Simultaneous Continuation of Infinitely Many Sinks Near a Quadratic Homoclinic Tangency.

Eleonora Catsigeras, Marcelo Cerminara, Heber Enrich *

Short Communication to the III Congreso Latinoamericano de Matemáticos. Chile Agosto 2009

Abstract

We consider $f \in \text{Diff}^3(M)$ on a surface M, exhibiting infinitely many sinks near the generic unfolding of a quadratic homoclinic tangency Q_0 of a dissipative saddle. We prove that f belongs to an infinite dimensional submanifold $\mathcal{M} \subset \text{Diff}^3(M)$ such that the infinitely many sinks of f have, along \mathcal{M} , simultaneous isotopic continuations. Complementary, if f is perturbed along a one-parameter family that unfold generically the tangency Q_0 , then at most a finite number of those sinks have continuation.

1 Statement of the results

Let M be a two-dimensional C^{∞} compact, connected riemannian manifold, and let $f_{t|t|<\varepsilon} \subset \text{Diff}^3(M)$ be a one-parameter family of C^3 diffeomorphisms on M. We assume that f_0 has a saddle periodic point P_0 and that it is dissipative in P_0 . We also assume that the diffeomorphism f exhibits at Q_0 a quadratic tangency between the stable and unstable manifold of P_0 and that the family unfolds it generically for t > 0. The Theorems of Newhouse and Robinson [N 1970], [N 1974], [N 1979], [R 1983], assert that, given $\varepsilon > 0$, there exists an open interval $I \subset (0, \varepsilon)$ and a residual set $J \subset I$, of values of the parameter t, such that:

For all $t \in I$, f_t has a hyperbolic maximal subset $\Lambda(f_t)$ with persistence of homoclinic quadratic tangencies in an open set $V \subset M$ isolated from $\Lambda(f_t)$.

^{*}Affiliation of the three authors:

Inst. de Matemática, Fac. de Ingeniería, Univ. de la República, Uruguay. Postal Address: J. Herrera y Reissig 565. CP 11300 Montevideo, Uruguay.

E-mails: eleonora @ fing.edu.uy, cerminar @ fing.edu.uy, enrich @ fing.edu.uy

For all $t \in J$, f_t exhibits infinitely many simultaneous sinks.

Let us suppose that $g_0 \in \text{Diff}^3(M)$ exhibits a sink S_0 . Consider $g_1 \in \text{Diff}^3(M)$. We say that the sink S_1 of g_1 is the isotopic continuation of S_0 if there exists an isotopy $\{g_t\}_{t\in[0,1]} \subset \text{Diff}^3(M)$ such that for all $t \in [0,1]$ there exists a sink $S_t = S(g_t)$ of g_t , and the transformation $t \in [0,1] \mapsto S_t \in M$ is of C^1 class.

Now, we state our first main result:

THEOREM 1 Let $f_0 \in \text{Diff}^3(M)$ exhibit a quadratic homoclinic tangency Q_0 of a dissipative saddle point P_0 on the surface M. Let $\{\tilde{f}_t\}_{-\varepsilon \leq t \leq \varepsilon} \subset \text{Diff}^3(M)$ be a one-parameter family, which generically unfolds the tangency at Q_0 exhibited by f_0 .

Then, there exist an open set $V \subset M$, an open interval $I \subset (-\varepsilon, \varepsilon)$, and a residual set $J \subset I$, such that, for all $f_{\infty} \in \{\widetilde{f}_t : t \in J\}$:

- 1. f_{∞} exhibits infinitely many coexisting sinks $S_i(f_{\infty}), i \in \mathbb{N}$.
- 2. There exists a C^1 infinite-dimensional manifold $\mathcal{M} \subset \text{Diff}^3(\mathcal{M})$, such that:
 - (a) $f_{\infty} \in \mathcal{M}$
 - (b) If $g \in \mathcal{M}$ then g exhibits the isotopic continuation $S_i(g) \in V$ of the infinitely many sinks $S_i(f_{\infty})$.

Theorem 1 states a condition for the simultaneous isotopic continuation of infinitely sinks: to move the diffeomorphism f_{∞} along the infinite-dimensional manifold $\mathcal{M} \subset \text{Diff}^3(M)$. Our next Theorem 2 provides an opposite result: if moving the diffeomorphism along the given family \tilde{f}_t , such a simultaneous continuation is not possible.

THEOREM 2 In the hypothesis of Theorem 1, the sets $V \subset M$, $J \subset I$ and the diffeomorphism $f_{\infty} \in {\widetilde{f}_t : t \in J}$, can be constructed such that f_{∞} verifies the thesis 1. and 2. of Theorem 1, and besides:

If $t \in I$ and $f_t \neq f_{\infty}$, then f_t exhibits, at most, a finite number of simultaneous isotopic continuations of the sinks $S_i(f_{\infty})$.

From Theorem 2, we conclude that, if there exists some maximal dimensionmanifold $\mathcal{M} \subset \text{Diff}^3(M)$, verifying the thesis a. and b. of Theorem 1, then \mathcal{M} has at least codimension one. On the other hand, in our proof of Theorem 1, we construct the manifold \mathcal{M} of infinite dimension but also of infinite codimension.

An open question, which we can precise now, is the following:

REMARK 1.1 Let $f_{\infty} \in \text{Diff}^3(M)$ and $\mathcal{M} \subset \text{Diff}^3(M)$, verifying parts a. and b. of Theorem 1.

Has \mathcal{M} necessarily infinite codimension?

2 Route of the proofs.

To prove Theorem 1 we follow six Steps:

Step 1: Applying Newhouse Theorem of persistence of homoclinic tangencies [N 1970], consider an open set $\mathcal{N} \subset \text{Diff}^3(M)$ such that for all $f \in \mathcal{N}$:

There exists a hyperbolic maximal set $\Lambda(f)$, an open neighborhood $U \subset M$ of $\Lambda(f)$, an open neighborhood $V \subset U$ isolated from $\Lambda(f)$, and a C^1 line of quadratic tangencies $L(f) \subset V$ between the stable and unstable manifolds of $\Lambda(f)$, such that f exhibits persistence of homoclinic tangencies along L(f). This last means that, for a dense subset of diffeomorphisms f in \mathcal{N} , there exists in $L(f) \subset V$ a homoclinic tangency point of a saddle of $\Lambda(f)$.

Construct any sequence $\{f_i\}_{i\in\mathbb{N}}$ of diffeomorphisms, along the given one-parameter family, such that $f_i \in \mathcal{N}$ and f_i has a homoclinic tangency Q_i of a periodic saddle $P_i \in \Lambda(f_i)$.

Step 2: Consider, as in [PT 1993] and [M 1973], trivializing coordinates of the local stable and unstable foliations in the neighborhood U of $\Lambda(f)$, for all $f \in \mathcal{N}$. Prove a strong dissipative property of $\Lambda(f)$, from the dissipative hypothesis of the first saddle P_0 . Conclude, using the r- normality, that the stable foliation is of class C^3 , while the unstable foliation is $C^{1+\theta}$.

Step 3: Compute the iteration $f^n|_V$ in the trivializing coordinates, as in [PT 1993], but adapting the computations, so the coordinates are chosen only once in the neighborhood U of $\Lambda(f)$, and are independent of the saddle point P_i . Generalizing to a wider context those computations in [PT 1993], prove the following key result:

Given $\epsilon > 0$, if the number n of iterates is large enough, then for all $f \in \mathcal{N}$ there exists a rectangle $V_{i,n} \subset V$ such that $f^n|_{V_{i,n}}$ is diffeomorphically conjugated to a C^1 -perturbation F of the quadratic family:

$$F(x,y) = (y^2, y^2 + \mu) + G(x,y), \quad \forall (x,y) \in [-4,4]^2$$

for some constant $\mu \in [-4, 4]$ and some map G of C¹- class such that $||G||_{C^3} < \epsilon$.

Step 4: From the key result above, if $\mu \in (-3/8, 1/8)$, the unique attracting fixed point of the quadratic map $(x, y) \mapsto (y^2, y^2 + \mu)$ persists as a sink for all its perturbations F, and so for the diffeomorphism $f^n|_{V_{i,n}}$ which is diffeomorphically conjugated with F. Conclude this result *uniformly for all* $f \in \mathcal{N}$. From the computations, get to a sufficient open condition for the diffeomorphisms $f \in \mathcal{N}$ to exhibit a sink $S_i \in V$ of period n, after unfolding the tangency Q_i .

Step 5: Construct infinite dimensional manifolds \mathcal{M} in \mathcal{N} such that, independently of *i*, and independently of how many sinks $\{S_i\}_{1 \leq i} \subset V$ a diffeomorphism $f \in \mathcal{M}$ has (if it has some sinks), all the diffeomorphisms $g \in \mathcal{M}$ exhibit isotopic continuations of all the sinks $S_i \in V$ of f. This is possible because the sufficient condition obtained in Steps 4 and 5, that allows the construction of the sinks, are

uniform for all $f \in \mathcal{N}$. In the Lemmas that prove that uniformity, we use the C^3 smoothness of the stable foliation.

Step 6: Along the given one-parameter family \tilde{f}_t , construct f_∞ exhibiting infinitely many sinks, reproducing the proof of Newhouse and Robinson [N 1974], [R 1983]. Join with the result of Step 5, and conclude the thesis of Theorem 1.

The proof of Theorem 2 follows applying the same six Steps as above, after observing two facts:

First: The Step 4 in the proof above, can be also stated as follows:

If $\mu \notin [-1, 1]$, then, neither exist an attracting fixed point of the quadratic map $(x, y) \mapsto (y^2, y^2 + \mu)$, nor exist for its perturbations F. So we prove the following claim:

For any $g \in \mathcal{N}$, if the diffeomorphism $g^n|_{V_{i,n}}$, after applying the computations in Step 3, approaches to $(x, y) \mapsto (y^2, y^2 + \mu)$ for some $\mu \notin [-1, 1]$, then g has not a fixed point being a sink in $V_{i,n}$. If some $f \in \mathcal{N}$ has such a sink $S_i(f) \subset V$ of period n, then $S_i(f)$ has not an isotopic continuation to a sink of g.

Second: Prove that, along the given family $\{\tilde{f}\}_t$, if $\tilde{f}_{t_1} = f_{\infty}$, then for $t \neq t_1$ the diffeomorphism \tilde{f}_t verifies the assumption for g in the claim above.

References

[M 1973]	de Melo. Structural stability of diffeomorphisms on two-manifolds. Inventiones Math 21 (1973), pp 233-246.
[N 1970]	S. Newhouse. Non density of Axiom A on S^2 . Proc. A.M.S. Symp. Pure Math. 14 (1970), pp 191-202.
[N 1974]	S. Newhouse. <i>Diffeomorphisms with infinitely many sinks</i> . Topology 13 (1974), pp 9-18.
[N 1979]	S. Newhouse. The abundance of wild hyperbolic sets and non- smooth stable sets for diffeomorphisms . Publ. IHÉS 50 (1979), pp 101-151.
[PT 1993]	J. Palis and F. Takens. <i>Hyperbolicity and sensitive chaotic dy-</i> <i>nanics of homoclinic bifurcations</i> . University Press, Cambridge (1993).
[R 1983]	C. Robinson. <i>Bifurcation to infinitely many sinks</i> . Comm Math Phys. 90 (1983), pp 433-459.

Communicación en el III Congreso Latinoamericano de Matemáticos August 31th.-September 4th. 2009

SIMULTANEOUS CONTINUATION OF INFINITELY MANY SINKS NEAR A QUADRATIC HOMOCLINIC TANGENCY

Eleonora Catsigeras Marcelo Cerminara Heber Enrich

Instituto de Matemática. Facultad de Ingeniería. Universidad de la República URUGUAY

eleonora@fing.edu.uy

ASSUMPTIONS: •M is a 2-dimensional compact manifold

$$f_0 \in {
m Diff}^3(M)$$
 has a dissipative saddle point P_0 with a homoclinic quadratic tangency point Q_0

$$\{\widetilde{f}_t\}_{-\varepsilon \leq t \leq \varepsilon} \subset \operatorname{Diff}^3(M)$$

is a one-parameter family

GENERICALLY UNFOLDING THE HOMOCLINIC TANGENCY.

ASSUMPTIONS: •M is a 2-dimensional compact manifold

$$f_0 \in {
m Diff}^3(M)$$
 has a dissipative saddle point P_0 with a homoclinic quadratic tangency point Q_0

$$\{\widetilde{f}_t\}_{-\varepsilon \leq t \leq \varepsilon} \subset \operatorname{Diff}^3(M)$$

is a one-parameter family

GENERICALLY UNFOLDING THE HOMOCLINIC TANGENCY.

ASSUMPTIONS:

M is a 2-dimensional compact manifold

 $f_0 \in \text{Diff}^3(M)$ has a dissipative saddle periodic point P_0 with a homoclinic quadratic tangency Q_0

 $\{\widetilde{f}_t\}_{-\epsilon \leq t \leq \epsilon} \subset \operatorname{Diff}^3(M)$ is a one-parameter family generically unfolding the homoclinic tangency

Theorems of Newhouse 1970, 1974, 1979 and Robinson 1983:

there exists an open interval $I \subset (0, \varepsilon)$ and a residual set $J \subset I$, of values of the parameter t, such that:

For all $t \in I$, f_t has a hyperbolic maximal subset $\Lambda(f_t)$ with persistence of homoclinic quadratic tangencies in an open set $V \subset M$ isolated from $\Lambda(f_t)$.

For all $t \in J$, f_t exhibits infinitely many simultaneous sinks.

ASSUMPTIONS:

M is a 2-dimensional compact manifold

 $f_0 \in \text{Diff}^3(M)$ has a dissipative saddle periodic point P_0 with a homoclinic quadratic tangency Q_0

 $\{\widetilde{f}_t\}_{-\epsilon \leq t \leq \epsilon} \subset \operatorname{Diff}^3(M)$ is a one-parameter family generically unfolding the homoclinic tangency

Theorems of Newhouse 1970, 1974, 1979 and Robinson 1983:

For all $t \in J$, f_t exhibits infinitely many simultaneous sinks.

OPEN QUESTION:

HAVE THE INFINITELY MANY COEXISTING SINKS SIMULTANEOUS CONTINUATIONS IN SOME OPEN NEIGHBORHOOD IN THE FUNCTIONAL SPACE? **THEOREM 1:** There exists an open interval $I \subset (0, \varepsilon)$ of parameter values ,and a residual subset $J \subset I$ such that: For all $t \in J$ $f_1 f_t$ exhibits infinitely many coexisting sinks $\,S_i(\,f_{ au}\,)\,$ (Newhouse-Robinson) <mark>2. There exists a infinite-dimensional manifold $\mathcal{M} \subset {
m Diff}^{3}(M)$ </mark> such that: $f_t \in \mathcal{M}$ If $g \in \mathcal{M}$ then g exhibits the isotopic continuation $S_i(q)$ of the

infinitely many sinks $S_i(f_t)$.

THEOREM 2:

the sets $J \subset I$ and the diffeomorphism $f_{\infty} \in \{f_t : t \in J\}$, can be constructed such that f_{∞} verifies the thesis 1. and 2. of Theorem 1, and

besides:

If $t \in I$ and $f_t \neq f_{\infty}$, then f_t exhibits, at most, a finite number of simultaneous isotopic continuations of the sinks $S_i(f_{\infty})$.

Route of the proofs of Theorems 1 and 2 In SIX STEPS:

STEP 1:

Apply Newhouse Theorem:

open set $\mathcal{N} \subset \operatorname{Diff}^3(M)$ for all $f \in \mathcal{N}$: There exist

 $ext{hyperbolic maximal set } \Lambda(f) \ ext{an open neighborhood } U \subset M ext{ of } \Lambda(f), \ ext{open set } V \subset M ext{ isolated from } \Lambda(f).$

 C^1 line of quadratic tangencies $L(f) \subseteq V$ between the stable and unstable manifolds of $\Lambda(f)$, such that f exhibits persistence of homoclinic tangencies along L(f)

<u>STEP 2:</u>

Consider TRIVIALIZING COORDINATES OF THE INVARIANT FOLIATIONS in the neighborhood

$$U \subset M$$
 of $\Lambda(f)$

Use dissipative hypothesis of the given hyperbolic periodic point exhibiting a quadratic homoclinic tangency in f sub0, to obtain STRONG DISSIPATIVE CONDITION of the hyperbolic set for all

$$f \in \mathcal{N} \subset \operatorname{Diff}^{3}(M)$$

 γ^3

Apply r-normality to conclude that

The STABLE LOCAL FOLIATION is

while the unstable foliation is not necessarily more than $\ C^{1+arepsilon}$

<u>STEP 2:</u>

Consider TRIVIALIZING COORDINATES OF THE INVARIANT FOLIATIONS in the neighborhood

$$U \subset M$$
 of $\Lambda(f)$

Use dissipative hypothesis of the given hyperbolic periodic point exhibiting a quadratic homoclinic tangency in f sub0, to obtain STRONG DISSIPATIVE CONDITION of the hyperbolic set for all

$$f \in \mathcal{N} \subset \operatorname{Diff}^{3}(M)$$

 γ^3

Apply r-normality to conclude that

The STABLE LOCAL FOLIATION is

while the unstable foliation is not necessarily more than $\ C^{1+arepsilon}$

STEP 3:

Compute the iteration of f in the trivializing coordinates as in [PT 1993] (up to non trivial adaptations, using C3 differentiability), to conclude the following :

STEP 3:

Compute the iteration of f in the trivializing coordinates as in [PT 1993] (up to non trivial adaptations, using C3 differentiability), to conclude the following :

LEMMA

(Uniform approximation to the quadratic family):

The open sets $\mathcal{N} \subset Diff^{\beta}(M)$ and $V \subset M$ can be chosen so:

Given $\varepsilon > 0$ and the periodic saddle $P_i(f) \in \Lambda(f)$, (such that some $f_i \in \mathcal{N}$ has a quadratic homoclinic tangency $Q_i \in V$), there exists $N \geq 1$ such that:

• For all $f \in \mathcal{N}$ and for all $n \ge N$ there exists a rectangle $V^* = V^*(\varepsilon, i, n, f) \subset V$ such that $f^n|_{V^*}$

is diffeomorphically conjugated to

$$F(x,y) = (y^2, y^2 + \mu) + G(x,y), \quad \forall (x,y) \in [-4,4]$$

where $\mu = \mu(P, n, f) \in [-4, 4]$ and G is a C^3 map $\|G\|_{C^3} < \varepsilon$.

LEMMA

(Uniform approximation to the quadratic family):

• For all $f \in \mathcal{N}$ and for all $n \ge N$ there exists a rectangle $V^* = V^*(\varepsilon, i, n, f) \subset V$ such that $f^n|_{V^*}$

is diffeomorphically conjugated to $F(x,y) = (y^2, y^2 + \mu) + G(x,y), \quad \forall (x,y) \in [-4,4]$ where $\mu = \mu(P, n, f) \in [-4, 4]$ and G is a C^3 map $||G||_{C^3} < \varepsilon.$

STEP 4

Consequences of Lemma:

Fix adequate $\varepsilon_0 > 0$ $P_i(f)$ obtain a REAL FUNCTIONAL INEQUATION

$$\mu(i,n,f) \in \left(-\frac{3}{8},\frac{1}{8}\right) \qquad (4a)$$

Due to Lemma in STEP 3 and the properties of the 1-dimensional quadratic family: • If $f \in \mathcal{N}$ verifies INEQUATION (4a) then f has a sink $S_i(f)$ of period n. • If f and g verify INEQUATION (4a) for the same values of i, n, then the sink $S_{i'}(g)$ is the isotopic continuation of the sink $S_i(f)$

Consequences of Lemma:

$\mu(i, n, f) \not\in [-1, 1] \qquad (4b)$ • If f verifies INEQUATION (4a) and g verifies (4b) (for the same values of i, n, then the sink $S_i(f)$ of f has no isotopic continuation to a sink of g.

STEP 5:

For each $f_1 \in \mathcal{N}$ fixed (for instance in the given one-parameter family), construct a local infinite dimensional manifold $\mathcal{N}_1 \subset \mathcal{N}$ (we did it of infinite codimension)

and foliate \mathcal{N}_1 with submanifolds \mathcal{M}_k (for real values of k near 0) of codimension one in \mathcal{N}_1 , such that:

$$f\in \mathcal{M}_k \Leftrightarrow f\in \mathcal{N}_1, extbf{and}\ \mu(extbf{ } n,f)=\mu(i,n,f_1)$$
 + k for all $i,n.$

<u>STEP 5:</u>

Conclude that For all $f \in \mathcal{M}_0$ there exists the isotopic continuations of all the sinks $S_i(f_1)$ constructed from the Inequality (4a) for f_1

STEP 6 (CONCLUSIONS):

End of the proof of Theorem 1:

construct a nested sequence of open real intervals $[t_i^-, t_i^+]$: $i \ge 1$ of parametervalues of the given family $\{f_t\}$ such that

 $t \in (t_i^-, t_i^+) \Rightarrow f_t \text{ exhibits a sink of period } n_i$ $Take F = f_T \qquad T \in \bigcap_{i \ge 1} [t_i^-, t_i^+] \text{ and}$ the manifold $\mathcal{M} \subset \text{Diff}^{\emptyset}(\mathcal{M})$ constructed in step 5. CONCLUSION Theorem 1 F and all $f \in \mathcal{M}$ have infinitely many coexisting sinks $S_i(f)$ such that are all the isotopic continuation of $S_i(F)$

STEP 6 (CONCLUSIONS):

End of the proof of Theorem 2:

For $f_t \neq F$ in the given one-parameter family compute inequation (4b) to verify it for all i, n except at most a finite number of values of i, n.

CONCLUSION along the given one parameter family $f_t \neq F$ has at most a finite number of simultaisotopic continuation of $S_i(F)$