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Lebesgue-essential exponents and positive entropy of

C1-diffeomorphisms with dominated splitting.

Eleonora Catsigeras∗ and Xueting Tian∗∗

Dedicated to the Memory of Prof. Nikolai Chernov

Abstract

We study C1-diffeomorphisms on compact manifolds that have global dominated split-

ting. We define the Lebesgue-essential exponents by considering the exponential rates

according to which the differential of the Lebesgue measure asymptotically changes to

the future and to the past. We find lower negative bounds of the Lebesgue-essential

exponents that suffice for the topological entropy be positive. Finally, we prove some

corollaries in particular cases: when a smooth measure is preserved, or, more generally,

when the Lebesgue measure is recurrent.
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1 Introduction

Consider a compact and connected C1-Riemannian manifold M without boundary and let

f ∈ Diff1(M) be a C1 diffeomorphism on M .

Definition 1.1. (Dominated Splitting) The diffeomorphism f has a dominated splitting

TM = E ⊕F if this splitting is defined in all the points of the tangent bundle, is continuous

and non trivial (i.e. dim(E),dim(F ) 6= 0), and there exists a constant α < 1 such that

‖Df |E(x)‖ · ‖Df−1|F (f(x))‖ ≤ α,∀x ∈M.

We call E and F the dominated and dominating subbundles respectively. We call α the

domination constant.

Note: In the above definition the continuity of the splitting is a redundant condition [1].

Definition 1.1 is a generalization of uniform hyperbolicity and also of partial hyperbolicity.

Since uniform and partial hyperbolic systems have positive topological entropy, we first pose

the following question:

¿Have all C1 diffeomorphisms with dominated splitting positive entropy?

The answer is negative. In fact, Gourmelon and Potrie [4] have recently constructed

a counterexample on the torus T2. Nevertheless, it is known that the answer is positive

under some additional restrictive hypothesis of f . For instance, if the dominated splitting is

partially hyperbolic, then the topological entropy of f is positive, as proved by Saghin, Sun
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and Vargas in [5]. Also, if f has a dominated splitting and preserves the Lebesgue measure (or

a finite measure that is absolutely continuous with respect to Lebesgue), then it necessarily

has positive entropy (see Corollary 3.4 at the end of this paper). This latter result is also a

consequence of a Pesin-like formula for the metric entropy in the C1-context, proved in [6].

To generalize the results of positive topological entropy for diffeomophisms with domi-

nated splitting that do not necessarily preserve the Lebesgue measure and are not necessarily

partially hyperbolic, we will focus on the assymptotic exponential derivative of the Lebesgue

measure when applying f or f−1. We will find a relation among those Lebesgue-essential ex-

ponents and the positiveness of the topological entropy. To do so, we introduce the following

definition:

Definition 1.2. (Lebesgue-essential exponents)

For any point x ∈ M , we define the Lebesgue exponents λ+(x) and λ−(x) at x, to the

future and the past respectively, by

λ+(x) := lim sup
n→+∞

1

n
log |detDfnx |, λ−(x) := lim sup

n→+∞

1

n
log |detDf−nx |.

Now, we define the Lebesgue-essential exponents λ+ess and λ−ess, to the future and the past

respectively, by:

λ+ess := Leb-ess sup λ+(x), λ−ess := Leb-ess sup λ−(x),

where Leb-ess sup u(x) denotes the essential supremum with respect to the Lebesgue measure

of the measurable real function u.

We are ready to state the main result of this paper:

Theorem 1. Let f ∈ Diff1(M) have a dominated splitting TM = E ⊕ F , where E and F

are the dominated and dominating sub-bundles respectively. Let 0 < α < 1 be the domination

constant. If

λ+ess > − dim(E) logα−1 or λ−ess > − dim(F ) logα−1, (1)

then the topological entropy of f is positive.

In Section 2 we will prove Theorem 1, and in Section 3 we will state and prove its

corollaries.

2 Proof of Theorem 1.

To prove Theorem 1, we will construct an f -invariant probability measure with positive

metric entropy. Thus, applying the variational principle, this construction implies that the

topological entropy of f is positive, as wanted. The construction of such a probability measure

will be based on the theory of pseudo-physical or SRB-like measures for C1 maps, which was

introduced in [3]. We will apply a result in [2] (generalizing a theorem in [6]): it provides

a Pesin-like formula for the entropy to all the pseudo-physical or SRB-like measures of any

f ∈ Diff1(M) with dominated splitting.

In the sequel, we denote by M the space of all the Borel probability measures on M

endowed with the weak∗-topology. We denote by Mf the set of f -invariant measures con-

tained inM. Recall that that M and Mf ⊂M are nonempty, weak∗-compact, sequentially

compact, and convex metric spaces.

2



Definition 2.1. (p-omega limit of x) For any point x ∈ M we construct the sequence

{σf, n(x)}n≥1 ⊂M of empiric probabilities along the finite pieces of the future orbit of x, by

σf, n(x) :=
1

n

n−1∑
j=0

δfj(x), (2)

where, δy denotes the Dirac-delta probability measure supported on y ∈M .

We define the the p-omega limit pωf (x) ⊂Mf by:

pωf (x) := {ρ ∈M : ∃nj → +∞ such that lim
j→+∞

σf, nj
(x) = ρ}.

Now, we fix a metric dist∗ in P that endows the weak∗-topology, and recall the following

definition taken from [3]:

Definition 2.2. (Pseudo-physical or SRB-like measures) Fix µ ∈ Mf and ε > 0. We

define the basin Bε(µ) of ε−weak attraction of µ by:

Bε(µ) := {x ∈M : dist∗(pωf (x), µ) < ε}.

We call the probability measure µ pseudo-physical or SRB-like for f if

Leb(Bε(µ)) > 0 ∀ ε > 0.

The following previous results are taken from [3], [2] and [6]:

Theorem 2.3. (C.-Enrich [3])

For any continuous map f : M 7→ M the set of pseudo-physical probability measures is

nonempty, weak∗-compact, does not depends of the chosen weak∗ metric, and contains pωf (x)

for Lebesgue almost all x ∈M .

Theorem 2.4. (Pesin-like formula, C.-Cerminara-Enrich [2] and Sun-T. [6])

If f ∈ Diff1(M) has a dominated splitting TM = E⊕F , where E and F are the dominated

and dominating sub-bundles respectively, and if µ ∈Mf is pseudo-physical, then

hµ(f) ≥
∫ dim(F )∑

i=1

χi(x)dµ =

∫
log |detDf |F | dµ, (3)

where χ1 ≥ χ2 · · · ≥ χdim(M) denote the Lyapunov exponents defined µ-a.e.

We are ready to start the proof of Theorem 1:

Let f ∈ Diff1(M) have a dominated splitting TM = E ⊕ F , where E and F are the

dominated and dominating sub-bundles respectively. Define

λFess := Leb-ess sup λF (x),

where

λF (x) := lim sup
n→+∞

1

n
log |detDfnx |F (x)|.
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Lemma 2.5. If λFess > 0 then the topological entropy of f is positive.

Proof. Consider the set A := {x ∈M : lim sup
n→+∞

1

n
log | detDfnx |F (x)| > 0}. From the condition

λFess > 0, we deduce that Leb(A) > 0. Denote by Pf ⊂Mf the non-empty set of physical-like

measures for f , and apply Theorem 2.3:

pωf (x) ⊂ Pf Leb.- a.e.x ∈M.

Choose and fix a point x ∈ A such that pωf (x) ⊂ Pf , and fix a sequence nj → +∞ such that

lim
j→+∞

1

nj
log | detDf

nj
x |F (x)| = a > 0. (4)

By choosing an adequate subsequence, there exists µ ∈Mf such that:

lim
j→+∞

σf, nj
= µ ∈Mf . (5)

After Definition 2.1, µ ∈ pωf (x) ⊂ Pf . So, applying Theorem 2.4:

hµ(f) ≥
∫
ψ dµ, where ψ := log |detDf |F |. (6)

By the definition of the weak∗ topology in P (since ψ is a continuous real function), and from

equalities (5) and (4), we deduce:

∫
ψ dµ = lim

j→+∞

∫
ψ dσf, nj

(x) = lim
j→+∞

1

nj

nj−1∑
i=0

ψ(f i(x)) =

lim
j→+∞

1

nj

nj−1∑
i=0

log |detDff i(x)|F (f i(x))| = lim
j→+∞

1

nj
log | detDf

nj
x |F (x) = a > 0. (7)

Joining inequalities (6) and (7) we obtain hµ(f) > 0 as wanted.

End of the proof of Theorem 1

Proof. By hypothesis λ+ess > −dim(E) log(α−1) or λ−ess > −dim(F ) log(α−1). It is not re-

strictive to assume that the first inequality holds. If not we would apply the same proof

with the second inequality instead of the first one, and with f−1, F, E in the place of f,E, F

respectively.

Arguing as in the proof of Lemma 2.5 there exists a point x ∈M , a sequence nj → +∞,

and a physical-like probability measure µ such that

lim
j→+∞

1

nj
log | detDf

nj
x | = b > −dim(E) logα−1, (8)

hµ(f) ≥
∫

log |detDfF | dµ, (9)

∫
| detDf | dµ = lim

j→+∞

1

nj

nj−1∑
i=0

| detDff i(x)| = lim
j→+∞

1

nj
log |detDf

nj
x | = b. (10)
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Since E ⊕ F = TM is a Df -invariant splitting and µ is an f -invariant measure, applying

Oseledets Theorem we obtain:∫
log |detDf | dµ =

∫ dimM∑
k=1

χk dµ =

∫ dimF∑
k=1

χk dµ+

∫ dimM∑
k=dimF+1

χk dµ =

∫
log |detDf |F | dµ+

∫
log |detDf |E | dµ.

Thus, ∫
log |detDf |F | dµ =

∫
log | detDf | dµ−

∫
log |detDf |E | dµ (11)

Besides, applying the definition of dominated splitting, we obtain:

log |detDfx|E(x)| ≤ dim(E) log ‖Dfx|E(x)‖ ≤ dim(E) · log
( α

‖Df−1f(x)|F (f(x))‖

)
≤

−dim(E) logα−1 + dim(E) ·
log |detDfx|F (x)|

dim(F )
. (12)

We recall that the dimensions of E and F are constant, because these sub-bundles are con-

tinuous and the manifold M is connected. Joining equality (11) with inequality (12):(
1 +

dim(E)

dim(F )

) ∫
log |detDf |F | dµ ≥

∫
log | detDf | dµ+ dim(E) logα−1. (13)

Finally, from inequalities (8), (9), (10) and (13) we conclude:(
1 +

dim(E)

dim(F )

)
hµ(f) ≥

(
1 +

dim(E)

dim(F )

) ∫
log |detDf |F | ≥ log |detDf | dµ+ dim(E) logα−1

= b+ dim(E) logα−1 > −dim(E) logα−1 + dim(E) logα−1 = 0.

So, we conclude that hµ(f) > 0 as wanted.

3 Corollaries.

In this section we apply Theorem 1 to some particular cases:

Corollary 3.1. If f ∈ Diff1(M) has a dominated splitting and preserves the Lebesgue mea-

sure, then the topological entropy of f is positive.

Proof. In fact, since |detDf | = 1, the Lebesgue-essential exponents are zero. Thus, the

condition 1 holds; hence Theorem 1 implies htop(f) > 0.

We will generalize Corollary 3.1 to cases for which the Lebesgue measure is not f -invariant,

but the Lebesgue-essential exponents are still zero. To so do, we need the following definition:

Definition 3.2. (Recurrent measures)

Let ρ ∈ M (i.e. rho is a non necessarily invariant, Borel probability measure on M).

We call ρ a recurrent measure if there exists a real number 0 < δ < 1 such that for any

measurable set B ⊂M , if ρ(B) ≥ 1− δ, then there exists nj → +∞ such that

B ∩ fnj (B) 6= ∅ ∀ j ∈ N.

Note that, due to Poincaré Lemma any f -invariant measure is recurrent (in such a case,

δ can be arbitrarily chosen in the open interval (0, 1)).
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In the sequel, we denote by Leb the Lebesgue measure on M after a rescaling to make it

a probability measure.

Corollary 3.3. If f ∈ Diff1(M) has a dominated splitting and the Lebesgue probability

measure is recurrent, then the topological entropy of f is positive.

Proof. Applying Theorem 1, it is enough to prove that λ+ess ≥ 0 or λ−ess ≥ 0. Arguing by

contradiction, and recalling Definition 1.2, assume that there exists a real number −a < 0

such that the Leb(A) = 1, where

A :=
{
x ∈M : lim sup

n→+∞

log | detDfnx |
n

< −a, lim sup
n→+∞

log |detDf−nx |
n

< −a
}
.

For any natural number N ≥ 1 and define

AN :=
{
x ∈M :

log |detDfnx |
n

< −a, log | detDf−nx |
n

< −a ∀ n ≥ N
}
.

We have AN ⊂ AN+1 and A =
⋃+∞
N=1AN . So, limN→+∞ Leb(AN ) = Leb(A) = 1. So, for any

given 0 < δ < 1 there exists N ≥ 1 such that

Leb(AN ) > 1− δ.

Consider any measurable set C ⊂ AN . We obtain:

Leb(C ∩ fn(AN )) =

∫
x∈f−n(C)∩AN

|detDfnx | dLeb(x) ≤ e−na · Leb(f−n(C) ∩AN ) ∀ n ≥ N.

Leb(C ∩ f−n(AN )) =

∫
x∈fn(C)∩AN

|detDf−nx | dLeb(x) ≤ e−na · Leb(fn(C) ∩AN ) ∀ n ≥ N.

In particular, applying the above inequalities to C1 := AN∩fn(AN ) and C2 := AN∩f−n(AN ),

we deduce Leb(C1) ≤ e−na ·Leb(C2), Leb(C2) ≤ e−na ·Leb(C1) ∀ n ≥ N. Thus, Leb(C1) =

Leb(C2) = 0; hence

Leb(AN ∩ fn(AN )) = Leb(AN ∩ f−n(AN )) = 0 ∀ n ≥ N. (14)

Now, construct the measurable set B := AN \
( +∞⋃
n=N

fn(AN )
)
. From equalities (14) we obtain

Leb(B) = Leb(AN ) > 1− δ. And by construction of B we obtain B ∩ fn(B) = ∅ ∀ n ≥ N .

Since the above assertions hold for any 0 < δ < 1, we conclude that Leb is not recurrent,

contradicting the hypothesis.

Finally, we state and prove the following consequence of Theorem 1. It is a generalization

of Corollary 3.1.

Corollary 3.4. If f ∈ Diff1(M) has a dominated splitting and preserves a smooth probability

measure ρ (i.e. ρ� Leb), then the topological entropy of f is positive.
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Proof. By hypothesis ρ� Leb. Let us prove that there exists 0 < δ < 1 such that ρ(C) < 1

for any measurable set C ⊂ M such that Leb(C) < δ. In fact, arguing by contradiction, if

the latter assertion were false, then for any natural number n ≥ 2 there would exist Cn ⊂M
such that Leb(Cn) < 1/n and ρ(Cn) = 1. So, taking A =

⋂+∞
n=1Cn we would obtain ρ(A) = 1

and Leb(A) = 0, which contradicts the hypothesis ρ� Leb. So, we have proved the existence

of a real number 0 < δ < 1 satisfying the assertion at the beginning.

Take any measurable set B ⊂ M such that Leb(B) > 1 − δ. Thus Leb(M \ B) < δ. By

construction of δ we obtain ρ(M \ B) < 1; hence ρ(B) > 0. But besides ρ ∈ Mf . Thus,

from Poincaré Recurrence Lemma we deduce that there exists infinitely many future iterates

of B that intersect B. In brief, we have proved that for any measurable set B such that

Leb(B) > 1 − δ there exists nj → +∞ such that B
⋂
fnj (B) 6= ∅. Applying Definition

3.2, the Lebesgue measure is recurrent. Finally, from Corollary 3.3, we conclude that the

topological entropy of f is positive.
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