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Abstract

We consider f ∈ Diff3(M) on a surface M , exhibiting infinitely many sinks
near the generic unfolding of a quadratic homoclinic tangency Q0 of a dissipa-
tive saddle. We prove that f belongs to an infinite dimensional submanifold
M ⊂ Diff3(M) such that the infinitely many sinks of f have, along M, si-
multaneous isotopic continuations. Complementary, if f is perturbed along a
one-parameter family that unfold generically the tangency Q0, then at most
a finite number of those sinks have continuation.

1 Statement of the results

Let M be a two-dimensional C∞ compact, connected riemannian manifold, and let
ft|t|<ε ⊂ Diff3(M) be a one-parameter family of C3 diffeomorphisms on M . We
assume that f0 has a saddle periodic point P0 and that it is dissipative in P0. We
also assume that the diffeomorphism f exhibits at Q0 a quadratic tangency between
the stable and unstable manifold of P0 and that the family unfolds it generically
for t > 0. The Theorems of Newhouse and Robinson [N 1970], [N 1974], [N 1979],
[R 1983], assert that, given ε > 0, there exists an open interval I ⊂ (0, ε) and a
residual set J ⊂ I, of values of the parameter t, such that:

For all t ∈ I, ft has a hyperbolic maximal subset Λ(ft) with persistence of
homoclinic quadratic tangencies in an open set V ⊂ M isolated from Λ(ft).
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For all t ∈ J , ft exhibits infinitely many simultaneous sinks.
Let us suppose that g0 ∈ Diff3(M) exhibits a sink S0. Consider g1 ∈ Diff3(M).

We say that the sink S1 of g1 is the isotopic continuation of S0 if there exists an
isotopy {gt}t∈[0,1] ⊂ Diff3(M) such that for all t ∈ [0, 1] there exists a sink St = S(gt)
of gt, and the transformation t ∈ [0, 1] 7→ St ∈ M is of C1 class.

Now, we state our first main result:

Theorem 1 Let f0 ∈ Diff3(M) exhibit a quadratic homoclinic tangency Q0 of a

dissipative saddle point P0 on the surface M . Let {f̃t}−ε≤t≤ε ⊂ Diff3(M) be a one-
parameter family, which generically unfolds the tangency at Q0 exhibited by f0.

Then, there exist an open set V ⊂ M , an open interval I ⊂ (−ε, ε), and a

residual set J ⊂ I, such that, for all f∞ ∈ {f̃t : t ∈ J}:

1. f∞ exhibits infinitely many coexisting sinks Si(f∞), i ∈ N.

2. There exists a C1 infinite-dimensional manifold M ⊂ Diff3(M), such that:

(a) f∞ ∈ M

(b) If g ∈ M then g exhibits the isotopic continuation Si(g) ∈ V of the
infinitely many sinks Si(f∞).

Theorem 1 states a condition for the simultaneous isotopic continuation of in-
finitely sinks: to move the diffeomorphism f∞ along the infinite-dimensional man-
ifold M ⊂ Diff3(M). Our next Theorem 2 provides an opposite result: if moving

the diffeomorphism along the given family f̃t, such a simultaneous continuation is
not possible.

Theorem 2 In the hypothesis of Theorem 1, the sets V ⊂ M , J ⊂ I and the
diffeomorphism f∞ ∈ {f̃t : t ∈ J}, can be constructed such that f∞ verifies the
thesis 1. and 2. of Theorem 1, and besides:

If t ∈ I and ft 6= f∞, then f̃t exhibits, at most, a finite number of simultaneous
isotopic continuations of the sinks Si(f∞).

From Theorem 2, we conclude that, if there exists some maximal dimension-
manifold M ⊂ Diff3(M), verifying the thesis a. and b. of Theorem 1, then M
has at least codimension one. On the other hand, in our proof of Theorem 1, we
construct the manifold M of infinite dimension but also of infinite codimension.

An open question, which we can precise now, is the following:

Remark 1.1 Let f∞ ∈ Diff3(M) and M ⊂ Diff3(M), verifying parts a. and b. of
Theorem 1.

Has M necessarily infinite codimension?
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2 Route of the proofs.

To prove Theorem 1 we follow six Steps:
Step 1: Applying Newhouse Theorem of persistence of homoclinic tangencies

[N 1970], consider an open set N ⊂ Diff3(M) such that for all f ∈ N :
There exists a hyperbolic maximal set Λ(f), an open neighborhood U ⊂ M of

Λ(f), an open neighborhood V ⊂ U isolated from Λ(f), and a C1 line of quadratic
tangencies L(f) ⊂ V between the stable and unstable manifolds of Λ(f), such that
f exhibits persistence of homoclinic tangencies along L(f). This last means that,
for a dense subset of diffeomorphisms f in N , there exists in L(f) ⊂ V a homoclinic
tangency point of a saddle of Λ(f).

Construct any sequence {fi}i∈N of diffeomorphisms, along the given one-parameter
family, such that fi ∈ N and fi has a homoclinic tangency Qi of a periodic saddle
Pi ∈ Λ(fi).

Step 2: Consider, as in [PT 1993] and [M 1973], trivializing coordinates of the
local stable and unstable foliations in the neighborhood U of Λ(f), for all f ∈ N .
Prove a strong dissipative property of Λ(f), from the dissipative hypothesis of the
first saddle P0. Conclude, using the r− normality, that the stable foliation is of class
C3, while the unstable foliation is C1+θ.

Step 3: Compute the iteration fn|V in the trivializing coordinates, as in [PT 1993],
but adapting the computations, so the coordinates are chosen only once in the neigh-
borhood U of Λ(f), and are independent of the saddle point Pi. Generalizing to a
wider context those computations in [PT 1993], prove the following key result:

Given ε > 0, if the number n of iterates is large enough, then for all f ∈ N there
exists a rectangle Vi,n ⊂ V such that fn|Vi,n

is diffeomorphically conjugated to a C1-
perturbation F of the quadratic family:

F (x, y) = (y2, y2 + µ) + G(x, y), ∀ (x, y) ∈ [−4, 4]2

for some constant µ ∈ [−4, 4] and some map G of C1- class such that ‖G‖C3 < ε.
Step 4: From the key result above, if µ ∈ (−3/8, 1/8), the unique attracting

fixed point of the quadratic map (x, y) 7→ (y2, y2 + µ) persists as a sink for all its
perturbations F , and so for the diffeomorphism fn|Vi,n

which is diffeomorphically
conjugated with F . Conclude this result unifomly for all f ∈ N . From the compu-
tations, get to a sufficient open condition for the diffeomorphisms f ∈ N to exhibit
a sink Si ∈ V of period n, after unfolding the tangency Qi.

Step 5: Construct infinite dimensional manifolds M in N such that, indepen-
dently of i, and independently of how many sinks {Si}1≤i ⊂ V a diffeomorphism
f ∈ M has (if it has some sinks), all the difffeomorphisms g ∈ M exhibit isotopic
continuations of all the sinks Si ∈ V of f . This is possible because the sufficient
condition obtained in Steps 4 and 5, that allows the construction of the sinks, are
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uniform for all f ∈ N . In the Lemmas that prove that uniformity, we use the C3

smoothness of the stable foliation.
Step 6: Along the given one-parameter family f̃t, construct f∞ exhibiting in-

finitely many sinks, reproducing the proof of Newhouse and Robinson [N 1974],
[R 1983]. Join with the result of Step 5, and conclude the thesis of Theorem 1.

The proof of Theorem 2 follows applying the same six Steps as above, after
observing two facts:

First: The Step 4 in the proof above, can be also stated as follows:
If µ 6∈ [−1, 1], then, neither exist an attracting fixed point of the quadratic map

(x, y) 7→ (y2, y2 + µ), nor exist for its perturbations F . So we prove the following
claim:

For any g ∈ N , if the diffeomorphism gn|Vi,n
, after applying the computations in

Step 3, approaches to (x, y) 7→ (y2, y2 + µ) for some µ 6∈ [−1, 1], then g has not a
fixed point being a sink in Vi,n. If some f ∈ N has such a sink Si(f) ⊂ V of period
n, then Si(f) has not an isotopic continuation to a sink of g.

Second: Prove that, along the given family {f̃}t, if f̃t1 = f∞, then for t 6= t1
the diffeomorphism f̃t verifies the assumption for g in the claim above.
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OPEN QUESTION: 
HAVE THE INFINITELY MANY COEXISTING SINKS 

SIMULTANEOUS CONTINUATIONS
IN SOME OPEN NEIGHBORHOOD IN  THE FUNCTIONAL SPACE?   

                 ?



  

THEOREM 1:  THEOREM 1:  There exists an open interval               of parameter 
values ,and a residual subset                     such that:

For all

1.             exhibits infinitely many coexisting sinks                      
(Newhouse-Robinson)

2. There exists a infinite-dimensional manifold                                
such that:
   



  

THEOREM 2: THEOREM 2: 



  

Route of the proofs of Theorems 1 and 2
In SIX STEPS:

STEP 1:
Apply Newhouse Theorem:
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STEP 3:
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LEMMA 
(Uniform approximation to the quadratic family):
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STEP 4
Consequences of Lemma: 
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STEP 5:
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STEP 6 (CONCLUSIONS):

End of the proof of Theorem 1: 
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STEP 6 (CONCLUSIONS):

End of the proof of Theorem 2: 
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