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Abstract

We study theoretically the dynamical properties of networks com-
posed by a large number of inhibitory neurons, evolving deterministi-
cally in real time. We consider the first return map F to a Poincaré
section of the phase space and prove that it is piecewise continuous,
locally contractive and has the “separation property”: different con-
tinuity pieces have disjoint images. Then we study the topological
dynamics of any abstract discontinuous map under those hypothesis,
in a real finite dimensional space. We prove that, generically in the
C0 topology, such systems exhibit one and at most a finite number of
persistent periodic sinks attracting all the orbits. We conclude that the
neural inhibitory network exhibits C0-generically a periodic behavior,
with a finite number of limit cycles that persist under small pertur-
bations of its structure and thus, under small changes of the idealized
model itself.

1 Introduction

We are inspired in a mathematical idealized model of inhibitory neural de-
terministic networks. In Section 2 we prove that the dynamical system
defining this model, in a compact subset of R

n and evolving with real time t,
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defines a Poincaré map F with discontinuities, that is uniformly contractive
in each of its continuity pieces, for some well defined adapted metric. Also
we prove that F is locally injective and exhibits what we call the “separation
property”: different continuity pieces have disjoint images. Therefore it is
globally injective.

The results obtained in Section 2 lead to the abstract study of discrete
dynamical systems defined by iterations of piecewise continuous and locally
contractive maps in a real finite dimensional compact space. In particular,
we consider such systems verifying the separation property, and prove in
Section 4 that, generically in the C0 topology, they exhibit one and at most
a finite number of persistent periodic sinks attracting all the orbits.

The results in Sections 3 and 4 of this paper are applicable to a very wide
class of non linear deterministic discontinuous systems, which are mostly
unknown in large (finite) dimensions. For instance they are applicable to
the study of the global dynamics of a network of oscillators with negative
mutual interactions (phase inhibitions). In fact, an abstract neural inhibitory
network can be seen as a system of such interacting oscillators.

We analyze the dynamics of the systems described above in an abstract
and theoretical context, using the tools of the Topological Dynamical Sys-
tems Theory. The arguments and style of the definitions and proofs, mainly
in Sections 3 and 4, are classical in the Dynamical Systems Theory of topo-
logical finite-dimensional manifols, in pure (rather than applied) Mathemat-
ics.

Recently Bruin and Deane [2] have proved that the contractive piecewise
continuous affinities in the plane exhibit periodic behavior, for Lebesgue
almost every value of a finite number of real parameters. In any dimension
n ≥ 2, Céssac [7] has proved a similar theorem, for affine piecewise maps
modeling a discrete neural network.

As a generalization, the topological dynamical systems that we study in
this paper are not affine. As in [2] and [7], our systems have discontinuities
along a set that disconnects the n-dimensional metric space into a finite
number of continuities pieces, whose interiors are pairwise disjoint. The
piecewise continuity and the local contractiveness lead us to obtain the thesis
of persistent periodicity in Lemmas 4.2 and 4.3 of this paper.

On the other hand, the separation property will play a fundamental
role to obtain the thesis of C0- density, and thus genericity, of the periodic
behavior in the Theorem 4.1. We remark that the separation property is also
obtained as a thesis, for a completely connected inhibitory neural network,
as a consequence of the model that we analyze in Section 2.

Nevertheless, the hypothesis of separation is not necessary, under other
assumptions, to obtain periodicity of an abstract piecewise continuous and
locally contractive map. For instance, if each continuous piece is an affinity,
the separation property is not needed [2, 7]. We conjecture that the separa-
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tion property is also unnecessary, if the system is not piecewise-affine but is
piecewise C2 and thus exhibit, in each of its continuity pieces, a property of
bounded distortion in the derivative of any future iterate. (Affine maps, in
particular, have zero distortion in the derivative).

In Section 2 we develop the idealized and abstract model of the neu-
ral deterministic network, from its concrete physical properties, which are
classically assumed in Neuroscience, including the case of integrate and fire
neurons of pacemaker type [12], and relaxation oscillators.

The network is composed with n ≥ 3 neurons, where n is arbitrarily large.
The neurons are reciprocally coupled by inhibitory synapsis. The internal
variable Vi = Vi(t) describing each neuron’s potential, for i = 1, 2 . . . , n
evolves increasingly on time t during the interspike intervals: Vi(t) has posi-
tive first derivative dVi(t)/dt = γi(Vi(t)) > 0 and negative second derivative
d2Vi(t)/dt2 < 0, being the solution of a deterministic autonomous differential
equation ẋ = γi(x) of a wide general type. We do not assume any numeri-
cal values to the parameters of the differential equations, nor any particular
formulae to the real functions γi(V ). We study all of the them in a global
abstract and qualitative theory.

When the potential Vi reaches a given threshold value, the neuron i
produces a spike, and its potential Vi is reset to zero. There are supposed
some idealized conditions: all the neurons are inhibitory, there are no delays
in the spikes, and the network is totally connected.

When the neuron i spikes, not only its potential Vi changes (being reset
to zero), but also (through the synaptical connections) an action potential
makes the other n−1 neurons suddenly change their respective states. Each
spike of the neuron i produces a jump of negative (inhibitory effect) ampli-
tude −Hij < 0 in the potential Vj of the neuron j 6= i.

The instants of spiking are defined by the evolution of the network itself,
and not predetermined by regular intervals of observation of the system. We
analyze the state of the system immediately after each spike, in the sequence
of instants defined in the network by its own dynamics. The state of the
system, after each spike, is a function F of the state after the prior spike.
This function F is the so called Poincaré map, that we compute precisely its
dependence on the given differential equations and the threshold levels.

The iteration of the Poincaré map is not an artificial discretization of the
real time dynamics of the network. On the contrary, the dynamics of F and
its properties (for instance periodicity, chaotic attractors) are equivalent to
those of the system evolving in real time.

In [9] the technique of the first return Poincaré map to a section transver-
sal to the flux was first applied to study neuron networks. In that paper,
an homogeneous network of excitatory coupled pacemakers neurons was an-
alyzed. In [3] the same technique is applied to networks of inhibitory cells,
analyzing the real time dynamics via a discrete Poincaré map F . This map
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is locally contractive and piecewise continuous in a compact set of R
n−1. We

include the proof of these properties in the section 2 of this paper.

In Section 4, we prove Theorem 4.1, which is the main abstract mathe-
matical result:

Locally contractive piecewise continuous maps with the separation prop-
erty generically exhibit only periodic asymptotic behavior, with up to a finite
number of periodic sinks that are persistent under small perturbations of the
map. Generic systems have a topological meaning in this paper: they in-
clude a C0 open and dense family of piecewise continuous systems. The
parameters space is not a real space of finite dimension, but the functional
space of all the piecewise continuous systems that are locally contractive and
have the separation property.

As a consequence we obtain the following applied result:

Generic neuron networks composed by n ≥ 3 inhibitory cells exhibit only
periodic behavior with a finite number of limit cycles that are persistent under
small perturbations of the set of parameter values.

This is a result generalizing the conclusions obtained for two neurons
networks in [4] and [5]. The persistence of the limit cycles implies a strong
result: they persist under small changes of the structure of the system, i.e.
of the model itself.

On the other hand, non generic dynamics are structurable unstable: they
are destroyed if the system is perturbed, even if the perturbation is arbitrar-
ily small. We refer to those as bifurcating systems, and are out of the scope
of this paper.

Even being the mathematical analysis in Sections 3 and 4 of this pa-
per, theoretical and abstract, we observe that its conclusions applied to the
dynamics of the model of neuron networks described in Section 2, fit with
those obtained by experiments in computer simulations with mutually cou-
pled identical neurons in networks of up to 1010 cells, as reported in the
following papers:

In [10] it was observed the transition among different periodic activity,
indicating that the simulation data fit to experimental and clinical observa-
tions. In the computer simulated experiments the alterations of the discharge
patterns, when passing from one periodic cycle to another, arise from changes
of the network parameters, changes in the connectivity between cells, and
also of external modulation.

In [11] the computer simulated experiment shows the dynamics of the
network of a large number of coupled neurons. It was observed to be sig-
nificantly different from the original dynamics of the individual cells: the
system can be driven through different synchronization states.

Our thesis of Theorem 4.1 is only applicable to deterministic systems.
Nevertheless their conclusions also qualitatively fit with computer simula-
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tions of neural systems with randomness [8], [13], which also show the gen-
eration of detectable preferred firing sequences.

2 A mathematical model of the inhibitory neurons

network.

We include the detailed proof of the mathematical translation from a physical
model of n inhibitory pacemaker neurons network, to the dynamics of iter-
ations of a wide class of piecewise continuous contractive maps F : B 7→ B,
locally contractive and with the separation property, as first posed in [3],
and later in [6]. The model is applicable for any finite number n ≥ 3 of
neurons in the inhibitory network.

The phase space of the system is the compact cube Q = [−1, 1]n ⊂ R
n.

A point in the phase space is V = (V1, V2, . . . , Vn), describing the potential
Vi of each of the neurons i ∈ {1, 2, . . . , n}. We assume that the phase space
is normalized: the threshold level of each of the neurons potentials is 1, the
maximum of Vi. Also the minimum Vi is normalized to −1, and the reset
value of Vi, after a spike of the neuron i, is 0.

Definition 2.1 The physical model. The point V in the phase space Q
evolves on time t, during the inter-spike intervals of time, according to an au-
tonomous differential equation and changes without delay in a discontinuous
fashion in the exact spiking instants, according to a reseting-synaptical rule.
The two regimes, during the interspike interval, and in the spiking instants
respectively, are precisely defined according to the following assumptions:

2.1.1 Inter-spike regime. Vi(t) is the solution of a differential equation

dVi

dt
= γi(Vi), γi : [−1, 1] 7→ R, γi ∈ C1,

γi(Vi) > 0, γ′
i(Vi) < 0 ∀Vi ∈ [−1, 1]. (1)

where C1 denotes the space of real functions in [−1, 1], continuous and deriv-
able with continuous derivative in [−1, 1].

The assumption γi > 0 reflects that each neuron potential in the inter-
spike interval is strictly increasing while it does not receive interactions from
the other neurons of the network. This comes from the hypothesis that each
isolated neuron i is of pacemaker type, i.e. from any initial state Vi(0) ∈
[−1, 1), the potential spontaneously reaches the threshold level 1 for some
time t = ti > 0, if no inhibitory synapsis is received in the time interval
[0, ti].

The assumption γ′
i < 0, which we call the dissipative hypothesis, reflects

that the cynetic energy Ec = (1/2)(dVi/dt)2 is decreasing on time while the
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spacial vectorial variable Vi(t) freely evolves during the interspike intervals.
In fact: dEc/dt = (dVi/dt)(d2Vi/dt2) = γi(Vi)γ

′
i(Vi)γi(Vi) < 0.

The most used example of this type of inter-spike evolution is the relax-
ation oscillator model of a pacemaker neuron, for which γi(Vi) = −αiVi + βi

where 0 < αi < βi are constants. For this type of cells the differential
equation (1) is linear, and its solution can be explicitly written:

Vi(t) = (βi/αi) − [(βi/αi) − Vi(0)]exp(−αit).

Nevertheless, we won’t restrict to that example nor to any other example in
the analysis of this paper, but consider the abstract general case given by
equation (1).

We define the flux

Φt(V ) = (Φt
1(V1), ,Φ

t
2(V2) . . . ,Φt

n(Vn))

as the solution with initial state V = (V1, V2, . . . , Vn) of the differential equa-
tions system given by (1). Precisely:

d(Φt
i(Vi))

dt
= γi(Φ

t
i(Vi)) ∀t, Φ0

i (Vi) = Vi (2)

As γi ∈ C1 we can apply the general theory of differential equations to deduce
the following results, as a consequence of the assumptions in (1):

• Two different orbits by the flux do not intersect.

• If B and A are two (n−1)-dimensional topological and connected sub-
manifolds of R

n transversal to the vector field γ = (γ1, . . . , γn), then
the flux transforms homeomorphically any set of initial states in B
onto its image set of final states in A.

• For each constant time t it holds the Louville formula:

d(Φt
i(Vi))

dVi
= exp

∫ t

0
γ′

i(Φ
s
i (Vi)) ds. (3)

2.1.3 Spiking-synaptical regime. For each initial state V ∈ Q the
first spiking instant t(V ) in the network is defined as the first positive time
such that at least one of the neurons of the network reaches the threshold
level 1. This means that

t(V ) = min
1≤i≤n

ti(Vi), where Φt
i(Vi) = 1 ⇔ t = ti(Vi) (4)

J(V ) = {i ∈ {1, 2, . . . , n} : t(V ) = ti(Vi)} (5)

is the set of neurons that reach the threshold level simultaneously at the
instant t(V ). It is standard to prove that for an open and dense set of initial
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states (also a full Lebesgue measure set) there is a single neuron i reaching
the threshold level first, i.e. #J(V ) = 1, J(V ) = {i}.

In the spiking instant t the reseting and inhibitory synaptical interaction
without delay produces an instantaneous discontinuity

σ : Φt(V )(V ) 7→ σ(Φt(V )(V ))

in the state of the system, according to the following formulae:

• If #J(V ) = 1, {i} = J(V ) then Φ
t(V )
i (Vi) = 1, Φ

t(V )
j (Vj) < 1, ∀ j 6= i,

and:

σi = (σi
1, σ

i
2, . . . , σ

i
n), defining:

σi
i(Φ

t(V )(V )) = 0 (spiking-reseting rule) (6)

σi
j(Φ

t(V )(V )) = max {−1, Φ
t(V )
j (Vj) − Hij} ∀ j 6= i

(synaptic rule) (7)

where Hij > 0 is constant, depending only on i, j, and gives the ampli-
tude of the instantaneous negative discontinuity jump −Hij in the po-

tential Φ
t(V )
j (Vj) of the neuron j 6= i, produced through the inhibitory

synaptical connection from neuron i to neuron j.

• If #J(V ) = k ≥ 2, {i1, i2, . . . , ik} = J(V ) then σ is multiply defined,
having k possible vectorial values σi1 , σi2 , . . . , σik , where σih is defined
according to formulae (6) and (7).

We also assume that the network, whose nodes are the cells and whose
sides are the synaptical inhibitory interactions Hij, is a complete bidirec-
tionally connected graph. Precisely:

0 < ǫ0 = min
i6=j

Hij (8)

2.1.5 Relatively large dissipation. We assume the following rela-
tions between the functional parameters γi in the differential equations (1)
governing the dissipative interspike regime, and the real parameters Hi,j in
the formula (7) governing the spiking-synaptical regime.

max
i6=j

Hij <
1

4
(9)

max
i,j

|γi(3/4) − γj(3/4)| <
mini minVi∈[1/4,3/4] |γ

′
i(Vi)|

4
(10)

maxi6=j Hij

mini6=j Hij
− 1 <

mini minVi∈[1/4,3/4] |γ
′
i(Vi)|

4 maxi γi(3/4)
(11)
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Condition (9) assumes that the discontinuity synaptical jumps Hij are
not relatively as large as the widest range [0, 1] of the potential of the cells
when they act as oscillators between the reset value 0 and the threshold level
1, free of synpatical interactions.

The hypothesis (10) and (11) verify for instance for homogeneous net-
works in which all the functions γi and all the synaptic interactions Hij are
constant independent of the neurons i, j. But as they are open conditions,
they also verify if the network is not homogeneous but the neurons and the
synaptical jumps are not very different. Finally they also verify for networks
that are very heterogeneous, but the dissipative parameter of the system
mini minVi∈[1/4,3/4] |γ

′
i(Vi)| is large enough.

The assumptions above can be also possed for some number 0 < a < 1/2
instead of 1/4 in the inequality (9), and 2/(1−2a) instead of the denominator
4, in the inequalities (10), (11) . Nevertheless, and without loss of generality,
in the computations of this work we will take the assumptions above with
a = 1/4 for simplicity of the numerical bounds.

2.2 Comments about the physical model.

The hypothesis (9), (10) and (11) will allow us to prove the so called
separation property in Theorem 2.9 in this paper. This property will be
used to prove the density of the family of systems which exhibit a limit set
formed only by a finite number of limit cycles. This denseness leads to the
topological genericity of such systems. The key difficult step is due to the
non linearities of the system: the Poincaré map, that will be defined in the
subsection 2.3.3, is not piecewise affine.

We observe that the assumptions in (1), (6) and (7) are more general
that what they a priori seem. In fact, if instead of the variables Vi which
describe the electric potentials of each of the neurons, we used other equiv-
alent variables, the vector field γ of the differential equation (1), and the
synaptical vectorial interaction σ given by (6) and (7), would have other
coordinate expressions.

For instance, each isolated cell i acts as an oscilator, whose potential Vi

varies in the interval [0, 1]. We can diffeomorphically change the variable
Vi to a new one V̂i ∈ [0, 1], called the phase of the oscilator, which by
definition, evolves linearly with the time t, during a time constant τi. In the
new variables the differential equation governing the phase state V̂i will be
dV̂i/dt = 1/τi and the flux will be linear in Q.

In [3] it is developed the model in such phase variables V̂i for which the
flux is linear, and the synaptical inhibitory interactions −si,j < 0 depend on

the phase state V̂j . In a widest model the functions si,j(V̂j) are continuous
but not necessarily differentiable.

In resume, up to a change of variables, the model assumed in this paper in
hypothesis (1), (6) and (7), includes for instance the model in [3] in which the
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flux is linear during the interspike interval regime, and the synaptic jumps in
the spiking instants adequately depend of the phase Vj of the postsynaptic
neuron.

Definition 2.3 The Mathematical Model. In this subsection we will
define a Poincaré section B ⊂ Q of the dynamical system modeling physically
the network of n inhibitory neurons defined in 2.1. We shall define the
first return Poincaré map F : B 7→ B. We will prove that this map is
piecewise continuous, locally contractive and has the separation property.
These properties justify the Definition 2.14, at the end of this section, in
which we will model and analyze this kind of inhibitory neuron networks
through the abstract mathematical discrete dynamical system defined by
the iterates of its Poincaré map F .

2.3.1. The Poincaré section B. Let B ⊂ Q = [−1, 1]n be the compact
(n − 1)-dimensional set defined as follows:

B =

n⋃

k=1

B̂k where B̂k = {V ∈ Q : Vk = 0} (12)

The topology in B is defined in each B̂k as the induced by its inclusion in
the (n− 1) dimensional subspace {Vk = 0} of R

n. Each B̂k is transversal to
the flux defined in 2.1.2 solution of the system of differential equations (1),
because the vector field γ in the second term of this differential equations
has all its components strictly positive.

After each spike, the state of the system is in B, due to the reset rule
in equality (6). So the system returns infinitely many times to B from any
initial state V ∈ Q.

2.3.2. The partition in continuity pieces. Recalling the definition
of the spiking instant t(V ) in equalities (4), and the definition of the set J(V )
of all the neurons that reach the threshold level at time t(V ), in equality
(5), we define the following subset Bi of the Poincaré section B, for any
i = 1, 2 . . . , n:

Bi = {V ∈ B : i ∈ J(V )} = {V ∈ B : t(V ) = ti(Vi)} (13)

In other words, the set Bi is formed by all the initial states V in the Poincaré
section B such that the neuron i reaches the threshold level before or at the
same instant than all the other neurons of the network, from the initial state
V .

From the implicit equation at right of formulae (4), we deduce that Bi is
compact, and that its interior int(Bi) is formed by all the initial states for
which ti(Vi) < tj(Vj) for all j 6= i. Then int(Bi)

⋂
int(Bj) = ∅ ∀ i 6= j.

As the flux is strictly increasing inside Q, from any initial state V ∈ B
there exists a finite time t(V ) defined by equalities (4). Therefore V ∈ Bi
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for some not necessarily unique i ∈ {1, 2, . . . , n}. Then B =
⋃n

i=1 Bi and
the family of subsets {Bi}

n
i=1 is a topological finite partition of B (i.e. it

is a covering of B with a finite number of compact sets whose interiors are
pairwise disjoint.)

The compact sets Bi are called continuity pieces.
We define the separation line S of the partition {Bi}

n
i=1, or line of dis-

continuities, as the union of the topological frontiers ∂Bi of its subsets Bi.
Precisely:

S =
n⋃

i=1

∂Bi =
⋃

i6=j

(Bi ∩ Bj) = B \

(
n⋃

i=1

intBi

)
(14)

2.3.3. The first return Poincaré map F .
The first return map F : B 7→ B to the Poincaré section B =

⋃n
i=1 Bi is

the finite collection of maps fi : Bi 7→ B defined as

fi(V ) = σi(Φt(V )(V )) ∀V ∈ Bi

where Φ is the solution flux defined in 2.1.2 of the system of differential
equations (1), t(V ) is the spiking instant defined by equalities (4) and σi is
the synaptic vectorial map defined in 2.1.4.

Remark: For simplicity we denote F |Bi
= fi and, when it is previously

clear that V ∈ Bi, we simply denote F to refer to the uniquely well defined
map fi.

We observe that F is uniquely defined in
⋃n

i=1 intBi, and multi-defined
in the separation line S.

Applying the formulae (4), (6) and (7), we deduce:

F |Bi
(V ) = fi(V ) = ((fi)1, (fi)2, . . . , (fi)n) ∀V ∈ Bi where

(F |Bi
)i(V ) = (fi)i(V ) = 0 = max {−1, Φ

ti(Vi)
i (Vi) − Hii}

(F |Bi
)j(V ) = (fi)j(V ) = max {−1, Φ

ti(Vi)
j (Vj) − Hij} ∀ j (15)

where by convenience we agree to define Hii = +1, recalling that Φ
ti(Vi)
i (Vi) =

+1.
The formula (15) implies that fi = F |Bi

: Bi 7→ B is continuous, and, as
Bi is compact, then fi(Bi) is also compact.

The formula (15) changes when one passes from Bi to Bh with i 6= h, so
F is multidefined in the points of S =

⋃
i6=h(Bi ∩ Bh). Besides F may be

discontinuous in V 0 ∈ Bi ∩ Bh because limV ∈intBi,V →V 0 F (V ) = fi(V
0) is

not necessarily equal to limV ∈intBh,V →V 0 F (V ) = fh(V 0).

Remark 2.3.4: We agree to define the image set F (V ) of a point
V ∈ B as {fi(V ) : i such that V ∈ Bi}. The image set F (V ) is a single
point if V ∈ int(Bi) because intBi does not intersect Bj for j 6= i. The
image set F (A) of a set A ⊂ B is by definition F (A) =

⋃
V ∈A F (V ).
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We define the positive reduced Poincaré section subset B+ ⊂ B as:

B+ = {V ∈ B : 0 ≤ Vi ≤ 1 − ǫ0 ∀ i = 1, 2, . . . , n} (16)

where ǫ0 > 0 is the minimum of the absolute values of the synaptic interac-
tions Hij for i 6= j, as assumed in 2.1.4, equality (8). Also, by hypothesis
(9) we have

0 < ǫ0 <
1

4
,

3

4
< 1 − ǫ0 < 1 (17)

The dynamics properties of F restricted to the positive Poincaré section
B+, (which will justify the restriction to B+), will be stated and proved in
Theorems 2.4, 2.7, 2.9 and 2.11.

We define B+
i = B+ ∩ Bi, where B+ is the positive reduced Poincaré

section defined in Equality (16), and Bi are the continuity pieces of the
Poincaré map F , defined in Equality (13).

Theorem 2.4 . The return map to the positive Poincaré section
The positive reduced Poincaré section B+ ⊂ B defined in (16), is forward

invariant by the Poincaré map F |B+ : B+ 7→ B+, and it is reached from any
initial state in B. Even more,
F (B+) ⊂

⋃n
i=1 {V ∈ B : Vi = 0, 0 < Vj ≤ 1 − ǫ0 ∀ j 6= i} ⊂ B+, and

there exists p ≥ 1 such that F p(B) ⊂ B+.
(Recall that the constant ǫ0 > 0 defined in Equality (8) verifies the

hypothesis (17).)

To prove Theorem 2.4 we will use the following lemma:

Lemma 2.5 There exists a constant positive minimum time T

T =
ǫ0

maxk γk(3/4)
> 0

such that, if V ∈ B verifies Vi ≤ 1 − ǫ0 ∀ 1 ≤ i ≤ n, then the interspike
interval t(V ) ≥ T .

Proof: According to the formula (4): t(V ) = mini ti(Vi) where t =
ti(Vi) is the solution of the implicit equation Φt

i(Vi) = 1. We integrate the
differential equation (1) with initial condition Vi, and recall that γi(Vi) >
0, while the real solution Φs

i (Vi) ≤ 1 is strictly increasing with s (for Vi

constant) and it is the solution of an autonomous differential equation. Using
the hypothesis Vi ≤ 1 − ǫ0, and applying the inequality (17), we obtain:

Φt
i(Vi) = Vi +

∫ t

0

dΦs
i (Vi)

ds
ds = Vi +

∫ t

0
γi(Φ

s
i (Vi)) ds (18)

1 = Φ
ti(Vi)
i = Φ

ti(Vi)−ti(Vi)

i

(
Φti(Vi)(Vi)

)
= Φ

ti(Vi)−ti(Vi)

i (1 − ǫ0)
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1 = 1 − ǫ0 +

∫ ti(Vi)−ti(Vi)

0
γi(Φ

s
i (1 − ǫ0)) ds

where 0 ≤ ti(Vi) < ti(Vi) and Φti(Vi)(Vi) = 1− ǫ0, being ti(Vi) the time that
takes the flux Φt

i(Vi) to be equal to 1 − ǫ0 from the initial state Vi ≤ 1 − ǫ0.
Recall that γi(Vi) > 0 is strictly decreasing with Vi:

γi(Φ
s
i (1 − ǫ0)) ≤ γi(Φ

0
i (1 − ǫ0)) = γi(1 − ǫ0) < γi(3/4) ∀s ≥ 0

1 ≤ 1 − ǫ0 +

∫ ti(Vi)−ti(Vi)

0
γi(3/4) ds

ǫ0 ≤ γi(3/4) [ti(Vi) − ti(Vi)] ≤ γi(3/4) ti(Vi)

⇒ ti(Vi) ≥ T =
ǫ0

maxk γk(3/4)
∀ i, ⇒ t(V ) = min

i
ti(Vi) ≥ T. �

Proof of Theorem 2.4: It is enough to prove the following two asser-
tions:

Assertion 2.4.A: Fj(V ) ≤ 1 − ǫ0 ∀V ∈ B (even if V 6∈ B+), ∀ j =
1, 2 . . . , n.

Assertion 2.4.B: There exists a constant ǫ1 > 0 such that for all V ∈ Bi,
if Fj(V ) ≤ 0 for some j 6= i, then Fj(V ) − Vj ≥ ǫ1.

Note that the assertion 2.4.B states its thesis in particular if V 6∈ B+,
and also if V ∈ B+ and Vj = 0.

Recall that from the formulae (15) of the Poincaré map F : Fi(V ) = 0
for all V ∈ Bi. Observe that, being Vj ≥ −1 for all V ∈ B, from the
Assertion 2.4.B we deduce that the first number p ≥ 1 of iterates of F such
that F p(B) ⊂ B+ is at most equal to 1 + Integer-Part(1/ǫ1).

To prove the Assertion 2.4.A, apply the formulae (15) of the return
Poincaré map F , and recall the assumptions (8), (9). If V ∈ Bi then

Fi(V ) = 0, Fj(V ) = max{−1, Φ
t(V )
j (Vj) − Hij} ≤ 1 − min

i6=j
Hij = 1 − ǫ0

(19)
To prove the Assertion 2.4.B, fix V ∈ Bi such that, for some j 6= i

Fj(V ) ≤ 0 (20)

Use the formulae (19). We assert that

Φ
t(V )
j (Vj) <

1

4
(21)

In fact, if it were equal or larger than 1/4, as Hij < 1/4 due to hypothesis (9),
the formulae (19) would imply that Fj(Vj) > 0 contradicting our hypothesis
(20).
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Due to the hypothesis of the differential equation (1), the function γj(Vj)
is strictly decreasing with Vj, and the flux Φt

j is strictly increasing with t.
Use the integrate expression (18) of the differential equation, to compute

Φ
t(V )
j (Vj), the inequality (21) and the Lemma 2.5, to deduce:

0 ≤ s ≤ t(V ) ⇒ Vj ≤ Φs
j(Vj) ≤ Φ

t(V )
j (Vj) <

1

4
⇒ γj(Φ

s
j(Vj)) > γj(1/4)

⇒

∫ t(V )

0
γj(Φ

s
j(Vj)) ds > γj(1/4) · t(V ) ≥ min

k
γk(1/4) ·T =

mink γk(1/4) ǫ0

maxk γk(3/4)

Recalling the integral equation (18) and the formula (19) of the return
map F , we deduce:

Fj(V ) − Vj ≥ Φt(V )(Vj) − Vj − Hij =

∫ t(V )

0
γj(Φ

s
j(Vj))j ds − Hij

Fj(V ) − Vj ≥ ǫ0

(
mink γk(1/4)

maxk γk(3/4)
−

maxi6=j Hij

ǫ0

)
= ǫ1

To end the proof it is enough to show that ǫ1 > 0. Recall from equality
(8) that ǫ0 = mini6=j Hij > 0

ǫ1

ǫ0
=

mink γk(1/4)

maxk γk(3/4)
−

maxi6=j Hij

mini6=j Hij
=

=
mink γk(1/4) − maxk γk(3/4)

maxk γk(3/4)
−

(
maxi6=j Hij

mini6=j Hij
− 1

)

ǫ1

ǫ0
=

γh(1/4) − γh(3/4) + γh(3/4) − γk(3/4)

maxk γk(3/4)
−

(
maxi6=j Hij

mini6=j Hij
− 1

)

where we have taken h and k such that γh(1/4) = mink γk(1/4), γk(3/4) =
maxk γk(3/4).

ǫ1

ǫ0
≥

γh(1/4) − γh(3/4) − |γh(3/4) − γk(3/4)|

maxk γk(3/4)
−

(
maxi6=j Hij

mini6=j Hij
− 1

)

ǫ1

ǫ0
≥

γh(1/4) − γh(3/4) − maxh 6=k |γh(3/4) − γk(3/4)|

maxk γk(3/4)
−

(
maxi6=j Hij

mini6=j Hij
− 1

)

Applying the mean value theorem of the derivative of γh, which is negative
due to the dissipation hypothesis of the differential equation in assumption
(1), we obtain

γh(1/4) − γh(3/4) =

(
3

4
−

1

4

)
· (−γ′

h(χ))
∣∣
χ∈[1/4,3/4]

≥

≥
mini minVi∈[1/4,3/4] |γ

′
i(Vi)|

2
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The last inequalities and the assumptions (10) and (11) of relative large
dissipativity, imply:

ǫ1

ǫ0
>

mini minVi∈[1/4,3/4] |γ
′
i(Vi)|

maxk γk(3/4)

(
1

2
−

1

4
−

1

4

)
= 0 �

Remark 2.6 Formula of the Poincaré map in B+.

As a consequence of Theorem 2.4, from now on we will restrict the
Poincaré map F to the positive section B+. In fact, from the statements of
Theorem 2.4 it is deduced that the forward dynamics and the limit set of
the orbits to the future, of the restricted F , will be the same as those of F
in the whole Poincaré section B.

Due to Theorem 2.4 if V ∈ B+ then F (V ) ⊂ B+. Therefore

(F |B+

i
)j(V ) ≥ 0 ∀ i, j. Using the formula (15) we can rewrite the expression

of the Poincaré map:

F |B+

i
(V ) = fi(V ) = ((fi)1, (fi)2, . . . , (fi)n) ∀V ∈ B+

i where

(F |B+

i
)i(V ) = (fi)i(V ) = 0 = Φ

ti(Vi)
i (Vi) − Hii

(F |B+

i
)j(V ) = (fi)j(V ) = Φ

ti(Vi)
j (Vj) − Hij ∀ j (22)

Theorem 2.7 Local injectiveness of the Poincaré map.

The Poincaré map F defined in formulae (22), restricted to each of its
positive continuity pieces B+

i defined in 2.3.7, is injective.

Proof: Fix a continuity piece B+
i of F in the positive Poincaré section B+.

The piece B+
i will remain fixed along this proof. Therefore we will denote

F instead of fi.

Take V,W ∈ B+
i .such that F (V ) = F (W ) ∈ B+. We must prove that

V = W .

Due to the formulas (22) of the Poincaré map: Fi(V ) = Fi(W ) = 0 and

Fj(V ) = Φ
t(V )
j (Vj) + Hij = Φ

t(W )
j (Wj) + Hij = Fj(W ) ∀ j

As Hij is constant, we deduce that

Φ
t(V )
j (Vj) = Φ

t(W )
j (Wj) ∀ j

Therefore the vectorial flux Φt(V ) ∈ Q = [−1, 1]n defines an orbit from
the initial V ∈ B+ that intersects the orbit from the initial state W ∈ B+.
Two different orbits of the flux do not intersect. Then, the two orbits are
the same. If necessary changing the roles of V and W , we deduce that

Φt0(V ) = W for some t0 ≥ 0.
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Recall that B+ ⊂ B, so V has at least one component Vk = 0, and none
of them is negative (recall (12) and (16)). But Φt

j is the strictly increasing
in time solution of the differential equation dΦt

j/dt = γj(Φ
t
j), with γj > 0

for all j.
We deduce that if V ∈ B+, and if Φt0(V ) = W for t0 > 0, then Wj >

0 ∀ j, and therefore W 6∈ B+. As we know that W ∈ B+ and t0 ≥ 0, we
conclude that t0 = 0, and then W = Φt0(V ) = Φ0(V ) = V. �

Definition 2.8 The Separation Property. We say that F verifies the
separation property if

fi(B
+
i ) ∩ fj(B

+
j ) = ∅ ∀i 6= j

where {B+
i }, i = 1, 2, . . . , n, are the continuity pieces of F in the positive

Poincaré section B+, as defined in 2.3.7., and fi is the continuous expression
of F |B+

i
according to the formulae (22).

Note that B+
i is compact for all i, and F is continuous in each B+

i .
Therefore the image F (B+

i ) is a compact set. Then, the separation property
implies that there exists a minimum positive distance α > 0 between the
images by F of two different continuities pieces.

Theorem 2.9 The Poincaré map F verifies the separation property.

Proof: Take B+
i and B+

j with i 6= j. The formulae (22) of the Poincaré

map F |B+ : B+ ⊂ B 7→ B and the Theorem 2.4 imply that

∀ V ∈ B+
i : (fi)i(V ) = 0, (fi)j(V ) > 0 ∀ j 6= i

∀ W ∈ B+
j : (fj)j(V ) = 0, (fj)i(V ) > 0 ∀ i 6= j

Then fi(B
+
i )
⋂

fj(B
+
j ) = ∅. �

Remark 2.10 Global injectiveness of the Poincaré map.
From Theorems 2.7 and 2.9 it is deduced that the Poincaré map F is

globally injective in B+. In fact, if V 6= W are in the same continuity piece
B+

i , then fi(V ) 6= fi(W ) because F |B+

i
= fi is injective. And if V 6= W

respectively belong to two different continuity pieces B+
i and B+

j for i 6= j,

then fi(V ) 6= fj(W ) because fi(B
+
i ) ∩ fj(B

+
j ) = ∅, due to the separation

property. We deduce that if V 6= W then F (V )
⋂

F (W ) = ∅, where the
image set F (V ) of a point is defined in the Remark 2.3.4.

Theorem 2.11 Local contractiveness.
The Poincaré map F |B+

i
is uniformly contractive, but not infinitely con-

tractive, in each of its continuity pieces B+
i . Precisely, there exist two con-

stant real numbers 0 < σ < λ < 1 and a distance dist in the positive Poincaré
section B+ =

⋃
B+

i , such that, for all i = 1, 2, . . . , n:

σdist(V,W ) ≤ dist(fi(V ), fi(W )) ≤ λdist(V,W ) ∀V,W ∈ B+
i
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where fi : B+
i 7→ B+ is the continuous restriction of F to B+

i , according
with formulae (22).

Remark: The distance dist of Theorem 2.11 induces the same topology in
B+ as a subset of R

n−1 ⊂ R
n. In fact, along the proof of the Theorem 2.11

we will construct a linear projection π : R
n 7→ R

n−1 and a diffeomorphism
ξ : R

n 7→ R
n of C1 class, such that:

dist(V, V + dV ) = ‖π(dξdV )‖ where ‖ · ‖ is a norm in R
n.

Proof of the Theorem 2.11:
The continuity piece B+

i is fixed. For simplicity of the notation, along
this proof we will use simply F to denote fi.

The existence of the distance dist and the contraction rate λ is proved
in the Theorem 3 of [6]. For a seek of completeness we include here some
pieces of the proof of [6], adding to them the existence of the lower bound
contraction rate 0 < σ < 1, σ < λ.

Due to the Tubular Flux Theorem there exists a C1 diffeomorphism which
is a spatial change of variables ξ : V 7→ V̆ from Q ⊂ R

n onto Q̆ ⊂ R
n, such

that ξ|B+ = id and the solutions of the differential equation (1) in Q verify

dV̆ /dt = ~a

in Q̆, where ~a ∈ R
n is a constant vector with positive components. It verifies:

ξ(φt(V )) = ξ(V ) + ~a · t, dξ · γ(V ) = ~a ∀V ∈ Q

Define in R
n the ortogonal projection π onto the (n − 1)-dimensional

subspace
a1V̆1 + a2V̆2 + . . . + anV̆n = 0

The flux of the differential equation (1), after the change ξ of variables in the
space, is ortogonal to that subspace, and is transversal to ξ(B+) = B̆+ = B+

(recall that ξ|B+ is the identity map).
Consider any real function g : R

(n−1) 7→ R:

∀ V̆ , V̆ + dV̆ ∈ R
n : π(dV̆ ) = π(dV̆ + g(V̆ ) · ~a).

∀V, V + dV, U ∈ B̆k, define dist(V, V + dV ) = ‖π(dξ dV )‖

dist(V,U) =

∫ 1

0
‖π(dξV +t(U−V ) · (U − V )‖ dt (23)

It is left to prove that fi : B+
i 7→ B+ is contractive with this distance.

Let us apply fi to V and V + dV in ∈ B+
i . We use the equalities (22).

We shall use the Liouville derivation formula of the flux of the differential
equation respect to its initial state, with constant real time t:

dΦt
j/dVj = exp

(∫ t
0γ′

j (Φs
j(Vj)) ds)

)
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Define:

−α = max
j

max
Vj∈[−1,1]

γ′
j(Vj) < 0, −α∗ = min

j
min

Vj∈[−1,1]
γ′

j(Vj) < 0

Use the Lemma 2.5 to bound uniformly above zero the inter-spike intervals
t(V ):

0 < T ≤ t(V )

Recall that t(V ) is the solution of the C1 implicit equation Φt(Vi)(Vi) = 1.
Then t(V ) is a continuous real function of V ∈ B+, and B+ is a compact
set. So, t(V ) is also upper bounded by a constant:

t(V ) ≤ T ∗

Derive the formulae (22) to obtain:

F (V + dV ) − F (V ) = dF · dV = [(∂Fj/∂Vj)dVj + (∂Fj/∂Vi)dVi]1≤j≤n

∂Fj/∂Vj = (dΦt
j(Vj)/dVj)

∣∣
t=t(V )

=

= exp

(∫ t(V )

0
γ′

j(Φ
s
j(Vj)) ds)

)

∈ [e−α∗T ∗

, e−αT ] (24)

∂Fj/∂Vi = (dΦt
j(Vj)/dt)

∣∣
t=t(V )

· (dti(Vi)/dVi)g(V ) · γj(Φ
t(V )
j (Vj))

where g(V ) = dti(Vi)/dVi is the real function obtained deriving respect to

Vi the implicit equation given in (4): 1 = Φ
ti(Vi)
i (Vi). Call ~ej to the j−th.

vector of the canonic base in R
n and join all the results above:

π · dξ (F (V + dV ) − F (V )) = π · dξ · dF · dV =

= π · dξ
(∑n

j=1(∂Fj/∂Vj) · dVj~ej

)
+ π · dξ(g(V ) · γ(Φt(V )(V )) =

= π · dξ
(∑n

j=1(∂Fj/∂Vj) · dVj ~ej

)
+ g(V ) · π · dξ · γ(Φt(V )(V ))) =

= π · dξ
(∑n

j=1(∂Fj/∂Vj) · dVj ~ej

)
+ g(V ) · π(~a) =

= π · dξ
(∑n

j=1(∂Fj/∂Vj) · dVj ~ej

)
(25)

We define the numbers σ and λ: 0 < σ = e−α∗T ∗

< e−αT = λ < 1 and
observe from the computations in (24) that:

0 < σ = e−α∗T ∗

≤ ∂Fj/∂Vj ≤ e−αT = λ < 1
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Applying the definition of the differential distance in (23), and the equality
(25), we obtain:

dist(F (V ), F (V + dV )) = ‖π(dξ · dF · dV )‖ ≤

≤ λ ‖π(dξ · dV )‖ = λdist(V, V + dV )

dist(F (V ), F (V + dV )) = ‖π(dξ · dF · dV )‖ ≥

≥ σ ‖π(dξ · dV )‖ = σ dist(V, V + dV )

By integration of the formula (23) we conclude:

σ dist(V,U) ≤ dist(F (V ), F (U)) ≤ λdist(V,U) �

Remark 2.12 Local homeomorphic property of the Poincaré map.

Each continuity piece fi of the Poincaré map in B+
i is an homeomor-

phism onto its image.

It is an immediate consequence of Theorem 2.11 and the global injective-
ness of F : the continuous restriction fi = F |B+

i
, is Lipschitz with constant

λ < 1 and its inverse (defined from fi(Bi) 7→ Bi) is also Lipschitz with
constant 1/σ > 1. Then fi is an homeomorphism onto its image. �

In the following corollary we resume all the conclusions of this section:

Corollary 2.13 If the network of n inhibitory neurons verifies the assump-
tions of the physical model, evolving with real time t in the phase space
Q ⊂ R

n as stated in (1), (6), (7), (8), (9), (10) and (11), then there exists
a Poincaré section B+ and a return map F : B+ 7→ B+, with the following
properties:

a) F is piecewise continuous. Precisely: there exists a finite partition
{B+

i }1≤i≤n of the Poincaré section B+, formed by compact sets B+
i ⊂ B+

with pairwise disjoint interiors, and there exist n continuous maps fi : B+
i 7→

B+, being F (V ) = {fi(V ) : i such that V ∈ B+
i } for all V ∈ B+. As a

consequence F is uniquely defined as fi in the interior of its continuity piece
Bi, and multi-defined as fi, fj in Bi ∩ Bj, if i 6= j.

b) F is locally uniformly contractive and not infinitely contractive, i.e.
for some metric dist in B+ the exist constants 0 < σ < λ < 1 such that for all
1 ≤ i ≤ n: σdist(V,W ) ≤ dist(fi(V ), fi(W )) ≤ λdist(V,W ) ∀V,W ∈ B+

i .

c) F has the separation property, i.e. fi(B
+
i ) ∩ fj(B

+
j ) = ∅ if i 6= j.

Therefore, there exists 0 < α = mini6=j dist(fi(B
+
i ), fj(B

+
j )).

Note that from b) and c), it is deduced that F is globally injective in
B+, as proved in Remark 2.10. Also from b) it is deduced that fi : B+

i 7→
fi(B

+
i ) ⊂ B+ is an homeomorphism onto its image, as proved in the remark

2.12.
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Due to Corollary 2.13, all the general results that we will prove for ab-
stract piecewise continuous maps F verifying a), b), c), are applicable to
the networks of inhibitory neurons in the assumptions of the physical model
stated in 2.1. Nevertheless the reciprocal of the Corollary 2.13 does not hold.
Given a map F verifying a), b), c) there does not necessarily exist a network
of inhibitory neurons in the hypothesis of the physical model stated in 2.1
for which F is its first return Poincaré map.

We wide the scenario of possible models of inhibitory neuronal networks.
In fact, the properties a), b) c) are open (in the uniform C0 + Lipschitz
topology of the finite family of maps fi). Thus they are not only verified
by systems for which the differential equations (1) are independent in the
n variables Vi, but also if the system is of the form dV/dt = γ∗(V ), where
γ∗ : R

n 7→ R
n is a C1 vector field, near enough the given γ = (γ1, γ2, . . . , γn),

even if γ∗ does not verify all the hypothesis stated in the Definition (2.1).
Also the matrix (Hi,j)i,j of synaptic interactions in the network can be

substituted for any matrix (H∗
i,j)i,j(V ), not necessarily constant, but func-

tions near the constant matrix (Hi,j)i,j and so, still verifying the assumptions
(8), (9), (10), (11). Therefore, without changing the synaptical rules in equa-
tions (6) and (7), but allowing the synaptic interactions slightly depend of
the postsynaptic potentials, we will obtain a Poincaré map F still verifying
the thesis a), b), c) of the Corollary 2.13.

Besides, as observed in the subsection 2.2, the physical model includes
looser hypothesis than those specified in 2.1, modulus any differentiable
change of the variables of the system. So, also in those models the properties
a), b), c) are verified by an open family of systems.

Finally, the properties a) b) c) of the Corollary 2.13 are verified by many
other models, in which the interspike regime is stated as a dynamical sys-
tem depending continuously on time t and on the initial state V , but not
necessarily as regular as to verify a differential equation. The dynamics of
the potential Vi in the inter-spike interval may be given by a flux Φt

i(Vi)
defined continuously in time t, strictly increasing on t, continuous but not
necessarily differentiable respect to t nor to the initial state.

The arguments above inspire to wide the abstract mathematical model
of a network of n inhibitory neurons, according to the following definition:

Definition 2.14 The Abstract Mathematical Model. We say that a
map F : B+ 7→ B+, in a set B+ homeomorphic to a compact ball of R

n−1,
models a generalized network of n inhibitory neurons if it verifies the state-
ments a), b), c) of the Corollary 2.13.

3 The abstract dynamical system.

Let B ⊂ R
n be a compact set, homeomorphic to a compact ball of R

n−1. In
particular Bi is connected.
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Definition 3.1 A finite partition of B is a finite collection {Bi}1≤i≤m of
compact non empty sets Bi ⊂ B, such that

⋃
1≤i≤m Bi = B and int Bi ∩

int Bj = ∅, for i 6= j.
Denote S =

⋃
i6=j Bi ∩ Bj =

⋃m
i=1 ∂Bi and call S the separation line, or

line of discontinuities, (although it is not a line in the usual sense, but the
union of the topological frontiers of Bi).

Definition 3.2 Given a finite partition {Bi}1≤i≤m of B, we call F a piece-
wise continuous map on (B,P) with the separation property if F is a finite
family F = {fi}1≤i≤m of homeomorphisms fi : Bi 7→ fi(Bi) ⊂ int(B), such
that fi(Bi) ∩ fj(Bj) = ∅ if i 6= j. We note that F is multi-defined in the
separation line S.

Each Bi shall be called a continuity piece of F .

Remark 3.3 A piecewise continuous map F with the separation property is
globally injective because it is an homeomorphism in each continuity piece
and two different continuities pieces have disjoint images. Therefore F−1

exists, uniquely defined in each point of F (B) =
⋃

i fi(Bi). In fact:
For any point x ∈

⋃
i fi(Bi), its backward first iterate is uniquely defined

as F−1(x) = f−1
i (x), where i is the unique index value such that x ∈ fi(Bi).

Nevertheless F−1 is not necessarily injective because F is multidefined
in S =

⋃
i6=j(Bi ∩ Bj).

F−1 is continuous in F (B), because F−1|fi(Bi) = f−1
i and fi is an home-

omorphism due to the Definition 3.2.

Definition 3.4 We say that F is uniformly locally contractive if there exists
a constant 0 < λ < 1, called an uniform contraction rate for F , and a metric
dist in B, such that dist(fi(x), fi(y)) ≤ λdist(x, y), for all x and y in the
same Bi, for all 1 ≤ i ≤ m .

Given a point x ∈ B, its image set is F (x) = {fi(x) : x ∈ Bi}. If H ⊂ B,
its image set is F (H) =

⋃
x∈H F (x). We have that B ⊃ F (B) ⊃ . . . F k(B) ⊃

. . ..
The second iterate of the point x ∈ B is the set F 2(x) = F (F (x)). It is

analogously defined the j−th. iterate as the set F j(x) for any j ≥ 1. We
convene to define F 0(x) = {x} and F 0(H) = H.

Definition 3.5 For any natural number k ≥ 1, we call atom of generation
k to

fik ◦ . . . ◦ fi2 ◦ fi1(BI)

where I = (i1, i2, . . . , ik) ∈ {1, 2, . . . ,m}k and BI is the subset of Bi1 where
the composed function above is defined. (If BI were an empty set, then the
atom is empty.) Abusing of the notation we write the atom as:

fik ◦ . . . ◦ fi2 ◦ fi1(Bi1)
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We note that each atom of generation k is a compact, not necessarily
connected set, whose diameter is smaller than λkdiamB.

The set F k(B) is a compact set, formed by the union of all the not empty
atoms of generation k. There are at most mk and at least m not empty atoms
of generation k, where m is the number of continuity pieces of F .

Definition 3.6 Given x0 ∈ B, a future orbit o+(x0) is a sequence of points
{xi}i≥0, starting in x0, such that xi+1 ∈ F (xi) ∀ i ≥ 0. Due to the multi-
definition of F in the separation line S, the points of S and those that
eventually fall in S may have more than one future orbit.

A point y is in the limit set L+(o+(x0)) of a future orbit of x0 if there
exists kj → +∞ such that xkj

→ y.

The limit set L+(x0) is the union of the limit sets of all the future orbits
of x0.

The limit set L+(B) of the map F , also denoted as L+(F ), is the union
of the limit sets L+(x) of all the points x ∈ B.

Remark 3.7 Due to the compactness of the space B the limit set L+(o+(x0))
of any future orbit, is not empty. It is standard to prove that L+(o+(x0)) is
compact (because it is closed in the compact space B). Nevertheless L+(x0)
may be not compact, if the point x0 has infinitely many different future or-
bits. Finally, we assert that L+(o+(x0)) is invariant: F−1( L+(o+(x0)) ) =
L+(o+(x0)).

Proof: Consider y ∈ L+(o+(x0)). We have y = limj→+∞ xkj
∈ F (B) if

kj ≥ 1.

F−1 : F (B) → B is a continuous uniquely defined function (see Remark
3.3). Then xkj−1 = F−1(xkj

) → F−1(y), so F−1(y) ∈ L+(o+(x0)) proving
that

F−1( L+(o+(x0)) ) ⊂ L+(o+(x0))

Let us prove the converse inequality: F−1( L+(o+(x0)) ) ⊃ L+(o+(x0)).

F = {fi : Bi 7→ B} is defined and continuous in each of its finite number
of pieces Bi, that are compact sets that cover B. Then there exists some
i ∈ {1, 2, . . . , n} and a subsequence (that we still call kj), such that

y = lim
j→+∞

xkj
∈ Bi, ∀j ≥ 0 : xkj

∈ Bi, xkj+1 = fi(xkj
),

fi(y) = lim fi(xkj
) = lim xkj+1

We conclude that there exists y1 = fi(y) ∈ F (y) such that y1 ∈ L+(o+(x0)).
In other words, y ∈ F−1(L+(o+(x0)). This last assertion was proved for any
y ∈ L+(o+(x0)). Therefore L+(o+(x0)) ⊂ F−1( L+(o+(x0)) ) as wanted. �



22 E. Catsigeras and R. Budelli

Definition 3.8 We say that a point x is periodic of period p if there exists
a first natural number p ≥ 1 such that x ∈ F p(x). This is equivalent to x be
a periodic point in the usual sense, for the uniquely defined map F−1, i.e.
F−p(x) = x for some first natural number p ≥ 1.

We call the backward orbit of x (i.e. {F−j(x), j = 1, . . . , p}), a periodic
orbit with period p.

It is not difficult to show that the limit set L+(F ) is contained in the
compact, totally disconnected set K0 =

⋂
k≥1 F k(B). It could be a Cantor

set. But generically K0 shall be the union of a finite number of periodic
orbits, as we shall prove in Theorem 4.1.

Definition 3.9 We say that F is finally periodic with period p if the limit set
L+(F ) is the union of only a finite number of periodic orbits with minimum
common multiple of their periods equal to p. In this case we call limit cycles
to the periodic orbits of F .

We call basin of attraction of each limit cycle L to the set of points x ∈ B
whose limit set L+(x) is L.

Topology in the space of piecewise continuous locally contrac-
tive maps in B.

Let P = {Bi}1≤i≤m and Q = {Ai}1≤i≤m be finite partitions (see Defini-
tion 3.1) of the compact region B with the same number m of pieces.

We define the distance between P and Q as

d(P,Q) = max
1≤i≤m

Hdist(Ai, Bi) (26)

where Hdist(Ai, Bi) denotes the Hausdorff distance between the two compact
sets Ai and Bi. i.e.

Hdist(Ai, Bi) = max{dist(x,Bi),dist(y,Ai) : x ∈ Ai, y ∈ Bi}

and dist(x,Bi) = min{dist(x, y) : y ∈ Bi}
Although it is standard to check the following properties of the distance

between two partitions P and Q, we include their proofs for a seek of com-
pleteness:

Remark 3.10 . If d(P,Q) < ǫ then:

- Hdist (S, Ŝ) < ǫ, where S = ∪i(∂Bi) is the separation line of the par-
tition P = {Bi : 1 ≤ i ≤ m}, and Ŝ = ∪i(∂Ai) is the separation line of the
partition Q = {Ai : 1 ≤ i ≤ m}.

- For all i 6= j such that Bi ∩ Aj 6= ∅, and for all p ∈ Bi ∩ Aj :

dist(p, S) < ǫ, dist(p, Ŝ) < ǫ.
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Proof: In the following proof we will use that B is homeomorphic to a
compact ball in R

n−1: it is a compact and connected metric space and so,
all the subsets M ⊂ B have the following property:

y 6∈ M ⇒ dist(y,M) = dist(y, ∂M)

where ∂M is the topological frontier of M as a subset of the topological
space B.

To deduce that Hdist (S, Ŝ) < ǫ, recall that S = ∪m
i=1∂Bi, Ŝ =

∪m
i=1∂Ai. So, it is enough to prove that Hdist(∂Bi, ∂Ai) < ǫ for all i.

If ∂Bi = ∂Ai then their Hausdorff distance is zero and thus, smaller than ǫ.
On the other case, there exists p ∈ (∂Bi \ ∂Ai) ∪ (∂Ai \ ∂Bi). First suppose
p ∈ ∂Bi, p 6∈ ∂Ai.

d(P,Q) < ǫ ⇒ dist(p,Ai) < ǫ ∀ p ∈ Bi, in particular ∀ p ∈ ∂Bi

If p 6∈ ∂Ai then dist(p,Ai) = dist(p, ∂Ai)

⇒ dist (p, ∂Ai) < ǫ ∀ p ∈ ∂Bi

Changing the roles of Ai and Bi, the same argument works for
q ∈ ∂Ai \ ∂Bi. So we deduce

Hdist (∂Ai, ∂Bi) =

= max{dist(p, ∂Ai),dist(q, ∂Bi), p ∈ ∂Bi, q ∈ ∂Ai} < ǫ

Let us prove now the second assertion in this remark. We will only prove
that dist(p, Ŝ) < ǫ ∀ p ∈ Bi ∩ Aj . The inequality
dist(p, S) < ǫ follows from this one, changing the roles of the partitions P
and Q.

If p ∈ Bi ∩ Aj then, being i 6= j, we deduce

intAi ∩ intAj = ∅ ⇒ intAi ∩ Aj = ∅ ⇒ p 6∈ intAi ⇒ p ∈ Bi \ (intAi)

⇒ dist(p, intAi) = dist(p, ∂Ai) ≤ Hdist(Bi, Ai) < ǫ

But ∂Ai ⊂ Ŝ, then dist(p, ∂Ai) ≥ dist(p, Ŝ). So we deduce
dist(p, Ŝ) < ǫ as wanted. �

Definition 3.11 Let F = {fi : Bi 7→ B}1≤i≤m and G = {gi : Ai 7→
B}1≤i≤m be locally contractive piecewise continuous maps on (B,P) and
(B,Q) respectively. Given ǫ > 0 we say that G is a ǫ-perturbation of F if

max
1≤i≤m

∥∥∥(gi − fi)|Bi ∩ Ai

∥∥∥
C 0 < ǫ, |λF − λG| < ǫ and d(P,Q) < ǫ

where λF denotes the uniform contraction rate of F in its continuity pieces,
defined in 3.4, and ‖ · ‖C0 denotes the C0 distance in the functional space of
continuous functions defined in a compact set K:

‖(g − f)|K‖C0 = max
x∈K

dist(g(x), f(x))
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Definition 3.12 We say that the limit cycles of a finally periodic map F
(see Definition 3.9) are persistent if:

For all ǫ∗ > 0 there exists ǫ > 0 such that all ǫ-perturbations G of F are
finally periodic with the same finite number of limit cycles (periodic orbits)
than F , and such that each limit cycle LG of G has the same period and is
ǫ∗-near of some limit cycle LF of F (i.e. the Hausdorff distance between LG

and LF verifies Hdist(LG, LF ) < ǫ∗).

Definition 3.13 Denote S to the space of all the systems that are piecewise
continuous with the separation property and locally contractive, according
with the Definitions 3.2 and 3.4.

We say that a property P of the systems in S (for instance being finally
periodic as we will show in Theorem 4.1) is (topologically) generic if P is
verified, at least, by an open and dense subfamily of systems in the functional
space S, with the topology in S defined in 3.11.

Precisely, being generic means:

1) The openness condition: For each piecewise continuous map F that
verifies the property P there exist ǫ > 0 such that all ǫ-perturbation of F
also verifies P.

2) The denseness condition: For each piecewise continuous map F that
does not verify the property P, given ǫ > 0, arbitrarily small, there exist
some ǫ-perturbation G of F such that G verifies the property P.

The openness condition implies that the property P shall be robust under
small perturbations of the system. It is robust under small changes, not only
of a finite number of real parameters, but also of the functional parameter
that defines the model itself. So the system should be structurally stable.
When this robustness holds, the property P is still observed when the system,
the model itself, does not stay exactly fixed, but is changed, even in some
unknown fashion, remaining near the original one.

The density condition combined with the openness condition, means that
the only behavior that have chance to be observed under not exact exper-
iments are those that verify the property P. In fact, if the system did not
exhibit the property P, then some arbitrarily small change of it, would lead
it to exhibit P robustly.

The denseness condition implies that if the property P were generic, then
the opposite property (Non-P) has null interior in the space of S of systems,
i.e. Non-P is not robust: some arbitrarily small change in the system will
lead it to exhibit P. That is why we define the following:

Definition 3.14 If the property P is generic, we say that any system that
does not exhibit P is bifurcating, and Non-P is a not persistent property.
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4 The generic persistent periodic behavior.

Theorem 4.1 Let F be a locally contractive piecewise continuous map with
the separation property. Then generically F is finally periodic with persistent
limit cycles.

To prove Theorem 4.1 we shall use the following lemmas 4.2 and 4.3:

Lemma 4.2 If there exists an integer k0 ≥ 1 such that the compact set
K0 = F k0(B) does not intersect the separation line S of the partition into
the continuity pieces of F , then F is finally periodic.

Proof: By hypothesis dist(K0, S) = d > 0, because K0 and S are disjoint
compact sets. On the other hand

K0 = F k0(B) =
⋃

A∈Ak0

A

where Ak for any fixed k ≥ 1, denotes the family of all the atoms of genera-
tion k defined in 3.5.

The diameter diam (A) of each atom A of the finite family Ak, is smaller
than diam(B)λk. Therefore it converges to zero when k → +∞. Thus, for
all k large enough:

diam(A) ≤
d

2
∀ A ∈ Ak

It is not restrictive to suppose k ≥ k0. Then A ⊂ F k(B) ⊂ F k0(B) =
K0 ∀ A ∈ Ak.

We assert that each atom A ∈ Ak for such k, is contained in the interior
of some continuity piece Bi. To prove this last assertion we give the following
argument (P), that will be useful also in the proof of Lemma 4.3:

(P) Fix a point x ∈ A. As the continuities pieces cover the space B,
there exists some (a priori not necessarily unique) index i such that x ∈ Bi.
It is enough to prove that y ∈ int(Bi) for all y ∈ A (including x itself).

We argue in the compact and connected metric space B, using the fol-
lowing known properties of the metric space B with the topology induced
by its inclusion in R

n−1, as a subset homeomorphic to a compact ball.
- The triangular property.
- The distance dist(y,M) of a point y 6∈ M , to a set M ⊂ B, is the same

that the distance of y to the topological frontier ∂M of M as a subset of B.
- dist(y,M1) ≥ dist(y,M) if M1 ⊂ M .
We denote Bc

i to the complement of Bi in B, and in the topology relative
to B we denote: (Bc

i ) to the closure of Bc
i , i.e the complement of int(Bi),

and ∂Bi to the frontier of Bi in B, ∂Bi ⊂ S:

dist(x, y) ≤ diam(A) < d/2,
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dist(x, (Bc
i )) = dist(x, ∂Bi) ≥ dist(x, S) ≥ d

dist(y, (Bc
i )) ≥ dist(x, (Bc

i )) − dist(x, y) ≥ d − d/2 = d/2 > 0

Therefore y 6∈ (Bc
i ) proving that y ∈ int(Bi) as wanted. � (P)

We deduce that given an atom A ∈ Ak, there exists and is unique a
natural number i0 such that A ∈ int(Bi0). Therefore F (A) is a single atom
of generation k + 1.

From the definition of atom in 3.5, we obtain that any atom of generation
larger than k is contained in an atom of generation k. But each atom of
generation k is in the interior of a piece of continuity of the partition {Bi}.
We deduce that there exists a sequence of natural numbers {ih}h≥0, called
the itinerary of the atom A, such that

A ∈ int(Bi0), F (A) = fi0(A) ⊂ int(Bi1),

F 2(A) = fi1 ◦ fi0(A) ⊂ int(Bi2), . . . (27)

and the successive images of the atom A of generation k, are single atoms
of generation k + 1, k + 2, . . . , k + h, . . .. Therefore, the successive images
of the atom A, in the sequence (27), are contained in a sequence of atoms:
A = A0, A1, A2, . . . , Ah, . . . , all of generation k.

The same property holds for any of these atoms of generation k, and
each of them is contained in the interior of a continuity piece of F , so F is
uniquely defined there and we have:

A = A0 ⊂ int(Bi0), F (A0) ⊂ A1 ⊂ int(Bi1),

F 2(A0) ⊂ F (A1) ⊂ A2 ⊂ int(Bi2), . . . , (28)

For fixed k, the family of atoms of generation k is finite, so we conclude
that there exists two first natural numbers 0 ≤ h < h+p such that F p(Ah) ⊂
Ah.

Note that, F p(Ah) is uniquely defined as fih+p
◦fih+p−1

◦ . . .◦fih , because
we are considering sets contained in the interior of the continuity pieces of
F .

Due to the uniform contractiveness of fi in each of its continuities pieces,
F p : Ah 7→ Ah, is uniformly contractive. The Banach Theorem of the Fixed
Point states that in a complete metric space, any uniformly contractive map
from a compact set to itself, has an unique fixed point, and all the orbits in
the set converge to this fixed point in the future. Therefore, there exists in
Ah a periodic point p0 by F , of period p ≥ 1, and all the orbits with initial
states in Ah have the periodic orbit L of p0, as their limit set.

By construction Ah contains the image of A by an iterate F h, uniquely
defined. So we conclude that the limit set of all the points in the atom A is
L.
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The construction above can be done starting with any initial atom A ∈
Ak. And Ak is a finite family. We conclude that there exists one, and at
most a finite number of periodic limit cycles, attracting all the orbits of⋃

A∈Ak
A = F k(B).

The last assertion implies that the limit set of B is formed by that finite
family of periodic limit cycles, ending the proof of this lemma. �

Lemma 4.3 In the hypothesis of Lemma 4.2, the limit cycles of F are per-
sistent.

Proof: We shall prove that the limit cycles are persistent according to
the definition 3.12.

The condition of the hypothesis of Lemma 4.2 is open in the topology
defined in 3.11, because K0 and S are compact and at positive distance.
Therefore, there exists ǫ0 > 0 such that, for all 0 < ǫ < ǫ0, all ǫ−perturbation
G of F , is finally periodic.

(Q) We claim that, given k0 ≥ 1 fixed such that dist(A,S) ≥ d > 0 for
all A ∈ Ak0

(F ), then there exists 0 < ǫ < ǫ0 small enough such that if G
is a ǫ−perturbation of F , then there is a one-to-one bijection Ψ between the
families Ak(F ) and Ak(G), of the atoms of all generation k ≥ 1 of F and G
respectively, and besides, for some k large enough, the itinerary of each of
the atoms A ∈ Ak(F ) is the same than the itinerary of the respective atom
Ψ(A) = Â ∈ Ak(G).

In fact, due to the definition of ǫ0- perturbation of F , the continuity
pieces Bi = Bi(F ) ⊂ B and B̂i = Bi(G) ⊂ B, of F and G respectively, are
correspondent by a one-to-one bijection, such that the Haussdorff distance

Hdist(Bi(F ), Bi(G)) < ǫ0.

On the other hand, for all k ≥ 1, the atoms A ∈ Ak(F ) and Â ∈ Ak(G),
due to the definition of atom in 3.5, are:

A = F k(BI), Â = Gk(B
Î
)

identified by words

I = (i1, i2, . . . , ik), Î = (̂i1, î2, . . . , îk) ∈ {1, 2, . . . ,m}k

We define the correspondence

Ψ(A) = Â if and only if Î = I

With k = k0 fixed, we have

dist (A,S) ≥ d > 0 ∀ A ∈ Ak0
(F ). (29)
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On the other hand, due to the definition 3.11 of ǫ1−perturbation G of F ,
we have ‖fi − gi‖C0 < ǫ1, H dist(Bi, B̂i) < ǫ1 ∀ i = 1, 2, . . . ,m. But
the finite composition of C0 diffeomorphisms depends continuously of the
diffeomorphisms in the topology defined in 3.11. Then, for k0-fixed, there
exists 0 < ǫ1 < ǫ0 such that

|fi − gi‖C0 < ǫ1, H dist(Bi, B̂i) < ǫ1 ∀ i = 1, 2, . . . ,m ⇒

‖fik0
◦ fik0−1

◦ . . . ◦ fi1(Bi1) − gik0
◦ gik0−1

◦ . . . ◦ gi1(B̂i1)‖ <
d

3

∀ I = (i1, i2, . . . , ik0
) ∈ {1, 2, . . . ,m}k0

In other words, the last statement can be reformulated as:

G is a ǫ1 − perturbation of F ⇒

Hdist (A,Ψ(A)) <
d

3
∀ A ∈ Ak0

(F ) and Â = Ψ(A) ∈ Ak0
(G).

Besides, if ǫ1 > 0 is chosen smaller than d/3, from the definition 3.11 we
obtain

H dist(S, Ŝ) < ǫ1 <
d

3

where Ŝ is line of discontinuities of the piecewise continuous map G, which
is a ǫ− perturbation of F . Joining the last two inequalities with (29) and
applying the triangular inequality, we deduce:

dist (Â, Ŝ) ≥ d −
d

3
−

d

3
=

d

3
∀ A ∈ Ak0

(G)

We conclude that if 0 < ǫ1 < d/3, and if G is a ǫ1−perturbation of
F , then the atoms Â ∈ Ak0

(G) remain at distance larger than d/3 > 0
from the separation line Ŝ of G, and at Hausdorff distance smaller than
ǫ1 < d/3 of its corresponding atom A ∈ Ak0

(F ), being d = dist(K0, S) and
K0 = ∪{A ∈ Ak0

(F )} = F k0(B).

Recall that

k ≥ k0 ⇒ K = F k(B) ⊂ F k0(B) = K0, Gk(B) ⊂ Gk0(B)

A′ ∈ Ak(F ) ⇒ A′ ⊂ A ∈ Ak0
(F ), Â′ ∈ Ak(G) ⇒ Â′ ⊂ Â ∈ Ak0

(G)

⇒ dist(Â′, Ŝ) ≥ dist(Â, Ŝ) ≥ d = dist(K0, S).

So, using the same positive numbers d > 0 and 0 < ǫ1 < d/3 for all k ≥ k0,
we obtain the following statement:

(S) There exists k0 ≥ 1 and 0 < ǫ1 < d/3, such that if G is a
ǫ1−perturbation of F , then for all k ≥ k0 the atoms Â ∈ Ak(G) remain at
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distance larger than d/3 > 0 from the separation line Ŝ of G, and at Hauss-
dorf distance smaller than ǫ1 < d/3 of its corresponding atom A ∈ Ak(F ),
being d = dist(K0, S), K0 = ∪{A ∈ Ak0

(F )} = F k0(B).

Now, k0 ≥ 1, ǫ1 > 0 and d > 0 are fixed as in statement (S), and the
generation k ≥ k0 is chosen and also fixed, such that the atoms of Ak(F )
and of Ak(G) have all diameter smaller than d/6.

Repeating the argument (P) used in the proof of Lemma 4.2, we deduce
that A ∈ Ak(F ) is in the interior of some (and unique) continuity piece Bik

of F : A ⊂ int(Bik), and all the points at distance smaller than d/3 of A

are contained in int(Bik). This last includes the atom Â = Ψ(A) ∈ Ak(G).

Then Â ⊂ int(Bik). Repeating once more the same argument (P) used in

the proof of Lemma 4.2, now with G instead of F , we deduce Â ⊂ int(B̂îk
)

for some unique îk.

(T) We assert that for the fixed k ≥ k0 constructed as above, for any
A ∈ Ak(F ), Â = Ψ(A) ∈ Ak(G), the indexes ik and îk constructed as
above, coincide: îk = ik.

By contradiction, if îk 6= ik then, aplying Remark 3.10, the distance
from any point p ∈ Bik ∩ Bîk

to Ŝ is smaller than Hdist (S, Ŝ) < ǫ1. Then

dist(A, Ŝ) < ǫ1 < d/3 contradicting the statement (S). � (T)

So ik is the first index of the itinerary of the atom A ∈ Ak(F ), which
due to (T) coincides with the first index îk of the itinerary of the atom
Â = Ψ(A) ∈ Ak(G). Now let us prove that the indexes of the itinerary of A
and of Â, i.e. the indexes for their future iterates, also coincide.

The future iterate of any atom of generation k, is an atom of generation
k′ ≥ k by F , and also by G. And they are contained in some atoms of
generation k of F , and G respectively. Therefore, using (T), the images
of an atom A ∈ Ak(F ) or Â = Ψ(A) ∈ Ak(G), by all the future iterates
of F or of G respectively, are in the interior of their respective one-to-one
corresponding continuity pieces Bik′ , B̂ik′ , where the index ik′ is the same

for all k′ ≥ k. Then the itineraries of A and Â = Ψ(A) are the same, as we
asserted in (Q). � (Q)

As a consequence of assertion (Q), the indexes i0, i1, i2, . . . in the finite
chain of atoms denoted in (27) and (28), remain unchanged, for F or for G,
being G an ǫ−perturbation of F for ǫ > 0 small enough. We deduce the
following statement:

A: The number of periodic orbits in the atoms of generation k, and their
periods, remain unchanged, when substituting F by any ǫ-perturbation G, if
ǫ > 0 is sufficiently small.

Now it is standard to prove by induction on k ≥ 1 the following property:

Let F be a piecewise continuous contractive map with contraction rate
upper bounded by 0 < λ < 1. Let ǫ > 0 such that λ + ǫ = λ̂ < 1. Let G be
an ǫ− perturbation of F . Then, for all k ≥ 1, each atom Â of generation k
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for G, is at distance smaller than
∑k−1

j=0 2ǫ λ̂j < 2ǫ/(1 − λ̂) = ǫ∗ > 0 of the

respective atom A of generation k for F , with the same itinerary than Â.

Therefore we deduce the following statement:

B: Any periodic point found in an atom Â of generation k for G, is
at distance smaller than ǫ∗ than the respective periodic point found in the
corresponding atom A for F with the same itinerary.

The statements A and B imply that the limit cycles are persistent ac-
cording to Definition 3.12. �

Remark 4.4 In the proof of Lemmas 4.2 and 4.3, we did not use the sep-
aration property fi(Bi) ∩ fj(Bj) = ∅ ∀i 6= j. At the very beginning of the
proof of Lemma 4.3, we obtained that the piecewise continuous and locally
contractive systems verifying the thesis of the Lemma 4.2, even if they do
not have the separation property, contain an open family of systems in the
topology defined in 3.11. Then:

In the space of all the piecewise continuous and locally contractive systems
(even if they do not have the separation property), those whose limit set is
formed by a finite number of persistent limit cycles form an open family.

Nevertheless, to prove the genericity of the periodic persistent behavior,
we need to prove that the family of periodic maps is dense in the space of
systems. In the proof of the Theorem 4.1, to obtain the density property, we
shall restrict to the space of systems S that verify the separation property.

Remark 4.5 From the proof of Lemma 4.2, the first integer k0 ≥ 1 such
that F k0(B)

⋂
S = ∅ may be very large, and so the period p may be very

large.

In fact, if the system has n ≈ 1012 neurons, and if no neuron becomes
dead, i.e. it does not eventually remain forever under the threshold level
without giving spikes, then the periodic sequences i1, . . . , ip, defined as the
itinerary of the periodic limit cycles, have inside the period p, at least once
each of all the indexes i ∈ {1, 2, . . . , n}. Then p ≥ n ≈ 1012.

As we have shown in the proof of the Lemma 2.5, there exists a minimum
time T > 0 between two consequent spikes. Suppose for instance that T ≈
10 [ms] and n ≈ 1012. The lasting time of the periodic sequence could be
approximately 10−3 × 1012[s] = 109[s] ≥ 31 years. So, if most of the neurons
did not become dead, the observation of the theoretical periodic behavior of
the inhibitory system in the future, could not be practical during a reasonable
time of experimentation, and only the irregularities inside the period could
be registered, showing the system as virtually chaotic.

Proof of Theorem 4.1. Due to Lemma 4.2 the existence of a finite
number of limit cycles attracting all the orbits of the space is verified at
least for those systems in the hypothesis of 4.2. This hypothesis is an open
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condition because K0 = F k0(B) and S are compact set at positive distance,
and for fix k0, the set F k0(B) depends continuously on the map F .

To prove its genericity it is enough to prove that the hypothesis of Lemma
4.2 is also a dense condition in the space S of piecewise continuous contractive
maps with the separation property, with the topology in S defined in 3.11.

Take F being not finally periodic.
We shall prove that, for all ǫ > 0 there exists a ǫ− perturbation G of

F that verifies the hypothesis of Lemma 4.2, and thus G is finally periodic
with persistent limit cycles.

Let be given an arbitrarily small ǫ > 0.
The contractive homeomorphisms fi of the finite family F = {fi : Bi 7→

B}i, with contraction rate 0 < λ < 1, can be C0 extended to

Fǫ = {fi,ǫ : Ui 7→ B}i, where fi,ǫ : Ui 7→ B, fi,ǫ|Bi
= fi,

Ui is a compact neighborhood such that Bi = Bi ⊂ int(Ui) ⊂ Ui = U i ⊂ B,
and fi,ǫ is an homeomorphism onto its image.

We construct fi,ǫ still contractive in Ui, with a contraction rate

0 < λ′ < 1 such that |λ − λ′| < ǫ. (30)

Such a finite family Fǫ of continuous extensions fi,ǫ to open sets Ui ⊃ Bi,
exists as an application of Tietze Theorem (see for instance Theorem 2.15
of [1]), applied to homeomorphisms.

The role of the family Fǫ of continuous extensions fi,ǫ will be the follow-
ing:

The union of the domains of fi,ǫ is the union of the sets Ui ⊂ B. They do
not form a partition of B because they overlap in sets with non void interiors,
covering the discontinuity line S of the given F . So Fǫ is multi-defined now,
not only in S but in the set

V =
⋃

i6=j

Ui ∩ Uj ⊃ S

with non void interior. The covering {Ui} makes the line of discontinuities
S a kind of fuzzy set: i.e. one can move freely the line of discontinuities S
inside the interior of the set V , to define a new partition of the space B.

Our purpose is to find some G that is a ǫ- perturbation of F , such that
G verifies the hypothesis of Lemma 4.2. We will choose not any G, but
someone in a very particular way, obtained from F moving only the line S of
discontinuities of F to a new line SQ ⊂ V , and the partition P of continuity
pieces of F to a near new partition Q. We will do that without changing the
functional values of F in the points where it was already defined.

The image of B by the future n-th. iterate of Fǫ, includes the image of B
by Fn, because fi,ǫ is defined in a set Ui ⊂ Bi (recall that Bi is the domain
of fi), and fı,ǫ|Bi

= fi.
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But the image of B by the future n−th. iterate of Fǫ, includes also the
image of B by Gn (being G any piecewise contractive function G that is a
restriction of Fǫ to some continuity pieces Ci ⊂ Ui). Then, Fn

ǫ (B) includes
the image of B by the iterate of all those ǫ- perturbation G of F , obtained
from F moving only its line of discontinuities, and so, changing only the
partition P = {Bi} of the continuity pieces to a new partition Q = {Ci}
such that Ci ⊂ Ui (without changing the functional values of F in Bi ∩Ci).

In other words, the extended family Fǫ is the “egg” of all the ǫ− per-
turbations G of F , obtained from F moving only the partition P to a new
partition Q, that is, moving the line of discontinuities S to a new line SQ

(contained in the set where Fǫ is multidefined).
The extended map Fǫ = {fi,ǫ : Ui 7→ B}i, is now multidefined in⋃

i6=j Ui ∩ Uj ⊃ S. The separation property is an open condition, thus the
extension Fǫ still verifies fi,ǫ(Ui)∩ fj,ǫ(Uj) = ∅ for all i 6= j, if the neighbor-
hoods Ui and Uj are chosen at a sufficiently small Hausdorff distance from
their respective pieces Bi and Bj , and ǫ > 0 is small enough.

Call ǫ1 > 0 to a positive real number smaller or equal than ǫ, and also
smaller or equal than the distance from Bi to the complement of Ui, for all
i = 1, 2, . . . m. Precisely

0 < ǫ1 = min{ǫ, min
1≤i≤m

dist(Bi, U
c
i )} (31)

Consider the compact sets:

K+ =
⋂

k≥1

⋃

(i1,...,ik)∈{1,2...m}k

fik,ǫ ◦ . . . ◦ fi1,ǫ(Ui1) ⊃ K

K =
⋂

k≥1

⋃

(i1,...,ik)∈{1,2...m}k

fik ◦ . . . ◦ fi1(Bi1) (32)

Define the family Ak,ǫ of the extended atoms of generation k ≥ 1 for Fǫ
that form K+, defined as follows:

The set A ⊂ B is an extended atom of generation k ≥ 1 if and only if
there exists a word (ik, ik−1, . . . , i1) ∈ {1, 2, . . . ,m}k such that

A = fik,ǫ ◦ . . . ◦ fi1,ǫ(Ui1).

The diameter of each extended atom of generation k is smaller that diam(B)·
(λ′)k because fi,ǫ is contractive with contraction rate 0 < λ′ < 1. Therefore,
for sufficiently large k ≥ 1 all the extended atoms of generation k that form
K+ have diameters smaller that ǫ1/2:

A ∈ Ak,ǫ ⇒ diam(A) <
ǫ1

2
. (33)

We assert that the extended atoms of generation k ≥ 1 are pairwise
disjoint: in fact, for two different i 6= j the images are disjoint: fi,ǫ(Ui) ∩
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fj,ǫ(Uj) = ∅. So the atoms of generation 1 are pairwise disjoint. Two
extended atoms of generation k ≥ 1 are fik,ǫ ◦ . . . ◦ fi1,ǫ(Ui1) and fjk,ǫ ◦ . . . ◦
fj1,ǫ(Uj1). They can intersect if and only if (i1, i2, . . . , ik) = (j1, j2, . . . , jk)
because each fi,ǫ is an homeomorphism onto its image. So, they intersect if
and only if they coincide.

By construction, Ui ⊃ Bi and fi,ǫ|Bi
= fi. Therefore each of the atoms of

generation k for F , is contained in the respective extended atom of generation
k for Fǫ, that has the same finite word (i1, i2, . . . , ik).

If none of the extended atoms of generation k intersects S, then none
of the atoms of generation k for F intersects S, and the system verifies the
hypothesis of Lemma 4.2. So, in this case, there is nothing to prove, because
F is finally periodic. (Recall our assumption at the beginning of this proof
that the given F is not finally periodic.)

On the other hand, if some of the extended atoms of generation k in-
tersects S, consider a new finite partition Q = {Ci}1≤i≤m of B such that
the distance, defined in (26), between Q and the given partition P of F , is
smaller than ǫ1 > 0:

dist(P, Q) < ǫ1 ≤ ǫ, (34)

where ǫ1 > 0 was defined in the equality (31).

Choose the new partition Q such that the new separation line SQ =⋃
i6=j(Ci ∩Cj) does not intersect the extended atoms of generation k of K+:

SQ

⋂(⋃
{A ∈ Ak,ǫ}

)
= ∅ (35)

This last condition is possible because the diameters of the extended
atoms A ∈ Ak,ǫ are all smaller than ǫ1/2, due to inequality (33). They
are compact pairwise disjoint sets, because of the separation property. The
distance between the two partitions P and Q is smaller than ǫ1 > 0 due to
inequality (34), but can be chosen larger than ǫ1/2, and such that does not
cut the atoms A ∈ Ak,ǫ, which verify inequality (33) and are all pairwise
disjoint compact sets.

Due to the construction above and to the definition in equality (26), the
maximum Hausdorff distance between the respective pieces Bi of P and Ci

of Q is larger than ǫ1/2 > 0 and smaller than ǫ1 > 0.

We note that the old, and principally the new, separation lines SP and
SQ, are not necessarily C1 nor even Lipschitz manifolds in the space B, and
even if they are, they do not need to be ǫ1- C1 or Lipschitz near one from
the other, to be ǫ1 near with the Hausdorff distance.

The condition dist(P,Q) < ǫ1 in (34), joined with the assumption

dist(U c
i , Bi) ≥ ǫ1 in (31, where Bi is the i−th piece of the partition P, implies

that the respective piece Ci of the partition Q verifies

Ci ⊂ Ui.
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Therefore the extension fi,ǫ : Ui 7→ B in Fǫ whose domain of definition is Ui

can be restricted to Ci.

Define

G = {gi : Ci 7→ B}1≤m where gi = fi,ǫ|Ci
.

By construction G and F coincide in Ci ∩ Bi, the distance between the
respective partitions P and Q is smaller than ǫ1 ≤ ǫ due to (34), and the
difference of their respective contraction rates λ′ and λ is also smaller than
ǫ, due to (30). So G is a ǫ-perturbation of the given F , according to the
Definition 3.11.

It is enough now, to prove that G is finally periodic with persistent limit
cycles.

Consider the limit set KG of G as follows:

KG =
⋂

k≥1

⋃

(i1,...,ik)∈{1,2...m}k

gik ◦ . . . ◦ gi1(Ci1)

As G is a restriction of Fǫ to the sets Ci ⊂ Ui, we have that KG ⊂
K+, and in particular for all k ≥ 1 the atoms of generation k for G, i.e.
gik ◦ . . . ◦ gi1(Ci1), are contained in the extended atoms of generation k for
Fǫ.

Due to inequality (35), the separation line SG = SQ among the conti-
nuity pieces Ci of G is disjoint with the extended atoms of generation k
of Fǫ. Therefore, it is also disjoint with the atoms of generation k of G.
Then Gk(B)

⋂
SG = ∅ and, applying lemma 4.2, G is finally periodic with

persistent limit cycles. �

It is possible (but not immediate) to construct, in a compact ball B of
any dimension n − 1 ≥ 2, piecewise continuous systems, uniformly locally
contractive and with the separation property, as defined in Section 3, that
do not verify the thesis of the Theorem 4.1, and thus their limit set is not
composed only by periodic limit cycles, but it is a Cantor set attractor K
defined by the Equality (32).

5 Discussion of the application to inhibitory neu-

ral networks.

The discontinuities of the Poincaré transformation F , due to spike phenom-
ena in the neural network, play an essential role to study these systems,
although it is an obstruction to apply mostly previously known results of
the Topological Theory of Dynamics Systems, which is mostly developed for
continuous dynamics.

We proved that in the generic stable case, the future limit orbits are all
periodic: from all the initial states the system is given to limit cycles.
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Due to the non-genericity of the bifurcating case, which is a consequence
of Theorem 4.1, those non periodic dynamics would not robustly be seen
in experiments: in fact, arbitrarily small perturbations in the parameters of
the system will lead it to a periodic dynamics. These perturbations stabilize
the system, to exhibit a limit set composed only by periodic cycles. As a
consequence the bifurcating case appears only in the transition from one
periodic behavior to other.

We also proved that the inter-spike interval is bounded away from zero
for a positive time T > 0. It means that, generically, when the system
is periodic, in spite of having preferred periodic patrons of discharges, the
neurons do not synchronize in phase.

The last result implies that, if the number n of neurons in the system
is very large, and if all of them are alive (they all spike along the period
p), then the limit cycles of the network has a very large period p ≥ T ·
n, that may be even much larger than the observation time, or than the
life time of the biological system. Therefore, in spite of being theoretically
asymptotically periodic, these systems may not show its regularity. These
two facts: extremely large periods, and irregularity inside the period, allow
us to assert that those persistent systems with very large period p shall be in
fact non-predictible for the experimenter, and will be perceived as virtually
chaotic.
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of pacemaker neurons networks. Proc. of the Second Congress of Nonlinear

Analists, WCNA 96, Elsevier Science. (1996)

[4] Budelli R., Torres J., Catsigeras E., Enrich H.: Two neurons network,
I: Integrate and fire pacemaker models. Biol. Cybern. 66, 95-110.(1991)

[5] Catsigeras E., Budelli R.: Limit cycles of a bineuronal network model.
Physica D, 56, 235-252. (1992)

[6] Catsigeras, E.:Chaos and stability in a model of inhibitory neu-
ronal network. Int. Journ. of Bif. and Chaos (IJBC). Special is-



36 E. Catsigeras and R. Budelli

sue in Applied Sciences and Engineering. In press (2009) Preprint:

http://premat.fing.edu.uy/papers/2008/109.pdf
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