New Trends in Onedimensional Dynamics Celebrating the 70^{th} anniversary of Welington de Melo

Rio de Janeiro, November 14 - 18, 2016

Title: Stochastic perturbations of piecewise continuous maps.

Author: Eleonora Catsigeras

Abstract.

We consider a piecewise continuous map $f: X \mapsto X$ with a finite number of continuity pieces on a compact metric space X. We study the ergodic properties of the stochastic dynamical system (X, fP_{ϵ}) , obtained by adding at each iterate of f a noise of level $\epsilon > 0$, namely, a stochastic perturbation of f with family $P_{\epsilon} = P_{\epsilon}(x, \cdot)$ of transition probabilities, supported on the ball $B_{\epsilon}(f(x))$ for each $x \in X$.

We construct a transfer operator $\mathcal{L}_{\epsilon}^{*}$ in the space of probability measures, whose fixed points are the stationary measures of (X, f, P_{ϵ}) . Under mild hypothesis on the transition probabilities, we prove the existence and finitude of ergodic stationary probability measures μ . We also prove that for each ergodic μ there exists a unique maximal period $p \geq 1$ and a $\mathcal{L}_{\epsilon}^{*}$ -periodic probability measure ν with period p, such that $\mu = (1/p) \sum_{j=0}^{p-1} \mathcal{L}_{\epsilon}^{*j} \nu$. Finally, we prove that the ergodic periodic measures ν of maximal period are weakly mixing and also ergodic for all the multiples of $\mathcal{L}_{\epsilon}^{*p}$.

This is a joint work with Pierre Guiraud, Arnaldo Nogueira and Sandro Vaienti.

Stochastic Perturbations of Piecewise Continuous Maps

Eleonora Catsigeras

Universidad de la República Montevideo, Uruguay

eleonora@fing.edu.uy

New Trends in Onedimensional Dynamics Celebrating the 70th anniversary of Welington de Melo IMPA, Rio de Janeiro, November 14-18, 2016

Notation:

X compact metric space, ${\mathcal A}$ is its Borel sigma-algebra.

 \mathcal{M} is the space of all the probability measures on (X, \mathcal{A}) endowed with the weak^{*} topology;

 $C_0(X,\mathbb{C})$ space of continuous functions $\varphi:X\mapsto\mathbb{C}$ with the sup norm;

 L_{∞} space of bounded measurable functions.

Definition

 $f: X \mapsto X$ is Piecewise Continuous if there exists a "topological partition" $\{X_i\}_{1 \leq i \leq N}$ (i.e. X_i open, $X_i \cap X_j = \emptyset$ if $i \neq j$, and $\bigcup \overline{X}_i = X$) and continuous maps $f_i: \overline{X}_i \mapsto X$ such that

$$f|_{X_i} = f_i.$$

Notation: $\Delta = \text{set of discontinuity points of } f$

Definition

A Stochastic System by perturbation of f with noise of level $\epsilon>0$ is (X,f,P_ϵ) where

$$P_{\epsilon} = \{P_{\epsilon,i}(x,\cdot)\}_{x \in \overline{X}_i} 1 \le i \le N$$

is the family of transition probabilities $P_{\epsilon,i}(x, \cdot) \in \mathcal{M}$ of the stochastic process $\{x_n\}_{n\geq 0}$, i.e. $P_{\epsilon,i}(x, A) = \text{prob.}(\{x_{n+1} \in A \mid x_n = x\})$ for all $x \in \overline{X}_i$, and

$$\bullet \mathsf{supp}(P_{\epsilon,i}(x,\cdot)) = \overline{B}_{\epsilon}(f_i(x)) \ \forall \ A \in \mathcal{A}, \ \forall \ x \in \overline{X}_i.$$

Hypothesis on the noise: • $x \in \overline{X}_i \mapsto P_{\epsilon,i}(x, \cdot) \in \mathcal{M}$ is continuous.

• $P_{\epsilon,i}(x,\Delta) = 0 \quad \forall \ x.$ • If $A \subset \overline{B}_{\epsilon}(f_i(x)) \cap \overline{B}_{\epsilon}(f_j(x'))$, then $P_{\epsilon,i}(x,A) = 0$ if and only if $P_{\epsilon,j}(x',A) = 0.$

Definition

The transfer operator $\mathcal{L}: L_{\infty} \mapsto L_{\infty}$ is

$$(\mathcal{L}\varphi)(x) := \int \varphi(y) P_{\epsilon,i}(x, dy) \quad \forall \ x \in X_i$$

The dual transfer operator $\mathcal{L}^*:\mathcal{M}\mapsto\mathcal{M}$ is

$$\int \varphi \, d(\mathcal{L}^* \mu) := \int (\mathcal{L} \varphi \, d\mu \ \forall \ \mu \in \mathcal{M}.$$

A stationary measure $\mu \in \mathcal{M}$ is a fixed point of \mathcal{L}^* . A periodic measure μ with period p is a fixed point of \mathcal{L}^{*p} for a minimum natural value of $p \ge 1$. A measure μ of period p is ergodic if for any \mathcal{L}^p -invariant set A

(i.e. $\mathcal{L}^p \chi_A = \chi_A \ \mu$ -a.e.) either $\mu(A) = 1$ or $\mu(A) = 0$.

Theorem

(Existence and finitude of ergodic stationary measures) The set \mathcal{E} of stationary ergodic measures for the stochastic system (X, f, P_{ϵ}) is nonempty and finite.

SKETCH OF THE PROOF (on the board)

Theorem

(Periodic ergodic measures of maximal period) For each ergodic stationary measure μ there exists a unique maximal period $p \ge 1$ and a periodic and ergodic probability measure ν with period p, such that

$$\mu = \frac{1}{p}\nu + \mathcal{L}^*\nu + \ldots + \mathcal{L}^{*p-1}.$$

Besides, the ergodic periodic measures ν of maximal period are weakly mixing and also ergodic for all the multiples of \mathcal{L}^{*p} .

SKETCH OF THE PROOF (on the board)

Definition

A piecewise continuous map $f: X \mapsto X$ is piecewise contracting if there exists a constant $0 < \lambda < 1$ such that, for any continuity piece X_i of f:

 $\mathsf{dist}(f_i(x), f_i(x')) \le \lambda \cdot \mathsf{dist}(x, x') \ \forall \ x, x' \in X_i.$

A piecewise contracting map is typically periodic if its attractor Λ does not intersect the set Δ of discontinuity points. (In such a case, the attractor Λ is composed by a finite number of periodic orbits).

Theorem

If f is piecewise contracting and typically periodic, then, for all the stochastic perturbations of f with noise level $\epsilon > 0$ small enough, there exists an invertible correspondence ξ between the family of ergodic periodic measures with maximal period for the transfer operator \mathcal{L}^* , and the periodic orbits of the attractor of the deterministic system. Besides.

 $\mathsf{period}(\nu) = \mathsf{period}(\xi(\nu)), \text{ and } \xi(\nu) \in \mathsf{supp}(\nu) \subset \overline{B}_{\epsilon/(1-\lambda)}(\xi(\nu)).$

SKETCH OF THE PROOF (on the board)