

Spectral decomposition of piecewise contracting dynamics on the interval

Alfredo Calderón

Centro de Investigación y Modelamiento de Fenómenos Aleatorios Valparaíso, Universidad de Valparaíso, Chile Doctoral Program Consortium PUCV-USM-UV

alfr.calderon@gmail.com

Centro de Investigación y Modelamiento de Fenómenos Aleatorios Valparaíso, Universidad de Valparaíso, Chile pierre.guiraud@uv.cl

Abstract. We study the topological attractors of injective piecewise contracting maps on a compact interval with any finite number $N \ge 2$ of continuity pieces. We prove the existence of a "spectral decomposition" of the attractor into a finite number of transitive components that are either periodic orbits or Cantor sets. In the non-generic case, we prove that some orbits accumulate at both sides of the discontinuities points, and that this phenomenon generates the transitive Cantor sets of the attractor. **Keywords:** Interval map, Piecewise contraction, Minimal Cantor sets. **MSC 2010:** 37E05 – 47H09 – 54H20.

Definitions and Spectral Decomposition Theorem

Let $X \subset \mathbb{R}$ be a compact interval. A map $f: X \to X$ is a piecewise contracting interval map with $N \geq 2$ continuity pieces and contracting rate $\lambda \in (0,1)$ (in short (N,λ) -PCIM) if there exists a pairwise disjoint open subintervals collection X_1, X_2, \ldots, X_N such that

Eleonora Catsigeras

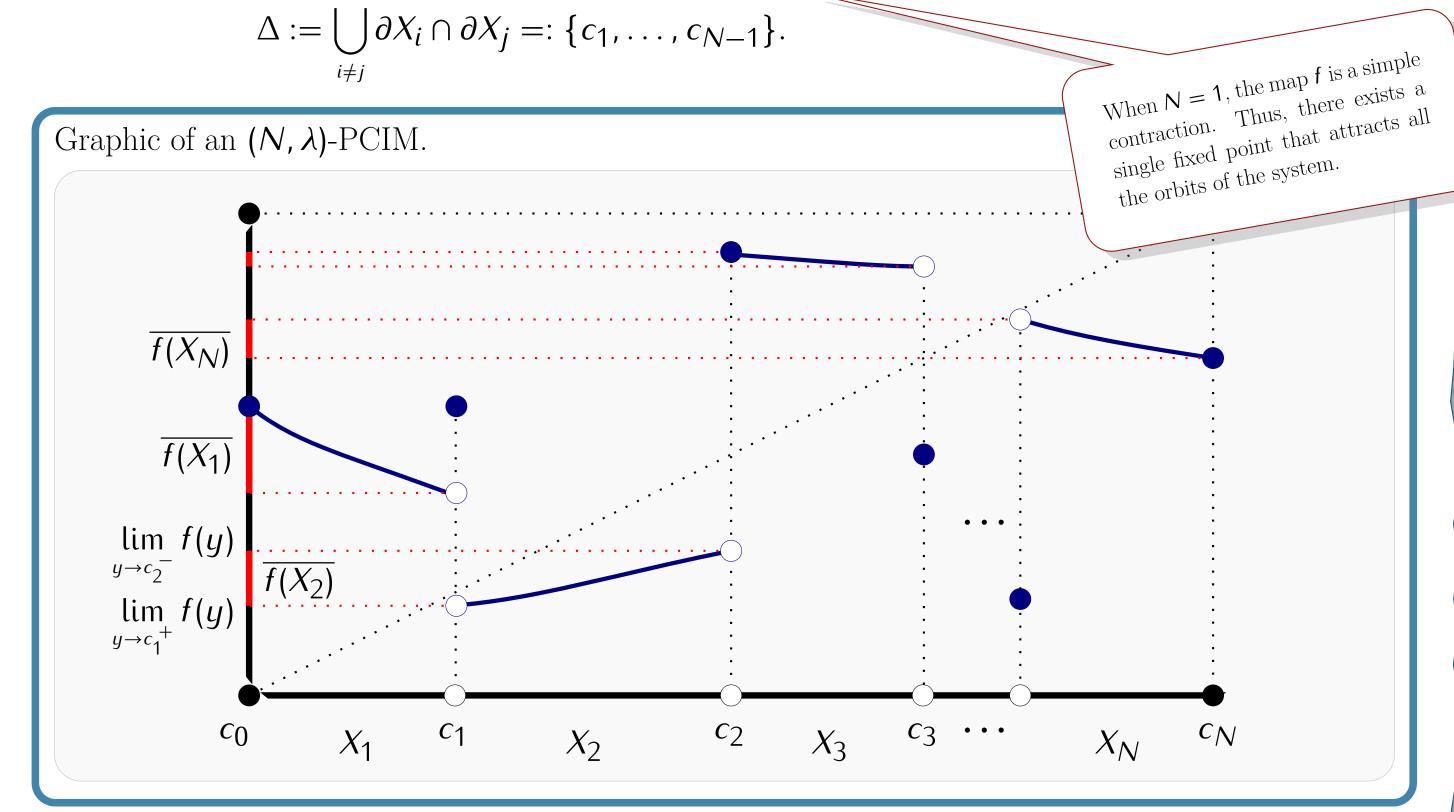
Instituto de Matemática y Estadística Rafael Laguardia,

Universidad de la República, Montevideo, Uruguay

eleonora@fing.edu.uy

$$X = \bigcup_{1 \le i \le N} \overline{X_i} \quad \text{and} \quad |f(x) - f(y)| \le \lambda |x - y| \quad \forall x, y \in X_i, \ \forall i \in \{1, 2, \dots, N\}.$$

Also, the map f is supposed to be discontinuous (with unavoidable discontinuities) at the points of the set



The attractor of f is defined by the following equalities:

$$\Lambda := \bigcap_{n \geq 1} \Lambda_n$$
 where $\Lambda_1 := \overline{f(X \setminus \Delta)}$ and $\Lambda_{n+1} := \overline{f(\Lambda_n \setminus \Delta)}$ $\forall n \geq 1$.

We say that f satisfies the separation property if $f|_{X_i}$ is injective for each i and

$$\overline{f(X_i)} \cap \overline{f(X_i)} = \emptyset \quad \forall i, j \in \{1, \dots, N-1\} : i \neq j.$$

Besides, let D be the set of lateral limits of f at their points of discontinuity, i.e.

$$D := \left\{ \lim_{y \to c_i^-} f(y) : 1 \le i \le N - 1 \right\} \cup \left\{ \lim_{y \to c_i^+} f(y) : 1 \le i \le N - 1 \right\} \cup \left\{ f(c_0), f(c_N) \right\}.$$

We are interested in the orbits that do not intersect the set Δ of discontinuities. In this way, we may disregard how f is defined in Δ . Precisely, we construct the set

$$\widetilde{X} := \bigcap_{n \geq 0} f^{-n}(X \setminus \Delta).$$

We say that $A \subset X$ is pseudo-invariant if for any $x \in A$ we have

$$\lim_{y \to x^{-}} f(y) \in A \quad \text{or} \quad \lim_{y \to x^{+}} f(y) \in A.$$

Note that if $A \subset X$ is pseudo-invariant, then $f(x) \in A$ for any $x \in A \setminus \Delta$ and $A \cap X$ is invariant. The following is the main result of our work:

Theorem (Spectral Decomposition)

Suppose that f satisfies the separation property and $D \subset \widetilde{X}$, then there exist two natural numbers N_1 and N_2 satisfying $1 \le N_1 + N_2 \le 2N$ and such that the attractor Λ of f can be decomposed as follows:

$$\Lambda = \left(\bigcup_{i=1}^{N_1} \mathcal{O}_i\right) \cup \left(\bigcup_{i=1}^{N_2} K_i\right), \qquad \text{If f is piecewise increasing,} \\ \text{then $1 \le N_1 + N_2 \le N$.}$$

where $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_{\mathcal{N}_1} \subset \widetilde{X}$ are pairwise different periodic orbits and $K_1, K_2, \ldots, K_{\mathcal{N}_2}$ are transitive pseudo-invariant Cantor sets of X. Moreover, for any $x \in X$, either there exists $i \in \{1, \ldots, N_1\}$ such that $\omega(x) = \mathcal{O}_i$ or there exists $i \in \{1, \ldots, N_2\}$ such that $\omega(x) = K_i$.

Short state of art

With respect to periodic attractors, if $\Lambda \cap \Delta = \emptyset$ is known that the asymptotic dynamics is supported by a finite number of periodic orbits (this is also valid in higher dimensions – see [2]). Furthermore, it is known that this behavior is Lebesgue-generic and that generically $N_1 \leq N$ (first proved in the injective case [4, 5] and later in the general case [6], always in one dimension).

With respect to non-generic attractors is known that, for the particular case N=2, the ω -limit set of all point is either a periodic orbit or a Cantor set (see [3]).

Our work generalizes in a certain sense these previous results (we use some complexity tools for this type of systems. The complexity of the dynamics has been also studied in [1]).

Orbits classification and route of the proof

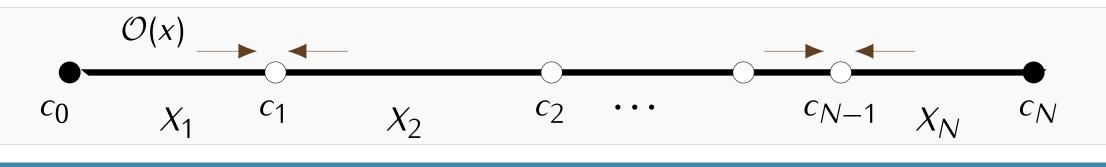
Finally, we say that $c_i \in \Delta$ is left-right recurrently visited by the orbit of $x \in X$, if there exists two strictly increasing sequences $\{t_i\}_{i\geq 0}$ and $\{s_i\}_{i\geq 0}$ of natural numbers such that

$$f^{t_j}(x) \in X_i$$
 and $f^{s_j}(x) \in X_{i+1}$ $\forall j \geq 0$, and $c_i = \lim_{j \to \infty} f^{t_j}(x) = \lim_{j \to \infty} f^{s_j}(x)$.

We denote by $\Delta_{lr}(x) \subset \Delta$ the set of discontinuity points that are lr-recurrently visited by the orbit of x, and define

$$\Delta_{lr} := \bigcup_{x \in \widetilde{X}} \Delta_{lr}(x).$$

Graphic situation of the affirmation: $c_1, c_{N-1} \in \Delta_{lr}(x)$.



Suppose that $f: X \to X$ is a (N, λ) -PCIM that satisfies the separation property and that $D \subset X$.

Lemma 1

The attractor Λ of f can be decomposed as follows:

$$\Lambda = \bigcup_{d \in D} \omega(d). \tag{1}$$

Theorem 2 (periodic ω -limits)

Let $x \in X$ be such that $\Delta_{lr}(x) = \emptyset$, then $\omega(x)$ is a periodic orbit contained in X.

Theorem 3 (Cantor ω -limits)

Let $x \in \widetilde{X}$ be such that $\Delta_{lr}(x) \neq \emptyset$, then $\omega(x)$ is a Cantor set and $\omega(x) = \overline{\mathcal{O}(y)}$ for all $y \in \omega(x) \cap \widetilde{X}$.

Spectral Decomposition Theorem proof. Applying Theorems 2 and 3 to the points of D, we rewrite (1) as follows:

$$\Lambda = \bigcup_{d \in D} \omega(d) = \left(\bigcup_{i=1}^{N_1} \mathcal{O}_i\right) \cup \left(\bigcup_{i=1}^{N_2} K_i\right), \tag{2}$$

where $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_{\mathcal{N}_1} \subset X$ are pairwise different periodic orbits, $K_1, K_2, \ldots, K_{\mathcal{N}_2}$ are transitive pseudo-invariant Cantor sets, and $N_1 + N_2 \le \#D = 2N$. Besides, each periodic orbit \mathcal{O}_i , and each Cantor sets K_i , is the ω -limit set of some point $d \in D$.

Now, let us prove that the ω -limit set of any other point in X also coincides, either with one periodic orbit \mathcal{O}_i , or with one Cantor set K_i . First, recall that the ω -limit set $\omega(x)$ of any point $x \in X$ satisfies $\omega(x) \cap X \neq \emptyset$. Then, there exists $y \in \omega(x) \cap X$. Since $\omega(x) \subset \Lambda$, from Lemma 1 we deduce that there exists $d \in D$ such that $y \in \omega(d)$, so $y \in \omega(x) \cap \omega(d) \cap X$. Besides, $x, d \in X$, so we can apply Theorems 2 and 3 to deduce that both $\omega(x)$ and $\omega(d)$ are transitive sets. Therefore,

$$\overline{\mathcal{O}(y)} = \omega(x) = \omega(d).$$

This proves that $\omega(x)$ coincides with some set of the decomposition (2). We conclude that, for any $x \in X$, either there exists $i \in \{1, \ldots, N_1\}$ such that $\omega(x) = \mathcal{O}_i$, or there exists $i \in \{1, \ldots, N_2\}$ such that $\omega(x) = K_i$, ending the proof.

References

- [1] Catsigeras, E., Guiraud, P. and Meyroneinc, A. (2018). Complexity of injective piecewise contracting interval maps. Ergod. Th. & Dyn. Sys., 1-25.
- [2] Catsigeras, E., Guiraud, P., Meyroneinc, A. and Ugalde, E. (2016). On the asymptotic properties of piecewise contracting maps. Dynamical Systems, **31**(2) 107-135.
- [3] Gambaudo, J.M. and Tresser, C. (1988). On the dynamics of quasi-contractions. Bulletin of the Brazilian Mathematical Society, 19(1) 61-114.
- [4] Nogueira, A. and Pires, B. (2015). Dynamics of piecewise contractions of the interval. Ergod. Th. & Dyn. Sys., 35(7) 2198-2215. [5] Nogueira, A., Pires, B. and Rosales, R.A. (2014). Asymptotically periodic piecewise contractions of the interval. Nonlin-
- earity, **27**(7) 1603-1610. [6] Nogueira, A., Pires, B. and Rosales, R.A. (2016). Topological dynamics of piecewise λ -affine maps. Ergod. Th. & Dyn. Sys., 1-18.

Acknowledgments