Abundant continuous dynamical systems with infinite entropy

Eleonora Catsigeras

Universidad de la República Montevideo, Uruguay eleonora@fing.edu.uy

in a joint work with **Serge Troubetzkoy**

Dynamics Days - LAC 2018 Punta del Este, November 26-30, 2018

$$x_{n+1} = f(x_n)$$

Definition

A phenomenon or property P is **GENERIC OR TYPICAL** if the family of systems that exhibit it contains a countable intersection of OPEN AND DENSE families in $C^0(X)$.

- **OPEN:** if a systems exhibits P then it still exhibits P after ANY small perturbation of its parameters.
- **DENSE**: if a system does not exhibit P then it will exhibit P after SOME small perturbation of its parameters.

$$x_{n+1} = f(x_n)$$

Definition

A phenomenon or property P is **GENERIC OR TYPICAL** if the family of systems that exhibit it contains a countable intersection of OPEN AND DENSE families in $C^0(X)$.

- **OPEN:** if a systems exhibits P then it still exhibits P after ANY small perturbation of its parameters.
- **DENSE**: if a system does not exhibit P then it will exhibit P after SOME small perturbation of its parameters.

$$x_{n+1} = f(x_n)$$

Definition

A phenomenon or property P is **GENERIC OR TYPICAL** if the family of systems that exhibit it contains a countable intersection of OPEN AND DENSE families in $C^0(X)$.

- **OPEN:** if a systems exhibits P then it still exhibits P after ANY small perturbation of its parameters.
- **DENSE**: if a system does not exhibit P then it will exhibit P after SOME small perturbation of its parameters.

$$x_{n+1} = f(x_n)$$

Definition

A phenomenon or property P is **GENERIC OR TYPICAL** if the family of systems that exhibit it contains a countable intersection of OPEN AND DENSE families in $C^0(X)$.

- **OPEN:** if a systems exhibits P then it still exhibits P after ANY small perturbation of its parameters.
- **DENSE**: if a system does not exhibit P then it will exhibit P after SOME small perturbation of its parameters.

- Phenomenon: **INFINITE METRIC ENTROPY:**Infinite velocity in which the expected value of the probabilistic information quantity of the system increases.
- CAN a deterministic system have infinite metric entropy?
 No, if the system is differentiable.
 Yes, if the system is continuous but non differentiable.
- HOW FREQUENTLY a continuous non differentiable system has infinite metric entropy?

Generic maps $f \in C^0(X)$ have ergodic measures μ such that

$$h_{\mu}(f) = +\infty$$

INFINITE METRIC ENTROPY IS GENERIC OR TYPICAL

- Phenomenon: **INFINITE METRIC ENTROPY:**Infinite velocity in which the expected value of the probabilistic information quantity of the system increases.
- CAN a deterministic system have infinite metric entropy?
 No, if the system is differentiable.
 Yes, if the system is continuous but non differentiable.
- HOW FREQUENTLY a continuous non differentiable system has infinite metric entropy?

Generic maps $f \in C^0(X)$ have ergodic measures μ such that

$$h_{\mu}(f) = +\infty$$

INFINITE METRIC ENTROPY IS GENERIC OR TYPICAL

- Phenomenon: **INFINITE METRIC ENTROPY:**Infinite velocity in which the expected value of the probabilistic information quantity of the system increases.
- CAN a deterministic system have infinite metric entropy?
 No, if the system is differentiable.
 Yes, if the system is continuous but non differentiable.
- HOW FREQUENTLY a continuous non differentiable system has infinite metric entropy?

Generic maps $f \in C^0(X)$ have ergodic measures μ such that

$$h_{\mu}(f) = +\infty$$

INFINITE METRIC ENTROPY IS GENERIC OR TYPICAL

- Phenomenon: **INFINITE METRIC ENTROPY:**Infinite velocity in which the expected value of the probabilistic information quantity of the system increases.
- CAN a deterministic system have infinite metric entropy?
 No, if the system is differentiable.
 Yes, if the system is continuous but non differentiable.
- HOW FREQUENTLY a continuous non differentiable system has infinite metric entropy?

Generic maps $f \in C^0(X)$ have ergodic measures μ such that

$$h_{\mu}(f) = +\infty$$

INFINITE METRIC ENTROPY IS GENERIC OR TYPICAL

Route of the proof of Theorem 1.

• In the box $[0,1]^m$: CONSTRUCT a nonempty G_{δ} -family $\mathcal{H} \subset C^0([0,1]^m)$ of continuous maps $h:[0,1]^m \mapsto [0,1]^m$, which we call **MODELS**.

Main Lemma

Any model h has an ergodic measure ν such that $h_{\nu}(h) = +\infty$.

 \bullet In the compact phase space X of finite dimension, for a map $f \in C^0(X)$, DEFINE

PERIODIC SHRINKING BOX $K \subset M$.

Lemma 1

Generic $f \in C^0(X)$ has some periodic shrinking box K.

Lemma 2

Generic $f \in C^0(X)$ has some periodic shrinking box K such that the return map $f^p|_K: K \mapsto \mathrm{int} K$ is conjugated to some model map h.

 \bullet END DE PROOF: Joining Lemma 2 and Main Lemma conclude that generic $f\in C^0(X)$ has an ergodic measure with infinite entropy.

Route of the proof of Theorem 1.

• In the box $[0,1]^m$: CONSTRUCT a nonempty G_{δ} -family $\mathcal{H} \subset C^0([0,1]^m)$ of continuous maps $h:[0,1]^m \mapsto [0,1]^m$, which we call **MODELS**.

Main Lemma

Any model h has an ergodic measure ν such that $h_{\nu}(h) = +\infty$.

 \bullet In the compact phase space X of finite dimension, for a map $f \in C^0(X)$, DEFINE

PERIODIC SHRINKING BOX $K \subset M$.

Lemma 1

Generic $f \in C^0(X)$ has some periodic shrinking box K.

Lemma 2

Generic $f \in C^0(X)$ has some periodic shrinking box K such that the return map $f^p|_K: K \mapsto \mathrm{int} K$ is conjugated to some model map h.

 \bullet END DE PROOF: Joining Lemma 2 and Main Lemma conclude that generic $f\in C^0(X)$ has an ergodic measure with infinite entropy.

Let $f \in C^0(X)$.

Definition

Periodic shrinking box with period p is a compact set $K \subset M$ homeormorphic to $[0,1]^m$, such that

- ullet $K, f(K), \ldots, f^j(K), \ldots, f^{p-1}(K)$ are pairwise disjoint,
- $f^p(K) \subset \operatorname{interior}(K)$,
- $\operatorname{diam}(f^j(K)) < \operatorname{diam}(K)$ for all $j \ge 1$.



Route of the proof of Theorem 1.

• In the box $[0,1]^m$: CONSTRUCT a nonempty G_{δ} -family $\mathcal{H} \subset C^0([0,1]^m)$ of continuous maps $h:[0,1]^m \mapsto [0,1]^m$, which we call **MODELS**.

Main Lemma

Any model h has an ergodic measure ν such that $h_{\nu}(h) = +\infty$.

 \bullet In the compact phase space X of finite dimension, for a map $f \in C^0(X)$, DEFINE

PERIODIC SHRINKING BOX $K \subset M$.

Lemma 1

Generic $f \in C^0(X)$ has some periodic shrinking box K.

Lemma 2

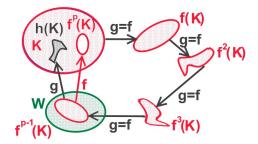
Generic $f \in C^0(X)$ has some periodic shrinking box K such that the return map $f^p|_K: K \mapsto \mathrm{int} K$ is conjugated to some model map h.

 \bullet END DE PROOF: Joining Lemma 2 and Main Lemma conclude that generic $f\in C^0(X)$ has an ergodic measure with infinite entropy.

Lemma 2

For a generic map $f \in C^0(M)$ there exists a periodic shrinking box K such that the return map $f^p|_K$ coincides, up to the conjugacy that transforms K onto the cube $D^m := [0,1]^m$, with a model map $h:D^m \mapsto D^m$.

Proof



Route of the proof of Theorem 1.

• In the box $[0,1]^m$: CONSTRUCT a nonempty G_{δ} -family $\mathcal{H} \subset C^0([0,1]^m)$ of continuous maps $h:[0,1]^m \mapsto [0,1]^m$, which we call **MODELS**.

Main Lemma

Any model h has an ergodic measure ν such that $h_{\nu}(h) = +\infty$.

 \bullet In the compact phase space X of finite dimension, for a map $f \in C^0(X)$, DEFINE

PERIODIC SHRINKING BOX $K \subset M$.

Lemma 1

Generic $f \in C^0(X)$ has some periodic shrinking box K.

Lemma 2

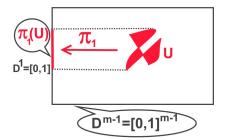
Generic $f \in C^0(X)$ has some periodic shrinking box K such that the return map $f^p|_K: K \mapsto \mathrm{int} K$ is conjugated to some model map h.

• END DE PROOF: Joining Lemma 2 and Main Lemma conclude that generic $f \in C^0(X)$ has an ergodic measure with infinite entropy.

Construction of the MODEL maps in the cube $D^m := [0,1]^m$. Step 1: THE PROJECTION π_1 of D^m onto the interval [0,1]

 $\pi_1:D^m\mapsto D^1:=[0,1]$ is the following **projection**

$$\pi_1(x_1, x_2, \dots, x_{m-1}, x_m) := x_m \in [0, 1].$$



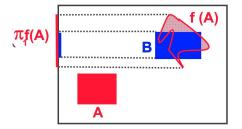
Construction of the MODEL maps in the cube $D^m := [0,1]^m$. Step 2: The $\pi_1 f$ -covering relation between boxes

Let A, B be two boxes in the interior of D^m . Let $f \in C^0(D^m)$.

Definition

A $\pi_1 f$ -covers **B**; $A \rightarrow_{\pi_1 f} B$ if

- $interior(f(A)) \cap B \neq \emptyset$,
- interior $(\pi_1 f(A)) \supset \pi_1 B$.



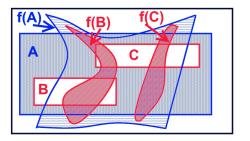
Construction of the MODEL maps in the cube $D^m:=[0,1]^m$. Step 3: ATOMS OF GENERATION 0 and 1.

Let A, B, C be three boxes in the interior of D^m such that

- ullet $B,C\subset \operatorname{interior}(A)$, $B\cap C=\emptyset$,
- $\bullet \ B \to_{\pi_1 f} A, \qquad C \to_{\pi_1 f} A.$

Definition

If so, we call A the atom of generation 0, and B, C the two atoms of generation 1.



REMARK: The above condition is **OPEN** in $C^0(D^m)$. The same boxes A, B, C are also atoms of gen. 0 and 1 resp. $\forall g$ near enough f.

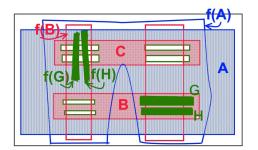
Construction of the MODEL maps in the cube $D^m := [0,1]^m$. Step 5: ATOMS OF GENERATION n

By induction on $n \ge 1$:

- A_n is a finite collection of exactly $2^{n(n+1)/2}$ pairwise disjoint compact boxes such that, for an adequate collection of pairs (B, C) of atoms of gen. n-1, there exists exactly two different boxes in $G, H \in \mathcal{A}_n$ such that
- $G, H \subset \text{int}(B)$ $G \mapsto_{\pi_1 f} C, H \mapsto_{\pi_1 f} C.$

Definition

If so, the boxes of A_n are called the atoms of generation n.



Construction of the MODEL maps in the cube $D^m := [0,1]^m$. Final step: Definition of the MODEL

Definition

We call a map $f \in C^0(D^m)$ a **MODEL** if there exists a sequence

$$\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_n, \ldots$$

of finite collections A_n of pairwise disjoint boxes such that:

- \bullet For all $n \geq 0$, the boxes of \mathcal{A}_n satisfy the definition of being atoms of generation n for f.
- $\lim_{n\to+\infty} \max_{A\in\mathcal{A}n} \operatorname{diam}(A) = 0.$

Main Lemma

If $f \in C^0(D^m)$ is a model then it has an ergodic measure ν such that $h_{\nu}(f) = +\infty$.

Route of the proof.

• DEFINITION: The Λ -set is

$$\Lambda := \bigcap_{n>0} \bigcup_{A \in \mathcal{A}_n} A.$$

- Λ is a Cantor set.
- Λ is f-invariant: $f(\Lambda) = \Lambda$.
- The Borel σ -algebra in Λ is generated by the atoms $A \cap \Lambda$.
- CONSTRUCT the pre-measure ν on Λ :

$$\nu(A \cap \Lambda) = \frac{1}{\# \mathcal{A}_n} = \frac{1}{2^{n(n+1)/2}} \quad \forall A \in \mathcal{A}_n, \ \forall n \ge 0.$$

- \bullet The above pre-measure defines a unique Borel probability measure ν supported on $\Lambda.$
- ν is f-invariant and ergodic.
- Compute the **metric entropy of** ν and check that $h_{\nu}(f) = +\infty$.

Conclusions and further results: • Infinite metric entropy measures do not exist if $f \in C^{\text{Lips}}(M)$ because $h_{top}(f) < +\infty$.

- $h_{top}(f) = +\infty$ for generic $f \in C^0(M)$ (Yano, Inv. Math. 1980).
- \Rightarrow (1): For all K>0 there exists f-invariant μ_K such that $h_{\mu_K}(f)\geq K$.
- (1) $\not\Rightarrow \exists \mu$ such that $h_{\mu}(f) = +\infty$, because the metric entropy function is not upper semi-continuous.
 - $h_{top}(f) = +\infty$ also for generic $f \in C^{\mathsf{H\"{o}lder}}(M)$ (de Faria Hazard Tresser, ArXiv 2017).
- Does Theorem 1 also hold in $C^{\text{H\"older}}(M)$?
- If $dim(M) \ge 2$, does Theorem 1 also hold in Homeo(M)?
- ullet Theorem 1 is false in $\mathsf{Homeo}(M)$ if M is only a compact metric space but not a manifold (Akin-Glasner-Weiss, Trans. AMS, 2008).

THANK YOU!