Topología y Transitividad del Shift Unilateral.

Eleonora Catsigeras¹
Asesoramiento a Odalis Sofía Ortega².
Directora de Posgrado: Cristina Lizana³

31 de Agosto de 2015

Consideremos el conjunto $\{0,1\}$, al que llamamos alfabeto de dos símbolos 0 y 1.

Definición 1. (Espacio del shift unilateral)

Se llama espacio del shift unilateral con el alfabeto $\{0,1\}$ al espacio métrico de las sucesiones

$$\{\theta_n\}_{n\in\mathbb{N}}\in\{0,1\}^{\mathbb{N}}$$

dotado de la métrica

$$\operatorname{dist}(\{\theta_n\}_{n\in\mathbb{N}}, \ \{\phi_n\}_{n\in\mathbb{N}}) := \sum_{n=0}^{+\infty} \frac{|\theta_n - \phi_n|}{2^n}.$$

Definición 2. (La transformación shift)

Se llama shift a la transformación $\sigma: \{0,1\}^{\mathbb{N}} \mapsto \{0,1\}^{\mathbb{N}}$ definida por

$$\sigma(\{\theta_n\}_{n\in\mathbb{N}}) = \{\gamma_n\}_{n\in\mathbb{N}}, \text{ donde } \gamma_n := \sigma_{n+1} \ \forall n \in \mathbb{N}.$$

Definición 3. (Transitividad topológica)

Sea X un espacio métrico. Una transformación $T:X\mapsto X$ se dice transitiva topológicamente (o en breve transitiva), si para toda pareja de abiertos no vacíos $U,V\subset X$ existe $n\geq 1$ tal que

$$T^n(U) \cap V \neq \emptyset$$
.

Observación: La transitividad topológica de una transformación no depende de la métrica elegida en X, siempre que esta defina una misma topología. Es decir, depende solo de la topología, y no de la métrica particular que la induce.

¹Instituto de Matemática y Estadística "Rafael Laguardia" (IMERL), Universidad de la República, Uruguay. Correo electrónico: eleonora@fing.edu.uy

²Estudiante de la Maestría en Matemática en la Universidad de Los Andes (ULA), Mérida, Venezuela. Correo electrónico: odalisortega18@gmail.com

³Depto. de Matemáticas, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela. Correo electrónico:clizana@ula.ve

Teorema 4.

El shift unilateral es transitivo.

Antes de demostrar el Teorema 4, veamos algunas propiedades de la topología del espacio métrico del shift:

Definición 5. (Cilindros)

Sea

$$\Theta = \{\theta_n\}_{n \in \mathbb{N}} \in \{0, 1\}^{\mathbb{N}}$$

una sucesión de símbolos con el alfabeto $\{0,1\}$. Sean k y r números naturales tales que $k \geq 0$ y $r \geq 1$.

Se llama cilindro que contiene a Θ , de radio r y con coordenadas fijas $k, k+1, \ldots, k+r-1$, al siguiente conjunto $C(\Theta, k, r)$ contenido en el espacio del shift $\{0, 1\}^{\mathbb{N}}$:

$$C(\Theta, k, r) := \{ \Psi = \{ \psi_n \}_{n \in \mathbb{N}} \colon \psi_{k+j} = \theta_{k+j} \ \forall \ j \in \{0, 1, \dots, r-1\} \}.$$

Es decir, el cilindro $C(\Theta, k, r)$ es el conjunto de todas las sucesiones Ψ del espacio del shift tales que los r términos de Ψ que ocupan los lugares $k, k+1, \ldots, k+r-1$, coinciden con los r términos de Θ que ocupan esos mismos lugares. En los demás lugares (que son infinitos lugares a la derecha a partir del lugar k+r inclusive, y finitos lugares, si existen, a la izquierda del lugar k), los términos de las sucesiones Ψ en el cilindro, son libres de tomar cualquier valor en el alfabeto.

Teorema 6. El conjunto de cilindros forman una base de la topología del espacio métrico del shift unilateral.

Es decir, todo cilindro es abierto no vacío, y cualquier abierto no vacío es unión de cilindros.

Demostraremos el Teorema 6, mediante la combinación de los Lemas 7 y 8 siguientes:

Lema 7.

Todo cilindro es abierto no vacío en el espacio métrico $\{0,1\}^{\mathbb{N}}$ del shift unilateral.

Demostración: De la Definición 5 sabemos que el cilindro $C(\Theta, k, r)$ contiene a $\Theta \in \{0, 1\}^{\mathbb{N}}$; por lo tanto el cilindro es no vacío.

Para demostrar que el cilindro $C(\Theta, k, r)$ es abierto, consideremos cualquier sucesión $\Phi \in C(\Theta, k, r)$ y probemos que existe una bola

$$B(\Phi, r') := \{ \Psi \in \{0, 1\}^{\mathbb{N}} \colon \operatorname{dist}(\Phi, \Psi) < r' \},$$

centrada en Φ con radio r' > 0 tal que $B(\Phi, r') \subset C(\Theta, k, r)$. En efecto, sea

$$r':=\min\Big\{\frac{1}{2^j}\colon 0\le j\le k+r-1\Big\}.$$

Si $\Psi \in B(\Phi, r')$ entonces

$$\operatorname{dist}(\Phi, \Psi) = \sum_{j=0}^{+\infty} \frac{|\phi_j - \psi_j|}{2^j} < r' = \min \left\{ \frac{1}{2^j} : 0 \le j \le k + r - 1 \right\}.$$

Pero como $|\phi_j - \psi_j|$ solo puede tomar el valor 0 o el valor 1, deducimos que

$$\phi_j = \psi_j \ \forall \ 0 \le j \le k + r - 1,$$

y en particular para $j \in \{k, k+1, \dots, k+r-1\}$.

Por otra parte como $\Phi \in C(\Theta, k, r)$, de la Definición 5 obtenemos que

$$\phi_j = \theta_j \ \forall \ j \in \{k, k+1, \dots, k+r-1\}.$$

Concluimos que $\psi_j = \theta_j$ para todo $j \in \{k, k+1, \dots, k+r-1\}$. Por lo tanto $\Psi \in C(\Theta, k, r)$ para cualquier sucesión $\Psi \in B(\Phi, r')$. Equivalentemente $B(\Phi, r') \subset C(\Theta, k, r)$, como queríamos demostrar.

Lema 8.

Todo abierto no vacío del espacio métrico del shift es unión de cilindros.

Demostración: Sea $V \neq \emptyset$ abierto del espacio métrico $\{0,1\}^{\mathbb{N}}$. Entonces, para todo punto $\Theta \in V$ existe una bola abierta $B(\Theta, r')$ contenida en V, y por lo tanto V es unión de esas bolas abiertas (una para cada punto $\Theta \in V$). Si demostramos que toda bola abierta $B(\Theta, r')$ contiene algún cilindro $C(\Theta, k, r)$, entonces obtendríamos V como unión de esos cilindros (uno para cada punto $\Theta \in V$).

En efecto, sea dada una bola abierta

$$B(\Theta, r') := \{ \Phi \in \{0, 1\}^{\mathbb{N}} : \operatorname{dist}(\Theta, \Phi) < r' \}.$$

Construyamos dos naturales $k \ge 0$ y $r \ge 1$ tales que el cilindro $C(\Theta, k, r)$ esté contenido en $B(\Theta, r')$.

Dado r' > 0, sean k := 0 y $r \ge 1$ tal que

$$\sum_{j=r}^{+\infty} \frac{1}{2^j} < r'.$$

(Tal natural $r \ge 1$ existe porque la serie $\sum_{j=0}^{+\infty} \frac{1}{2^j}$ es convergente, y por lo tanto su cola $\sum_{j=r}^{+\infty}$ tiende a cero cuando $r \to +\infty$.)

Basta ahora probar que $C(\Theta, 0, r) \subset B(\Theta, r')$. Sea $\Phi \in C(\Theta, 0, r)$. De la Definición 5, obtenemos $\phi_j = \theta_j$ para todo $j \in \{0, 1, \dots, r-1\}$. Entonces

$$\operatorname{dist}(\Phi,\Theta) = \sum_{j=0}^{+\infty} \frac{|\phi_j - \theta_j|}{2^j} = \sum_{j=r}^{+\infty} \frac{|\phi_j - \theta_j|}{2^j}.$$

Como $|\phi_j - \theta_j|$ vale 0 o vale 1, de la última igualdad obtenemos:

$$\operatorname{dist}(\Phi, \Theta) = \sum_{j=r}^{+\infty} \frac{|\phi_j - \theta_j|}{2^j} \le \sum_{j=r}^{+\infty} \frac{1}{2^j} < r'.$$

Concluimos que $\Phi \in B(\Theta, r')$ cualquiera sea $\Phi \in C(\Theta, 0, r)$. Por lo tanto, el cilindro $C(\Theta, 0, r)$ está contenido en la bola $B(\Theta, r')$, como queríamos demostrar.

Demostración del Teorema 6. Es consecuencia inmediata de los Lemas 7 y 8.

Ahora demostraremos el Teorema 4. Para ello, primero probaremos el siguiente lema:

Lema 9. Para cualquier cilindro $C(\Theta, k, r)$ existe un número natural $n \ge 1$ tal que

$$\sigma^n(C(\Theta, k, n)) = \{0, 1\}^{\mathbb{N}}.$$

Es decir, todo cilindro tiene algún iterado por el shift que es igual a todo el espacio.

Demostración: Sea dado el cilindro $C(\Theta, k, r)$, donde k y r son números naturales tales que $k \ge 0$ y $r \ge 1$. Elijamos $n = k + r \ge 1$. Usando la Definición 2, escribimos extensivamente el conjunto $\sigma^n(C(\Theta, k, r))$ de la siguiente forma:

$$\sigma^n(C(\Theta, k, r)) = \{ \{\psi_j\}_{j \in \mathbb{N}} \in \{0, 1\}^{\mathbb{N}} : \exists \{\phi_h\}_{h \in \mathbb{N}} \in C(\Theta, k, r) \text{ tal que } \psi_j = \phi_{n+j} \ \forall \ j \in \mathbb{N} \}.$$

Ahora, usando la igualdad anterior y la Definición 5 de cilindro, obtenemos:

$$\sigma^n(C(\Theta, k, r)) = \{\{\psi_j\}_{j \in \mathbb{N}} \in \{0, 1\}^{\mathbb{N}}:$$

$$\exists \{\phi_h\}_{h\in\mathbb{N}} \text{ tal que } \phi_h = \theta_h \ \forall \ h \in \{k, k+1, \dots, k+r-1\}, \ y \ \psi_j = \phi_{n+j} \ \forall \ j \in \mathbb{N} \}.$$
 (1)

Pero si n = k + r entonces, dada cualquier sucesión $\{\psi_h\}_{h \in \mathbb{N}}$, se puede construir la sucesión $\{\phi_h\}_{j \in \mathbb{N}}$ del siguiente modo:

$$\phi_h := \psi_{h-n}$$
 si $h > n = k + r$,

$$\phi_h := \theta_h \quad \text{si} \ \ 0 < h < n - 1 = k + r - 1.$$

Usando la igualdad (1) deducimos que cualquier sucesión $\{\psi_h\}_{h\in\mathbb{N}}$ pertenece al conjunto $\sigma^n(C(\Theta,k,r))$, y por lo tanto este conjunto es todo el espacio $\{0,1\}^{\mathbb{N}}$, como queríamos demostrar.

Demostración del Teorema 4:

De acuerdo a la Definición 3, debemos probar que dada una pareja (U, V) de abiertos no vacíos del espacio $\{0, 1\}^{\mathbb{N}}$, existe un número natural $n \geq 1$ tal que $\sigma^n(U) \cap V \neq \emptyset$.

Usando el Lema 8, existen cilindros $C(\Theta_1, k_1, r_1)$ y $C(\Theta_2, k_2, r_2)$ contenidos en los abiertos U y V respectivamente. Por lo tanto, basta demostrar que existe un número natural $n \ge 1$ tal que $\sigma^n(C(\Theta_1, k_1, r_1)) \cap C(\Theta_2, k_2, r_2) \ne \emptyset$.

Pero por el lema 9, existe $n \geq 1$ tal que $\sigma^n(C(\Theta_1, k_1, r_1))$ es todo el espacio $\{0, 1\}^{\mathbb{N}}$. Concluimos que $\sigma^n(C(\Theta_1, k_1, r_1))$ contiene, y por lo tanto intersecta, al cilindro $C(\Theta_2, k_2, r_2)$ como queríamos demostrar.

Definición 10. (Espacio del shift bilateral)

Se llama espacio del shift bilateral con el alfabeto $\{0,1\}$ al espacio métrico de las sucesiones bilaterales

$$\{\theta_n\}_{n\in\mathbb{Z}}\in\{0,1\}^{\mathbb{Z}}$$

dotado de la métrica

$$\operatorname{dist}(\{\theta_n\}_{n\in\mathbb{Z}}, \ \{\phi_n\}_{n\in\mathbb{Z}}) := \sum_{n\in\mathbb{Z}} \frac{|\theta_n - \phi_n|}{2^{|n|}}.$$

Definición 11. (La transformación shift hacia la izquierda)

Se llama shift hacia la izquierda a la transformación $\sigma: \{0,1\}^{\mathbb{Z}} \mapsto \{0,1\}^{\mathbb{Z}}$ definida por

$$\sigma(\{\theta_n\}_{n\in\mathbb{Z}}) = \{\gamma_n\}_{n\in\mathbb{Z}}, \text{ donde } \gamma_n := \sigma_{n+1} \ \forall \ n \in \mathbb{Z}.$$

Definición 12. (Cilindros en el espacio del shift bilateral)

Sea

$$\Theta = \{\theta_n\}_{n \in \mathbb{Z}} \in \{0, 1\}^{\mathbb{Z}}$$

una sucesión bilateral de símbolos con el alfabeto $\{0,1\}$. Sea k y r números enteros tales que $r \geq 1$.

Se llama cilindro que contiene a Θ , de radio r y con coordenadas fijas $k, k+1, \ldots, k+r-1$, al siguiente conjunto $C(\Theta, k, r)$ contenido en el espacio del shift $\{0, 1\}^{\mathbb{Z}}$:

$$C(\Theta, k, r) := \{ \Psi = \{ \psi_n \}_{n \in \mathbb{Z}} : \psi_{k+j} = \theta_{k+j} \ \forall \ j \in \{0, 1, \dots, r-1\} \}.$$

Es decir, el cilindro $C(\Theta, k, r)$ es el conjunto de todas las sucesiones Ψ del espacio del shift bilateral tales que los r términos de Ψ que ocupan los lugares $k, k+1, \ldots, k+r-1$, coinciden con los r términos de Θ que ocupan esos mismos lugares. En los demás lugares (que son infinitos lugares a la derecha a partir del lugar k+r inclusive, e infinitos lugares a la izquierda a partir del lugar k-1 inclusive), los términos de las sucesiones Ψ en el cilindro, son libres de tomar cualquier valor del alfabeto.

Ejercicio 13.

Demostrar las siguientes proposiciones:

- 1. Todo cilindro es abierto no vacío en el espacio métrico $\{0,1\}^{\mathbb{Z}}$ del shift bilateral.
- 2. Cualquier abierto no vacío del espacio métrico $\{0,1\}^{\mathbb{Z}}$ es unión de cilindros.
- 3. El conjunto de cilindros forman una base de la topología del espacio métrico del shift bilateral.
- 4. Para cualquier cilindro $C(\Theta,k,r)$ y para todo natural $n\geq 1$ se cumple

$$\sigma^n(C(\Theta, k, n)) \neq \{0, 1\}^{\mathbb{N}}.$$

Es decir, ningún cilindro tiene un iterado por el shift bilateral que es igual a todo el espacio.

5. Dada una pareja $\left(C(\Theta_1, k_1, r_1), \ C(\Theta_2, k_2, r_2)\right)$ de cilindros en el espacio del shift bilateral $\{0,1\}^{\mathbb{Z}}$, existe un natural $n \geq 1$ tal que

$$\sigma^n \Big(C(\Theta_1, k_1, r_1) \Big) \bigcap C(\Theta_2, k_2, r_2) \neq \emptyset.$$

6. El shift hacia la izquierda en el espacio del shift bilateral, es transitivo.