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Abstract

For continuous maps on a compact manifold M , particularly for those that do not preserve the

Lebesgue measure m, we define the observable invariant probability measures as a generalization of

the physical measures. We prove that any continuous map has observable measures and characterize

those that are physical in terms of the observability. We prove that there exists physical measures

whose basins cover Lebesgue a.e, if and only if the set of all observable measures is finite or infinite

numerable. We define for any continuous map, its generalized attractors using the set of observable

invariant measures where there is no physical measure and prove that any continuous maps defines a

decomposition of the space in up to infinitely many generalized attractors whose basins cover Lebesgue

a.e.

1 Introduction

It is an old problem to find out “good” probability measures for maps f : M 7→ M , meaning for that, an
invariant probability that resume in some sense, the asymptotic dynamics by future iterations of the map.
Sometimes, the map is born with a good measure, as in the case of billiards. But this is not true in general,
and it is not an easy question to determine, in general, a single or a few probability measures representing
the dynamics of the map.

There have been proposed several ideas to define a “good” invariant probability measure µ:

1. Lebesgue a.e. point in a set is generic with respect µ, that is, µ = limn→∞
1
n

∑n−1
j=0 δ

j
f (x), where the

convergence is in the weak∗ topology of the space P of probabilities on M .

2. The conditional measures of µ on unstable manifolds are absolutely continuous respect to the Lebesgue
measure along those manifolds.

3. µ verifies the Pesin’s formula: hµ(f) =
∫

∑

i λ+
i (x) dim Ei(x) dµ(x), where dimEi(x) is the multiplic-

ity of λ+(x) in the Oseledec’s decomposition.

4. The measure is the limit of measures which are invariant under stochastic perturbations.

A measure verifying 4 or 1 “concentrates” on points which are more visited.
We will call physical measure, a probability measure verifying 1, and denote stochastically stable, a

probability measure verifying 4. We will call SRB (Sinai-Ruelle-Bowen) measure a probability verifying 2.
And we denote as a Pesin measure, a probability verifying 3.

∗Both authors: Instituto de Matemática y Estad́ıstica Rafael Laguardia (IMERL), Fac. Ingenieŕıa, Universidad de la
República, Uruguay. E-mails: eleonora@fing.edu.uy and enrich@fing.edu.uy Address: Herrera y Reissig 565. Montevideo.
Uruguay.
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In this work, we address ourselves to propose another concept of “good” probabilities, which we call
observable measures, that are particularly meaningful for non differentiable maps.

The following purposes motivated this work: Characterize the continuous homeomorphism f conjugated
to transitive Anosov (topologically chaotic), that have a physical measure attracting the time average of
Lebesgue almost all orbit. If not possible, at least generalize as much as possible the result in [CE01]. In
any case, the main question is:

Is it possible to describe probabilistically in the space, in some minimal way, the asymptotic behavior
of the time averages of Lebesgue a.e. orbit? We could answer to this question in Theorem 2.5. Generalized
ergodic attractors and observable measures always exist for any continuous map.(Theorems 2.3 and 2.8).
On the other hand, physical measures and ergodic attractors do not always exist. It is largely known
the difficulties to characterize, or just find, non hyperbolic or non C1+α maps that do have physical
measures. This is a hard problem even in some systems whose iterated topological behavior is known.
([C93], [E98], [H00], [HY95]). The difficulties appear when applying the known techniques for constructing
the physical measures in a hyperbolic setting, to a weaker hyperbolic context([Pe77], [S72], [A67], [PS04],
[V98], [BDV00]).

The following open question refers to the existence and finiteness of physical measures and to the
convergence of the sequence of time averages of Lebesgue a.e. orbit. It is possed in [P99] and leads to a
global understanding of the dynamics from an ergodic viewpoint:

1.1 Palis Conjecture Most dynamical systems have up to finitely many physical measures (or ergodic
attractors) such that their basins of attraction cover Lebesgue almost all points.

This conjecture admits the following equivalent statement, that seems weaker. (In fact, the definition
2.1 of observability is certainly weaker than the definition 2.2 of physical measures.)

1.2 Equivalent formulation of Palis Conjecture: The set of observable measures for most dynamical
systems is finite.

Note: To prove the equivalence of statements 1.1 and 1.2 it is enough to join our Theorems 2.3.b and
2.5.

2 Statement of the results.

Let f : M 7→ M be a continuous map in a compact, finite-dimensional manifold M . Let m be the Lebesgue
measure normalized to verify m(M) = 1, and not necessarily f -invariant. We denote P the set of all
Borel probability measures in M , provided with the weak∗ topology, and a metric structure inducing this
topology. For any point x ∈ M we denote pω(x) to the set of the Borel probabilities in M that are the
partial limits of the (not necessarily convergent) sequence







1

n

n−1
∑

j=0

δfj(x)







n∈IN

(1)

where δy is the Delta de Dirac probability measure supported in y ∈ M .
The set pω(x) ⊂ P is the collection of the spatial probability measures describing the asymptotic time

average, provided the initial state is x. If the sequence (1) converges then the set pω(x) = {µx}. But we
will consider also the opposite case of the maps such that, for Lebesgue a.e. x ∈ M , the sequence (1) is
not convergent.

The phenomena exhibited when (1) is not convergent are similar to the time-delayed specification
properties studied by Bowen in ([BR75]), but here they are seen on the time average probabilities, instead
on the points along the orbit.

We define:
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Definition 2.1 (Observable probability measures.) A probability measure µ ∈ P is observable if for
all ǫ > 0 the set Aǫ = {x ∈ M : dist ∗(pω(x), µ) < ǫ} has positive Lebesgue measure m(Aǫ) > 0.

The set Aǫ = Aǫ(µ) ⊂ M is called the ǫ- basin of partial attraction of the probability µ.

We note that the definition above is independent of the choice of the distance in P , provided that the
metric structure induces its weak∗ topology. We also remark that observable measures are f -invariant, and
that usually at most a few part of the space of invariant measures for f are observable measures.

Definition 2.2 (Physical probability measures.) A probability measure µ ∈ P is physical (even if it
is not ergodic), if the set B = {x ∈ M : pω(x) = {µ}} has positive Lebesgue measure m(B) > 0.

If µ is physical, the set B = B(µ) ⊂ M is called the basin of attraction of µ.

From the definitions above note that physical measures and observable measures are f -invariant. All
physical measure is observable but not all observable measure is physical.

We prove the following starting results:

Theorem 2.3 (Existence of observable measures and physical measures.)
a) For any continuous map f , the set O of all observable probability measures for f is non-empty and

weak∗-compact.
b) O is finite or countably infinite if and only if there exist (resp. finitely or countable infinitely many)

physical measures of f attracting (i.e. the union of their basins of attraction cover) Lebesgue almost all
orbits.

Definition 2.4 (Basin of attraction.)
The basin of attraction B(K) of a compact subset K of the space P of all the Borel probability measures

in M , is the (maybe empty) subset of M defined as:

B(K) = {x ∈ M : pω(x) ⊂ K}

If the purpose is to study the asymptotic to the future time average behaviors of Lebesgue almost all
points in M , then the set O of all observable measures for f is the exact necessary and sufficient solution.
In fact we have the following:

Theorem 2.5 (Attracting minimality property of the set of observable measures.)
The set O of all observable measures for f is the minimal compact subset of the space P whose basin of

attraction has total Lebesgue measure.

Due to the conjecture in 1.1 and Theorem 2.3, we are interested in partitioning the set O of observable
measures, or to reduce it as much as possible, into different compact subsets whose basins of attractions
have positive Lebesgue measure. Due to results in Theorem 2.5, no proper compact part of O has a total
Lebesgue basin. We define:

Definition 2.6 (Generalized Attractors - Reductions of the space O.) A generalized attractor
(A,A) ⊂ M×O, (or a reduction A of the space O of all observable measures for f), is a compact subset
(A,A) such that the basin of attraction B(A) = {x ∈ M : pω(x) ⊂ A} has positive Lebesgue measure in
M , and A is the (minimal) compact support in M of all the probability measures in A. We call (A, {µ}) an
attractor if it is a generalized attractor with a single invariant probability µ, i.e. µ is a physical measure.

To illustrate the difference between generalized attractor and attractor in the usual topological sense,
take the C2 almost Anosov, conjugated to a transitive Anosov in the torus, with a fixed non hyperbolic
saddle p0 with weak expansive direction and strong contraction. It has a unique generalized attractor
supported on p0. Even if topologically chaotic (conjugated to Anosov), statistically in the mean p0 acts
like a sink.

In spite a system could not exhibit a physical measure, still the reductions of the space of observable
measures divide the manifold in the basins of generalized attractors.
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Definition 2.7 Irreducibility
A generalized attractor A ⊂ P is irreducible if it does not contain proper compact subsets that are also

generalized attractors.
It is trivial or trivially irreducible if its diameter in P is zero , or in other words, if A has a unique

observable measure µ.
Note that physical measures are trivially irreducible and conversely.

The following result is much weaker but related with the Palis’ conjecture stated in paragraph 1.1:

Theorem 2.8 (Decomposition Theorem)
For any continuous map f : M 7→ M there exist a collection of (up to countable infinitely many) general-

ized attractors whose basins of attraction are pairwise Lebesgue-almost disjoint and cover Lebesgue-almost
all M .

The continuous maps divide in two disjoint classes:
• The generalized attractors of the decomposition are all irreducible and then the decomposition is unique.
• For all ǫ > 0 there exist a decomposition for which the reducible generalized attractors have all

diameter (in the weak∗ space of probabilities), smaller than ǫ (and thus, for a rough observer, all the
reducible generalized attractors of the decomposition act as physical measures).

Acknowledgements.
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“Good” invariant probabilities
Palis’ conjecture

Empiric distributions

“Good” invariant probabilities

They resume in some minimal sense, the asymptotic dynamics.

Physical measure µ: The point x in a positive Lebesgue
measure set, is generic with respect µ, i.e:

µ = ĺım
n→∞

1

n

n−1
∑

j=0

δ
j
f (x)

Sinai-Ruelle-Bowen (SRB) measure µ: The conditional
measures of µ on unstable manifolds are absolutely
continuous respect to the Lebesgue measure along those
manifolds.

The probability µ verifies the Pesin’s formula:

hµ(f) =

∫

∑

i

λ+
i (x) dim Ei(x) dµ(x)
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“Good” invariant probabilities
Palis’ conjecture

Empiric distributions

Palis’ conjecture

Most dynamical systems have up to finitely many physical
measures (or ergodic attractors) such that their basins of

attraction cover Lebesgue a.e.

Equivalent formulation of Palis’ Conjecture: The set of
observable measures (to be adequately defined) for most
dynamical systems is finite.
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“Good” invariant probabilities
Palis’ conjecture

Empiric distributions

Notations.

f : M 7→ M is a continuous map in a compact,
finite-dimensional manifold M .

m be the Lebesgue measure normalized to verify m(M) = 1,
(not necessarily f -invariant).

P the set of all Borel probability measures in M , provided
with a metric structure inducing the weak∗ topology. The set
of f invariant probabilities is Pf

For any point x ∈ M : pω(x)
is the set of the Borel probabilities in M that are
the partial limits of the (not necessarily convergent)
sequence of empiric distribution:







1

n

n−1
∑

j=0

δfj(x)







n∈N

(1)
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Definition of observable measure.
Definition of physical measure.

Definition of observable measure.

Definition

A probability measure µ ∈ P is observable if for all ǫ > 0 the set

Aǫ = {x ∈ M : dist ∗(pω(x), µ) < ǫ}

has positive Lebesgue measure m(Aǫ) > 0.
The set Aǫ = Aǫ(µ) ⊂ M is called the ǫ- basin of partial attraction
of the probability µ.

Remarks: The definition above is independent of the choice of the
distance in P, (inducing the weak∗ topology). Observable measures
are f -invariant. The Lebesgue measure of Aǫ is positive for all
ǫ > 0, but may be is zero for ǫ = 0.
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Definition of observable measure.
Definition of physical measure.

Definition

(Physical probability measures.) A probability measure µ ∈ P is
physical (even if it is not ergodic), if the set
B = {x ∈ M : pω(x) = {µ}} has positive Lebesgue measure
m(B) > 0.
If µ is physical, the set B = B(µ) ⊂ M is called the basin of
attraction of µ.

Remark: Any physical measure is observable but not all
observable measure are physical.
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Existence
Minimality

Theorem

Existence of observable measures.
a) For any continuous map f , the set O of observable measures of
f is not empty and weak∗-compact.

b) O is finite or countably infinite if and only if there exist (resp.
finitely or countable infinitely many) physical measures whose
basins of attraction cover Lebesgue a.e.

c) There exists a unique physical measure whose basin is Lebesgue
a.e. if and only if the set of observable measures has a unique
probability.
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Existence
Minimality

Minimality of the set of observable measures

Definition: The basin of attraction B(K) of a compact subset K
of the space P of all the Borel probability measures in M , is the
(maybe empty) subset of M defined as:

B(K) = {x ∈ M : pω(x) ⊂ K}

If the purpose is to study the asymptotic to the future time
average behaviors of Lebesgue almost all points in M , then the
set O of all observable measures for f is the exact necessary
and sufficient set of probabilities.

Theorem

The set O of all observable measures for f is the minimal compact
subset of the space P whose basin of attraction has total Lebesgue
measure.
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Motivation
Definition of Generalized Attractor.

Generalized Attractors.

Due to our motivation in the conjecture of Palis we are interested
in partitioning the set O of observable measures, or to reduce it as
much as possible, into different compact subsets whose basins of
attractions have positive Lebesgue measure. But due to the
Theorem of minimality, no proper compact part of O has a total
Lebesgue basin.
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Motivation
Definition of Generalized Attractor.

Definition

(Generalized Attractors - Reductions of the space O.) A
generalized attractor (A,A) ⊂ M×O,
is a compact subset such that the basin of attraction

B(A) = {x ∈ M : pω(x) ⊂ A} ⊂ M

has positive Lebesgue measure.
• A is the (minimal) compact support in M of all the probability
measures in A.
• A ⊂ O is also called a “reduction” of the set of observable
measures.
• In particular we call (A, {µ}) an attractor if it is a generalized
attractor with a single invariant probability µ, i.e. µ is a physical
measure.
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Conjugated to transitive Anosov: Sink-like.
Conjugated to transitive Anosov: Lewowicz example.
Expanding examples with physical non SRB measure.

Expanding non ergodic examples.

Examples: Conjugated to transitive Anosov 1.

• To illustrate the difference between generalized attractor and
topological attractor: consider the C2 almost Anosov, conjugated
to a transitive Anosov in the two-torus, with a fixed non hyperbolic
saddle p0 with weak expansive direction (toplogically expanding
but with eigenvalue 1) and strong (hyperbolic) contraction. It has
a unique generalized attractor supported on p0. (Hu and Young
Ergod.Th.&Dyn.Sys. 15-1995) Even if topologically chaotic
(conjugated to Anosov), statistically in the mean (i.e. attracting
the sequences of empiric distributions) p0 acts like a sink.
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Conjugated to transitive Anosov: Sink-like.
Conjugated to transitive Anosov: Lewowicz example.
Expanding examples with physical non SRB measure.

Expanding non ergodic examples.

Examples: Conjugated to transitive Anosov 2.

• On the opposite situation, the example of Lewowicz (Journal of
Diff.Eq. 38, 1980) in the two-torus, is a real analytic
diffeomorphism, conjugated to a transitive Anosov, but non
hyperbolic:

x = x + y + sen(2πx), y = y + sen(2πx)

It preserves the Lebesgue measure m which is besides ergodic
(C.E.2001, Disc.Cont.Dyn.Sys.7): therefore, in this example, m is a
physical measure and the unique observable measure.

• Open question: Characterize the non singular homeomorphisms
(or at least the C1 diffeomorphisms that are not C1+α) in the
torus, that are conjugated to transitive Anosov and have a unique
physical measure attracting Lebesgue a.e.
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Conjugated to transitive Anosov: Sink-like.
Conjugated to transitive Anosov: Lewowicz example.
Expanding examples with physical non SRB measure.

Expanding non ergodic examples.

Examples: C1 expanding maps 1.

It is well known that C1+α expanding maps have a single
physical measure attracting Lebesgue a.e. that is absolute
continuous respect to Lebesgue (Ruelle).

If f is not C1+α but is C1 and expanding, then generically it
also has a single physical measure attracting Lebesgue a.e.,
but it is mutually singular respect to Lebesgue.
(Campbell and Quas, Commun.Math.Phys. 349, 2001).

In this last case the physical measure verifies the Pesin’s
formula of the entropy (C.E.2010, using ideas of the book of
Keller, 1998)
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Conjugated to transitive Anosov: Sink-like.
Conjugated to transitive Anosov: Lewowicz example.
Expanding examples with physical non SRB measure.

Expanding non ergodic examples.

Examples: C1 expanding maps 2.

• There exist C1 expanding maps in the circle, that have no
physical measure attracting Lebesgue a.e. : the Lebesgue measure
is invariant but not ergodic (Quas, Ergod.Th. & Dyn.Sys.16
(1996). Thus, in this example the set of observable measures
contains more than one probability, and is exactly the closure of
the set of the ergodic components of the Lebesgue measure.
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Irreducible Generalized Attractors.
Decomposition Theorem

In spite a system could not exhibit a physical measure, still the
reductions of the space of observable measures divide the manifold
in the basins of generalized attractors.

Definition

Irreducibility
A generalized attractor A ⊂ P is irreducible if it does not contain
proper compact subsets that are also generalized attractors.
It is trivial or trivially irreducible if its diameter in P is zero , or in
other words, if A has a unique observable measure µ. (Physical
measures are trivially irreducible and conversely.)
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Irreducible Generalized Attractors.
Decomposition Theorem

The following result is much weaker but related with the Palis’
conjecture:

Theorem

(Decomposition Theorem)
For any continuous map f : M 7→ M there exist a collection of (up
to countable infinitely many) generalized attractors whose basins
of attraction are pairwise Lebesgue-almost disjoint and cover
Lebesgue-almost all M .
The continuous maps divide in two disjoint classes:
• The generalized attractors of the decomposition are all
irreducible and then the decomposition is unique.
• For all ǫ > 0 there exist a decomposition for which the reducible
generalized attractors have all diameter (in the weak∗ space of
probabilities), smaller than ǫ (and thus, for a rough observer, all
the reducible generalized attractors of the decomposition act as
physical measures).
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