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DRAFT ABSTRACT

We consider networks of any number of coupled oscillators. Each oscillator is mathemat-
ically modeled as an abstract dynamical system exhibiting a periodic attractor of the on-off
type, that is dissipative during the off–phase and that interacts with the other oscillators dur-
ing the on–phase. We are trying to prove that those networks globally synchronize,
from Lebesgue almost all initial state, up to a positive error ǫ ≪ 1 in the measure of times
and phases. We assume as hypothesis, that the couplings are all positive or excitatory, namely,
they increase the velocities during the off-phases. We also assume that the oscillators in the
network are identical, and completely mutually coupled, namely, all the oscillators are coupled
with all the oscillators. The proofs are classical mathematical, and no numerical particular data
is assumed.

NOTA: Este draft serı́a un primer paso. El paso siguiente es tratar de probar

la misma tesis de sincronización del teorema 9.1 para redes de osciladores no idénticos,

pero δ-similares, y deducir que la sincronización es robusta, es decir, persiste

ante perturbaciones peque~nas de los parámetros funcionales del modelo.
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eleonora@fing.edu.uy. Partially financed by ANII and CSIC-UdelaR. Montevideo. Uruguay.
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1 Introduction

Redactar los primeros cuatro puntos y revisar o completar el quinto:

∗ Generalidades del problema de sincronización de osciladores que muestren su relevancia,
con referencias bibliográficas

∗ Problemas de sincronización ya resueltos o pendientes, en casos particulares de redes
acopladas de osciladores del tipo On-Off, como por ejemplo los de los LCO, con referencias
bibliográficas.

∗ Open problem: to find mathematical sufficient conditions, and theoretical tools, to predict
the synchronization of large networks of coupled oscillators.

∗ Our contribution in this paper is ....
∗ The methodology we use is the classical of pure mathematics, namely, the definitions,

statement of theorems and their proofs are abstract, based on the classical logic and independent
of particular numerical data and of experimental or computational experiments.

To state and prove the main result along this paper, in Theorem 9.1, predicting the global
synchronization of large networks of coupled oscillators, we will consider a general abstract
model of On-Off oscillator, defined in 3.1. We will

not restrict to any particular numerical example of On-Off oscillator,
but consider all of them, linear and non linear, with more or less regular or differentiable

properties, in the abstract and wide scenario of all the infinitely many dynamical systems sat-
isfying Definition 3.1. So, in this abstract scenario, the parameters are not a finite set of
real numbers, but functional parameters, and thus, they

live in an infinite dimensional functional space.
Some of the ideas for the proof of Theorem 9.1, predicting the synchronization of the network

of many identical oscillators, with complete and excitatory coupling, were taken from C. and
Guiraud 2010. In that preprint we proved a similar theorem, but under different hypothesis:
the differential equations determining the time evolution of each single oscillator were linear, the
“On” states were assumed to be instantaneous. In this paper we are not assuming any concrete
second term for the differential equations determining the evolution of each oscillator, and the
“On” state is assumed to last a positive (ver small) time.

As said before, the results that we prove along this paper, hold independently of the numerical
data of each particular example: it does not depend of the particular numerical formulae of the
functions F (x), G(x) and H(x) in the second term of Functional of Differential Equations (1)
and (4), that govern the dynamics of each oscillator and of the coupled network. About these
functions, we only assume the open hypothesis of Inequalities (2) and (3). Nevertheless we
assume a non open hypothesis: all the oscillators of the network are identical. It remains the
open question of possibly extending some of the results in this paper, to networks of non identical
oscillators, at least if they are δ-similar for some positive, small enough number δ.
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2 A general abstract oscillator.

Definition 2.1 We call
phase dynamics in regime of an oscillator,

to any continuous dynamical system φ, depending of time t ≥ 0 and on the initial
condition p0 ∈ M ,

evolving in a metric space M , such that M = {φt(p0)}t≥0

is a periodic orbit of period T0 > 0.
In other words:

1) φt(p0) = p0 ∀t ≥ 0, ∀ p0 ∈ M ;
2) φt1+t2(p0) = φt1(φt2(p0)) ∀ t1 ≥ 0, ∀ t2 ≥ 0, ∀ p0 ∈ M ;
3) φt+T0(p0) = φt(p0) ∀ t ≥ 0, ∀ p0 ∈ M ;
4) T0 is the minimum positive real number satisfying the equality 3); and
5) {φt(p0)}0≤t<T0

= M ∀ p0 ∈ M.

From 5) we deduce that for all p0, p1 ∈ M there exists t1 = t1(p0, p1) such that p1 = φt1(p0).

We call phase dynamics of the oscillator to the dynamical system φ satisfying the conditions
1) to 5) above. Once an initial state p0 is chosen and fixed, we call instantaneous phase of the
oscillator at time t, or in brief phase, to the state φt(p0).

REMARK: In particular, we are interested in some class of oscillators for which the
phase dynamics

φt(p0) is the flow that solves an autonomous ordinary differential equation, with
initial condition p0 ∈ M .

To do so, we need that the metric space M has a differentiable structure, for instance, M
may be contained in the union M̂ of finite–dimensional differentiable Riemannian manifolds. If
so, each integrable vector field F (p) on the tangent manifold TM̂ defines a vectorial autonomous
ordinary differentiable equation dp/dt = F (p). The general solution of this differentiable equa-

tion is a dynamical system φt(p0) evolving on M̂ , called flow. This flow satisfies the conditions

1) and 2) of Definition 2.1. In particular if it has a periodic orbit of a point p0 ∈ M̂ , with period
T0 > 0, it also satisfies conditions 3) and 4). In general, we are interested to consider oscillators
to all those dynamical systems defined as above, for which a periodic orbit {φt(p0)}0≤t is a

topological or a Milnor attractor on the manifold M̂ . If this were the case, we would restrict the
space M̂ to M ⊂ M̂ defined as M = {φt

p0
}t≥0, so condition 5) of Definition 2.1 is also satisfied.

In brief, the metric space M of Definition 2.1, even if being of one-dimensional (because it re-
duces to a single periodic orbit) may come from a periodic attractor (i.e. the dynamical system
in the asymptotic regime) of a flow with many variables, which is, for instance, the solution of

a vectorial ordinary differential equation on a manifold M̂ ⊃ M with many dimensions.
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3 The On–Off dissipative oscillator.

Now, we will consider the On-Off oscillators, defined below, for which the metric space M is the
union of two real intervals (or of two circles S1):

1

0

off

on

x

T0
t

ǫ0 T0

Figure 1: On-Off Relaxation Oscilator, with period T0, and On-Time equal to ǫ0 T0

Definition 3.1 On-Off Dissipative Oscillators (See Figure 1)
We say that an oscillator with phase dynamics φ is On-Off if the metric space M , where its

dynamics in regime evolves, is:

M = {(x, y) ∈ R
2 : 0 ≤ x < 1, y = 0} ∪ {(x, y) ∈ R

2 : 0 < x ≤ 1, y = 1} ,

and the phase dynamics φ in M is the continuous flow φt(x0, y0) = (x(t), y(t)) that
solves the following system of functional equations

with initial conditions x(0) = x0, y(0) = y0:






dx

dt
= (1 − y) · F (x) + y · G(x)

y(t) =

{
0 if x(t) = 0 or if 0 < x(t) < 1 and limτ→t− ẋ(τ) > 0
1 if x(t) = 1 or if 0 < x(t) < 1 and limτ→t− ẋ(τ) < 0

(1)

where F : [0, 1] 7→ R and G : [0, 1] 7→ R are C1 real functions such that

F (x) > 0, F ′(x) < 0, G(x) < 0, G′(x) < 0 ∀ x ∈ [0, 1]. (2)

For all the instantaneous phase states (x(t), y(t)) for which y(t) = 0 we say that the oscillator

is Off. . For all the phase states for which y(t) = 1 we say that the oscillator is On. The

variable y is called the On-Off switch. Notice, from the definition above, that x(t) is strictly
increasing satisfying dx/dt = F (x(t)) > 0 while the switch is Off, and it is strictly decreasing
satisfying dx/dt = G(x(t)) < 0 while the switch is On.

We say that the oscillator above is

dissipative, because the kinetic energy Ec(t) = (dx/dt)2 strictly decreases with time t,

during the Off face. In fact, we will argue for all t such that yi(t) = 0, 0 < xi(t) < 1:

dEc(t)

dt
=

d
(

dx
dt

)2

dt
= 2

dx

dt

d2x

dt2
= 2F (x(t))

d(dx
dt

)

dt
= 2F (x(t))

dF (x(t))

dt
=

= 2F (x(t))F ′(x(t))F (x(t)) = 2F 2(x(t)) · F ′(x(t)) < 0.
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4 Existence and uniqueness of solution.

It is not immediate, but it is neither difficult, to prove that
the system of functional equations (1),

determining the time evolution in regime of a general abstract on-off oscillator,
has a unique solution for each initial condition (x0, y0) ∈ M .

Besides, all the solutions are the same orbit, which is periodic with period T0. In fact, we
prove this result in Proposition 4.1. Later, we give a concrete numerical example of an On-Off
oscillator in 5.1.

Proposition 4.1 .
The system (1) of functional equations in Definition 3.1, satisfies the following properties:
(i) For each initial condition (x0, y0) ∈ M there exists a unique solution x(t), y(t) of the system
such that x(0) = x0, y(0) = y0.
(ii) All the solutions are defined for all t ≥ 0, and are periodic with period T0 which is independent
of the initial condition.
(iii) There exists 0 < ǫ0 < 1, independent of the initial condition, such that, during each periodic
interval of time with length T0, the oscillator is Off during a time subinterval of length (1−ǫ0)·T0

and is On during a time interval of length ǫ0 · T0.

Proof: The first equation of the system (1) of functional equations in Definition 3.1, is an ordinary
differential equation that does not satisfy the Piccard Theorem (because the second term has
discontinuities). But for any given initial condition (x0, y0) ∈ M , and during the interval of
time 0 ≤ t ≤ T1 while the value of y is constant y(t) = y0, the first functional equation can
be written as only one of the following two ordinary differential equations: dx/dt = F (x),
or dx/dt = G(x). Both of them satisfy the hypothesis of Piccard Theorem, so there exists
a unique solution x(t), y(t) of the system, satisfying the given initial conditions and defined
for all t ∈ [0, T1] where T1 > 0. At time t = T1, the switch variable y changes becoming
y(T1) = y1 6= y0. This instant T1 exists (is not infinite), because of the second functional
equation: In fact, y(t) must switch its value because x(t) does arrive in a finite time T1, to the
level 1 or 0, since x(t) is strictly monotone, with derivative that is bounded away from zero:
|dx/dt| ≥ minx∈[0,1] min{|F (x)|, |G(x)|}.

Let us take now the initial condition (x1, y1) = (x(T1), y1), for the instant t = T1, instead of
t = 0. Then we can apply the same argument as above to conclude that there exists a second
interval of time [T1, T2], with T2 > T1, and a unique solution x(t), y(t) of the system (1), defined
for all t ∈ [T1, T2], and such that y(t) = y1 for all t ∈ [T1, T2] and x(T1) = x1. Arguing by
induction, we deduce that there exists a unique solution (x(t), y(t)) satisfying (1) such that
x(0) = x0, y(0) = y0. Besides, it is defined for all t ∈ I =

⋃+∞
i=0 [Ti, Ti+1], where T0 = 0.

To prove that the solution is defined for all t ≥ 0 (namely I = [0,+∞)), it is enough to prove
that the orbit is periodic...

pendiente: Terminar esta prueba.



6

Definition 4.2 For an On-Off oscillator of period T0, we call On–Time to the length of the
temporal subinterval, inside each period, while the oscillator’s phase is On. After Proposition
4.1 the On–Time lasts ǫ0 · T0, where 0 < ǫ0 < 1.

In the sequel we will assume that ǫ0 is much smaller than 1, and denote it as ǫ0 ≪ 1.

1

0

off

on

x

T0
t

ǫ0 T0

Figure 2: On-Off Relaxation Oscilator, with period T0, and On-Time equal to ǫ0 T0

5 Example of on-off dissipative oscillator.

Example 5.1 Let us consider an “On-Off Relaxation Oscillator”, for which the peri-
odic evolution of the real variable x, as a function of the time t, is plotted in Figure 1.

This oscillator is defined on the metric space

M = {(x, y) ∈ R
2 : 0 ≤ x < 1, y = 0 or 0 < x ≤ 1, y = 1}.

The On-Off switch variable y, takes only the values 1 or 0, and is not plotted in Figure 1. It
depends of the values of x and of the left lateral limit of dx/dt.

The limit cycle O of the oscillator in this example, is the periodic orbit of the dynamical
system (x(t), y(t)), solution of the following functional equations:






dx

dt
= (1 − y) · log 2 ·

2 − x

T0(1 − ǫ0)
+ y · log 2 ·

−(1 + x)

ǫ0 T0

y(t) =

{
0 if x(t) = 0 or if 0 < x(t) < 1 and limτ→t− ẋ(τ) > 0
1 if x(t) = 1 or if 0 < x(t) < 1 and limτ→t− ẋ(τ) < 0

The periodic solution, taking the initial condition x0 = 0, y0 = 0 , can be explicitly computed
as follows, for all t ≥ 0:






x(t) = 2 − 2e (log 2) · t/(T0(1 − ǫ0)) if 0 ≤ t ≤ T0(1 − ǫ0)

x(t) = −1 + 2e−(log 2) · (t − T0(1 − ǫ0))/(ǫ0 T0)) if T0(1 − ǫ0) ≤ t ≤ T0

y(t) = 1 if 0 < t ≤ T0(1 − ǫ0)
y(t) = −1 if T0(1 − ǫ0) < t ≤ T0

x(t) = x(t + T0) ∀ t ≥ 0
y(t) = y(t + T0) ∀ t ≥ 0.
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6 Networks of oscillators.

Definition 6.1 A network S of n ≥ 2 on-off identical oscillators
is a dynamical system

φt(x(0),y(0)) = (x(t),y(t)),

evolving with time t ≥ 0
on the product metric space Mn,

where M is the metric space defined in 3.1 for each single On-Off oscillator. In the notation
above (x(t),y(t)) ∈ Mn is the instantaneous state of the network at time t, computed as follows:

(x,y) = ((x1, y1), (x2, y2), . . . , (xn, yn)),

where, for all i = 1, 2, . . . , n, the real variable xi(t) ∈ [0, 1] denotes the instantaneous phase of
the i-th. oscillator of the network, and the variable yi(t) ∈ {0, 1} is its On-Off switch.

6.2 Uncoupled networks of identical on-off oscillators.

On one hand, the dynamics of the network, as Defined in 6.1, may be

the product dynamics of its

n-isolated on-off oscillators, each one given by the system satisfying Equations (1) and
Inequalities (2). In this case we say that the oscillators of the network are all isolated, or that
the network is uncoupled. For an uncoupled network of n ≥ 2 on–off oscillators, the dynamics is
governed by the a system of 2n -functional equations. In fact, for each value of i ∈ {1, 2, . . . , n})
the variables (xi(t), yi(t)) describing the instantaneous state of the oscillator i are governes by
the two functional equations given in Equalities (1).

On the other hand, in Definition 7.1 we will consider a class of networks for which some or
all the oscillators, are mutually coupled. For that class, the dynamical system of the network
is the solution of a system of vectorial functional equations, precisely composed with 2n real
functional equations. Half of these functional equations are autonomous ordinary differential
equations, and give conditions for the derivatives dxi/dt of the phases xi(t) of all the oscillators
(i = 1, . . . , n). The other half are functional equations governing the changes of the On–Off
switch variables yi(t). In general, the network of oscillators is said to be coupled when some
(not necessarily all) the differential equations governing the phases xi(t), write the derivative
dxi/dt of the phase of the i − th oscillator, depending not only on xi(t) and yi(t), but also on
the variables (xj(t), yj(t)) of some other oscillators of the network, namely, for some values of
j 6= i. We are going to consider only some particular coupling as in the definition below.
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7 Coupled Networks.

Definition 7.1 Coupled networks of On-Off Oscillators.

Consider a network S of n ≥ 2 identical on-off oscillators as defined in 6.1. We say that S
is completely coupled with positive (or excitatory) interactions,

if there exists a C1 function H(x) defined for all x ∈ [0, 1], such that:

1)
H(x) > 0, H ′(x) < 0 for all x ∈ [0, 1]. (3)

2) For all i ∈ {1, . . . , n}, the phase variable xi(t) of the i−th on–off oscillator of the network,
and its on–off switch variable yi(t), satisfy the following system of functional equations:






dxi

dt
= (1 − yi) · F (xi) + yi · G(xi) +

n∑

i6=j, i,j=1

yj · H(xi)

yi(t) =

{
0 if xi(t) = 0 or if 0 < xi(t) < 1 and limτ→t− ẋi(τ) > 0
1 if xi(t) = 1 or if 0 < xi(t) < 1 and limτ→t− ẋi(τ) < 0

(4)

where F : [0, 1] 7→ R and G : [0, 1] 7→ R are the same C1 real functions satisfying the Equations
(1), for each i-th. oscillator. Therefore, we are still assuming that:

F (x) > 0, F ′(x) < 0, G(x) < 0, G′(x) < 0 ∀ x ∈ [0, 1]. (5)

Definition 7.2 Minimum Positive Coupling ρ. Consider a coupled network of n ≥ 0 on-
off oscillators, as in Definition 7.1. The Minimum Positive Coupling is the positive real number,
defined by:

ρ = min
x∈[0,1]

H(x) > 0. (6)

Definition 7.3 Coupled network of always alive oscillators.
We say that an oscillator i of a coupled network with n ≥ 2 on–off oscillators eventually dies

for some initial condition x(0),y(0) ∈ Mn, if there exists Td ≥ 0 such that the switch variable
yi(t) is constant for all t ≥ T . We say that an oscillator i is always alive if for all initial condition
it does not eventually die. We say that a coupled network with n ≥ 2 on–off oscillators is globally
always alive, if all its oscillators are always alive, according to Definition above.

Proposition 7.4 Global life of the network.
Consider a coupled network S of n ≥ 2 identical on-off oscillators, with positive interactions,

according with Definition 7.1. If there exists a constant M > 0 such that

G(x) + n(n − 1) · H(x) ≤ −M < 0 ∀ x ∈ [0, 1], (7)

then, the network S is globally always alive.
Besides the interval of time in which any oscillator remains in the state “On” is upper

bounded by

T− =
1

M
,

the maximum time in which any oscillator remains in the state “Off” is upper bounded by

T+ =
1

minx∈[0,1] F (x)
.
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Proof:
First assume that yi(τ) = 1, namely, the oscillator i is On at some instant τ ≥ 0. From

Inequality (7) in the hypothesis, and applying the differential equation in (4), we deduce the
following chain of assertions, for all t ≥ τ such that yi(t) = 1:

dxi

dt
= (1 − yi(t)) · F (xi) + yi(t) · G(xi) +

∑

j 6=i

yj(t) · H(xi)

≤ G(xi) + n(n − 1)H(xi) ≤ −M < 0.

In other words, the velocity dxi/dt is negative and bounded away from zero. Therefore, the
decreasing phase xi(t) ∈ [0, 1], while yi(t) = 1 arrives, after a finite time interval, to the lower
threshold level 0. We deduce that the oscillator i turns to the Off phase, i.e. yi(t) takes the value
0 at some finite time t > τ . Besides, the maximum time during which the oscillator i remains
in the state “On”, occurs if xi(τ) = 1. We obtain that this maximum time is not greater than
T− = 1/M .

Similarly, assume that yi(τ) = 0, namely, the oscillator i is Off at some instant τ ≥ 0. After
Weierstrass Theorem, there exists a minimum m of F in the compact interval [0, 1]. Namely,
F (xi) ≥ m > 0 for all 0 ≤ xi ≤ 1. Then, for all t ≥ τ such that yi(t) = 0, the differential
equation in (4) implies:

dxi

dt
= F (xi) +

∑

j 6=i

yj(t) · H(xi) ≥ F (xi) ≥ m > 0.

In the last inequality we have used that the coupling function H is positive. In other words,
the velocity dxi/dt is positive and bounded away from zero. Therefore, the increasing phase
xi(t) ∈ [0, 1] arrives, after a finite time interval, to the upper threshold level 1, and the oscillator
i turns to the On phase, i.e. yi(t) takes the value 1 for some t > τ . Besides, the maximum time
during which the oscillator i remains in the state “Off”, occurs if xi(τ) = 0. We obtain that
this maximum time is not greater than T+ = 1/m.

We have proved that, for all oscillator i, its On-Off switch variable yi(t) is not constant on
t ≥ 0. After Definition 7.3, the oscillator i is always alive. �

Remark 7.5 Consider a coupled network of n ≥ 0 on-off oscillators, as in Definition 7.1, and
satisfying Inequality (7). After Proposition 7.4, all the oscillators in the network are always
alive. Besides, the maximum time in which it remains in the on state is upper bounded by
T− = 1/M . On the other hand, the same argument in the proof of Proposition 7.4, shows that
the minimum time in which any oscillator remains in the off state, is lower bounded by

T ′+ =
1

maxx∈[0,1]( F (x) + n(n − 1)H(x) )
.

Definition 7.6 On/Off times relation γ.

The On/Off times relation γ > 0 is the real number defined by:

γ :=
T−

T ′+
=

maxx∈[0,1]( F (x) + n(n − 1)H(x) )

minx∈[0,1]( |G(x)| − n(n − 1)H(x) )
. (8)

In the sequel we will assume that γ ≪ 1.
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8 Global Synchronization.

The following definition of the global synchronization phenomenon of all the oscillators of a
network, is indeed a quasi-synchronization. We are imposing that

periodically all the oscillators exhibit their On states

quasi-simultaneously (up to an error on times upper bounded by a positive real num-

ber ǫ ≪ 1. But we are not hoping that they all arrive to the On-state, or leave the On-state
simultaneously at exactly the same instants, nor that their instantaneous phases xi(t) coincide.

Definition 8.1 ǫ-global synchronization.
Let 0 < ǫ ≪ 1 be a small positive real number.

We say that a network of n ≥ 2 on-off oscillators ǫ-synchronizes at the instant t, if for
all oscillator i there exists an instant

ti ∈ [t, t + ǫ]

such that i exhibits the “On”state at the time ti, namely yi(ti) = 1.

We say that a network of n ≥ 2 on-off oscillators eventually ǫ-synchronizes periodically,
if there exist t0 ≥ 0 and T > 0 such that for all natural number k ≥ 0,

the network ǫ-synchronizes at some instant in the time interval

[t0 + kT, t0 + (k + 1)T ].

The time t0 is called the transitory time to arrive to the ǫ-synchronization periodic
synchronization, and the time
T is called the period of the network.

In Theorem 9.1 we predict the ǫ synchronization, as defined above, of networks of completely
and positively coupled on-off identical oscillators, provided that they are dissipative. Neverthe-
less, in some cases of physical concrete examples with many oscillators, and depending on the
initial states of the oscillators in the network, the transitory time t0 may be very large, as much
to make impossible to make observable in experiments the periodic synchronization. In fact, in
Theorem 9.1 we find an optimal upper bound for the transitory time, that, depending on the
parameters of the system, and of the initial state, that may take arbitrarily large values. So t0
may be much larger than the reasonable time interval of observation.
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9 The Synchronization Theorem.

Falta completar bien el enunciado del teorema que viene a continuación. Su enun-

ciado va a depender de si andan o no, y cómo quedan al final, los intentos de pruebas

de la sección 10, Cuando se trate de formalizar la ruta de prueba propuesta al final,

puede derivar en cambios en las hipótesis, en las definiciones previas, y en las

tesis.

Theorem 9.1 Up to now, still a conjecture

Let S be a network of n ≥ 2 identical on–off dissipative oscillators, coupled positively and
completely, accordingly with Definition 7.1. Denote ρ > 0 to the minimum coupling constant
defined in Equality (6) and γ > 0 the On-Off times relations defined in Equality (8).

For all ǫ > 0 there exists δ > 0 such that

if γ < δ and if ........ρ n min
x∈[0,1]

min{|F ′(x)|, |G′(x)|} etc etc > ...... ,

then, from Lebesgue–almost all initial state of the network, S eventually ǫ-synchronizes all its
oscillators periodically (according to Definition 8.1). Even more, the transitory time t0 to arrive
to the ǫ-synchronization, which depends on the initial condition of the network, and the period
T of the synchronization of the network, are bounded by:

t0 ≤
ρ....etc etc...f(initial condition)

n etcetc.... · maxx∈[0,1] |G(x)|
.

....... ≤ T ≤ .........

See the attempt of proof of Theorem 9.1 in Section 10.

Remark: Hay que observar quizás, cuando se encuentre la fórmula precisa, que

t0 puede hacerse infinitamente largo para ciertas condiciones iniciales cercanas

a aquellas con medida de Lebesgue cero para las cuales la red no sincroniza.
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10 The proof of the Synchronization Theorem 9.1.

Revisar si funcionan las ideas siguientes y en caso que funcionen, escribirlas bien;

en caso que no funcionen buscar cómo modificar las hipótesis o las definiciones previas,

o la tesis, para que funcionen, o buscar alguna ruta de prueba alternativa:

∗ RUTA DE UNA POSIBLE PRUEBA DEL TEOREMA 9.1.

To prove Theorem 9.1 we will first state some previous lemmas, which are rather technical:

Lemma 10.1 Consider the constant times T+ > T ′+ ≫ T− > T ′− > 0 defined as

T+ = 1 / ( min
x∈[0,1]

F (x) ), etc, etc, etc. (9)

then, for all i ∈ {1, 2, . . . , n} and for all instant τ ≥ 0 the following assertion holds:
If yi(τ) = 0 (i.e. the oscillator i is off at time τ), then there exists τ2 ∈ (τ, τ + T+], such

that (xi(τ2), yi(τ2)) = (1, 1). In other words, if the oscillator i is off, then it turns after a delay
that is upper bounded by the constant T+. If besides xi(τ) = 0, then τ2 ≥ τ + T ′+. In other
words, the minimum time during which an oscillator is off is lower bounded by T ′+.

Idem if yi(τ) = 1 (i.e. the oscillator i is on at time τ), using the constants T− and T ′−.

Proof: Pendiente escribir bien el enunciado y la prueba, quizás solo como remark,

en vez de lemma, pero todo junto. Fijarse que casi todo ya está probado en la pro-

posición 7.4 y antes de definir el número γ en la igualdad (8).

Lemma 10.2 For all oscillators i 6= j, the following assertion holds:
If xi(τ) < xj(τ), yi(τ) = yj(τ) for some time τ ≥ 0, then
(1) xi(t) < xj(t) for all t ≥ 0 such that yi(t) = yj(t) = yi(τ), and
(2) xi(t) > xj(t) for all t ≥ 0 such that yi(t) = yj(t) = 1 − yi(τ).

Proof: Prueba pendiente. Escribirla. Usar las ecuaciones diferenciales (4) y

que los osciladores son idénticos. Fijarse en figura 1.
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Lemma 10.3 Contracting lemma.

Consider the constant T ′+ defined Lemma 10.1. Define the constant K > 0 as follows:

K := min
x∈[0,1]

min{|F ′(x)|, |G′(x)|} = − max
x∈[0,1]

max{−F ′(x),−G′(x)}.

Then, for all oscillators i 6= j and for all interval of time [τ, τ + ∆t] with length ∆t > 0, the
following assertion holds:

If yi(t) = yj(t) ∀ t ∈ [τ, τ + ∆t], then

|xi(τ + ∆t) − xj(τ + ∆t)| ≤ |xi(τ) − xj(τ)| · e−K·∆t < |xi(τ) − xj(τ)|.

Proof: Define u(t) = xi(t) − xj(t). After Lemma 10.2, u(t) has constant sign signo for all
t ∈ [τ, τ + ∆t]. It is not restrictive to assume that u(t) > 0. We now apply the differential
equations in (4). In the case for which yi(t) = yj(t) = 0 we obtain

du/dt = A(t, xi(t)) − A(t, xj(t) where A(t, x) = F (x) +
∑

k 6=i,j

yk(t)H(x).

Since A(t, x) is C1 dependent on x, for all fixed t, we may apply the Lagrange Mean Value
Theorem. We deduce that there exists a real function x̃(t) defined for all t ∈ [τ, τ + ∆t], and
that takes values in the interval [xj(t), xi(t)] such that:

A(t, xi(t)) − A(t, xj(t)) =



 F ′(x̃(t)) +
∑

k 6=i,j

yk(t)H
′(x̃(t)



 · (xi(t) − xj(t)) ≤

≤ ( max
x∈[0,1]

F ′(x) ) · u(t) ≤ −K · u(t) ∀ t ∈ [τ, τ + ∆t].

In the last inequality we have used the hypothesis that H ′(x) < 0. Therefore:

du

dt
≤ −K · u(t) ∀ t ∈ [τ, τ + ∆t].

Applying Gronwald Lemma:

u(t) ≤ u(τ) · e−K·t ∀ t ∈ [τ, τ + ∆t].

The proof in the case for which yi(t) = yj(t) = 1 is analogous. �
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Definition 10.4 Switch-on times. Denote 0 ≤ t1 ≤ t2 ≤ t3 ≤ . . . ≤ tk ≤ tk+1 ≤ . . . to the
sequence of switch-on times, namely:

∀ 1 ≤ k ∈ N ∃ i such that (xi(tk), yi(tk)) = (1, 1),

∀ t 6∈ {tk}k≥1 (xi(tk), yi(tk)) 6= (1, 1) ∀ i, and

tk−1 < tk = tk+1 = . . . = tk+m−1 < tk+m if #{i : (xi(tk), yi(tk)) = (1, 1)} = m.

From Proposition 7.4 we deduce that the sequence of switch-on times always exists and satisfies

lim
k→+∞

tk = +∞.

After Lemma 10.2, we can re-order the oscillators {1, 2, . . . , n}, and re-index the sequence of
switch times {tk}k≥1 such that:

0 ≤ t1 ≤ t2 ≤ t3 ≤ . . . ≤ tn ≤ tn+1 ≤ . . . and

∀ i ∈ {1, 2, . . . , n} : (xi(ti), yi(ti)) = (1, 1) and (xi(ti+kn), yi(ti+kn)) = (1, 1) ∀ k ∈ N.

In the sequel we will assume that the set of oscillators is ordered as above. In other words:
i < j if and only if ti ≤ tj and this happens if and only if ti+kn ≤ tj+kn for all integer number
k ≥ 0.

Lemma 10.5 For all given 0 < ǫ ≪ 1, define the real number c > 0 by:

c := ..... ≪ 1

Consider an oscillator i and recall, from the construction of the switch on times that:

(xi(ti), yi(ti)) = (1, 1).

Then, for all oscillator j > i:

If yj(ti) = 0 and 1 − c ≤ xj(ti) < 1, then (xj(tj), yj(tj)) = (1, 1) for ti < tj ≤ ti + ǫ/4.

Proof: Pendiente, pero creo que es fácil.

Lemma 10.6 Recall the On/Off times relation γ > 0 defined in Equality (8). Let 0 < ǫ ≪ 1 be
given. Consider the real numbers c > 0 defined in Lemma 10.5, and δ > 0 defined by:

δ := ..... ≪ 1

If γ < δ and if for some oscillators j > i , ti < tj ≤ ti + ǫ then there exists t′j such that
tj < t′j ≤ tj + ǫ and

(xj(t
′
j), yj(t

′
j)) = (0, 0), yi(t

′
j) = 0, 0 < xj(t

′
j) < c.

Proof: Pendiente.
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Lemma 10.7 Recall the On/Off times relation γ > 0 defined in Equality (8). Recall the sequence
{tk}k≥1 of switch-on times defined in 10.4. For all given 0 < ǫ ≪ 1, define

T = ....., δ = ....................

Assume that γ < δ and that there exists k > 1 such that

tk < ǫ, and ∀ i ∃ t ∈ [0, tk] such that yi(t) = 1.

Then the network ǫ− synchronizes with period T and with transitory time t0 = 0.

Proof: Pendiente. Idea: usar el lema de la contracción y los otros lemas ya

enunciados.

Remark: Consider the following assertion:

(A): For some instant ti in the sequence of switch on time, for all oscillator j, either yj(ti) = 1
or 1 − c ≤ xj(ti) < 1.

After Lemmas 10.5 and 10.7, we deduce that if the assertion (A) were true, then the network
ǫ synchronizes periodically with period T for all t ≥ ti.

So, to end the proof of Theorem 9.1, it is left to

prove (A) for Lebesgue almost all initial condition.

(B): Assume by contradiction that for all switch-on time ti there exists at least an oscil-

lator j such that yj(ti) = 0 and 0 ≤ xj(ti) < 1 − c. Under this hypothesis, denote

Mi = max
j 6=i

{ xj(ti) ≥ 0 : yj(ti) = 0, xj(ti) < 1 − c } < 1 − c.

Lemma 10.8 The Key Lemma.
There exists a constant λ > 0 such that, for Lebesgue almost all initial condition λ < 1,

satisfying the following properties: Under the assumption (B) above, for all i there exists j > i
such that:

1 − Mj ≤ λ · ( 1 − Mi ) ,

Even more, one can choose

λ := .....f(initial condition).

Proof: Pendiente. Espero que sea cierto porque este es el key point en la de-

mostración. Hay que usar que la derivada segunda de la F y de las H son negativas,

y/o el lema de la propiedad de contracción que demostré antes.
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10.9 End of the Proof of Theorem 9.1:
Assuming the contradiction hypothesis (B), and applying Lemma 10.8, there exists a natural

number k ≥ 1 such that λk < c. Therefore, for some fixed i, there exist j1 < j2 < . . . < jk, with
j1 > i, such that:

1 − Mjk
≤ λk · ( 1 −−Mi ) < c · ( 1 − Mi ) ≤ c.

The last inequality implies that Mjk
> 1 − c contradicting the definition of the sets Mj.

Finalmente, hay que probar las cotas para el tiempo t0 de transitorios, y para

el perı́odo T se obtienen ası́:

Applying Lemma 10.7:
T ′+ + T ′− ≤ T ≤ T+ + T− ,

where T+, T−, etc are the constants of Lemma 10.1.
The transitory time t0 is by construction the switch on time tjk

where k ≥ 0 is the minimum
natural number such that λk < c. It depends on the initial condition, but the worst case occurs
if M1 is near zero. So:

t0 = tjk
≤ k · (T+ − T−) ≤

log c

log λ
(T+ − T−) = ......... �
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