatial f -
invariant measures.

The methodology of research along this paper
is that of pure mathematics: the theorems are rig-
orously proved under the rules of the classic logic,
based on the basic and advanced results of the
general topology theory [8, 17, 18, 27], of the mea-
sure and probability theory [1, 3] and particularly,
the use of the Riesz Representation Theorem [26]
to identify the space of probability measures with
the dual space of the continuous real functions in
the ambient manifold.

2 Revisiting basic notions

For a seek of self completeness of this paper, in
this section we revisit some known definitions and
results of the Functional Analysis, the Topology
and the Probability Theory, that are in the foun-
dation of the Ergodic Theory of deterministic dy-
namical systems.

2.1 The space of observable functions.

Denote C0(M, [0, 1]) to the space of all continuous
real functions ψ : M 7→ [0, 1], i.e. the value ψ(x)
satisfies 0 ≤ ψ(x) ≤ 1 for all x ∈ M . We endow
C0(M, [0, 1]) with the strong topology of the sup
norm. Precisely, we define the following distance

between two functions ψ1, ψ2 ∈ C0(M, [0, 1]):

‖ψ1 − ψ2‖ := max
x∈M
|ψ1(x)− ψ2(x)|.

The real functions ψ as above are called ob-
servables. Physically each of those functions rep-
resents the real values that the observer looks
from outside of the system. For instance an elec-
tronic circuit may be a discrete dynamical sys-
tem, since it may evolve with time n ≥ 1 (if the
set of observation times isdiscrete instead of con-
tinuous). The state x of the system at each fixed
time n, is not the current observed at the output
branch, nor the voltage at the outpoint point of
the circuit, but the vector of all the currents and
voltages in all the branches and points, at each
fixed instant n. So, the space M will be the set of
all possible such vectors. Nevertheless, when one
observes the output, only one of the coordinates
of this vector, say the current x0 along the sin-
gle branch at the output, one obtains a function
ψ0(x) = x0. It depends continuously on the state
x. So ψ0 is an observable.

The following result is obtained from the sep-
arable topology of the manifold M , since it is a
compact metric space:

Theorem 2.1.1 If M is a compact metric space,
then there exists a countable family Ψ := {ψn}n≥0

of continuous real functions ψn : M 7→ [0, 1] such
that Ψ is dense in C0(M, [0, 1]).

Proof: See for instance [1, 3].

This theorem ensures that:

∀ ψ ∈ C0(M, [0, 1] ∀ε > 0 ∃ ψn ∈ Ψ such that

ψ(x)− ε < ψn(x) < ψ(x) + ε ∀ x ∈M.

The inequalities above admit take a real function
from the countable family Ψ ensuring an error no
greater than ε and, as usual, this ε > 0 can be ar-
bitrarily given by the customer. So, one must de-
sign the theoretical results to hold for any possible
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ε > 0. Summarizing, if one accepts an eventual
error of the observations no greater than ε > 0,
then one may consider only the countable fam-
ily Ψ ⊂ C0(M, [0, 1]), instead of all the possible
observable functions.

In the sequel we will fix a dense countable fam-
ily Ψ of observable functions as above. This is
equivalent to discretize the topology in the com-
pact given space M of all the possible states of
the system.

2.2 The space M of probabilities

We denote M to the space of all the probability
Borel measures in the compact space M . Recall
that a Borel probability establishes a criteria to
measure all the open sets of the space, and also
all the Borel sets B ⊂ M (i.e. the subsets of the
σ- algebra generated by all the open subsets of
M). Recall that a probability µ is, by definition,
an assignment to each Borel subset B ⊂ M of a
real number µ(B) ∈ [0, 1] such that

µ(∅) = 0, µ(M) = 1, µ(
+∞⊎
n=0

(Bm) =
∞∑
n=0

µ(Bn),

where
⊎

denotes that the union is composed by
all pairwise disjoint sets.

Up to the moment we have not introduced the
dynamics f : M 7→ M in the definitions. Let us
now consider how f acts in the space M:

We say that a probability measure µ is f -
invariant, if µ(f−1(B)) = µ(B) for all Borel set
B ⊂M . We denote Mf ⊂M to the set of all f -
invariant probability measures. In particular the
Lebesgue probability measure m in the compact
manifold M belongs toM, but we are not assum-
ing that it belongs toMf . The following result is
well known, and starting the Ergodic Theory of
deterministic Dynamical Systems:

Theorem 2.2.1
For all compact metric space M and for all

continuous f : M 7→M the setMf of f -invariant
probability measures is not empty: Mf 6= ∅.

Proof: See for instance [20, 31].

In the spaceM, we define the following oper-
ator f∗, which is called the pull back in the space
of probabilities of the dynamical system f in M :

f∗ :M 7→M : ∀ µ ∈M f∗µ ∈M is defined by:

f∗µ(B) := µ(f−1(B)) ∀ Borel set B ⊂M .
(1)

The following assertions are immediate:

(1) µ ∈Mf ⇔ f∗µ = µ,

(2) ∃ µ ∈M such that f∗µ = µ.

In other words, the f -invariant measures are the
fixed points of f∗ :M 7→M. and the set of those
measures is not empty.

2.3 The weak∗ topology in the space M
If we fix µ ∈ M and take ψ1 ∈ C0(M, [0, 1]),
then the expected value of the observable ψ1 with
respect to the probability µ is

∫
ψ1 dµ. If ψ2

is other observable function ε-near ψ1 (namely,
‖ψ2 − ψ1‖ < ε), then it is easy to check that the
expected values of ψ1 and ψ2 are also ε-near, i.e.∣∣∣∣∫ ψ2 dµ−

∫
ψ1 dµ

∣∣∣∣ < ε.

Now, instead of fixing µ ∈ M we will fix ψ ∈
C0(M, [0, 1] and take two probabilities measures
µ1, µ2 so we can compare the expected values of
the observable function ψ with respect to the two
probabilities. Precisely, we define below the real
application ρψ(µ1, µ2). It is positive, symmetric
and satisfies the triangular inequality, but it is
not a distance between measures in M since it
is not necessarily strictly positive for all pair of
probabilities µ1, µ2 such that µ1 6= µ2.

ρψ(µ1, µ2) :=
∣∣∣∣∫ ψ dµ1 −

∫
ψ dµ2

∣∣∣∣ .
Nevertheless when we compare as above the ex-
pected values of all the observable functions ψ,
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with respect to the probability µ1 and µ2, we
can define a distance between these two proba-
bilities, and so a topology in the space M of all
probability measures, which is called the weak∗

topology. Even more, since the family Ψ is dense
in C0(M, [0, 1]), to decide when two measures
µ1, µ2 ∈ M are ε−near, we can restrict to take
into account the values ρψ(µ1, µ2) for the observ-
able functions ψ ∈ Ψ. As a consequence we define
in the next paragraph, a metric structure induc-
ing the weak∗ topology in the space M of all the
Borel probabilities on the manifold M :

Definition 2.3.1
In the sequel, we endow M with the so called
weak∗ topology. This is the structure of open sub-
sets in M that can be defined from the following
metric (i.e. from the following definition of dis-
tance between two measures µ, ν ∈M):

dist(µ, ν) :=
∞∑
n=0

|
∫
M ψn dµ−

∫
M ψn dν|

2n
(2)

where Ψ := {ψn}n≥0 is a fixed countable family of
continuous real functions ψn ∈ C0(M, [0, 1]) such
that Ψ is dense in C0(M, [0, 1]).

In particular, as usual in metric spaces, we de-
fine the distance between a probability measure
µ ∈ M and any non empty subset L∗ ⊂ M, as
follows:

dist(µ,L∗) := inf
ν∈L∗

dist(µ, ν). (3)

Also we define the distance between two subsets
L∗1 and L∗2 of M:

dist(L∗1,L∗2) := inf
µ∈L∗1

inf
ν∈L∗2

dist(µ, ν). (4)

The two infima in Equalities (3 ) and (4) exist,
because any set of real numbers {dist(µ, ν) : ν ∈
L∗} is lower bounded by 0.

It is easy to check the following characteri-
zation of the weak∗ topology, from the defini-
tion of limit in the space M of probabilities, us-
ing the distance between two measures as defined

above, and applying the denseness condition of
the countable family Ψ ⊂ C0(M, [0, 1]) of observ-
able functions in M :

∀ sequence {µn}n≥0 ⊂M :

lim
n→+∞

µn = µ ∈M if and only if

lim
n→+∞

∫
ψ dµn =

∫
ψ dµ ∀ ψ ∈ C0(M, [0, 1]).

(5)
The following is a classic result of the basic

Probability Theory, in which the Ergodic Theory
of deterministic Dynamical Systems is founded:

Theorem 2.4
The spaceM of all the probability Borel measures
on M , endowed with the weak∗ topology, is com-
pact and sequently compact.

Explicitly, the sequently compactness of M
has the following meaning:

For all sequence {µn}n≥0 of probabilities, there
exists a subsequence {µni}i≥0 (ni is strictly in-
creasing with i), such that

∃ lim
i→+∞

µni = µ ∈M ,

where the limit in M is taken with the weak∗

topology.

Proof: See for instance [1, 3].

The following statement is a known basic re-
sult from the Functional Analysis, which is also
in the basis of the Ergodic Theory:

Theorem 2.5
If f : M 7→ M is continuous, then the pull

back operator f∗ : M 7→ M defined in Equality
(1), acting in the spaceM of probability measures
of M , is continuous with the weak∗ topology.

Proof: We must prove that if limn→+∞ µn = µ in
the space P of all the Borel probability measures
on the compact manifold M , and if f : M 7→ M
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is continuous, then limn→+∞ f
∗µn = f∗µ in P.

After Equality (5) we have

lim
n→+∞

∫
ψ dµn =

∫
ψ dµ ∀ ψ ∈ C0(M, [0, 1]).

(6)
Since f is continuous, we have that ψ ◦ f ∈
C0(M, [0, 1]) for all ψ ∈ C0(M, [0, 1]. Then Equal-
ity (6) implies that

lim
n→+∞

∫
ψ ◦ f dµn =

∫
ψ ◦ f dµ (7)

∀ ψ ∈ C0(M, [0, 1]).

After the definition of the operator f∗ : P 7→ P
the following assertion is satisfied by the charac-
teristic function χB of any Borel set B ⊂ M and
any probability measure ν ∈ P:∫

χB d f
∗ν = (f∗ν)(B) = ν(f−1(B)) =∫
χf−1(B) dν =

∫
χB ◦ f dν.

Therefore, after the abstract definition of the in-
tegral respect to ν, the following equality is sat-
isfied by all ψ ∈ L1(ν), in particular for all
ψ ∈ C0(M, [0, 1]):∫

ψ df∗ν =
∫
ψ ◦ f dν ∀ ν ∈ P.

Joining the last equality with (7) we obtain:

lim
n→+∞

∫
ψ d f∗µn =

∫
ψ d f∗µ

∀ ψ ∈ C0(M, [0, 1]).

After Equality (5), the last assertion is equivalent
to limn→+∞ f

∗µn = f∗µ, as wanted. �

Remark 2.6 As a consequence of the continu-
ity of the operator f∗, the subset of f -invariant
probability measures, which is characterized by
Mf := {µ ∈ M : f∗µ = µ}, is a closed subset
of M. Since M is a compact metric space, we
conclude that Mf is compact.

3 Weak physical measures

We start defining the object of research when the
observer analyzes the asymptotic statistics of any
deterministic dynamical system:

Definition 3.1

Empiric probabilistic distributions

Let x ∈M be a fixed initial state. We define the
empiric probability distribution of the orbit of x
up to time n− 1 ≥ 0 to the probability

νn(x) :=
1
n

n−1∑
j=0

δfj(x) , (8)

where δy is the Dirac delta probability supported
in the point y ∈ M . Precisely, for all Borel set
B ⊂M :

δy(B) = 1 if y ∈ B, δy(B) = 0 if y 6∈ B.

In other words, the empiric probability distribu-
tion νn(x) is supported in the finite piece of the
orbit of x from time 0 up to time n − 1, and as-
signs to each singleton of this finite piece of orbit,
the same probability 1/n. Physically, νn(x) mea-
sures the relative number of visits to the different
pieces of the space, of the future orbit with initial
state x, up to time n− 1.

Note that unless x ∈ M is a fixed point
by f , the empiric distributions µn(x) are not f -
invariant for all n > 1. To define and study the
ergodic-like attractors, i.e. the statistics of the
asymptotic behavior of the orbits, the purpose is
to study the limit in the weak∗ topology of the
measures νn(x) if it exists, or at least its limit set
in the spaceM of probabilities which is composed
by the limits of all the convergent subsequences
of {νn(x)}n≥0 ⊂ M. This family of convergent
subsequences is not empty, after the Theorem of
sequential compactness ofM (see Section ??) en-
dowed with the weak∗ topology. So, for all x ∈M ,
we can define the non empty limit set L∗(x) in the
space of probabilities M, as follows:
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Definition 3.2
For any given initial state x ∈ M , we call limit
set in the space of probabilities M of the orbit of
x, to:

L∗(x) := {µ ∈M : ∃ a convergent subsequence ...

...{νni(x)}i≥0 such that lim
i→+∞

νni(x) = µ}
(9)

where the sequence {νn}n≥0 is defined in Equality
(10) and the limit is taken in the weak∗ topology
of M.

In particular, if νn(x) is convergent to a proba-
bility measure µ, then the limit set is the singleton
containing µ. Namely:

L∗(x) = {µ} if and only if

∃ lim
n→+∞

νn(x) = µ ∈M in the weak∗ topology .

The following result is standard in the Ergodic
Theory. For a seek of completeness we include
here its proof:

Proposition 3.3
For all x ∈M L∗(x) 6= ∅ and L∗(x) ⊂Mf .

Proof: Let us first prove that L∗(x) 6= ∅. In fact,
the sequence {νn(x)}n≥0 of empiric probabilities,
is contained in M, which is sequentially compact
after endowed with the weak∗ topology (see The-
orem 2.4). Therefore, it has convergent subse-
quences. So, after Definition 3.2, the set L∗(x) is
non empty, because it is the set of the limits of
all those convergent subsequences.

Let us prove now that L∗ ⊂ Mf . Consider
the following sums of measures in the spaceM of
probabilities:

n · νn(x) =
n−1∑
j=0

δfj(x) = δx − δfn(x) +
n∑
j=1

δfj(x)

n · f∗νn(x) =
n−1∑
j=0

f∗δfj(x) =
n−1∑
j=0

δfj+1(x) =

n∑
k=1

δfk(x) =
n−1∑
k=1

δfk(x) + δfn(x)

Therefore, after the substraction of the first sum
from the second one:

n · (f∗νn(x)− νn(x)) = δfn(x) − δx

Take a convergent subsequence {νni(x)}i≥0 in the
weak∗ topology of the space M of probabilities:

lim
i→+∞

νni(x) = µ ,

and compute the following limit (also in the weak∗

topology):

lim
i→+∞

f∗νni(x)−νni(x) = lim
i→+∞

1
ni

(δfni (x)−δx) = 0.

The weak∗-limit above is zero since ni → +∞ and
the measures δx δfni (x) are probabilities, so upper
bounded by 1. Thus, they define bounded opera-
tor ψ ∈ C0(M, [0, 1]) 7→

∫
ψ dδfni (x) ∈ [0, 1] ⊂

R, and so, divided by ni → +∞, they both con-
verge to zero in the weak∗ topology.

Therefore, limi→+∞ f
∗νni(x) = limi→+∞ νni(x),

and using Theorem 2.5, we conclude:

f∗µ = f∗( lim
i→+∞

νni(x)) =

lim
i→+∞

f∗νni(x) = lim
i→+∞

νni(x) = µ.

The equality above f∗µ = µ is equivalent to the
f -invariance of the probability µ. So, we have
proved that µ ∈ Mf for all probability measure
µ that is the limit of a convergent subsequence
of {νn(x)}, i.e. for all µ ∈ L∗(x). Therefore
L∗(x) ⊂Mf , ending the proof. �

Remark 3.4
From the proposition above, the measures in the
non empty set L∗(x) are all f -invariant. But nev-
ertheless they are not necessarily ergodic. Even if
L∗(x) were a singleton, the example of Bowen, re-
stated in [11], shows a case (that is besides much
more than a continuous dynamical system, since
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it can be constructed of C∞ class), for which
for all x in an open set U ⊂ M , the limit set
L∗(x) = {µ}, but µ is not ergodic.

Up to now, with fixed x ∈ M , we look at all
the measures µ ∈ M that are limits when time
n → +∞, of the convergent subsequences of the
empiric probability distributions νn(x) supported
on finite pieces of orbit with initial state x, from
time 0 and up to time n− 1. Namely, we defined
L∗(x) choosing any fixed x ∈M , and searching all
the adequate measures µ ∈M that represent the
statistics of the asymptotic behavior of the orbit
in M with initial state x.

Dually, we will fix now any µ ∈ M and look
the set B = B(µ) of all the points x ∈ M such
that µ represents the statistics of the asymptotic
behavior of some of the orbits in B. If this set
B(µ) ⊂M is non empty, it will be called basin of
attraction of µ in M, as we state in the following
definition:

Definition 3.5
Let µ ∈ M. Denote B(µ) to the following subset
of the ambient manifold M :

B(µ) := {x ∈M : L∗(x) = {µ}} .

If B(µ) 6= ∅ we call it basin of attraction of µ.
After Proposition 3.3, if B(µ) is not empty then
µ ∈Mf . i.e. µ is f -invariant.

Remark 3.5.1 Note that the basin of attraction
B(µ) of a probability measure µ ∈M, lays in the
ambient space M (the compact manifold where f
acts) and not inM (the space of the Borel proba-
bility measures on M). Thus, the basin of attrac-
tion of a measure µ is not defined as the basin
of any attractor of the operator f∗ in the space
of probabilities. In general, most measures inM,
precisely most measures in Mf ⊂M, define sets
B(µ) that are empty, so they are not representa-
tive of the statistic of the asymptotic behavior of
any orbit in M . It is folkloric believed, but wrong,
that the measures that have non empty basin of

attractions are only the ergodic ones. It is true
the converse statement, if µ is ergodic respect to
f , then its basin B(µ) ⊂M includes µ-almost all
points in M , and so, it is not empty. But it is false
the necessary ergodicity of µ to have a nonempty
basin B(µ). In fact, the Bowen example, restated
in [11] as we recalled in Remark 3.4, exhibits a
measure µ whose basin of attraction B(µ) is open
and not empty, and µ is not ergodic.

Let us define an ε-weak basin of attraction of
a probability measure µ, taken from [6]:

Definition 3.6
Let µ ∈M. For all ε > 0 we define the set:

Bε(µ) = {x ∈M : dist(µ, L∗(x)) < ε} ,

where the distance dist in the space M of proba-
bilities is defined by Formulae (2) and (3).
If Bε(µ) 6= ∅ we call it ε-weak basin of attraction
of µ.

Remark 3.6.1: Note that in the definition of
weak basin of attraction Bε(µ), we are not assum-
ing that L∗ is a singleton. In other words, we do
not impose that for all x in the weak basin of at-
traction of µ, the sequence of empiric probabilities
is convergent. On the contrary, in Definition 3.5
of (strong) basin of attraction B(µ) of a measure,
we assume the convergence to µ of the empiric
sequences of probabilities for all x ∈ B(µ).

We also notice, from Definition 3.6, that if
x ∈ Bε(µ), then L∗(x) intersects, in the space
M, the ball of center µ and radius ε, but is not
necessarily included in that ball.

Let us first revisit the classic definition of
physical measure, and second, let us define the
weak physical measures.

Definition 3.7 Physical measures
A probability measure µ ∈ M is called physical
or SRB if its basin of attraction B(µ) (defined in
3.5) has positive Lebesgue measure.
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Physical measures µ, if they exist for some non
conservative system (i.e. when the Lebesgue mea-
sure is not invariant), are in general supported
on attractors of null Lebesgue measure. Even
more, in most of those cases, µ is mutually sin-
gular with Lebesgue. We recall that this is also
the situation in the paradigmatic non conserva-
tive example, when µ is the ergodic SRB measure
of a transitive Anosov diffeormorphism which is
C1 plus Hölder. In this well known example, µ
has conditional measures along the local unstable
manifolds that are absolute continuous with re-
spect to the internal Lebesgue measures of those
manifolds, but it is mutually singular respect to
the Lebesgue measure m in the ambient manifold
M .

From Definition 3.7, if there exists a physical
measure µ, then for any finite time n large enough
and for a Lebesgue-positive set of points x ∈ M ,
the future orbit with initial state x will exhibit a
empiric probability distribution νn(x) approach-
ing µ. But νn(x) does not equal the probability
measure µ, except, at most, for the Lebesgue-
zero set of initial states in a periodic orbit on
which µ could be supported. Indeed, we will al-
ways see, for a Lebesgue-positive set of orbits, an
ε-approach to µ, with ε 6= 0. In other words,
there exists a not null error, as small as wanted if
the time of experimentation is long enough, but
nonzero. This ε−approximation of the empiric
probability to the physical measure is observed in
the space M, with any metrization inducing the
weak∗-topology on M.

In brief, the conclusions, when using the the-
ory of physical measures, do not hold with error
ε = 0 if time of experimentation is finite. One
could better assert that the physical measure µ
is the distribution in regime. But this assertion
does not hold usually for a Lebesgue-positive set
of initial states. In fact, for most non conservative
systems that exhibit physical or SRB measures,
the attractor has zero Lebesgue measure. On the
other hand, the modern ergodic theory of physical

and SRB measures, is based from the very begin-
ning, in the hypothesis or exclusion of the initial
states in a zero Lebesgue-measure set. So, un-
der this hypothesis, one will never arrive exactly
to the attractor, if the map f is one-to-one and
such that f∗(m) � m, where m is the Lebesgue
measure, and if the attractor has zero Lebesgue
measure. Therefore, the exact evolution in regime
is not exactly observed.

Inspired in the argument above, one does not
loose the physical empiric meaning of a measure
µ, if it approximates the empiric distributions
νn(x) by 2ε instead of ε, and if this happens for
all ε > 0 when choosing adequate stop times n
that are large enough (but finite) and adequate
initial states x in a positive Lebesgue-measure
set. In other words, we can approximate the em-
piric distribution νn(x) up to time n, for n large
enough, with measures µ ∈ M that are not ex-
actly the limits of the convergent subsequences of
{νn(x)}n≥0, but that are ε-near to those limits.
Namely, we can consider the ε-weak basins of at-
tractions Bε(µ), as defined in 3.6 (instead of the
strong basin B(µ) defined in 3.5), provided that
m(Bε(µ)) > 0 for all ε > 0.

With the weak concept of attraction described
above, we are not loosing the desired physical em-
pirical sense of the searched probability measures
µ. In fact, from the considerations above, that
weaker definition (which we formulate precisely in
Definition 3.8) will be still strong enough to de-
scribe, like physical measures do, the asymptotic
statistics of a Lebesgue positive set of orbits.

We revisit now the definitions in [6], which
are generalizations of the observability notion for
measures introduced in [15], and of the physical
statistical properties of the SRB measures. We
call this generalized notion as weak physical. It
is indeed an ε-weak physical property of the mea-
sures µ, for all ε > 0:

Definition 3.8 Weak physical measures
We say that a probability measure µ ∈ M is
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weak physical or observable if its ε-weak basin
of attraction Bε(µ) (see Definition 3.6) has posi-
tive Lebesgue measure for all ε > 0. We denote
Wf ⊂M to the set of all weak physical measures
for f .

We have the following properties of weak phys-
ical measures, first stated and proved in [6]. For a
seek of completeness of this paper, we reformulate
here their proofs.

Theorem 3.9

Existence of weak physical measures

For all continuous map f : M 7→M on a compact
manifold M :
(i) ∅ 6=Wf ⊂Mf

(ii) Wf is a compact set in the weak∗ topology of
the space M of all probability measures.

Proof: Let us first prove that Wf 6= ∅. As-
sume by contradiction that for all µ ∈ M
there exists εµ > 0 such that m(Bεµ(µ)) = 0.
Fix any µ ∈ M. After Definition 3.6 of the
weak basin Bε(ν) of a probability measure ν,
we conclude that m(Bεµ/2(ν)) = 0 ∀ν ∈
M such that dist(µ, ν) < εµ/2. So, each fixed
µ ∈ M has a neighborhood of radius εµ/2 such
that all the other measures ν in that neighbor-
hood also have an (εµ/2)-weak basin of attraction
with zero Lebesgue measure (if non empty). Since
M is compact, we can cover the whole space of
probabilities with a finite number of such neigh-
borhoods, and choose the smallest radius of them,
say ε1 > 0. We conclude that

m(Bε1(ν)) = 0 ∀ ν ∈M ⇒

dist(L∗(x),M) ≥ ε1 > 0 for m− a.e. x ∈M
(10)

where m is the Lebesgue measure (see Definition
3.6 of the weak basin Bε(µ)). But the non empty
set L∗(x) is contained in Mf ⊂M for all x ∈M
(see Proposition 3.3), and thus dist(L∗(x),M) =

0 for all x ∈ M , contradicting (10). We have
proved that Wf 6= ∅.

Now let us end the proof of statement (i). We
must prove that Wf ⊂ Mf . Fix µ ∈ Wf . Since
m(Bε(µ)) > 0 for all ε > 0 (see Definition 3.7),
there exists a sequence of points xn ∈ B1/n(µ)
for all n ≥ 1. After Definition 3.6 of weak basin
of attraction, there exists a sequence of measures
νn ∈ L∗(xn) such that dist(νn, µ) < 1/n for all
n ≥ 0. Therefore limn→+∞ νn = µ. From Propo-
sition 3.3 and since νn ∈ L∗(xn), we deduce that
νn ∈ Mf for all n ≥ 0. Finally, as Mf is a
closed subset of M (see the Remark after Theo-
rem 2.5), and since Mf 3 νn → µ, we conclude
that µ ∈Mf , as wanted.

Finally, let us prove the statement (ii). Since
Wf ⊂ M, and M is a compact metric space in
the weak∗ topology (see Section 2), it is enough
to prove that Wf is closed. Take µn → µ ∈ M,
such that µn ∈ Wf for all n ≥ 0. We must
prove that µ ∈ Wf , or in other words, we shall
prove that m(Bε(µ)) > 0 for all ε > 0 (see Def-
inition 3.8). Fix ε > 0. Since µn → µ, then
dist(µn, µ) < ε/2 for all n large enough. Fix
one of such values of n. As µn ∈ Wf , we have
m(Bε/2(µn)) > 0. But from the triangular prop-
erty, for all x ∈ Bε/2(µn) we have dist(L∗(x), µ) ≤
dist(L∗(x), µn) + dist(µn, µ) < (ε/2) + (ε/2) = ε.
We conclude that Bε/2(µn) ⊂ Bε(µ) and therefore
m(Bε(µ) ≥ m(Bε/2(µn) > 0. So we have proved
that the ε-weak basin of attraction Bε(µ) of µ,
has positive m-measure (Lebesgue measure) for
all ε > 0, as wanted. �

Let us consider a restriction of f to a forward
invariant portion of the space that has positive
Lebesgue measure.

Definition 3.10

Restricted weak physical measures

Let B ⊂ M a Borel subset such that m(B) > 0
and f(B) ⊂ B. Then f |B : B 7→ B defines a

11



dynamical subsystem. We say that a Borel prob-
ability measure µ (not necessarily supported on
B) is observable or weak physical for f restricted
to B if m(Bε(µ)

⋂
B) > 0 for all ε > 0, where

Bε(µ) is defined in 3.8. We denote with Wf |B to
the set of all weak physical measures restricted to
B.

Corollary 3.11
For all continuous f : M 7→ M on a compact
manifold M and for all forward invariant Borel
set B with positive Lebesgue-measure:
(1) ∅ 6=Wf |B ⊂Mf and
(2) Wf |B is weak∗ compact.

Proof: Apply the proof of Theorem 3.9 to
f |B : B 7→ B in the role of f : M 7→M . �

After Theorem 3.9 and its Corollary 3.11,
weak physical measures do always exist for any
continuous dynamics, including in particular C1

diffeomorphisms. This is the large difference with
the observable measures defined in [15], and also
with the classical definition of physical measures
(see Definition 3.7). One of the major problems of
the differentiable Ergodic Theory is to find proba-
bility measures that have good ergodic properties
for Lebesgue almost all orbits. That is why physi-
cal or SRB measures raised in the literature of the
modern Ergodic Theory. But on the other hand,
it is well known that the ergodic theory of SRB or
physical measures, at least from the viewpoint in
which it was developed up to now, does not work
for C1 systems that are not C1 plus Hölder. The
major obstruction resides in the frequent non ex-
istence of such mild measures. On the other hand,
he have proved here that weak physical measures
as defined in 3.8 do exist for all continuous sys-
tems, so in particular for all C1 systems, and as
we will see in the next section, they describe a
class of weak attractors from the ergodic view-
point, for Lebesgue almost all orbits. So they can
substitute the physical or SRB measure if these
last probabilities do not exist. And they coincide

with the physical or SRB measures in the case
when they last exist. As the great advantage, the
weak physical measures do exist, and describe the
ergodic-like attractors, for all the continuous dy-
namics.

4 Ergodic-like attractors

In the sequel we will agree to say that a nonempty
set K ⊂M is f -invariant if f−1(K) = K. We re-
call that the continuous map f : M 7→ M is not
necessarily invertible. We will agree to say that
a set B is f -forward invariant if f(B) ⊂ B, or
equivalently B ⊂ f−1(B).

Definition 4.1
If K ⊂M is not empty, compact and f -invariant,
we define the following subset Vε,n(K) ⊂ M for
any fixed ε > 0 and for any fixed n ≥ 0:

Vε,n(K) = f−n(Vε(K)) =

{y ∈M : dist(fn(y),K) < ε}
where Vε(K) := {x ∈ M : dist(x,K) < ε} is
called the open ε-neighborhood of K.

Note that Vε,0(K) = Vε(K). It is immediate
from the f−invariance of K that K ⊂ Vε,n(K) for
all n ≥ 0 and for all ε > 0.

For a fixed point y ∈ M , and for a fixed nat-
ural number N ≥ 1 we denote ωε,N (y,K) to the
frequency with which the finite piece of orbit with
initial state y, from time 0 and up to time N ,
visits the ε-neighborhood of K. Precisely, if #A
denotes the cardinality (i.e. the number of ele-
ments) of a finite set A, we have:

ωε,N (y,K) :=
#{0 ≤ n < N : y ∈ Vε,n(K)}

N
=

#{0 ≤ n < N : dist(fn(y),K) < ε}
N

(11)

From the definition above 0 ≤ ωε,N (y,K) ≤ 1 for
all y ∈ M , for all N ≥ 1 and for all ε > 0. Note,
from the f -invariance of K, that ωε,N (y,K) = 1
for all y ∈ K, for all N ≥ 1 and for all ε > 0.
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For a given non empty, compact and f -
invariant set K we construct the set

Bε(K) = {y ∈M : lim inf
N→+∞

ωε,N (y,K) > 1− ε}
(12)

where the frequency ωε,N (y,K) is defined by
Equality (11). We call ωε,N (y,K) the frequency of
visits of the orbit of y, from time 0 up to time N ,
to the ε-neighborhood of K. So, if y ∈ Bε(K) and
ε > 0 is small enough, we say that the frequency
of visits of the orbit of y to the ε-neighborhood
of K is asymptotically near 1. If a point y be-
longs to Bε(K) for all ε > 0, we say that it is
probabilistically attracted by the set K. In fact,
the frequency of its visits to the open sets at ar-
bitrarily small distance from K is asymptotically
1. So, with increasing probability converging to
1, in the mean times, we will find the future orbit
of all the points y ∈

⋃
ε>0Bε(K) (for time large

enough) as near K as wanted.

Remark 4.1.1
Note that K ⊂ Bε(K), so for all ε > 0 this latter
set is not empty and K ⊂

⋃
ε>0Bε(K).

From the definition above Bε(K) is the set of
all the points y ∈M such that are, in the tempo-
ral averages, ε-attracted to K. The approxima-
tion ε > 0 has a doubling meaning:

First, it is an spacial approximation, since the
future orbit with initial state y drops in Vε(K)
(the ε-neighborhood of K) for infinitely many it-
erates.

Second, it is a temporal probabilistic approx-
imation but not a topological approximation. In
fact, we are not assuming that after some time
N large enough all the iterates of the orbit with
initial state y drop in Vε(K). Nevertheless, we are
assuming that a proportion near 100% of these it-
erates (if ε > 0 is small enough) do drop in Vε(K).
In other words, the frequency according to which
they approach K is larger than 1−ε. So, the orbit
of y, after an iterate N large enough, has a rela-
tively very small freedom, if ε is small enough, to

“take a short vacation tour” far from K.
The same ε approximation in time-mean ap-

pears when the classical ergodic attractors, (de-
fined as the support of physical measures) are
considered. For instance the example of Bowen
restated in [11], the example of Hu-Young in
[13], and the C1-generic example of Campbell and
Quas, restated in [6], exhibit this weak attraction
in temporal mean to the support to a physical
measure, and the attraction is not topological.
In those three examples there exist physical mea-
sures attracting Lebesgue almost all the points of
an open set, and supported on hyperbolic fixed
point of saddle type. Therefore, the attractors
are not topological, but just probabilistic. Pre-
cisely, the attraction is observed in time-mean,
with a frequency of visits arbitrarily near the at-
tractor that is not exactly 1, but near 1 (namely,
converging to 1 when the number N of observed
iterates goes to +∞). Inspired in those examples,
we introduce the following Definitions 4.2 and 4.4:

Definition 4.2
For a non empty compact f -invariant set K ⊂M
the set Bε(K) constructed in Equality (12), if
nonempty, is called basin of ε-weak ergodic at-
traction to K, or simply basin of ε-attraction to
the set K.

Remark 4.3
We notice, from Equality (12), that the basin
Bε(K) is f -invariant, i.e. f−1(Bε(K) = Bε(K)
for all ε > 0. We remark that it is not necessarily
an open set.

Definition 4.4 Ergodic-like attractor
Let K ⊂ M be not empty, compact and f -
invariant. Let B ⊂ M be a Borel set with
Lebesgue measure m(B) = α > 0. We say that
K is an B-observable ergodic-like attractor, if:
(1) For all ε > 0 the basin of ε-attraction Bε(K)
of K contains Lebesgue almost all points of B.
(Therefore m(Bε(K)) ≥ α ∀ ε > 0).
(2) K does not contain proper, compact and
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nonempty subsets K ′ ⊂ K that satisfy (1).
We say that a nonempty compact set K ⊂M

is an ergodic-like attractor if it is B-observable
ergodic-like attractor for some Borel set B ⊂ M
with positive Lebesgue measure.

We notice that the condition

Bε(K) ⊃ B ∀ ε > 0

is trivially satisfied taking K = M for any dy-
namical system and any subset B. So, no in-
formation would be obtained about the statistics
of the asymptotic dynamics if only condition (1)
were assumed. To be an interesting definition,
one adds the condition (2) stating the minimality
of K attracting the observable set B.

In Theorem 4.9 and its Corollary 4.10 we
will prove that, for all forward invariant set B
with positive Lebesgue measure, there exists a B-
observable ergodic-like attractor.

Now we define the exact basin of attraction of
a B-observable ergodic-like attractor, and prove
that it always contains B, and so it has Lebesgue
measure which is not smaller than α = m(B) > 0.

Definition 4.5

Let K ⊂M be a B-observable ergodic-like attrac-
tor according to Definition 4.4. Its exact basin of
attraction, or in brief, the basin of attraction of
K, is the following set B(K):

B(K) := {x ∈M : lim
ε→0+

lim inf
N→+∞

ωε,N (x,K) = 1},

where the frequency ωε,N (x,K) is defined in
Equality (11).

After Remark 4.3, note that the exact basin
of attraction does not necessarily contain a neigh-
borhood of K. Nevertheless, it intersects arbi-
trarily small neighborhoods of K (see Definition
4.1). Besides, it has non zero Lebesgue measure,
as stated in the following theorem:

Theorem 4.6
For all Borel set B ⊂ M such that m(B) = α >
0, and for all B-observable ergodic-like attractor
K ⊂ M (as defined in 4.4), its exact basin of at-
traction B(K) ⊃ K (as defined in 4.5) contains
m-a.e. point of B and therefore, it has Lebesgue
measure larger or equal than α.

Besides

B(K) =
⋂
ε>0

Bε(K) and f−1(B(K)) = B(K),

where Bε(K) is the basin of ε-attraction to K (as
defined in 4.2).

Proof: From Definition 4.2:

0 < ε′ < ε ⇒ Bε′(K) ⊂ Bε(K).

Therefore, applying Definition 4.4, and denoting
m to the Lebesgue measure:

m

(⋂
ε>0

Bε(K)

)
= m

(
+∞⋂
n=1

B1/n(K)

)
=

lim
n→+∞

m(B1/n(K)) ≥ m(B) = α > 0.

We assert that it is enough to prove that the ex-
act basin of attraction B(K) coincides with the
following set S:

S =
+∞⋂
n=1

B1/n(K) =
⋂
ε>0

Bε(K).

In fact, if B(K) = S then

m(B \B(K)) = m(
+∞⋃
n=1

(B \B1/n(K)) ≤

+∞∑
n=1

m(B \B1/n(K)) = 0.

The sum at right is zero, because by Defini-
tion 4.4, for all ε > 0 the basin of ε-attraction
Bε(K) contains m-almost all points of B. Then
m(B \ B(K)) = 0 or, in other words, B(K) also

14



contains m-almost all points of B. Besides, if we
prove that B(K) = S then

f−1(B(K)) = f−1(S) = f−1(
+∞⋂
n=1

B1/n(K) ) =

+∞⋂
n=1

f−1(B1/n(K)) =
+∞⋂
n=1

B1/n(K) = S = B(K).

So, let us prove that B(K) = S. Let us first
show that S ⊂ B(K). Fix a point x ∈ S. After
Definition 4.2 the point x satisfies the following
equalities:

1 ≥ lim inf
N→+∞

ωε,N (x) > 1− ε ∀ ε > 0.

Taking ε→ 0+, we deduce

lim
ε→0+

lim inf
N→+∞

ωε,N (x) = 1.

Finally, recalling Definition 3.5, the equality
above implies that x ∈ B(K). This latter asser-
tion was proved for a arbitrary point x ∈ S. Thus,
we deduce S ⊂ B(K) as wanted. The opposite in-
clusion B(K) ⊂ S is immediate after Definition
4.5 and Equality (12). �

One of the reasons for searching the physical
probability measures, if they exist, is that their
supports are ergodic-like attractors. Precisely, we
state the following result:

Theorem 4.7
If K is the compact support of a physical probabil-
ity measure µ ∈Mf (i.e. K is the minimum com-
pact set in M such that µ(K) = 1), and if B(µ)
denotes the basin of attraction of µ (as defined
in 3.7), then K is a B(µ)−observable ergodic-like
attractor (according with Definition 4.4). Besides

B(K) = B(µ).

Proof: Since µ is physical, its basin of attraction
B(µ) ⊂ M has positive Lebesgue measure, say

α > 0. Denote K ⊂ M to the compact support
of µ. Fix ε > 0 and choose ψ ∈ C0(M, [0, 1])
such that ψ|K = 1, and ψ(y) = 0 if and only if
dist(y,K) ≥ ε. Therefore∫

ψ dµ =
∫
K
ψ dµ = µ(K) = 1.

Take x ∈ B(µ) and compute the following limit

lim
N→+∞

1
N

N−1∑
n=0

ψ(fn(x)) =

lim
N→+∞

∫
ψ d

(
1
N

∞∑
n=0

δfn(x)

)
=
∫
ψ dµ = 1.

In the equalities above we have use the character-
ization of the weak∗ limit of probabilities, Defini-
tion 3.7 of physical measure and Definition 3.5
of B(µ) which state that L∗(x) = {µ} for all
x ∈ B(µ). Thus, for the same previously fixed
value of ε > 0, and for all x ∈ B(µ) there exists
N0(x) such that

1
N

N−1∑
n=0

ψ(fn(x)) > 1− ε ∀ N ≥ N0(x),

and therefore

1
N

#{0 ≤ n ≤ N − 1 : ψ(fn(x)) > 0} >

> 1− ε ∀ N ≥ N0(x).

Then, for all x ∈ B(µ) and for all N ≥ 1 the
frequency ωε,N (x), as defined in 4.1, satisfies:

ωε,N (x,K) =

1
N

#{0 ≤ n ≤ N − 1 : dist(fn(x),K) < ε} =

1
N

#{0 ≤ n ≤ N − 1 : ψ(fn(x)) > 0} > 1− ε.

After Definition 3.6, the inequality above im-
plies that

B(µ) ⊂ Bε(K).
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Since ε > 0 was arbitrary, we deduce that

B(µ) ⊂
⋂
ε>0

Bε(K) = B(K).

It is left to prove that K is minimal satisfying
the condition above and that B(K) = B(µ). Let
us first prove the minimality condition. Take
a nonempty compact subset K ′ ⊂ K such that
B(K ′) ⊃ B(µ). We must prove that K ′ = K. It
is enough to show that µ(K ′) = 1, because by hy-
pothesis K is the minimal compact set that satis-
fies that condition. Take a sequence of continuous
functions ψi : M 7→ [0, 1] such that ψi|K′ = 1 and
limi→+∞

∫
ψi(x) = χK′(x) for all x ∈ M , where

χK′(x) is 1 if x ∈ K ′ and is 0 if x 6∈ K ′. Then, by
the dominated convergence theorem:

lim
i→+∞

∫
ψi dµ =

∫
χK′(x) dµ = µ(K ′). (13)

Fix x ∈ B(µ) ⊂ B(K ′). After the definition of
B(µ) we haFix 0 < ε < 1 and i ∈ N. As ψi is
continuous and ψi|K′ = 1, there exist 0 < δ < ε
such that ψi(y) > 1 − ε if dist(y,K ′) < δ. ve
limn→+∞

1
n

∑n−1
j=0 δfj(x) = µ in the weak∗ topol-

ogy of M. After Theorem 4.6 and the defi-
nition of Bδ(K ′) we have x ∈ Bδ(K ′) and so,
lim infn→+∞ ωδ,n(x,K ′) > 1 − δ for all n large
enough. Then:∫

ψi dµ = lim
n→+∞

∫
ψi d

1
n

n−1∑
j=0

δfj(x) =

lim
n→+∞

1
n

n−1∑
j=0

ψi(f j(x)) ≥

lim inf
n→+∞

(1−ε)ωδ,n(x,K ′) > (1−ε)(1−δ) ≥ (1−ε)2.

The inequality above holds for all i. Joining with
Inequality (13), we deduce that µ(K ′) > (1− ε)2.
Since ε is arbitrary, and µ is a probability mea-
sure, we conclude that µ(K ′) = 1 as wanted.
Therefore K ′ = K and so K is a B(µ)-observable

ergodic-like attractor according with Definition
4.4.

Finally, let us prove that B(K) ⊂ B(µ). Take
x ∈ B(K) and consider its sequence of empiric
probabilities νN (x) = 1

N

∑N−1
n=0 δfn(x). We must

prove that it is convergent in the weak∗ topology,
to µ. Assume by contradiction that there exists a
subsequence {νNj (x)}j≥1 such that

lim
j→+∞

νNj (x) = ν 6= µ,

where the limit is taken in the weak∗ topology of
the space M of probabilities. Then, there exists
a continuous function ψ ∈ C0(M, [0, 1]) such that∫

ψ dν = 0,
∫
ψ dµ = 1.

As µ is a positive measure, and ψ is a contin-
uous real function with sup value 1, the equal-
ity

∫
ψ dµ = 1 implies that ψ(x) = 1 for µ-a.e.

x ∈ M . Therefore ψ|K = 1, recalling that K is
the minimum compact set such that µ(K) = 1.

After the uniform continuity of ψ in the com-
pact manifold M , there exists 0 < ε ≤ 1/2 such
that ψ(y) > 1/2 if dist(y,K) < ε. From the as-
sumption x ∈

⋂
ε>0Bε(K), there exists N0(x) such

that:
1
N

#{0 ≤ n ≤ N − 1 : dist(fn(x),K) < ε} >

> 1− ε ∀ N ≥ N0(x).

Therefore
1
N

#{0 ≤ n ≤ N − 1 : ψ(fn(x)) >
1
2
} >

> 1− ε ∀ N ≥ N0(x),

and thus

lim inf
N→+∞

1
N

N−1∑
n=0

ψ(fn(x)) > (1− ε)/2 ≥ 1/4.

We conclude that

1
4
< lim inf

N→+∞

∫
ψ d

(
1
N

N−1∑
n=0

δfn(x)

)
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≤ lim
j→+∞

∫
ψ d
(
νNj (x)

)
=
∫
ψ dν,

contradicting the fact that
∫
ψ dν = 0. �

Definition 4.8 Ergodic attractors (See [24])
If an B-observable ergodic-like attractor K is the
compact support of a physical measure µ (see
Theorem 4.7), and if µ is ergodic, then K is called
ergodic attractor.

It is unknown how abundant are the differ-
entiable systems that exhibit ergodic attractors,
but there are well known examples that exhibit
none, since they have not physical measures or
have a unique physical measure which is not er-
godic (see for instance Bowen’s example, cited in
[11]). Nevertheless a similar result to Theorem
4.7 can be obtained using the physical-like mea-
sures defined in 3.8, and these lasts always exist
for any continuous system (see Theorem 3.9 and
its Corollary 3.11) So, the following result implies
that any continuous system necessarily exhibits
at least one ergodic-like attractor.

Theorem 4.9

Construction of Ergodic-like Attractors

Let B ⊂M be a forward invariant Borel set with
positive Lebesgue measure. LetW|f |B ⊂M be the
set of physical-like measures restricted to B, as
defined in 3.10. Then, the common compact sup-
port K ⊂ M of all the probabilities in Wf |B (i.e.
the minimal compact set K such that µ(K) = 1
for all µ ∈ Wf |B) is a B-observable ergodic-like
attractor.

Before proving Theorem 4.9 let us state its
Corollary and a Lemma:

Corollary 4.10

Existence of ergodic-like attractors

Any continuous system exhibits ergodic-like at-
tractors.

We prove this Corollary at the end of this section.

Lemma 4.11
If B is a forward invariant Borel set with pos-

itive Lebesgue measure and if W|f |B is the set of
the physical-like measures of f restricted to B,
then for Lebesgue almost all x ∈ B the limit set
L∗(x) (defined in 3.2) is contained in W|f |B.

Proof: For all ε > 0 denote Vε = {µ ∈ M :
dist(µ,Wf |B) < ε}, where the distance in the
spaceM of probability measures is taken accord-
ing to Equality (2). After Corollary 3.11, the set
Wf |B is weak∗ compact. So

Wf |B =
⋂
ε>0

Vε =
+∞⋂
N=1

V1/N .

Therefore, it is enough to prove that for all ε > 0
the set of points x ∈ B such that

L∗x
⋂

(M\ Vε) 6= ∅

has m-measure zero, where m denotes the
Lebesgue measure in the ambient manifold M .

In fact, for all ε > 0 any measure µ ∈ M \ Vε
is not in Wf |C , namely µ is not physical-like for
f restricted to B. Therefore, applying Definition
3.10, there exists δµ > 0 such that m(Bδ(µ)) =
0 ∀ 0 < δ ≤ δµ. Thus, for m-a.e. point x ∈ C the
set L∗x does not intersect Bδµ(µ), denoting with
Bδµ(µ) the open ball with center at µ and radius
δµ in the metric space M of probabilities. Now
let us cover the compact set M\ Vε with a finite
number of such balls. We conclude that for m-a.e.
point x ∈ C the set L∗x does not intersect any of
such balls. This implies that it does not intersect
M\Vε, or, in other words L∗x ⊂ Vε for Lebesgue
almost all x ∈ B, ending the proof. �

Proof of Theorem 4.9: To prove that K is a B-
observable ergodic-like attractor, we must prove
that m(B \ Bε(K)) = 0 for all ε > 0 and that
K is the minimal compact set in the manifold M
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with such a property. After Corollary 3.11 the set
Wf |B of physical-like measures restricted to B is
not empty. By hypothesis K ⊂M is compact and
supports µ, i.e. µ(K) = 1, for all µ ∈ Wf |B (So,
K is not empty).

Let us first prove that m(B \ Bε(K)) = 0 for
all ε > 0.

Fix ε > 0 and choose ψ ∈ C0(M, [0, 1]) such
that ψ|K = 1, and ψ(y) > ε if dist(y,K) ≥ δ.
Therefore∫

ψ dµ =
∫
K
ψ dµ = µ(K) = 1 ∀ µ ∈ Wf |B.

(14)
After Lemma 4.11 for Lebesgue almost all

point in B: L∗x ⊂ Wf |B. So, to prove that
m(B \ B(K)) = 0 it is enough to prove that all
points x ∈ B such that L∗x ⊂ Wf |B belong to
B(K). To do that is it enough that they belong
to Bε(K) for all ε > 0. Fix such a point x and
fix ε > 0. Choose ψ ∈ C0(M, [0, 1]) such that
ψ|K = 1, and find 0 < δ < ε such that ψ(y) = 0
if dist(y,K) ≥ ε. Therefore∫

ψ dµ =
∫
K
ψ dµ = µ(K) = 1 ∀ µ ∈ Wf |B.

(15)
Consider an increasing sequence ni → +∞ of

natural numbers such that

lim
i→+∞

ωε,ni(x,K) = lim inf
n→+∞

ωε,n(x,K),

where ωε,n(x,K) is the frequency in which the fu-
ture orbit of x from time 0 to time n ε-approaches
the compact set K, as defined in (11).

Taking a subsequence of {ni}i≥1 if necessary,
it is not restrictive to assume that the sequence
of empiric probabilities of x, defined in (10), is
weak∗-convergent to a probability, say µ. (In fact,
recall that the spaceM of probabilities is sequen-
tially compact endowed with the weak∗ topology).
So,

lim
i→+∞

1
ni

ni−1∑
j=0

δfj(x) = µ ∈ L∗(x) ⊂ Wf |B.

Therefore, applying the characterization of
the weak∗ limit given in Equality 5:

1 =
∫
ψ dµ = lim

i→+∞

∫
ψ d

1
ni

ni−1∑
j=0

δfj(xN ) =

lim
i→+∞

1
ni

ni−1∑
j=0

ψ(f j(xN )) ≤

lim
i→+∞

1
ni

#{0 ≤ j ≤ ni − 1 : dist(f j(x),K) < ε}

= lim
i→+∞

ωε,ni(x,K) ≤ 1.

To obtain the inequality above recall that

ψ(y) = 0 if dist(y,K) ≥ ε

and ψ(y) ≤ 1 otherwise. So:

1− ε < 1 = lim
i→+∞

ωε,ni(x,K) = lim inf
n→+∞

ωε,n(x,K).

Therefore we conclude that x ∈ Bε(K), for all
x ∈ B such that L∗x ⊂ Wf |B. As we proved this
assertion for all ε > 0, we joint it with Theorem
4.6 and Lemma 4.11, to conclude that Lebesgue
almost all points of B belong to B(K), as wanted.

Now, let us prove that K ⊂ M is minimal
compact satisfying the condition

m(B \B(K)) = 0.

Take a nonempty compact subset K ′ ⊂ K such
that m(B \ B(K ′)) = 0. We must prove that
K ′ = K. Assume by contradiction that K ′ 6= K.
By hypothesis K is the minimal compact set such
that µ(K) = 1 for all µ ∈ Wf |B. Then, there
exists ν ∈ Wf |B such that ν(K ′) < 1.

Fix a neighborhood V of K ′ such that

ν(V ) < 1.

Fix ε > 0 such that ε < 1 − ν(V ) and choose
a continuous function ψ : M 7→ [0, 1] such that
ψ|K′ = 1 and ψ(y) = 0 if y 6∈ V . Choose
0 < δ < ε/4 such that ψ(y) > (1 − ε/4) if
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dist(y,K ′) < δ. We are assuming that B(K ′) con-
tains Lebesgue almost all x ∈ B. Fix any such a
point x and consider:(

1− ε

4

)
ωδ,n(x,K ′) ≤

1
n

n−1∑
j=0

ψ(f j(x)) ≤ ωε,n(x,K ′) ≤ 1.

Recall that

1
n

n−1∑
j=0

ψ(f j(x)) =
∫
ψ d

1
n

n−1∑
j=0

δfj(x).

So, for any sequence ni → +∞ such that the em-
piric probabilities νni(x) of x converge to a mea-
sure µ ∈ L∗(x), we have(

1− ε

4

)
lim inf
n→+∞

ωδ,n(x,K ′) ≤
∫
ψdµ∗ ≤ 1.

Since x ∈ B(K ′) ⊂ Bδ(K ′), we deduce that the
liminf above is greater or equal than (1−δ) (recall
Equality (12)). So, we conclude that∫

ψ dµ∗ ≥ (1− ε/4)(1− δ) >

(1− ε/4)2 > 1− ε/2 > ν(V ) + ε/2 >∫
ψ dν + ε/2

∀ µ ∈ L∗(x) for m− a.e. x ∈ B.

From Equality (2) defining the distance in the
space of probabilities and from the denseness of
the family Ψ = {ψi}i≥1 ⊂ C0(M, [0, 1]), we con-
clude that there exists a continuous real function
ψi0 ∈ Ψ such that ‖ψi0 − ψ‖sup ≤ ε/8. Therefore,
for all µ ∈ L∗(x), for m-a.e. x ∈M :

ε

2
≤
∣∣∣∣∫ ψ dµ−

∫
ψ dν

∣∣∣∣ ⇒
⇒ ε

2
≤
∣∣∣∣∫ ψ dµ−

∫
ψi0 dµ

∣∣∣∣+

+
∣∣∣∣∫ ψi0 dµ−

∫
ψi0 dν

∣∣∣∣+
∣∣∣∣∫ ψi0 dν −

∫
ψ dν

∣∣∣∣
⇒ ε

2
≤
∣∣∣∣∫ ψi0 dµ−

∫
ψi0 dν

∣∣∣∣+
2ε
8
.

Then: ∣∣∣∣∫ ψi0 dµ−
∫
ψi0 dν

∣∣∣∣ ≥ ε

2
− ε

4
=
ε

4
.

So

dist(µ, ν) :=
∞∑
i=1

1
2i
·
∣∣∣∣∫ ψi dµ−

∫
ψi dν

∣∣∣∣ ≥
≥ 1

2i0
· ε
4

= ρ > 0 ∀µ ∈ L∗(x) for m− a.e. x ∈ B.

The last inequality can be restated as follows:
m(Bρ(ν)) = 0, where Bρ(ν) is the basin of ρ-weak
attraction of ν, as defined in 3.6. Then, taking
into account Definition 3.10, we conclude that ν
is not weak physical for f |B, namely ν 6∈ Wf |B,
contradicting its construction at the beginning.
This ends the proof that K is minimal compact
with the property m(B \B(K)) = 0. Thus K is a
B-observable ergodic-like attractor, and the proof
of Theorem 4.9 is ended. �

Proof of Corollary 4.10: Take any forward in-
variant Borel set B ⊂ M with positive Lebesgue
measure. Such sets always exist, since one can
take for instance B = M . After Theorem 3.9
and its Corollary 3.11, there exists a nonempty
weak∗-compact set W|f |B of physical-like prob-
abilities of f restricted to B. Since µ(M) = 1
for all µ ∈ Wf |B, the family Γ of all the com-
pact sets K ⊂ M that support all the measures
µ ∈ Wf |B is not empty. Define in Γ the partial
order K1 ≤ K2 if and only if K1 ⊂ K2. Any
chain {Kn}n≥0 (i.e. Kn+1 ≤ Kn for all n ≥ 0),
defines a minimal element (respect to the chain)
K∞ =

⋂
n≥0Kn ∈ Γ. In fact K∞ is compact and

µ(K∞) limn→+∞ µ(Kn) = 1 for all µ ∈ Wf |B. So
K∞ is not empty and supports all the measures
of Wf |B. Thus K∞ ∈ Γ. Zorn Lemma states that
in any partially ordered set Γ, if all chains define
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a minimal element (respect to the chain) in Γ,
then there exist minimal elements of the whole
set Γ, namely some element K ∈ Γ such that
all K ′ ≤ K in Γ must coincide with K. There-
fore, after Zorn Lemma, there exists at least one
nonempty compact set K ∈ Γ such that µ(K) = 1
for all µ ∈ Wf |B and such that K has no proper
nonempty compact subsets with that property.
(Besides K is unique, as minimal element of Γ, be-
cause if there existed two of them K1 6= K2, then
K3 = K1

⋂
K2 would satisfy K3 ⊂ K1, K3 6= K1

and K3 ∈ Γ, contradicting the minimality of K1).
We have proved that the minimal common

compact support K of all the probabilities µ ∈
Wf |B exists (and is nonempty). After Theorem
4.9 this compact set K is a B-observable ergodic-
like attractor. �

5 Conclusions
We have defined the weak physical probability
measures for all continuous dynamical system.
We have proved that any such system possesses
weakly physical measures (Theorem 3.9). This
result is significant because, on one hand strong
physical measures mostly do not exist, and on the
other hand the statistical description that phys-
ical provide, when they exist, is preserved by
weakly physical probabilities. Precisely, the set
W|f of all weakly physical measures is a set of f -
invariant probabilities that describes completely
the asymptotic statistics of Lebesgue almost all
orbits attracted to an ergodic-like attractor K
(Theorem 4.9). Besides this attractor K, joint
the the weak physical measures supported on K,
have the following properties:

(1) After Lemma 4.11, the setW|f of invariant
probabilities contains all the limit measures of all
the convergent subsequences of the empiric distri-
butions νn(x) := (1/n)

∑n−1
j=0 δfj(x) for Lebesgue

almost all x in the basin of attraction of K. In
brief, the set W|f gives a complete statistical de-
scription of the asymptotic time mean of the or-

bits of a full Lebesgue measure set of initial states.
We have proved this ergodic-like result in a so gen-
eral scenario that includes also all those continu-
ous systems that do not preserve the Lebesgue
measure.

(2) The description is spacial, since the mea-
sures in Wf are probability distributions in the
ambient manifold M where the dynamics evolves,
but is also temporal, since they describe the limits
of the means in time.

(3) The attractor K that supports all the
probability measures of the set Wf is minimal
among the compact sets of the ambient mani-
fold that attract weakly all the orbits of its basin.
(Condition (2) of Definition 4.4). In fact, in Theo-
rem 4.9 we have proved that the compact support
K satisfies both conditions of Definition 4.4. This
minimality property of the ergodic-like attractor
ensures an optimality condition of our results: the
Lebesgue-full attraction property of the orbits can
not be obtained trying to reduce the attractor to
a proper subset of K.

Summarizing, the results of this paper hold
as an application of Measure Theory, to the ab-
stract theory of continuous Dynamical Systems
and Ergodic Theories. They hold for all C0 map-
pings on compact manifolds. So, they include the
known results about the ergodic attractors (Defi-
nition 4.8) as supports of physical measures, and
the known Ergodic Theory of Differentiable Dy-
namics. But, on the other hands the results in
this paper wide this theory, since they are not
restricted to the condition of differentiability.
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[20] R.Mañé: Ergodic theory and differentiable
dynamics. Ergebnisse der Mathematik und
ihrer Grenzgebiete 3, Springer –Verlag,
Berlin–Heidelberg–New York–Tokyo, 1987.

21



[21] N. Mastorakis; O.V. Avramenko: Fuzzy
models of the dynamic systems for evolution
of populations. WSEAS Trans. Math. 6 2007,
pp. 667–680

[22] G.Mircea; M.Neamtu; A.Ciurdariu; D.Opris:
Numerical simulations for dynamic stochas-
tic and hybrid models of Internet networks.
WSEAS Trans. Math. 8, 2009, pp. 679–688

[23] J.Palis: A global view of Dynamics and a
conjecture on the denseness of finitude of at-
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