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Abstract. We study the asymptotic dynamics of piecewise contracting maps defined

on a compact interval. For maps that are not necessarily injective, but have a

finite number of local extrema and discontinuity points, we prove the existence of

a decomposition of the support of the asymptotic dynamics into a finite number

of minimal components. Each component is either a periodic orbit or a minimal

Cantor set and such that the ω-limit set of (almost) every point in the interval

is exactly one of these components. Moreover, we show that each component is

the ω-limit set, or the closure of the orbit, of a one-sided limit of the map at a

discontinuity point or at a local extremum.
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1. Introduction

Let X ⊂ R be a compact interval with nonempty interior. A map f : X → X is a

piecewise contracting interval map (PCIM) if there exist λ ∈ (0, 1) and a collection

of N > 2 non-empty disjoint open intervals X1, X2, . . . , XN such that X =
⋃N
i=1Xi

and

|f(x)− f(y)| 6 λ |x− y| ∀x, y ∈ Xi, ∀ i ∈ {1, 2, . . . , N}. (1)
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2 A. Calderón, E. Catsigeras and P. Guiraud

We call contracting constant (or contracting rate) of f the real number λ ∈ (0, 1),

and contraction pieces the elements of the collection {Xi}Ni=1.

For a PCIM f : X → X, we let c0, cN denote the extreme points of X and

∆ := {c1 < c2 < · · · < cN−1} denotes the set of the boundaries of the contraction

pieces. That is, X1 = [c0, c1), X2 = (c1, c2), . . . , XN = (cN−1, cN ]. For notational

convenience we suppose that X1 and XN are half-closed, but we may also consider

the case where one or both pieces are open by adding c0 and/or cN to the set ∆.

In other words, ∆ must contain all the discontinuity points of the map.

From inequality (1), it follows that the points of ∆ are removable (maybe

continuity points) or jump discontinuities. Therefore, for any i ∈ {1, . . . , N} the

map f |Xi
admits a unique continuous extension fi : Xi → X, which besides satisfies

(1) for any pair of points in Xi. The one-sided limits of f at the extreme points of

its contraction pieces write

d0 := f1(c0), dN := fN (cN ), d−i := fi(ci) and d+
i := fi+1(ci)

with i ∈ {1, . . . , N − 1}. We let D denote the set of these points, that is

D := {d0, d
−
1 , . . . , d

−
N−1, d

+
1 , . . . , d

+
N−1, dN}.

In this paper, our purpose is to describe the topological structure and dynamical

properties of the asymptotic dynamics of PCIM. To this aim, let f be a PCIM and

consider the asymptotic set called the attractor of f and which is defined by the

following equality:

Λ :=
⋂
n>1

Λn where Λ1 := f(X \∆) and Λn+1 := f(Λn \∆) ∀n > 1.

(2)

Note that this set does not depend on the particular definition of the map at its

discontinuity points. Also, as Λn is compact, nonempty and Λn+1 ⊂ Λn for all

n > 1, the attractor Λ is compact and nonempty. Besides, as shown in [5], the

attractor contains the ω-limit set of any point of the set

X̃ :=
⋂
n>0

f−n(X \∆).

A general result, which holds in any compact metric phase space, is that the

attractor of a piecewise contracting map consists of a finite number of periodic

orbits, whenever it does not intersect the boundary of a contraction piece (see [5]).

Moreover, for PCIM defined on a half-closed interval, Nogueira, Pires and Rosales

proved that this periodic asymptotic behavior is generic in a metric sense and with

a number of periodic orbits which is bounded above by the number of contraction

pieces [10, 11, 12]. This generalizes and refines a previous result obtained by

Brémont in [1].

Periodic orbits are not the only possible asymptotic sets of PCIM. In [7],

Gambaudo and Tresser early studied the attractors of PCIM withN = 2 contraction

pieces. Associating a rotation number to the map, they proved that the attractor is

either a periodic orbit (rational rotation number) or a Cantor set (irrational rotation
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Spectral decomposition of the attractor of piecewise contracting maps 3

number), and that the latter case corresponds to a quasi-periodic asymptotic

dynamics with Sturmian complexity. It is in particular the case for the half-closed

unit interval map x 7→ λx + µ mod 1, for which the properties of the rotation

number as a function of λ and µ ∈ [0, 1) have been studied in detail [2, 3, 6, 8].

For injective PCIM with N > 2 contractions pieces, it has been proved that the

complexity of the itinerary of any orbit is an eventually affine function [4, 13]. The

growth rate of the complexity is at most equal to N−1 and there are some examples

of PCIM with such a maximal complexity [4]. In these particular examples, the

attractor is a minimal Cantor set containing all the boundaries of the contraction

pieces. Nevertheless, there is no general description of the topological structure

and dynamical properties of the attractor of PCIM with arbitrary complexity and

number of contraction pieces. The aim of this paper is to give such a description.

Before stating the hypothesis and our results, we fix the notations and give some

definitions. In the following, O(x) :=
{
fn(x)

}
n>0

denotes the forward orbit of a

point x ∈ X and it is said to be periodic if there exists p > 1 such that fp(x) = x.

The ω-limit set of a point x ∈ X is denoted ω(x). We recall that y ∈ ω(x) if and

only if there exists a subsequence of O(x) which converges to y. In practice, we

will only study the orbits and the ω-limit sets of the points in X̃† (nevertheless, the

asymptotic sets may contain points of ∆). This allows to disregard how the map

is defined on ∆, the relevant values being actually those of the set D.

Definition 1.1 (Pseudo-invariant set) We say that A ⊂ X is pseudo-

invariant if for any x ∈ A we have lim
y→x−

f(y) ∈ A or lim
y→x+

f(y) ∈ A .

For PCIM the ω-limit set of any point is nonempty and compact, but it is not

necessarily invariant if it contains a discontinuity point. However, we will see later

that the attractor of a PCIM as well as the ω-limit set of any point of X̃ are

pseudo-invariant sets. Note that if A ⊂ X is pseudo-invariant, then f(x) ∈ A for

any x ∈ A \∆ and A ∩ X̃ is invariant.

Definition 1.2. We say that A ⊂ X is X̃-minimal if O(x) = A for any x ∈ A∩X̃.

On some occasions, when a “property” holds for the intersection of a set A ⊂ X

with X̃, we will say that the set A is X̃-“property”. For instance, a set A ⊂ X is

X̃-invariant if f(A∩ X̃) ⊂ A∩ X̃. Also, if A and B ⊂ X satisfy A∩B ∩ X̃ = ∅ we

say that A and B are X̃-disjoint.

Now, we state Theorem 1.1, which is the main result of this paper:

Theorem 1.1. Let f : X → X be a PCIM which is injective on each of its

contraction pieces and such that D ⊂ X̃. Then, there exist two natural numbers N1

and N2 such that

† It is easy to see that the orbit of a point in X \ X̃ eventually falls either in X̃ or at a point of
∆ which is periodic.
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4 A. Calderón, E. Catsigeras and P. Guiraud

1) The attractor Λ of f can be decomposed as follows:

Λ =

(
N1⋃
i=1

Oi

)
∪

N2⋃
j=1

Kj

, (3)

where O1,O2, . . . ,ON1
⊂ X̃ are periodic orbits and K1,K2, . . . ,KN2

are X̃-minimal

pseudo-invariant Cantor sets of X.

2) For any x ∈ X̃, either there exists i ∈ {1, . . . , N1} such that ω(x) = Oi or there

exists j ∈ {1, . . . , N2} such that ω(x) = Kj.

3) If N2 > 1, then for any j ∈ {1, . . . , N2} there exists k ∈ {1, . . . , N −1} such that

ck ∈ Kj and Kj = O(d+
k ) = O(d−k ). (4)

4) If N2 > 1, then for any j ∈ {1, . . . , N2} and k ∈ {1, . . . , N−1} such that ck ∈ Kj

we have

Kj = O(d+
k ) or Kj = O(d−k ). (5)

Moreover, if ck ∈ Kj does not belong to the boundary of a gap of Kj, then

O(d+
k ) = O(d−k ).

5) Finally, we have 1 6 N1 + N2 6 #D and N1 + 2N2 6 2(N − 1). Moreover,

if f is increasing on each of its contraction pieces, then N1 and N2 also satisfy

N1 +N2 6 N .

Note that two different Cantor sets Ki and Kj of the decomposition (3) are

necessarily X̃-disjoint. Indeed, if there exits y ∈ Ki∩Kj∩X̃, then Ki = O(y) = Kj ,

since Ki and Kj are X̃-minimal. Therefore, Theorem 1.1 ensures a decomposition

of the attractor Λ into a finite number of topologically transitive, pseudo-invariant

and X̃-disjoint components. So we may call (3) the “spectral decomposition” of Λ

and each of its components a “basic piece”. Theorem 1.1 also states a dichotomy:

a basic piece is either a periodic orbit in X̃ or a X̃-minimal Cantor set. This

dichotomy does not hold when the phase space is not a subset of R. Indeed, there

are examples of PCM defined on compact subsets of Rn (n > 2) for which the

attractor is a transitive countable infinite set, or an interval, see [5].

Part 3) states that each Cantor piece must contain a border of a contraction

piece. Part 4) states that a Cantor piece is given by the closure of the orbit of a (or

both) one-sided limit(s) of the map at any point of ∆ contained in the Cantor piece.

An estimation of the number of basic pieces is given by part 5). In particular, we

deduce that N2 6 N − 1 and if N2 = N − 1 then N1 = 0. If N = 2, then

1 6 N1 + 2N2 6 2, that is, the attractor consists either of a single X̃-minimal

Cantor set, or of one or two periodic orbits. For any of these cases there exist

examples of PCIM with such an attractor [2, 3, 6, 7, 8]. So, the inequality is

optimal at least for PCIM with two contraction pieces. If the map is increasing in

each contraction piece, then the number of basic pieces must satisfy the additional

inequality 1 6 N1 + N2 6 N . In particular, it complements Theorem 1.1 of [12],

for λ-piecewise affine contractions which verify λ ∈ (0, 1) and D ⊂ X̃. Finally, it
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Spectral decomposition of the attractor of piecewise contracting maps 5

is worth to mention that for globally injective maps we always have N1 6 N , see

[10].

In [4], it is shown that for injective PCIM the complexity of the itinerary of

any point in X̃ is an eventually constant or affine function. As a consequence of

Theorem 1.1, we obtain that if D ⊂ X̃ then the ω-limit sets of the points with

affine complexity are X̃-minimal Cantor sets.

Remark 1.1. Note that the hypothesis of Theorem 1.1 require the PCIM being

injective only in each contraction piece. Therefore, the theorem can be applied to

non-injective PCIM such as those of Figure 1 a). On the other hand, the collection of

the contraction pieces of a PCIM is not unique. The most natural and smallest one

is the collection of the continuity pieces (for which ∆ is the set of the discontinuity

points of the map). However, Theorem 1.1 applies with any collection of contraction

pieces, provided the pieces are chosen in such a way the map is injective in each of

them. For instance, if a PCIM has a finite number of local extrema, the hypothesis

of the theorem are satisfied if we chose the contraction pieces of the map such that

the set ∆ contains all the points where the map has a local extremum (in addition

to the discontinuity points), as in Figure 1 b).

(a)

X1 X2 X3 X4

X

X

c0 c1 c2 c3 c4

d
+
1

d
+
2

d
−
3

d
+
3d

−
2

d
−
1

(b)

X1 X2 X3 X4 X5 X6

X

X

c0 c1 c2 c3 c4 c5 c6

d
−
4 = d

+
4

d
+
3

d
+
5

d
−
5

d
−
3

d
−
2 = d

+
2

d
−
1 = d

+
1

Figure 1. Two examples of PCIM.

The paper is organized as follows. In Section 2, we give the route of the proof

of Theorem 1.1. That is, we prove Theorem 1.1, but assuming Theorem 2.3 which

is stated without proof. Then, to complete the proof of Theorem 1.1, we give the

proof of Theorem 2.3 in Section 3.

2. Route of the proof of Theorem 1.1

This section contains three theorems (Theorem 2.1, 2.2 and 2.3) which allow us

to prove Theorem 1.1. We will not always assume the hypothesis of Theorem 1.1

which states that f is injective on each of its contraction pieces. We will explicitly
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6 A. Calderón, E. Catsigeras and P. Guiraud

mention this hypothesis in the statement of the results whose proof uses it. To

prove Theorems 2.1 and 2.2, we will write the attractor Λ as the intersection of

collections of “atoms”, which are defined as follows:

Definition 2.1 (Atoms) Let P(X) be the power set of X and for every i ∈
{1, . . . , N} consider the map Fi : P(X)→ P(X) defined by

Fi(A) = f(A ∩Xi) ∀ A ∈ P(X).

Let n > 1 and (i1, i2, . . . , in) ∈ {1, . . . , N}n. We call the set

Ai1,...,in−1,in := Fin ◦ Fin−1 ◦ . . . ◦ Fi1(X) ,

an atom of generation n if it is nonempty. We denote by An the family of all the

atoms of generation n.

The atoms allow to study the attractor because the sets Λn that define Λ through

(2) can also be written as

Λn =
⋃

A∈An

A ∀n > 1.

Also, if x ∈ X̃ and θ ∈ {1, . . . , N}N is the itinerary of x, i.e. is the sequence such

that fn(x) ∈ Xθn for all n ∈ N, then f t+n(x) ∈ Aθt,θt+1,...,θt+n−1
for every t > 0

and n > 1 (see [4]).

The basic properties of the atoms are the following ones: Any atom of generation

n is contained in an atom of generation n − 1, precisely Ai1,i2,...,in ⊂ Ai2,i3,...,in ⊂
. . . ⊂ Ain . Moreover, if f is piecewise contracting with contracting constant λ, then

max
A∈An+1

diam(A) 6 λ max
A∈An

diam(A) ∀n > 1,

where diam(A) denotes the diameter of A. It implies that the diameter of any atom

of generation n is smaller than λn diam(X). Finally, in the case of PCIM, any atom

is a compact interval.

2.1. Decomposition and pseudo invariance of the attractor

Lemma 2.1. If x ∈ X̃ then ω(x) is nonempty, compact and pseudo-invariant.

Proof. By compactness of the space X, and by definition of ω-limit set, ω(x) is

nonempty and closed, hence compact. To prove that ω(x) is pseudo-invariant,

we show that for any point x0 ∈ ω(x) there exists i ∈ {1, . . . , N} such that

fi(x0) ∈ ω(x). Let x0 ∈ ω(x) and {tj}j∈N be a strictly increasing sequence such

that lim
j→∞

f tj (x) = x0. Then, there exist i ∈ {1, . . . , N} such that x0 ∈ Xi and a

subsequence {tjk}k∈N of {tj}j∈N such that f tjk (x) ∈ Xi for all k ∈ N. It follows

that f tjk+1(x) = fi(f
tjk (x)) for any k ∈ N and by continuity of fi on Xi we have

lim
k→∞

f tjk+1(x) = fi(x0) ∈ ω(x).
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Spectral decomposition of the attractor of piecewise contracting maps 7

Lemma 2.2. If f has a periodic point x0 ∈ X̃, then there exists ρ > 0 such that for

any x in the ball B(x0, ρ) of center x0 and radius ρ we have ω(x) = O(x0).

Proof. Let ν denotes the distance between two subsets of X and let ρ :=

ν(O(x0),∆). As the periodic point x0 belongs to X̃, we have ρ > 0. Therefore, for

every n ∈ N the ball B(fn(x0), ρ) does not contain any point of ∆, and for each

n ∈ N it intersects only one of the contraction pieces. It follows that for any point

x ∈ B(x0, ρ) we have

|fn(x0)− fn(x)| < λnρ ∀n ∈ N,

where λ ∈ (0, 1) is the contracting rate of f . This implies that

ν(O(x0), fn(x)) < λnρ ∀n ∈ N.

Therefore, if for some increasing sequence {sn}n∈N of natural number {fsn(x)}n∈N
converges, then its limit is in O(x0). In other words, ω(x) ⊂ O(x0). On the other

hand, by invariance of ω(x) ∩ X̃ we obtain that O(x0) ⊂ ω(x).

The following Theorem 2.1 is the first key-point in the proof of Theorem 1.1. It

states that the attractor of a PCIM is completely determined by the ω-limit sets of

its one-sided limits at the points of ∆.

Theorem 2.1. Suppose that f is injective on each of its contraction pieces and

that D ⊂ X̃. Then,

1) The attractor of f can be written as

Λ =
⋃
d∈D

ω(d). (6)

2) For any periodic point x0 ∈ X̃, there exists d ∈ D−∪D+ such that O(x0) = ω(d),

with D− := {d−1 , . . . , d
−
N−1} and D+ := {d+

1 , . . . , d
+
N−1}. Moreover, if f is

increasing on each of its contraction pieces, then there exists d− ∈ D− ∪ {dN}
and d+ ∈ D+ ∪ {d0} such that O(x0) = ω(d−) = ω(d+).

Proof. Since the ω-limit set of any point of X̃ is contained in Λ, we have that

ω(d) ⊂ Λ for all d ∈ D. So, we have to prove that for any point x0 ∈ Λ there exists

d ∈ D such that x0 ∈ ω(d) and that, besides, d can be chosen in D− ∪D+ if x0 is

periodic.

Define

U :=
⋃
d∈D

O(d) and U∗ :=
⋃

d∈D−∪D+

O(d).

Since f is injective and continuous on each of its contraction pieces, for each

i ∈ {1, . . . , N} the continuous extension fi is either strictly increasing or strictly

decreasing. This implies that each atom of the first generation is a compact interval

the end points of which are different and belong to the set D. Moreover, at least

one end point of each atom of the first generation belongs to D− ∪D+. Now, by

induction on n, we prove that for every n > 2 and every A ∈ An there exist a, b ∈ U
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8 A. Calderón, E. Catsigeras and P. Guiraud

such that A = [a, b], with a 6= b and a or b in U∗. Assume that it is true for some

n > 1 and let A := [a, b] ∈ An+1. Then, by definition of the atoms, there exist

A′ := [a′, b′] ∈ An and i ∈ {1, . . . , N} such that A = f(A′ ∩Xi) = fi(A′ ∩Xi).

If A′ ⊂ Xi, then {a, b} = {f(a′), f(b′)}. If not, then A′ ∩Xi is [ci−1, b
′] or [a′, ci]

or [ci−1, ci] and {a, b} is {d+
i−1, f(b′)} or {f(a′), d−i } or {d+

i−1, d
−
i }. In any case,

a 6= b belong to U and a or b ∈ U∗, because fi is injective and by the induction

hypothesis.

Note that if f is increasing on each of its contraction pieces, then we obtain with

a similar induction that for every n > 1 and every A ∈ An there exist

a ∈ U+ :=
⋃

d∈D+∪{d0}

O(d) and b ∈ U− :=
⋃

d∈D−∪{dN}

O(d)

such that A = [a, b], with a 6= b and a or b in U∗.
Now, let x0 ∈ Λ and {An}n>1 be a decreasing sequence of atoms such that

An ∈ An for all n > 1 and

{x0} =
⋂
n>1

An.

The existence of {An}n>1 is an immediate consequence of the properties of the

atoms.

Let {an}n>1 and {bn}n>1 be two sequences of U such that An = [an, bn] for all

n > 1. Since the diameter of An tends to zero as n goes to infinity, we deduce that

lim
n→∞

an = lim
n→∞

bn = x0. Besides, as an 6= bn for all n > 1, one of the sequence

{an}n>1 or {bn}n>1, let us say {an}n>1, is not eventually equal to x0.

1) As {an}n>1 converges to x0 and is not eventually equal to x0, it contains a

subsequence {ank
}k>1 whose terms are all pairwise different. Since {an}n>1 ⊂ U

and U is a finite union of orbits, we can choose {nk}k>1 in such a way that for some

d ∈ D the subsequence {ank
}k>1 satisfies ank

∈ O(d) for all k > 1. Therefore, there

exists a sequence {tk}k>1 such that

ank
= f tk(d) ∀ k > 1.

Since ani
6= anj

if i 6= j, there exists an increasing subsequence {tkj}j>1 of {tk}k>1

such that

lim
j→∞

f tkj (d) = lim
k→∞

ank
= x0,

and we obtain that x0 ∈ ω(d). This proves that Λ =
⋃
d∈D ω(d).

2) Now suppose that x0 ∈ X̃ is periodic and let ρ := ν(O(x0),∆), as in Lemma 2.2.

Let n0 > 1 be such that the diameter of An0
= [an0

, bn0
] is smaller than ρ. Then,

applying Lemma 2.2, we obtain that O(x0) = ω(an0
) = ω(bn0

). Since an0
or bn0

belongs to U∗ we deduce that there exists d ∈ D− ∪D+ such that ω(d) = O(x0).

Now, if f is increasing on each of its contraction pieces, then an0 ∈ U+ and bn0 ∈ U−
and we can conclude that there exist d− ∈ D− ∪ {dN} and d+ ∈ D+ ∪ {d0} such

that O(x0) = ω(d−) = ω(d+).
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Spectral decomposition of the attractor of piecewise contracting maps 9

Note that Lemma 2.1 and Theorem 2.1 immediately imply that Λ is a pseudo-

invariant set. Later, we will use the following Lemma 2.3 which ensures that,

besides, the ω-limit set of any point of X̃ and the attractor contain points of X̃.

Lemma 2.3. If D ⊂ X̃ and ∅ 6= G ⊂ X is pseudo-invariant, then G ∩ X̃ 6= ∅.

Proof. Let y ∈ G \ X̃. Let t > 0 be the smallest integer such that cj := f t(y) ∈
G∩∆, for some j ∈ {1, . . . , N −1}. Since G is a pseudo-invariant set, we have that

d+
j ∈ G or d−j ∈ G. Therefore, G∩ X̃ 6= ∅, because by hypothesis d−j and d+

j belong

to X̃.

2.2. Periodic and Cantor limit sets Here, we relate the asymptotic properties of

any orbit in X̃ to its recurrence properties in a neighborhood of ∆. Precisely, for

each point x ∈ X̃ we define the (maybe empty) set ∆lr(x) ⊂ ∆ consisting of the

points in ∆ on which the orbit of x accumulates from both sides (see Definition

2.2). Then, we obtain the following dichotomic result: if ∆lr(x) = ∅, then the

ω-limit set of x is a periodic orbit in X̃ (Theorem 2.2), and if ∆lr(x) 6= ∅, then the

ω-limit set of x is a X̃-minimal Cantor set (Theorem 2.3).

Definition 2.2 (Left-right recurrently visited point) Let i ∈ {1, . . . , N−
1} and x ∈ X̃. We say that ci ∈ ∆ is left-right recurrently visited (in short lr-

recurrently visited) by the orbit of x, if there exists two strictly increasing sequences

{lj}j∈N and {rj}j∈N of natural numbers such that

f lj (x) ∈ Xi and frj (x) ∈ Xi+1 ∀ j ∈ N, and ci = lim
j→∞

f lj (x) = lim
j→∞

frj (x).

We denote by ∆lr(x) ⊂ ∆ the set of points in ∆ that are lr-recurrently visited by

the orbit of x, and we denote by ∆lr the set of points in ∆ which are lr-recurrently

visited by the orbit of some point in X̃.

Remark 2.1. Even if not immediate, it is not difficult to check that the Definition

2.2 of the set ∆lr(x) is equivalent to the combinatorial definition of the set of

lr-recurrently visited discontinuities in [4, Definition 2.8].

The basic properties of the lr-recurrently visited points are given in the following

lemma:

Lemma 2.4. Let i ∈ {1, . . . , N − 1}, x ∈ X̃ and suppose that ci ∈ ∆lr(x). Then,

ci, d
+
i and d−i belong to ω(x). If moreover D ⊂ X̃, then O(d−i ) ∪ O(d+

i ) ⊂ ω(x).

Proof. By definition of ω-limit set and of lr-recurrently visited point, if ci ∈ ∆lr(x)

then ci ∈ ω(x). We can show that this implies that d+
i and d−i belong to ω(x) with

a similar proof as that of Lemma 2.1. If we suppose moreover that D ⊂ X̃, then

O(d−i ) and O(d+
i ) ⊂ ω(x), since ω(x)∩X̃ is invariant by pseudo-invariance of ω(x).

The desired inclusion follows from the compactness of ω(x).

Theorem 2.2 (Periodic ω-limit sets) Suppose that f is such that D ⊂ X̃. Let

x ∈ X̃, then ω(x) is a periodic orbit contained in X̃ if and only if ∆lr(x) = ∅.

Prepared using etds.cls



10 A. Calderón, E. Catsigeras and P. Guiraud

Proof. Let x ∈ X̃. Suppose that ω(x) is contained in X̃. Then, it follows from

Lemma 2.4 that ∆lr(x) = ∅. Indeed, if ∆lr(x) 6= ∅ then there is some point of ∆ in

ω(x) and therefore ω(x) is not contained in X̃. Now we suppose that ∆lr(x) = ∅
and we prove that ω(x) is a periodic orbit contained in X̃.

We first show that, under the hypothesis ∆lr(x) = ∅, the itinerary of x is

eventually periodic. Let η ∈ {1, . . . , N}N be the itinerary of x and for any n > 1

define the set

Ln(η) :=
{

(ηt, ηt+1, . . . , ηt+n−1) ∈ {1, . . . , N}n : t > 0
}

of the words of size n contained in η. The function pη defined for any n > 1

by pη(n) := #Ln(η) is the complexity function of η. By the Morse-Hedlund’s

Theorem [9], if pη is eventually constant, then η is eventually periodic. Obviously

#Ln(η) 6 #Ln+1(η). So, we have to show that if ∆lr(x) = ∅, then there exists

n0 > 1 such that the converse inequality also holds, and therefore

#Ln(η) = #Ln+1(η) ∀n > n0. (7)

To that aim, recall that f t+n(x) ∈ Aηt,ηt+1,...,ηt+n−1
for every t > 0 and n > 1.

First, let us prove that for any n > 1 we have

Ln+1(η) ⊂
⋃

(i1,...,in)∈Ln(η)

{
(i1, . . . , in, in+1) : ∃ t > 0 : f t+n(x) ∈ Ai1,...,in ∩Xin+1

}
.

(8)

Indeed, if (i1, . . . , in+1) ∈ Ln+1(η), then there exists t > 0 such that

(ηt, . . . , ηt+n) = (i1, . . . , in+1)

and, by definition of Ln(η) and of the itinerary η, we have that (i1, . . . , in) ∈ Ln(η)

and f t+n(x) ∈ Xin+1 . As f t+n(x) ∈ Ai1,...,in , we conclude that there exists t > 0

such that

(i1, . . . , in) ∈ Ln(η) and f t+n(x) ∈ Ai1,...,in ∩Xin+1
,

that is, (i1, . . . , in+1) belongs to the set of the right hand side of the inclusion (8).

Now, if ∆lr(x) = ∅, then there exists ε > 0 such that

O(x) ∩ (ci − ε, ci) = ∅ or O(x) ∩ (ci, ci + ε) = ∅ ∀ i ∈ {1, . . . , N − 1}.

Also, we know that there exists n0 > 1 such that diamA < ε for all A ∈ An and

n > n0. Therefore, if n > n0, then for any (i1, . . . , in) ∈ Ln(η) fixed, we have that

#
{

(i1, . . . , in, in+1) : ∃ t > 0 : f t+n(x) ∈ Ai1,...,in ∩Xin+1

}
= 1.

Thus, from (8), we conclude that #Ln+1(η) 6 #Ln(η) for all n > n0, which ends

the proof of (7).

Since we have proved that the itinerary η of x is eventually periodic, we know

that there exist t > 0 and p > 1 such that θ := {ηt+n}n∈N is a periodic sequence

with period p. Let y := f t(x). As ω(x) = ω(y), to finish the proof, we show that

ω(y) is a periodic orbit contained in X̃.
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Since θ is the itinerary of y, we deduce that

fk+p(y) ∈ Aθk,...,θk+p−1
∀ k ∈ {0, 1, . . . , p− 1}.

More generally,

fk+jp(y) ∈ Aθk,...,θk+jp−1
∀ j > 1, ∀ k ∈ {0, 1, . . . , p− 1}. (9)

Besides,

Aθk,...,θk+p−1
⊃ Aθk,...,θk+2p−1

⊃ . . . ⊃ Aθk,...,θk+jp−1
⊃ . . .

is a decreasing sequence of (nonempty compact) atoms whose diameters converge

to zero. Then, there exists x∗k ∈ X such that⋂
j>1

Aθk,...,θk+jp−1
= {x∗k}. (10)

Considering all the values of k ∈ {0, 1, . . . , p− 1}, we conclude that

{x∗0, x∗1, . . . , x∗p−1} ⊂ ω(y). (11)

Now, let us prove the converse inclusion. If z ∈ ω(y) then there exists a strictly

increasing sequence {mn}n∈N such that fmn(y) converges to z when n goes to

infinity. Let {qn}n∈N ∈ NN and {rn}n∈N ∈ {0, 1, . . . , p− 1}N be such that

mn = qnp+ rn ∀n ∈ N.

Since {mn}n∈N is strictly increasing and {rn}n∈N takes only a finite number of

values, the sequence of integer quotients {qn}n∈N is also strictly increasing. Besides,

there exist {nj}j∈N and k ∈ {0, 1, . . . , p − 1} such that rnj
= k for all j ∈ N. We

deduce that

z = lim
n→∞

fmn(y) = lim
j→∞

fqnj p+k(y) ∈
⋂
j>1

Aθk,...,θk+qnj
p−1

= {x∗k}.

Therefore, we have proved that z ∈ {x∗0, x∗1, . . . , x∗p−1} for any z ∈ ω(y). Together

with (11), this implies that

ω(y) = {x∗0, x∗1, . . . , x∗p−1}. (12)

Finally, let us prove that ω(y) is a periodic orbit contained in X̃. By Lemma

2.3, we know that ω(y) ∩ X̃ 6= ∅. Thus, there exists k ∈ {0, 1, . . . , p − 1} such

that x∗k ∈ X̃. This implies that the distance ρ between x∗k and any element of ∆

is positive. Since the diameter of the atoms decreases with their generation, there

exists j0 such that

diam(Aθk,...,θk+jp−1
) < ρ ∀ j > j0.

From equality (10) we deduce that for any j > j0 the atom Aθk,...,θk+jp−1
is

contained in the same contraction piece than x∗k. On the other hand, by (9) and

the definition of itinerary

fk+jp(y) ∈ Aθk,...,θk+jp−1
∩Xθk+jp

∀ j > 1.
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12 A. Calderón, E. Catsigeras and P. Guiraud

This implies that for any j > j0 the atom Aθk,...,θk+jp−1
is contained in Xθk+jp

.

Therefore, for every j > j0 we have

f(Aθk,...,θk+jp−1
) = f(Aθk,...,θk+jp−1

∩Xθk+jp
) = Aθk,...,θk+jp

⊂ Aθk+1,...,θk+jp
.

Now we can conclude from equality (10) that{
f(x∗k)

}
⊂
⋂
j>j0

f(Aθk,...,θk+jp−1
) ⊂

⋂
j>j0

Aθk+1,...,θk+jp
=
{
x∗k+1 (mod p)

}
.

Then, f(x∗k) = x∗k+1 (mod p) ∈ X̃, since x∗k ∈ X̃. So we can repeat the same argument

for all the iterates of x∗k to obtain f l(x∗k) = x∗k+l (mod p) ∈ X̃ for all l > 1. We

conclude that ω(y) = {x∗0, x∗1, . . . , x∗p−1} = ω(x) is a periodic orbit contained in X̃,

as wanted.

Now, we state the complementary results of Theorem 2.2. Its proof needs a

larger development which is done in Section 3.

Theorem 2.3 (Cantor ω-limit sets) Suppose that f is injective on each of its

contraction pieces and that D ⊂ X̃. Then, for any x ∈ X̃, ∆lr(x) 6= ∅ if and only

if ω(x) is a X̃-minimal Cantor set.

Proof. See Section 3.

2.3. Proof of Theorem 1.1 Now we prove Theorem 1.1 assuming Theorem 2.3.

1) For any d ∈ D, either ∆lr(d) = ∅ and applying Theorems 2.2 it follows that

ω(d) is a periodic orbit contained in X̃, or ∆lr(d) 6= ∅ and applying Theorem 2.3

we deduce that ω(d) is a X̃-minimal Cantor set. So, we can rewrite (6) as follows:

Λ =
⋃
d∈D

ω(d) =

(
N1⋃
i=1

Oi

)
∪

N2⋃
j=1

Kj

, (13)

whereO1,O2, . . . ,ON1
⊂ X̃ are periodic orbits and K1,K2, . . . ,KN2

are X̃-minimal

Cantor sets. As D ⊂ X̃, Lemma 2.1 ensures that the Cantor sets are pseudo-

invariant.

2) Now, let us prove that the ω-limit set of any point x ∈ X̃ coincides either with

one periodic orbit Oi, or with one Cantor set Kj . First, recall that the ω-limit

set ω(x) of any point x ∈ X̃ satisfies ω(x) ∩ X̃ 6= ∅ (see Lemma 2.3). Then, there

exists y ∈ ω(x)∩ X̃. Since ω(x) ⊂ Λ, from Theorem 2.1 we deduce that there exists

d ∈ D such that y ∈ ω(d), so y ∈ ω(x) ∩ ω(d) ∩ X̃. Besides, x, d ∈ X̃, so we can

apply Theorems 2.2 and 2.3 to deduce that both ω(x) and ω(d) are X̃-minimal sets.

Therefore,

ω(x) = O(y) = ω(d).

This proves that ω(x) coincides with some set of the decomposition (13), and it

also proves that the sets of the decomposition (13) are all pairwise X̃-disjoint.
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We conclude that, for any x ∈ X̃, either there exists i ∈ {1, . . . , N1} such that

ω(x) = Oi, or there exists j ∈ {1, . . . , N2} such that ω(x) = Kj .

3) Suppose that N2 > 1. Let j ∈ {1, . . . , N2} and let d ∈ D be such that ω(d) = Kj .

Since ω(d) = Kj , according to Theorem 2.3 there exists k ∈ {1, . . . , N − 1} such

that ck ∈ ∆lr(d). From Lemma 2.4, it follows that ck, d−k and d+
k ∈ ω(d) = Kj . As

D ⊂ X̃ and Kj is X̃-minimal, we have that O(d−k ) = Kj = O(d+
k ).

4) Let j ∈ {1, . . . , N2} and k ∈ {1, . . . , N − 1} be such that ck ∈ Kj . Since Kj is

pseudo-invariant we deduce that d−k or d+
k ∈ Kj . As D ⊂ X̃ and Kj is X̃-minimal,

we have that Kj = O(d+
k ) or Kj = O(d−k ). Suppose moreover that ck ∈ Kj does

not belong to the boundary of a gap of Kj . If Kj = O(d+
k ), then ck ∈ ∆lr(d

+
k )

and from Lemma 2.4 it follows that d−k ∈ Kj . Since Kj is X̃-minimal, we obtain

that O(d−k ) = Kj . An analog proof allows us to show that Kj = O(d+
k ) in the case

where Kj = O(d−k ).

5) From (13) it follows immediately that 1 6 N1 +N2 6 #D. Now, we show that

N1 + 2N2 6 2(N − 1).

Let d′1, d
′
2, . . . , d

′
2(N−1) be such that

d′2k−1 := d−k and d′2k := d+
k ∀ k ∈ {1, . . . , N − 1}.

Consider the sets C1 := {l ∈ {1, . . . , 2(N − 1)} : ∆lr(d
′
l) = ∅} and C2 := {l ∈

{1, . . . , 2(N − 1)} : ∆lr(d
′
l) 6= ∅}. Let O1,O2, . . . ,ON1

⊂ X̃ and K1,K2, . . . ,KN2

be the periodic orbits and the X̃-minimal Cantor sets of the decomposition (13),

respectively.

From part 2) of Theorem 2.1, we know that for every i ∈ {1, . . . , N1} there exists

l(i) ∈ C1 such that

Oi = ω(d′l(i)).

The function l : {1, . . . , N1} → C1 defined by i 7→ l(i) being injective we have that

N1 6 #C1.

From part 3), we know that for every j ∈ {1, . . . , N2} there exists an odd number

`(j) ∈ C2 such that

Kj = O(d′`(j)) = O(d′`(j)+1).

The function (j, s) 7→ `(j) + s from the set {1, . . . , N2}× {0, 1} to the set C2 being

injective, we obtain that 2N2 6 #C2, which together with N1 6 #C1 gives

N1 + 2N2 6 #C1 + #C2 = #(C1 ∪ C2) = 2(N − 1).

Finally, suppose that f is increasing on each of its contraction pieces. Let

d′0 := d0, d′2N−1 := dN and

C := {l ∈ {0, 1, . . . , 2N − 1} : ∆lr(d
′
l) = ∅} .

Then, from part 2) of Theorem 2.1, we know that for every i ∈ {1, . . . , N1} there

exist an odd number l1(i) ∈ C and an even number l2(i) ∈ C such that

Oi = ω(d′l1(i)) = ω(d′l2(i)).
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The function (i, s) 7→ ls(i) from the set {1, . . . , N1} × {1, 2} to the set C being

injective, we obtain that 2N1 6 #C, which together with 2N2 6 #C2 gives

2N1 + 2N2 6 #C + #C2 = #(C ∪ C2) = 2N.

This ends the proof of Theorem 1.1 assuming Theorem 2.3.

3. Proof of Theorem 2.3

All along this section we assume that f is such that D ⊂ X̃ and ∆lr 6= ∅. In

other words, we suppose that f has at least one point c ∈ ∆ which is lr-recurrently

visited by the orbit of some point x ∈ X̃. We already know by Theorem 2.2 that

this implies that ω(x) is not a periodic orbit in X̃. In Subsection 3.1, we will first

show a stronger preliminary result: ω(x) cannot contain a periodic point belonging

to X̃. It will imply that the orbits of the one sided limits of f at the points of

∆lr(x) do not accumulate at periodic points contained in X̃. These preliminary

results will be used in Subsection 3.4 to prove that the ω-limit set of some particular

points of D is X̃-minimal.

In Subsection 3.2, we construct a partial order in a quotient set of ∆lr. This

allows us to define minimal classes of points of ∆, which are the minimal nodes in

the Hasse graph of such a partial order (Definition 3.3). The study of the asymptotic

dynamics of a point x satisfying ∆lr(x) 6= ∅ can be done by analyzing the minimal

classes. Indeed, in Subsection 3.3, we show that if ∆lr(x) 6= ∅ then ω(x) is equal

to ω(d) where d ∈ D is a one sided limit of f at a point of ∆lr(x) belonging to a

minimal class (Theorem 3.1). In Subsection 3.4, we study the ω-limit sets of the

elements of D associated to a minimal class and show that they are X̃-minimal

Cantor set (Theorem 3.2). These two results allow us to complete the proof of

Theorem 2.3.

3.1. Preliminary results

Lemma 3.1. Let x ∈ X̃ and suppose that f has a periodic point p ∈ X̃. If p ∈ ω(x),

then ω(x) = O(p).

Proof. It is a direct consequence of Lemma 2.2.

Corollary 3.1. Let x ∈ X̃ and i ∈ {1, . . . , N − 1}. If ci ∈ ∆lr(x) then ω(x)∩ X̃,

ω(d+
i ) ∩ X̃ and ω(d−i ) ∩ X̃ do not contain any periodic point.

Proof. Suppose that ci ∈ ∆lr(x), then from Theorem 2.2 we deduce that ω(x) is

not a periodic orbit of X̃. Therefore, by Lemma 3.1 it does not contain any periodic

point belonging to X̃. On the other hand, since D ⊂ X̃, by Lemma 2.4 we have

that ω(d+
i ) ∪ ω(d−i ) ⊂ ω(x). It follows that neither ω(d+

i ) nor ω(d−i ) contains a

periodic point in X̃.

Corollary 3.2. Let i ∈ {1, . . . , N − 1} and ci ∈ ∆lr. Then, ∆lr(d
−
i ) 6= ∅ and

∆lr(d
+
i ) 6= ∅.
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Proof. Suppose that ci ∈ ∆lr, then by Definition 2.2, there exists x ∈ X̃ such that

ci ∈ ∆lr(x). From Corollary 3.1 we deduce that neither ω(d+
i ) nor ω(d−i ) is a

periodic orbit contained in X̃. Applying Theorem 2.2 we deduce that ∆lr(d
−
i ) 6= ∅

and ∆lr(d
+
i ) 6= ∅.

3.2. Equivalence classes in ∆lr and their partial order Here we introduce an

equivalence relation in ∆lr and a partial order in the resulting quotient space. This

allows to identify some classes of points of ∆lr which are minimal elements with

respect to the partial order. These minimal classes will be of special importance to

study the non-periodic asymptotic dynamics.

Before defining our equivalence relation, let us prove the following lemma:

Lemma 3.2. Let x ∈ X̃. If there exist i and k ∈ {1, . . . , N − 1} such that

ci ∈ ∆lr(d
+
k ) and ck ∈ ∆lr(x), then ci ∈ ∆lr(x).

Proof. If ck ∈ ∆lr(x), then O(d+
k ) ⊂ ω(x), see Lemma 2.4. This implies that the

orbit of x accumulates at any point of the orbit of d+
k . On the other hand, we

have ci ∈ ∆lr(d
+
k ). This means that the orbit of d+

k accumulates at ci from the

left and from the right. Joining the two latter assertions, we conclude that the

orbit of x also accumulates at ci from the left and from the right. In other words,

ci ∈ ∆lr(x).

Definition 3.1. Let i and j ∈ {1, . . . , N − 1} be such that ci and cj ∈ ∆lr. We

write ci ∼+ cj and we say that ci and cj are related if and only if

ci = cj or ci ∈ ∆lr(d
+
j ) and cj ∈ ∆lr(d

+
i ).

Lemma 3.3. The relation ∼+ is an equivalence relation on ∆lr.

Proof. The reflexive and the symmetric properties follow immediately from the

definition of the relation ∼+. So, it remains to prove the transitive property. Let

i, j and k ∈ {1, . . . , N − 1} be such that ci, cj and ck ∈ ∆lr. Let us suppose that

ci ∼+ cj and cj ∼+ ck and let us show that ci ∼+ ck. This assertion holds trivially if

ci = cj or cj = ck. If ci 6= cj and cj 6= ck, by definition of the relation ∼+, we have

ci ∈ ∆lr(d
+
j ), cj ∈ ∆lr(d

+
k ), ck ∈ ∆lr(d

+
j ) and cj ∈ ∆lr(d

+
i ).

Applying Lemma 3.2, we conclude that ci ∈ ∆lr(d
+
k ) and ck ∈ ∆lr(d

+
i ), which

implies ci ∼+ ck.

For any point c ∈ ∆lr, we let [c] denote the equivalence class of c. In order to

define an order relation on the (nonempty) set ∆lr/∼+ of the equivalence classes of

∆lr, we first prove the following lemma.

Lemma 3.4. Let i and j ∈ {1, . . . , N − 1} be such that ci and cj ∈ ∆lr. If

ci ∈ ∆lr(d
+
j ), then ci′ ∈ ∆lr(d

+
j′) for all i′ and j′ ∈ {1, . . . , N − 1} such that

ci′ ∈ [ci] and cj′ ∈ [cj ].
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Proof. Suppose that ci′ ∼+ ci and cj′ ∼+ cj . First, assume that ci′ 6= ci and cj′ 6= cj .

In this case, the definition of ∼+ implies that

ci′ ∈ ∆lr(d
+
i ) and cj ∈ ∆lr(d

+
j′).

Applying Lemma 3.2 for ci′ ∈ ∆lr(d
+
i ) and ci ∈ ∆lr(d

+
j ), we obtain that

ci′ ∈ ∆lr(d
+
j ). Applying once again the same lemma but for ci′ ∈ ∆lr(d

+
j ) and

cj ∈ ∆lr(d
+
j′) we conclude that ci′ ∈ ∆lr(d

+
j′), as wanted. To obtain the same result

in the complementary case ci′ = ci or cj′ = cj , we can use similar arguments.

Definition 3.2. Let i and j ∈ {1, . . . , N − 1} be such that ci and cj ∈ ∆lr. We

define the relation 4+ between the equivalence classes [ci] and [cj ] in ∆lr/∼+ by

[ci] 4
+ [cj ] if and only if [ci] = [cj ] or ci ∈ ∆lr(d

+
j ).

Note that Lemma 3.4 proves that the above definition is well posed, since it is

independent of the choice of the elements ci, cj in the equivalence classes [ci] and

[cj ].

Lemma 3.5.
(
∆lr/∼+,4+

)
is a partially ordered set.

Proof. Take [c], [c′] and [c′′] ∈ ∆lr/∼+. Let i, j and k ∈ {1, . . . , N − 1} be such that

[ci] = [c], [cj ] = [c′] and [ck] = [c′′].

Reflexive property: It follows trivially from Definition 3.2.

Antisymmetric property. Suppose [ci] 4+ [cj ] and [cj ] 4+ [ci]. Then, from Definition

3.2, it follows that either [ci] = [cj ], and we are done, or ci ∈ ∆lr(d
+
j ) and

cj ∈ ∆lr(d
+
i ). In this last case, we deduce from Definition 3.1 that ci ∼+ cj ,

which implies that [ci] = [cj ].

Transitive property: Suppose [ci] 4+ [cj ] and [cj ] 4+ [ck]. If [ci] = [cj ] or [cj ] = [ck],

then [ci] 4+ [ck]. Otherwise, we have ci ∈ ∆lr(d
+
j ) and cj ∈ ∆lr(d

+
k ). Applying the

Lemma 3.2, we obtain ci ∈ ∆lr(d
+
k ) and we conclude that [ci] 4+ [ck].

Definition 3.3 (Minimal classes) Let [c] ∈ ∆lr/ ∼+. We say that [c] is a

minimal class if it is a minimal element of the partially ordered set
(
∆lr/∼+,4+

)
.

In other words, [c] is a minimal class if for every [c′] ∈ ∆lr/∼+ such that [c′] 4+ [c]

we have [c′] = [c].

It is well known that any finite partially ordered set has at least one minimal

element. Since our partially ordered set
(
∆lr/∼+,4+

)
is finite, it always has minimal

classes.

Proposition 3.1. a) Let j ∈ {1, . . . , N − 1} be such that cj ∈ ∆lr. Then, there

exists i ∈ {1, . . . , N − 1} such that [ci] is a minimal class and [ci] 4+ [cj ].

b) Let [c] ∈ ∆lr/∼+ and i ∈ {1, . . . , N − 1} be such that ci ∈ [c]. Then, [c] is a

minimal class if and only if ci ∈ ∆lr(d
+
j ) for every j ∈ {1, . . . , N − 1} such that

cj ∈ ∆lr(d
+
i ).
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Proof. a) For any Hasse graph of a partial order on a finite nonempty set, and for

any of its nodes, say j, there exists at least one minimal node, say i, smaller or

equal than j. Applying this assertion to the partially ordered set
(
∆lr/∼+,4+

)
, we

deduce that for all [cj ] ∈ ∆lr/∼+, there exists at least one minimal class [ci] such

that [ci] 4+ [cj ].

b) Let [c] ∈ ∆lr/∼+ and let i ∈ {1, . . . , N − 1} be such that ci ∈ [c].

Suppose that [c] is a minimal class. If cj ∈ ∆lr(d
+
i ) for some j ∈ {1, . . . , N − 1},

then [cj ] 4+ [ci]. This implies that [cj ] = [ci], because [ci] = [c] and [c] is a minimal

class. It follows that ci ∼+ cj and therefore we have that ci ∈ ∆lr(d
+
j ).

Now suppose that ci ∈ ∆lr(d
+
j ) for all j ∈ {1, . . . , N−1} such that cj ∈ ∆lr(d

+
i ).

Let j ∈ {1, . . . , N − 1} be such that [cj ] 4+ [c]. Since [c] = [ci], to prove that [c] is a

minimal class, we have to show that [cj ] = [ci]. By definition of 4+ either [cj ] = [ci],

and we are done, or cj ∈ ∆lr(d
+
i ). By hypothesis, the second case implies that

ci ∈ ∆lr(d
+
j ). It follows that ci ∼+ cj and therefore [cj ] = [ci].

3.3. Asymptotic dynamics and minimal classes In this section, we show that the

non-periodic asymptotic dynamics is supported on the closure of the orbits of the

one-sided limits of the map at its minimal class points. Precisely, we will prove the

following theorem:

Theorem 3.1. If x ∈ X̃ and ∆lr(x) 6= ∅, then there exists i ∈ {1, . . . , N − 1} such

that ci ∈ ∆lr(x) and [ci] is a minimal class. Moreover, if f is injective on each of

its contraction pieces, then ω(x) = ω(d+
i ) = O(d+

i ).

Note that we can define equivalence classes and a partial order 4− based on the

left-sided limits of the map f at the points of ∆lr, just exchanging the superscript

+ and − in our definitions and proofs. Therefore, the same Theorem 3.1 is also

true for the left-sided limits of the map. Actually, in the next subsection, Theorem

3.2 will precise and (re)prove this assertion.

To prove Theorem 3.1, we need the following two lemmas:

Lemma 3.6. Let x ∈ X̃. There exists ε(x) > 0 such that if for some l, r ∈ N and

c ∈ ∆ we have f l(x) ∈ (c− ε(x), c) and fr(x) ∈ (c, c+ ε(x)), then c ∈ ∆lr(x).

Proof. If ∆lr(x) = ∆, then the Lemma is true for any ε(x) > 0. Now suppose that

∆ \∆lr(x) 6= ∅. By Definition 2.2, we have that for any c ∈ ∆ \∆lr(x) there exists

εc > 0 such that f t(x) /∈ (c− εc, c) for all t ∈ N or f t(x) /∈ (c, c+ εc) for all t ∈ N.

Now, we define

ε(x) := min
c∈∆\∆lr(x)

εc > 0.

Suppose that there exist l, r ∈ N and c ∈ ∆ such that

f l(x) ∈ (c− ε(x), c) and fr(x) ∈ (c, c+ ε(x)).

Then, by definition of ε(x), we must have that c /∈ ∆ \ ∆lr(x). Therefore,

c ∈ ∆lr(x).
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Lemma 3.7. Suppose that f is injective on each of its contraction pieces and let

x ∈ X̃ be such that ∆lr(x) 6= ∅. If there exist i, j ∈ {1, . . . , N − 1} such that

ci ∈ ∆lr(d
+
j ) ∩∆lr(x) and cj ∈ ∆lr(d

+
i ) ∩∆lr(x), (14)

then, there exist ε0 > 0, m0 > 0, and two sequences {αk}k∈N and {βk}k∈N such

that

1) {αk}k>1 is a subsequence of O(d+
i ) and {βk}k>1 is a subsequence of O(d+

j ),

2) the closed interval Ik whose endpoints are αk and βk satisfies

|βk − αk| < λkε0 and fm0+k(x) ∈ Ik ∀ k ∈ N. (15)

Proof. First we construct ε0, m0, α0 and β0. Let ε(d+
i ) and ε(d+

j ) be as in Lemma

3.6 and

0 < ε1 := min
{
|c− c′| : c, c′ ∈ ∆, c 6= c′

}
. (16)

We define ε0 as ε0 := min{ε(d+
i ), ε(d+

j ), ε1}.
As ci ∈ ∆lr(d

+
j ) ∩∆lr(x), from Definition 2.2, we deduce that there are n0 > 0

and m0 > 0 such that

fm0(x) ∈
(
ci, f

n0(d+
j )
)
⊂ (ci, ci + ε0) ⊂ Xi+1.

Denote α0 := ci and β0 := fn0(d+
j ). Since d+

j ∈ X̃ we have that α0 6= β0 and the

relation above implies that

0 < |β0 − α0| < ε0 and fm0(x) ∈ (α0, β0) ⊂ Xi+1, (17)

which shows that (15) holds for k = 0.

Now, we show by induction that for any k > 1 there exist two points αk and

βk ∈ X that satisfy the following properties:

αk ∈ O(d+
i ), βk ∈ O(d+

j ), |βk − αk| < λkε0 and fm0+k(x) ∈ Ik, (18)

where Ik is the compact interval whose endpoints are αk and βk.

Let us show (18) for k = 1. Let I0 := [α0, β0]. According to (17) we have that

I0 ⊂ Xi+1, and as fi+1 is λ-Lipschitz, we deduce that I1 := fi+1(I0) is a compact

interval of size smaller than λε0 such that fm0+1(x) ∈ I1. As fi+1 is a strictly

monotonic function, the endpoints of I1 are

α1 := d+
i and β1 := f(β0) (19)

and belong to O(d+
i ) and O(d+

j ), respectively. It follows that (18) holds for k = 1.

Assume that (18) holds for some k > 1. We discuss two cases:

Case 1: There is no point of ∆ in the interval Ik. Then, f |Ik is a λ-Lipschitz

strictly monotonic function and using the induction hypothesis (18) we obtain that

αk+1 := f(αk) and βk+1 := f(βk) (20)

satisfy (18) replacing k by k + 1.
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Case 2: There exists a point c` ∈ Ik∩∆. First, note that such a point c` is unique,

because of (16) and

length(Ik) = |αk − βk| < λkε0 6 λkε1.

Second, note that

c` ∈ int(Ik),

because the endpoints αk and βk of Ik belong to X̃. Indeed, by induction hypotesis

αk ∈ O(d+
i ) ⊂ X̃ and βk ∈ O(d+

j ) ⊂ X̃ (recall that D ⊂ X̃). Therefore,

αk, βk ∈ (c` − λkε0, c` + λkε0)

and one of the two points αk, βk is at the left side of c` while the other one is at

the right side of c`. Without loss of generality we will suppose that

αk ∈ (c` − λkε0, c`) and βk ∈ (c`, c` + λkε0). (21)

Now we show that c` ∈ ∆lr(αk) ∩ ∆lr(βk). Recall that by (14) we have

cj ∈ ∆lr(d
+
i ) and that by Lemma 2.4 this implies that O(d+

j ) ⊂ ω(d+
i ). As

αk ∈ O(d+
i ) we have ω(αk) = ω(d+

i ) and as βk ∈ O(d+
j ) we deduce from the

right hand relation of (21) that there exists n > 0 such that

fn(αk) ∈ (c`, c` + λkε0).

Then, from the left hand relation of (21), the definition of ε0, and Lemma 3.6,

it follows that c` ∈ ∆lr(αk). Analogously, using that ci ∈ ∆lr(d
+
j ), we obtain

c` ∈ ∆lr(βk). This ends the proof of c` ∈ ∆lr(αk) ∩∆lr(βk).

Now, let us construct αk+1 and βk+1. By (18) we have fm0+k(x) ∈ [αk, βk].

Suppose that fm0+k(x) ∈ (c`, βk]. Since c` ∈ ∆lr(αk), there exists r > 0 such that

fr(αk) ∈ (c`, f
m0+k(x)).

Therefore the interval [fr(αk), βk] satisfies the same properties (18) as the interval

Ik and moreover does not intersect ∆. So, we can use the same proof as in Case 1,

to show that

αk+1 := fr+1(αk) and βk+1 := f(βk) (22)

satisfy (18) replacing k by k+1. Now, if we suppose that fm0+k(x) ∈ [αk, c`), then

using this time that c` ∈ ∆lr(βk) we obtain that there exists l > 0 such that

f l(βk) ∈ (fm0+k(x), c`).

Therefore, for the same reason as for the case where fm0+k(x) ∈ (c`, βk] we conclude

that

αk+1 := f(αk) and βk+1 := f l+1(βk) (23)

satisfy (18) replacing k by k + 1.

We have constructed by induction two sequences {αk}k>1 and {βk}k>1 satisfying

(18) for all k > 1, which are moreover subsequences of O(d+
i ) and O(d+

j ),

respectively (see, (19), (20), (22) and (23)).
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Note that in Lemma 3.7, as well as in its following Corollary 3.3, the integers i

and j are not necessarily different. As a consequence, their results can be applied

even if ∆lr(x) contains only one point.

Corollary 3.3. Suppose that f is injective on each of its contraction pieces and

let x ∈ X̃ be such that ∆lr(x) 6= ∅. If i, j ∈ {1, . . . , N − 1} are such that

ci ∈ ∆lr(d
+
j ) ∩∆lr(x) and cj ∈ ∆lr(d

+
i ) ∩∆lr(x),

then, ω(x) = ω(d+
i ) = ω(d+

j ).

Proof. Applying Lemma 2.4, we immediately obtain that ω(d+
i ) ⊂ ω(x) and

ω(d+
j ) ⊂ ω(x). Now, according to Lemma 3.7, there exist m0 > 0, ε0 > 0, a

subsequence {αk}k>1 of O(d+
i ) and a subsequence {βk}k>1 of O(d+

j ) such that∣∣fm0+k(x)− αk
∣∣ 6 λkε0 and

∣∣fm0+k(x)− βk
∣∣ 6 λkε0 ∀ k > 1. (24)

Let y ∈ ω(x) and {kn}n∈N be an increasing sequence such that lim
n→∞

fkn(fm0(x)) =

y. Then, (24) implies that lim
n→∞

αkn = y = lim
n→∞

βkn and therefore y ∈ ω(d+
i ) ∩

ω(d+
j ). So, we have proved that ω(x) ⊂ ω(d+

i ) and ω(x) ⊂ ω(d+
j ).

Proof of Theorem 3.1. Let x ∈ X̃ and suppose that ∆lr(x) 6= ∅. Then, there exists

k ∈ {1, . . . , N − 1} such that ck ∈ ∆lr(x). Applying part a) of Proposition 3.1, we

know that there exists i ∈ {1, . . . , N − 1} such that [ci] ∈ ∆lr/∼+ is a minimal class

and [ci] 4+ [ck]. From Definition 3.2, it follows that either ci ∈ ∆lr(d
+
k ) and Lemma

3.2 ensures that ci ∈ ∆lr(x), or [ci] = [ck] and we also conclude that ci ∈ ∆lr(x).

We have proved that there exists a point

ci ∈ ∆lr(x),

whose equivalence class [ci] is minimal.

Applying Corollary 3.2, we deduce that there exists j ∈ {1, . . . , N −1} such that

cj ∈ ∆lr(d
+
i ). Using once more Lemma 3.2, we obtain that

cj ∈ ∆lr(d
+
i ) ∩∆lr(x).

On the other hand, as the class of ci is a minimal class, cj ∈ ∆lr(d
+
i ) also implies

that ci ∈ ∆lr(d
+
j ), see part b) of Proposition 3.1. It follows that

ci ∈ ∆lr(d
+
j ) ∩∆lr(x).

Therefore, the hypothesis of Corollary 3.3 are verified and ω(x) = ω(d+
i ). Besides,

as ci ∈ ∆lr(x), by Lemma 2.4, we have

O(d+
i ) ⊂ ω(x) = ω(d+

i ) ⊂ O(d+
i ),

which ends the proof of Theorem 3.1.
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3.4. End of proof of Theorem 2.3 In this section, we study the orbits of the points

of D corresponding to the minimal classes of ∆lr/∼+. By Theorem 3.1, we know

that these orbits determine all the non-periodic asymptotic dynamics. Among other

results, we show that the closure of such an orbit is a X̃-minimal Cantor set, which

together with Theorem 3.1 will achieve the proof of Theorem 2.3.

Lemma 3.8. Let i ∈ {1, . . . , N − 1} and suppose that [ci] ∈ ∆lr/∼+ is a minimal

class. Then, for any x ∈ ω(d+
i ) ∩ X̃ we have ci ∈ ∆lr(x) and

ω(x) = O(x) = ω(d+
i ) = O(d+

i ).

Proof. Let x ∈ ω(d+
i ) ∩ X̃. Since ω(d+

i ) ∩ X̃ is invariant, we have that

ω(x) ⊂ O(x) ⊂ ω(d+
i ). (25)

As ci ∈ ∆lr, from Corollary 3.1 we know that ω(d+
i ) ∩ X̃ does not contain any

periodic point, and therefore, by (25), ω(x) ∩ X̃ does not either. It follows by

Theorem 2.2 that there exists j ∈ {1, . . . , N − 1} such cj ∈ ∆lr(x).

Moreover, still by (25), we have that O(x) ⊂ O(d+
i ), which allows us to deduce

that cj ∈ ∆lr(d
+
i ). Since ci is of minimal class, we must have that ci ∈ ∆lr(d

+
j ),

which together with cj ∈ ∆lr(x) implies by Lemma 3.2 that ci ∈ ∆lr(x).

Once we know that ci ∈ ∆lr(x), we deduce from Lemma 2.4 that O(d+
i ) ⊂ ω(x)

and using (25) we obtain that

O(d+
i ) ⊂ ω(x) ⊂ O(x) ⊂ ω(d+

i ) ⊂ O(d+
i ).

Theorem 3.2. Let i ∈ {1, . . . , N − 1} and suppose that [ci] ∈ ∆lr/∼+ is a minimal

class. Then, Ki := ω(d+
i ) is a X̃-minimal Cantor set. Moreover, if f is injective on

each of its contraction pieces, then for any k ∈ {1, . . . , N − 1} such that [ci] 4+ [ck],

we have

ck ∈ Ki and Ki = O(d+
k ) = O(d−k ). (26)

Proof. Let i ∈ {1, . . . , N − 1}, Ki := ω(d+
i ) and suppose that [ci] ∈ ∆lr/∼+ is a

minimal class.

Ki is X̃-minimal: It is a direct consequence of Lemma 3.8. It also proves that Ki

is a compact set.

Ki is a perfect set: Let y ∈ Ki. As Ki is pseudo invariant (see Lemma 2.1),

there exists x ∈ Ki ∩ X̃ (see Lemma 2.3) and O(x) = Ki. As ci ∈ ∆lr and

D ⊂ X̃, from Corollary 3.1 we deduce that Ki ∩ X̃ does not contain periodic

points. Therefore O(x) ⊂ X̃ does not contain periodic points and there exists

n0 ∈ N such that y /∈ O(fn0(x)). As O(fn0(x)) is dense in Ki, there exists

{yn}n∈N ⊂ O(fn0(x)) ⊂ Ki \ {y} which converges to y.

Ki is totally disconnected: In [5, Theorem 5.2] it is proved that, if f is a piecewise

contracting map on a one dimensional compact space X, then its attractor Λ is

totally disconnected. As any ω-limit set is contained in Λ, we conclude that Ki is

also totally disconnected.
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Now, let k ∈ {1, . . . , N − 1} be such that [ci] 4+ [ck]. As ck ∈ ∆lr, there exists

x ∈ X̃ such that

ck ∈ ∆lr(x). (27)

According to Theorem 3.1, this implies that there exists i′ ∈ {1, . . . , N − 1} such

that [ci′ ] is a minimal class and ω(x) = ω(d+
i′ ). We have proved above that if [ci′ ] is

a minimal class, then Ki′ := ω(d+
i′ ) is a X̃-minimal Cantor set. Therefore, Lemma

2.4 and (27) imply that

ck, d
+
k , d

−
k ∈ Ki′ and Ki′ = O(d+

k ) = O(d−k ).

To finish the proof of the theorem, we only have to show that Ki′ = Ki. To this

end note that

ci ∈ ∆lr(x). (28)

Indeed, (28) follows from [ci] 4+ [ck], (27) and Lemma 3.2. We deduce from (28)

and Lemma 2.4 that ω(d+
i ) ⊂ ω(x), that is

Ki ⊂ Ki′ .

Since Ki and Ki′ are both X̃-minimal, and Ki ∩ X̃ 6= ∅ we conclude that

Ki′ = Ki.

Now, we can prove Theorem 2.3, which, as said in Subsection 2.3, will also

complete the proof of Theorem 1.1.

Proof of Theorem 2.3.. Suppose that f is injective on each of its contracting pieces

and that D ⊂ X̃. Let x ∈ X̃. If ∆lr(x) 6= ∅, then according to Theorem 3.1, there

exists i ∈ {1, . . . , N − 1} such that [ci] is a minimal class and ω(x) = ω(d+
i ). Using

Theorem 3.2, we deduce that ω(x) is a X̃-minimal Cantor set. Reciprocally, if ω(x)

is a X̃-minimal Cantor set, then ω(x) is not a periodic orbit and we obtain from

Theorem 2.2 that ∆lr(x) 6= ∅.

Note that Theorem 3.2 allows us to prove Theorem 2.3, but also states in

addition, through (26), that all the points in ∆ belonging to a same minimal class,

as well as those belonging to a class comparable with it, generate the same Cantor

set (through the orbits of both lateral limits) and belong to it.
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