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Abstract

We prove that the C3 diffeomorphisms on surfaces, exhibiting infinitely many sinks near the
generic unfolding of a quadratic homoclinic tangency of a dissipative saddle, can be perturbed
along an infinite dimensional manifold of C3 diffeomorphisms such that infinitely many sinks
persist simultaneously. On the other hand, if they are perturbed along one-parameter families
that unfold generically the quadratic tangencies, then at most a finite number of those sinks
have continuation.

1 Introduction and statement of the main results.

Let M be a two-dimensional C∞ compact and connected riemannian manifold, and let Diff3(M)
be the infinite dimensional manifold of all C3-diffeomorphisms f :M 7→ M .

Let f0 ∈ Diff3(M) having a saddle fixed point P0. We denote λ0 < 1 < σ0 the eigenvalues of
Df0(P0).

We consider diffeomorphisms that are dissipative in a saddle point, i.e. λ0σ0 < 1. We also
assume that the diffeomorphism f0 exhibits at q0 a quadratic homoclinic tangency (see [PT 1993])
of the saddle point P0, recalling the following definition:

Definition 1.1 We say that the homoclinic tangency at q0 of the periodic saddle point P0 is
quadratic if there exists a C2 local chart in a neighborhood of q0 such that the stable arc of P0

which contains the tangency point q0 has equation y = 0, and the unstable arc has equation
y = β x2 with β 6= 0.

Take a one-parameter family {f̃t}t∈I ⊂ Diff3(M) through the given map f̃0 = f0, such that the
quadratic homoclinic tangency unfolds generically into two transversal homoclinic intersections
for t > 0.

The Newhouse-Robinson Theorem ([N 1974], [R 1983]) asserts that, as near as wanted from f̃0

in the one-parameter family {f̃t}t∈I , there exists an interval I0 and a dense set J0 ⊂ I0 of values
of the parameter such that for all t ∈ J0, f̃t exhibits infinitely many simultaneous sinks.

∗E-mail: eleonora@fing.edu.uy
†E-mail: cerminar@fing.edu.uy
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We will prove that for values t in a dense set J ⊂ J0, the map f̃t is bifurcating: in fact, our
Theorem 2 asserts that at most a finite number of certain sequence of infinitely many sinks of f̃t

can simultaneously persist when we perturb f̃t along certain one-parameter families in Diff3(M).
Nevertheless, in Theorem 1 we prove that the bifurcation of infinite many simultaneous sinks has
infinite dimension in Diff3(M).

Now let us define the kind of perturbations of each diffeomorphism and the kind of persistence
of each sink which we will consider all along this paper:

Definition 1.2 Let us suppose that g0 ∈ Diff3(M) exhibits a sink s0. Consider g1 ∈ Diff3(M),
isotopic to g0. We say that g1 exhibits the continuation s1 = s(g1) of the sink s0, if there is a
differentiable isotopy {gt}t∈R ⊂ Diff3(M) such that for all t ∈ [0, 1] there exists a sink st = s(gt)
of gt and the transformation t ∈ [0, 1] 7→ st ∈ M is of C1 class.

We are now ready to state the main result of this paper:

Theorem 1 Let M be a C∞ two dimensional compact connected riemannian manifold. Let f0 ∈
Diff3(M) exhibiting a quadratic homoclinic tangency of the saddle point P0. Assume that the
saddle is dissipative, i.e. its eigenvalues λ0 < 1 < σ0 verify λ0σ0 < 1.

Then, given an arbitrarily small neighborhood N of f0 in Diff3(M) there exists a C1 arc-
connected infinite-dimensional local submanifold M ⊂ N such that:

(a) Every g ∈ M exhibits infinitely many simultaneous sinks si(g)i∈N.
(b) Each sink si(g) is the continuation of the respective sink si(g0), for any pair of diffeomor-

phisms g0, g ∈ M.

Note that the given diffeomorphism f0 does not necessarily belong to M. We prove theorem
1 through sections 2 to 8.

Remark 1.3 Notation
Let f ∈ Diff3(M) have a horseshoe Λ ⊂ M , as defined in [PT 1993] Chapter II, Section 3. As Λ

is an hyperbolic set, there exist constants C > 0, λ̃ < 1 and σ̃ > 1 and a splitting TpM = Eu ⊕Es

for all p ∈ Λ, such that ||Dfn(v)|| ≥ Cσ̃n||v|| ∀v ∈ Eu and ||Dfn(v)|| ≤ C−1λ̃n||v|| ∀v ∈ Es.
Besides the horseshoe Λ is the maximal invariant set in an open neighborhood U of itself. In
Section 3 we will add some other restriction to U .

We assume that f exhibits at the point q1 ∈ U a quadratic homoclinic tangency of the invariant
manifolds of a periodic saddle point P1 ∈ Λ. We choose q1 such that f−1(q1) 6∈ U . It is not
restrictive to consider q1 ∈ W s(P1) such that for all n ≥ 1, fn(q1) belongs to U and then call
N1 > 1 to an integer number such that f−N1(q1) ∈ U belongs to the local stable manifold of P1.
We will take a small neighborhood V of q1 such that V ⊂ U , f−N1(V ) ⊂ U , and f−i(V ) and Λ
are pairwise disjoint for i = 0, . . . N1. We also assume that f−1(V ) ∩ U = ∅. We will work with
small perturbations of f, such that the former properties of V persist.

As shown in [PT 1993], Chapter II Section 3 and Appendix 1, it is possible to construct
invariant stable and unstable local foliations F s and Fu in a neighborhood of Λ. We will denote
W s

loc and W u
loc the respective leaves of the foliations. These foliations are C 1+ε, meaning in

particular that the tangent directions to the leaves are C 1+ε.

Definition 1.4 The line of tangencies L(f) is the set of points in a small neighborhood V of q1

where the leaves of F s and Fu are tangent.
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Figure 1: Horseshoe

Remark 1.5 Since the tangent directions are C1+ε, the tangencies on L(f) are also quadratic,
and L(f) is a differentiable curve (see [PT 1993] Chapter V, Section 1). It persists and depends
continuously on f.

Definition 1.6 The stable (unstable) Cantor set K s (resp. Ku) is the intersection with the line
of tangencies L(f) of the local leaves through the points P ∈ Λ of the stable foliation F s (resp.
the fN1 iterates of the local leaves of Fu passing through the points P ∈ Λ).

Definition 1.7 We say that a one-parameter family {f̃t}−ε≤t≤+ε ⊂ Diff3(M) passing through a
diffeomorphism f0, unfolds generically the quadratic tangencies of the horseshoe Λ(f0), if there
exists a velocity v > 0 such that

∣∣∣∣∣
dµp,q(f̃t)

dt

∣∣∣∣∣ ≥ v > 0 ∀p, q ∈ Λ, ∀t ∈ (−ε,+ε)

where µp,q(f̃t) is the distance along the line of tangencies L(f̃t) between ps = W s
loc(p)

⋂
L(f̃t) ∈ Ks

and qu ∈ fN1
t (W u

loc(q))
⋂

L(f̃t) ∈ Ku of any two points p, q ∈ Λ(f̃t).

Theorem 2 In the hypothesis of Theorem 1, given a one-parameter family {f̃t}−ε≤t≤ε ⊂ Diff3(M)
which generically unfolds the quadratic homoclinic tangency at q0 exhibited by f0, there exist
an open real interval I ⊂ (−ε, ε) and a dense set J ⊂ I of the parameter values such that if
f∞ ∈ {f̃t}t∈J , then:

(A) f∞ exhibits infinitely many sinks si(f∞)i≥1 ∈ V with periods pi(→ +∞), and there exists
0 < ρ < 1 such that the eigenvalues of df pi

∞(si) have modulus smaller than ρ for all i ≥ 1.

(B) There exists a local C1 infinite-dimensional, arc-connected manifold M ⊂ Diff3(M), such
that:

1. f∞ ∈ M
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2. If g ∈ M then g exhibits the continuation si(g) ∈ V of the infinitely many sinks si(f∞).

(C) Any one-parameter family {gµ}−ε≤µ≤+ε of C3 diffeomorphisms passing through g0 = f∞ and
unfolding generically the quadratic tangencies on L(g0), exhibits for µ 6= 0 at most a finite
number of simultaneous continuations si(gµ) of the sinks si(g0) constructed in part (A).

Remark to thesis (A): The sinks si(f̃t) for t ∈ J are not necessarily the continuation of the sinks
si(f∞), at least not for infinitely many values of i ≥ 1.

We prove Theorem 2 in Section 7.

An interesting open problem is the prevalence of infinite sinks. A conjecture of Palis ([P 2000])
asserts that there exists a dense set of C r diffeomorphisms with a finite number of attractors
with a total Lebesgue measure attracting basins. In dimension two the main obstruction to this
conjecture is that the phenomenon of the coexistence of infinite simultaneous sinks occurs for a
whole open set in Diffr(M). We observe that our Theorem 2 does not solve the problem, since
infinite sinks could appear from other homoclinic tangencies.

To prove Theorem 1, inspired in the Newhouse-Robinson Theorem, we construct a one-
parameter family {f̃t}t∈I perturbing in an adequate way the diffeomorphism f0. This perturbation
is constructed so that there exists a nested sequence of intervals of values of the parameter such
that in the i+1-interval there exists a sink si+1 and the i sinks constructed in the former intervals
still persist. In the intersection of all these intervals we obtain a parameter t∞ in which there
exist infinitely many sinks.

This construction is possible because f0 has a homoclinic tangency and perturbing f0, a
horseshoe is created. Newhouse remarked the persistence of homoclinic tangencies of saddle points
of a horseshoe whose unstable and stable Cantor sets Ku and Ks along the line of tangencies
have large thickness. Since near a homoclinic tangency there exists a sink (see the Yorke-Alligood
theorem, ([YA 1983])), it is possible to reason inductively in order to construct the nested sequence
of intervals.

Our purpose to prove Theorems 1 and 2 in this paper, goes beyond the construction of New-
house: we shall be able, besides, to perturb the primary family of diffeomorphisms in the functional
space Diff3(M), considering what we call “secondary diffeomorphisms”, along a properly defined
manifold M ⊂ Diff3(M), in such a way that the infinite sinks, constructed for the diffeomorphism
in the primary family, persist simultaneously.

Taking a nearby family in an adequate infinite dimensional set of Diff3(M), we will prove that
the values of the parameter where the tangencies and the sinks are produced, are near those of
the original family, and then the sinks continue, obtaining in this way the manifold M.

To prove part A of Theorem 2, with a suitable change of coordinates, the diffeomorphisms of
the family are near the functions of the classical quadratic family. For certain functions of the
quadratic family, the sink has eigenvalues as contractive as wanted. This property is maintained
for the diffeomorphisms of the original family.

Part B will be proved perturbing the diffeomorphism in such a way that the sinks, which are
far from a bifurcation after part A, persist.

To prove part C we will show that any perturbation of the diffeomorphism generically unfolding
the quadratic tangencies allows to persist only a finite number of the sinks, because the range of
the values of the parameter for which the sinks persist decreases monotonically to 0.

The main tools that will allow us to make such proofs are Propositions 4.3 and 5.7 of this
paper. This last guarantees the existence of uniform sized manifolds of codimension one in some
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infinite dimensional subset N1 ⊂ Diff3(M), along which all sinks persist simultaneously.

As far as we prove our theorems, we construct the manifold M having infinite dimension and
also infinite codimension. We do not assert that the manifold M that we construct is maximal
verifying the conditions (a) and (b) of the thesis of Theorem 1. Nevertheless, if such a maximal
manifold exists, it must have at least codimension one, as a consequence of the part (C) of the
thesis in Theorem 2, which we prove at the end of the paper.

We also answer to other open question: Can the infinitely many simultaneous sinks exhibited
by a diffeomorphism g0 constructed as in Newhouse-Robinson Theorem simultaneously continue
in an open set? In fact, we prove that the answer is negative, provided that g0 is a diffeomorphism
constructed as in Theorem 2.

As a consequence of the proof of part (C) of Theorem 2, it is immediate the following last
result:

Corollary 1.8 To continue infinitely many sinks (from those in {si(f∞)}) of a diffeomorphism
f∞ constructed as in Theorem 2 it is necessary to move along their respective stable local leaves
all the points in the unstable Cantor set Ku of the line of tangencies L(f∞) of f∞, that are in the
parabolic unstable arcs of the accumulation points of the sequence of sinks.

This last result is the main reason why we restricted our constructions (to prove the theorems of
this paper) to an infinite codimension manifold of diffeomorphisms, obtained from f∞ perturbing
only inside V . In that way we can control easily the unstable Cantor set K u while the stable
Cantor set remains fixed.

Finally, we pose the following open question. Let f∞ and M verifying parts (A), (B)1 and
(B)2 of Theorem 2. Has M necessarily infinite codimension?

2 Persistence of tangencies.

We recall the definition of line of tangencies (see Definition 1.4) and stable and unstable Cantor
sets (see Definition 1.6).

Definition 2.1 Given a Cantor set K ⊂ R, the thickness at u ∈ K in the boundary of a gap U
is defined as τ(K,u) = l(C)

l(U) where C is the bridge of K at u (see [PT 1993]). The thickness of K,

denoted τ(K) is the infimum of the τ(K,u) over u.

Definition 2.2 Two Cantor sets, K1, K2 ⊂ R have large thickness if τ(K1)τ(K2) > 1.

Definition 2.3 The horseshoe Λ verifies the large thickness condition if τ(K s)τ(Ku) > 1 where
Ku and Ks are defined in 1.6.

The importance of this definition resides in the following lemma:

Lemma 2.4 Let K1, K2 ⊂ R two Cantor sets with large thickness. Then, one of the following three
alternatives occurs: K1 is contained in a gap of K2; K2 is contained in a gap of K1; K1

⋂
K2 6= ∅.
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For a proof, see [PT 1993]. We will apply the lemma to the stable and unstable Cantor sets
on the line of tangencies: the third alternative assures the persistence of tangencies.

Now, we will define strongly dissipative horseshoes. Let us consider unstable and stable foli-
ations Fu and Fs defined in a neighborhood U of a horseshoe Λ. Let us take nonzero C 1 vector
fields Xu and Xs, tangent to the leaves of Fu and Fs, and let us define the functions λ:U → R

and σ:U → R as:
df(Xu(x)) = σ(x)Xu(f(x))

df(Xs(x)) = λ(x)Xs(f(x))

Redefining Xu and Xs if necessary, we obtain that σ > 1 and λ < 1 for every point of U if U is a
small enough neighborhood of Λ.

Definition 2.5 We say that a horseshoe is strongly dissipative if for every x ∈ U , λ(x)σ2(x) < 1

Theorem 2.6 (Newhouse-Robinson) Let f̃t be a monoparametric family which generically
unfolds a quadratic homoclinic tangency q0 exhibited at t = 0 of a fixed dissipative saddle point P0

(i.e. the eigenvalues of df0(P0) are λ0 < 1 < σ0 and λ0σ0 < 1.)
Then, given ε > 0, there exists an interval I ⊂ (0, ε) of values of the parameter and an open

set V such that:

(i) For every t ∈ I the diffeomorphism f̃t exhibits a horseshoe Λ which verifies the condition of
large thickness as in Definition 2.3 and it is strongly dissipative (i.e. λ(x)σ2(x) < 1, ∀x ∈
Λ).

(ii) For every value t of the parameter in a dense set in I, there exists a saddle point P ∈ Λ
which exhibits an homoclinic tangency q ∈ V .

(iii) For every value τ of the parameter in a dense set in I there exists infinite simultaneous sinks
in V .

Proof: See [N 1974] and [R 1983] and the lemma below.
The horseshoes created by unfolding tangencies have an important property:

Lemma 2.7 The horseshoe created by the unfolding of a homoclinic quadratic tangency of a dis-
sipative saddle point can be taken strongly dissipative just taking the number of iterates large
enough.

Proof: It is a consequence of the scaling in Section 4, Chapter III, of [PT 1993]. The horseshoe
is diffeomorphically conjugated to a horseshoe near a map of the quadratic family which is infinite
contractive (λ = 0) along its stable foliation. �

To prove our first main result in Theorem 1 it is enough to join the statements of Theorem
2.6 with the following:

Theorem 2.8 Let M be a C∞ two dimensional compact connected riemannian manifold. Let
f1 ∈ Diff3(M) exhibiting a strongly dissipative horseshoe Λ ⊂ M . Let P1 ∈ Λ be a saddle periodic
point with a quadratic homoclinic tangency at q1.

Assume that the stable and unstable Cantor sets of Λ along the line of tangencies L in a
neighborhood V of q1 verify the condition of large thickness defined in 2.3.

Then, given an arbitrarily small neighborhood N of f1 in Diff3(M), there exists a C1 arc-
connected infinite-dimensional manifold M ∈ N such that:
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(a) Every g ∈ M exhibits infinitely many simultaneous sinks {si(g)}i∈N ∈ V

(b) Each sink si(g) is the continuation of the respective sink si(g0) for any pair of diffeomorphisms
g0, g ∈ M.

The proof of this Theorem is in Section 6.

3 Local coordinates.

We remark some known facts on the existence of a regular coordinate system in a neighborhood
U of the horseshoe Λ that trivialize its local stable and unstable foliations.

Remark 3.1 Regularity of the local invariant foliations.
Given the horseshoe Λ in a two dimensional manifold M , and given a sufficiently small neigh-

borhood U ⊂ M of Λ, there exist the stable local foliation F s and the unstable local foliation
Fu that are invariant while their iterates remain in U (see Appendix 1 in [PT 1993]; see also
[M 1973]). Moreover, if f ∈ Diff2(M), then both invariant local foliations are of C 1-class (see
[PT 1993] Chapter II Section 3 and also Appendix 1.) Then the stable leaves are C 2 and the
tangent space of the stable leaf through a point P ∈ U depends C 1 on the point P . In particular
the concavity of each leaf depends continuously on the point P .

Besides, if f ∈ Diff3(M) and λσ2 < 1 then the local stable foliation is of C3-class while the
unstable foliation is not necessarily more then C 1+ε. In fact, the C3 differentiability of the stable
foliation follows after its r−normality (see [HPS 1977]): arguing as in [PT 1993] Appendix 1, and
working in the space L(M) = {(x,L) : x ∈ M and L is a 1-dimensional linear subspace of TxM},

it follows that the local stable foliation is C r with r such that
σλ−1

σr
> 1 for all x, or, equivalently,

r < 1 +
− log λ

log σ
. The C3 regularity of F s follows recalling that we assumed that λσ2 < 1.

We will mainly work with C3 diffeomorphisms, so the stable foliation will be C 3, and the
unstable foliation, will be C1+ε.

Remark 3.2 Local coordinate system in the neighborhood U of the horseshoe.
As a consequence of Remark 3.1, if f ∈ Diff3(M) and λσ2 < 1, we can take C1 local coordinates

(x, y) of the two-dimensional manifold in the neighborhood U containing the horseshoe Λ, such
that the local stable leaves of Λ are horizontal lines y = constant and its local unstable leaves are
vertical lines x = constant.

We get f(x, y) = (ξ(x), η(y)) with ξ of C1 class and η of C3 class.
Also, given any C3 map H:U 7→ U its computation in the local coordinates H(x, y) = (H1,H2)

will be of C1−class and besides the second and third order partial derivatives of H2 respect to y
exist and are continuous.

Such a regular coordinate system in U exists for any map g in a neighborhood N ⊂ Diff3(M)
of the given map f1: in fact, the hypothesis of existence of the hyperbolic horseshoe Λ(g) verifying
λσ2 < 1, is persistent under small perturbations of f1.

Besides, the local unstable and stable foliations and their tangent spaces depend continuously
on g ∈ N . Therefore the local coordinate system in U chosen as above for each g ∈ N ⊂ Diff3(M),
depends continuously on g.
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3.3 The local coordinates computation of the map.

Take f1 ∈ Diff3(M) exhibiting a horseshoe Λ as in the hypothesis of Theorem 2.8 and a small
neighborhood U of Λ in M .

We will perturb f1 with diffeomorphisms ξ, i.e. f = ξ ◦ f1 such that ξ =Id in a neighborhood
of Λ, so that the horseshoe remains the same. Later, we will choose an adequate sequence of
periodic saddle points Pi ∈ Λ and use the following notation:

Remark 3.4 Notation:

Pi = Pi(f) ∈ Λ(f) is a saddle point. Let us denote {fi}i≥1 a sequence of diffeomorphisms
fi ∈ Diff3(M) along a one-parameter family from f1, such that fi exhibits a homoclinic quadratic
tangency at qi of the saddle Pi. Each of the points qi shall be chosen in a certain horizontal arc
As

i ⊂ {y = y(qi)} ⊂ V of the stable manifold of the saddle Pi, but not necessarily in the local
connected component y = y(Pi) through Pi. The tangency points qi, for all i ≥ 1, shall be chosen
in the line of quadratic tangencies L = L(fi) contained in the small open set V ⊂ U defined in
remark 1.3.

The horizontal arc As
i 3 q is chosen small enough such that fn

i (As
i ) ⊂ U ∀n ≥ 0. Then we

choose ni large enough so that fni

i (As
i ) ⊂ {y = y(Pi)}. Let us take a height h of a vertical segment

Ih such that f j
i (As

i ×Ih) ⊂ U for j = 0, 1, . . . , ni. Now we choose a region D ⊂ fni

i (As
i ×Ih) which

projects in a fundamental domain on W u
loc(Pi). Finally, we take Vi = f−ni

i (D), (let us observe
that ni can be taken as large as wanted) where we will rescale the coordinates in the next Section.

Consider any fi as above. We will argue as in [PT 1993] Chapter III, Section 4:
Taking ni large enough, and observing that in that case the number of iterates near Pi can be

taken as large as wanted, we have that the length contraction λ
(ni)
i (As

i ) of the horizontal compact

arc As
i of stable manifold of Pi in U , when applied fni

i , and the expansion σ
(ni)
i (Au

i ) of a (vertical)

compact arc Au
i of its unstable manifold in U , verify λ

(ni)
i (As

i ) < λ̃ni < 1 and σ
(ni)
i (Au

i ) > σ̃ni > 1
(see Remark 1.3).

We have for all (x, y) ∈ Vi

fi(x, y) = (ξ(x), η(y)) (3.1)

dists(fi(Pi), (ξ(x), η(y))) = λi(x)dists(Pi, (x, y))

distu(fi(qi), (ξ(x), η(y))) = σi(y)distu(qi, (x, y))

where dists and distu can be taken as the distances along compact arcs of stable and unstable
manifolds of Λ as follows: distu(qi, (x, y)) = |y − yqi

|; dists(qi, (x, y)) = |x − xqi
| and dists(Pi, qi)

can be taken for instance as the length of the compact stable arc between Pi and the homoclinic
tangency qi (we remark that this arc is not necessarily contained in U , see Figure 2).

If the point (x, y) is such that f j
i (x, y) ∈ U for all j = 0, 1, . . . , ni and if ni is large enough:

σ
(ni)
i (y) =




ni−1∏

j=0

σi(f
j
i (y))


 > σ̃ni , λ

(ni)
i (x) =




ni−1∏

j=0

λi(f
j
i (x))


 < λ̃ni (3.2)

In the last equations f j
i (y) denotes the ordinate of the point f j

i (x, y), which depends only on

y. Similarly f j
i (x) denotes its abscise, which depends only on x.
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Figure 2: Stable distance.

3.5 The local coordinates computation near the quadratic homoclinic tangencies.

Let us study now the behavior of the map f and its computation in the linearizing coordinates
near the homoclinic tangency. Let us consider fi as in 3.4, and the points ri = (x(Pi), ai) and
qi = (bi, ci) ∈ V in the homoclinic orbit of the saddle Pi, where the quadratic tangency is exhibited
such that qi = fNi

i (ri) for some integer number Ni ≥ 1, where Ni is defined in the same way as
N1 in remark 1.3, but referred to the point Pi .

Take f 6= fi in N , and consider for such f the points ri(f) = (x(Pi(f)), ai(f)) and qi(f) =
(bi(f), ci(f)) as in figure 3, being the “remaining points” of the tangency that the map fi exhibited.
These points ri(f) and qi(f) are defined as follows:

First, we denote ri(fi) = ri, qi(fi) = qi. The point qi belongs to a compact arc As
i of the

stable manifold of the saddle Pi, with equation y = ci when f = fi. It is not necessarily in the
local stable manifold y = yPi

of the saddle Pi.

Second, if f 6= fi in N , then the homoclinic tangency may disappear, but we still have the
continuation As

i (f) of the compact stable arc As
i , with equation y = ci(f), and a new line of

tangencies L(f) ⊂ V . We first define the point ri(f) belonging to the connected component of
the local unstable leaf x = xPi

of Pi in U , and being such that fNi(ri) ∈ Ku(f) is in the line of
tangencies L(f) ⊂ V .

Afterwards, we take the coordinates of the point f Ni(ri(f)) = (bi(f), νi(f)) = (bi(f), µi(f) +
ci(f)). Its ordinate νi(f) is the height of the parabolic arc in the compact piece of unstable
manifold of Pi that made the tangency for the diffeomorphism fi. The height νi(f) is the sum of
two terms: the “relative height” µi(f) respect to the stable arc As

i (f) with which that parabolic
arc made the tangency (i.e. µi(fi) = 0), and the ordinate ci(f) of the arc As

i (f). Finally we define
the point qi(f) = (bi(f), ci(f)) ∈ As

i (f) as the projection of fNi(ri(f)) along the vertical direction
on the stable leaf As

i (f), see Figure 3.

We remark that ri, qi, ai, bi, ci and µi depend continuously on f ∈ N .

We compute the equations of the transformation f Ni which goes from a small neighborhood
of ri = (x(Pi), ai) to the neighborhood V of qi = (bi, ci) in the coordinates (x, y). We take
x∗ = x − x(Pi), y∗ = y − ai, and after [PT 1993]:

fNi : (x(Pi) + x∗, ai + y∗) 7→ (bi, ci) + (H1(µi, x
∗, y∗),H2(µi, x

∗, y∗))

Compute now the Taylor expansion of H1 and H2 in a neighborhood of (µi, x
∗, y∗) = (0, 0, 0),

that is in a spacial neighborhood of the point ri and a neighborhood of the diffeomorphism fi in
a one-parameter family {fi,µi

} ⊂ Diff2(M) such that fi,0 = fi for µi = 0:

9



PSfrag replacements

Pi

σi

ri = (x(Pi), ai)

λi qi = (bi, ci)

µi = νi − ci

Figure 3: Unfolding the tangency

H1(µ, x∗, y∗) = αiy
∗ + Ĥ1(µi, x

∗, y∗)

H2(µ, x∗, y∗) = βiy
∗2 + µi + γix

∗ + Ĥ2(µi, x
∗, y∗)

where αi =
∂H1(0, 0, 0)

∂y∗
, βi =

∂2H2(0, 0, 0)

∂y∗2 , γi =
∂H2(0, 0, 0)

∂x∗

(3.3)

Remark 3.6 Observe that the construction in the subsection 3.5 is applicable for f ∈ Diff2(M).
Note that αi, βi, γi depend continuously on f ∈Diff2(M): in fact, the numbers αi and γi are
first order derivatives of the C1- functions H1 and H2 which depend continuously on the given
f ∈ N . And βi is a second order derivative along the stable foliation, which is of C 2 class, and
depends continuously on f , due to the regularity of the chosen local coordinates and its continuous
dependence on f , as observed in Remark 3.2.

Lemma 3.7 αi(f) 6= 0, βi(f) 6= 0 and γi(f) 6= 0 for all f near enough f1 in the C2 topology.

Proof: The result is due to the quadratic hypothesis. In fact, ∂H2(0, 0, 0)/∂y∗ = 0 due to the
tangency at the point fNi(ri). That is why we have chosen ri such that fNi(ri) belongs to the
line of tangencies Lf ⊂ V . As fi is a diffeomorphism, the derivative Dfi(0, 0, 0) 6= 0 and so its
determinant is not null, i.e. αiγi 6= 0.

Besides, the tangency is quadratic and therefore Definition 1.1 holds. Consider now the change
of coordinates from the C2-system given in Definition 1.1 to the coordinates leading to Equations
(3.3). We get the relation βi 6= 0 (in Definition 1.1) if and only if βi/α

2
i 6= 0 in Equations (3.3).

Then βi 6= 0 as wanted. �
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Lemma 3.8 If N is small enough, then for all i there exists a real constant Ki > 0 such that for
f ∈ N the coefficients αi, βi, γi in equations 3.3 verify:

1

Ki
≤ |αi|, |βi|, |γi| ≤ Ki

Proof:
It is not restrictive to suppose a bounded small open set N ⊂ Diff3(M), so for some ε0 > 0:

||f − f1||C3 ≤ ε0 ∀ f ∈ N (3.4)

We will prove that there exists a positive lower bound of |βi| for all f ∈ N . The proof of the
existence of the upper bound has a similar argument.

By contradiction, suppose that there exists a sequence of diffeomorphisms gj ∈ N ⊂ Diff3(M)
such that

|βi(gj)| ≤ 1/j ∀ j ≥ 1 (3.5)

The sequence gj of diffeomorphisms in N is C3-bounded due to condition (3.4). By the Arzela-
Ascoli Theorem there exists a subsequence, which we still call gj , convergent in the C2 topology
to a map g0 ∈ Diff2(M). For this map g0 the number βi(g0) in Equations (3.3) is still defined and
different from zero, due to Lemma 3.7.

As remarked in 3.6, the real number βi(g) depends continuously on g ∈ Diff2(M). Therefore
we get:

lim
j→∞

gj = g0 ⇒ |βi(gj)| → |βi(g0)| 6= 0

Therefore the sequence of real numbers |βi(gj)| is bounded away from zero, contradicting the
inequality (3.5). �

4 Approximation to the one-dimensional quadratic family.

We continue arguing as in [PT 1993] Chapter III, Section 4:

Consider f ∈ N ⊂ Diff3(M) as in Section 3, and for fixed i ≥ 1 take the periodic saddle point
Pi ∈ Λ and the coordinate system (x, y) defined in Remark 3.2 in the neighborhood U of Λ.

Take the point ri = (x(Pi), ai) in the local unstable vertical arc through Pi, and the point
qi = (bi, ci) in the horizontal leaf y = ci contained in the global stable manifold of Pi in U , as
defined in Section 3 and Figure 3.

We recall equations (3.1) and will consider a change of coordinates in the small open rectangle
Vi ⊂ U near qi defined in 3.4.

The following change of variables, and also the reparametrization on the value of µi, are defined
in [PT 1993] Chapter III, Section 4, near a quadratic homoclinic tangency. We have made some
minor adaptation to our context, in which the coordinate system (x, y) in the neighborhood U of
the horseshoe Λ is independent of the saddle point Pi ∈ Λ with which we work. Therefore Pi does
not have necessarily coordinates (0, 0). We write:

µ̂i =
(
µi[σ

(ni)
i (y)]2 + dists(qi, Pi)γi[λ

(ni)
i (x)][σ

(ni)
i (y)]2 − (ai − y(Pi))[σ

(ni)
i (y)]

)
βi

x̂ = (x − bi)[σ
(ni)
i (y)]βiα

−1
i

ŷ = ((y − ci)[σ
(ni)
i (y)]2 − (ai − y(Pi))[σ

(ni)
i (y)])βi

(4.6)
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where the definition of the coefficients σ
(ni)
i (y) and λ

(ni)
i (x) are in Equations (3.2), and x(Q) and

y(Q) denote respectively the abscissa and ordinate of Q. We recall that if ni is large enough then:

σ
(ni)
i (y) > σ̃ni , λ

(ni)
i (x) < λ̃ni

where λ̃ < 1 and σ̃ > 1 are the exponential contractive and expansive rates of the hyperbolic set
Λ. The Inverse Function theorem allows us to assert that the former equations define invertible
C1 change of coordinates. We recall that at each point, λσ2 < 1.

For later use we write the following equations, obtained from 4.6:

µi = β−1
i µ̂i[σ

(ni)
i (y)]−2 − dists(qi, Pi)γi[λ

(ni)
i (x)] + (ai − y(Pi))[σ

(ni)
i (y)]−1

x = bi + αiβ
−1
i x̂[σ

(ni)
i (y)]−1

y = ci + (ai − y(Pi))[σ
(ni)
i (y)]−1 + β−1

i ŷ[σ
(ni)
i (y)]−2

(4.7)

Given a point (x̂, ŷ) in the new system of coordinates, we apply f ni+Ni (with µ constant),
using Equations 3.1 for the first n iterates of f , and Equations 3.3 for the last Ni iterates. The
detailed computations are explicit in [PT 1993] Chapter III, Section 4. We get

(
x̂
ŷ

)
fni+Ni

−→

(
F1(x̂, ŷ, µ̂i, ni)
F2(x̂, ŷ, µ̂i, ni)

)

The value of µ̂i is obtained computing (x, y) through the last two equations of 4.7 and then
substituting in the first equation 4.6. We note from the first equation 4.6 that being µi constant,
the value of µ̂i changes when applying fni+Ni because it depends on (x, y) which changes when
applying the map.

For the next lemma, we consider in D = [−1, 1]3 the 2-dimensional manifold S of points
(x̂, ŷ, µ̂i) implicitly defined by equations 4.6 with a fixed value µi. It can be written as µ̂i = g(x̂, ŷ).
Let us observe that for ni large enough, S approaches to a horizontal surface:

Lemma 4.1
∂µ̂i

∂x̂
and ∂µ̂i

∂ŷ
converge uniformly to 0 for ni → ∞ and (x̂, ŷ, µ̂i) ∈ [−1, 1]3.

Proof ∣∣∣∣
∂µ̂i

∂ŷ

∣∣∣∣ =

∣∣∣∣
∂µ̂i

∂x
·
∂x

∂ŷ
+

∂µ̂i

∂y
·
∂y

∂ŷ

∣∣∣∣

Computing:

∂y

∂ŷ
=

β−1
i [σ

(ni)
i ]−2

1 +

(
ai−y(Pi)

[σ
(ni)
i

]2
+

2β−1
i

ŷ

[σ
(ni)
i

]3

)∑
j σ

(ni−1)
i,j σ′

i,j

where σ
(ni−1)
i,j is a notation for the product σ

(ni)
i (see equation (3.2)) where we take out the j-th

factor, and σ′
i,j is the notation for the derivative of the omitted factor. It follows that there exists

ki such that if ni is large: ∣∣∣∣
∂y

∂ŷ

∣∣∣∣ ≤ ki[σ
(ni)
i ]−2

Similarly,
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∂x

∂ŷ
= −

αiβ
−1
i x̂

[σ
(ni)
i ]2

∑

j

σ
(ni−1)
i,j σ′

i,j

∂y

∂ŷ

∂µ̂

∂x
= dists(qi, Pi)γi




∑

j

λ
(ni−1)
i,j λ′i, j


 [σ

(ni)
i (y)]2βi

∂µ̂

∂y
=

(
2
(
µi + dists(qi, Pi)γi[λ

(ni)
i (x)]

)
[σ

(ni)
i (y)] − (ai − y(Pi))

)
βi

∑

j

σ
(ni−1)
i,j σ′

i,j

Moreover, from the definition of strongly dissipative horseshoe and the first equality of (4.7),

it follows that there exists ki large enough such that |µi| ≤ ki(σ
(ni)
i )−2. Therefore, increasing ki if

necessary,

∣∣∣∣
∂µ̂

∂y

∣∣∣∣ ≤ kini[σ
(ni)
i (y)]

We will take numbers λ∗, λ+, µ∗, µ+ with λ∗ < λ(x) < λ+ < 1 < σ∗ < σ(y) < σ+ ∀ (x, y) ∈ Vi

such that λ+σ+ < 1.

∣∣∣∣
∂µ̂i

∂ŷ

∣∣∣∣ ≤ ki(n
2
i (λ

+σ+)ni(σ∗)−2ni + niσ
∗−ni) −→ni→∞ 0

uniformly in (x̂, ŷ, µ̂i) ∈ [−1, 1]3 as wanted. Analogously it is proved for
∂µ̂i

∂x̂
. �

We conclude that taking ni → ∞, fni+Ni |Vni
converges in the C1 topology, uniformly to the

asymptotic map:

(
x̂
ŷ

)
7→

(
ŷ

ŷ2 + µ̂

)
(4.8)

Remark 4.2 Note that the family defined by Equation 4.8 is the one-dimensional quadratic
family with parameter µ̂. It is standard to verify that this quadratic family exhibits a fixed point
which is a sink for the parameter values µ̂ ∈

(
− 3

4 , 1
4

)
and that its basin of attraction includes all

points (x̂, ŷ) with ŷ in the interval (−1/4, 1/4).
Even more, if µ̂ < −3/4 of if µ̂ > 1/4, the fixed point in the one-dimensional quadratic map

does not exist or it is not a sink.
Observe that for the one-dimensional quadratic family, the sink has two eigenvalues: one is

always zero, along the horizontal lines y =constant, because it has infinite contraction transforming
the horizontal line onto one single point. The other eigenvalue is the slope at the sink of the
parabola ŷ 7→ ŷ2 + µ̂.

We note that for µ̂ = −3/4 the sink has an eigenvalue equal to −1 and the quadratic unidimen-
sional family exhibits there a period doubling bifurcation. On the other hand, if µ̂ = 1/4 the sink
has eigenvalue equal to 1, and the family has a saddle node bifurcation. For µ̂ ∈ (−3/4, 1/4) the
slope of the parabola at the sink, (being less than 1 in absolute value), is continuous and monotone
with µ̂. Therefore, given any 0 < ρ < 1, there exist numbers −3/4 < 2k−(ρ) < 0 < 2k+(ρ) < 1/4
such that if µ̂ ∈ (2k−(ρ), 2k+(ρ)) then the sink has both eigenvalues smaller than ρ in absolute
value.
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After the changes of coordinates and the reparametrization given in Equations (4.6), f ni+Ni

converges uniformly to the quadratic family when ni → +∞. The speed of convergence depends
on the values of the hyperbolic expansive rates σ(f), λ(f) in the horseshoe exhibited by f and
also of the values of αi(f), βi(f), γi(f), ||Ĥ1(f)||C0 , ||Ĥ2(f)||C0 , defined in equations (3.3). Due to
Lemma 3.8, these are uniformly bounded for all f ∈ N .
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Figure 4: Construction of sinks.

We recall the notation of subsection 3.5 and Figures 3 and 4. We choose a large enough natural
number ni and the small rectangle Vi ⊂ V , defined in Remark 3.4, to apply Equations (4.6) which
lead asymptotically to the one-dimensional quadratic family, and apply the results in Remark
(4.2). We now resume in Proposition 4.3 all the conclusions obtained in this section.

Proposition 4.3 (A) If for some real number µ̂ ∈ (−3/8, 1/8) and for some ni large enough is
verified

νi(f) = ci(f) + µi(f) =

= ci(f) + (ai(f) − y(Pi)) · [σi(f)(ni)(νi(f)]−1+

+µ̂ ·
[σi(f)(ni)(νi(f))]−2

βi(f)
− dists(qi, Pi) · γi(f) · [λi(f)(ni)(bi(f))]

(4.9)

then f exhibits a sink si = si(f) in the given open set V .

(B) If f, g ∈ N are arc-connected in N by a one-parameter family {f̃t}t that verifies the equality
(4.9) for some C1 real function

µ̂(f̃t) ∈ (−3/8, 1/8) ∀t

then the sink si(g) is the continuation of the sink si(f).

(C) If f and g verify equality (4.9) for some µ̂(f) ∈ (−3/8, 1/8) and some µ̂(g) < −1 or µ̂(g) > 1,
then there does not exist the continuation of the sink si(f) for such g.
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(D) Given 0 < ρ < 1 there exist constants −3/8 < k−(ρ) < 0 < k+(ρ) < 1/8 such that if for
some real number µ̂ ∈ (k−(ρ), k+(ρ)) and for some ni large enough is is verified equation
(4.9) then f exhibits a sink si = si(f) in the open set V with both eigenvalues smaller than
ρ.

Proof: Recall that νi(f) = ci(f) + µi(f) and take into account (4.7). The real number µ̂
in equation (4.9) is the parameter µ̂i in the first equality of (4.7) for x = bi(f) and y = νi(f).
As µ̂ ∈ (−3/8, 1/8) and ni is large enough the reparametrized map f ni+Ni is uniformly near the
quadratic family and due to the remark 4.2, it exhibits a sink.

Part B is a consequence of the Implicit Function Theorem applied to (4.7).
Parts C and D follow after the remark 4.2. �

5 Uniform sized continuation of the sinks.

Given f1 ∈ Diff3(M) verifying the hypothesis of Theorem 2.8 let us consider the neighborhood
N ⊂ Diff3(M) of f1 as in Section 3.

Take a small neighborhood U of the horseshoe Λ and the coordinate system as in Section 3.
In this Section we shall assume the hypothesis of the strong dissipative horseshoe λσ2 < 1 so the
local coordinate system that trivializes the foliation of Λ is of C 3 class.

Consider the homoclinic tangency point q1 = (b1, 0) ∈ U of the saddle P1 = (0, 0) ∈ Λ as in
the hypothesis of Theorem 2.8, and the line of tangencies L1 = L(f1) 3 q1 in V .

Let us define the following C1 manifold N1 ⊂ N ⊂ Diff3(M), which has infinite dimension
and codimension in Diff3(M), contains f1, and will be considered our universe where f1 shall be
perturbed.

For any δ > 0 small enough, (to be fixed later) we define:

N1 = {f ∈ N : f = ξ ◦ f1} (5.10)

where ξ ∈ Diff3(M), ||ξ − id||C3 < δ and besides:

ξ(p) = p ∀p 6∈ V
∃k = k(ξ) ∈ R such that ∀ (x, y) ∈ L1 :
π2(ξ(x, y)) = y + k, (D(π2 ◦ ξ)(x, y)) · (1, 0) = 0

(5.11)

Here we denote π2 to the horizontal projection π2(a, b) = b, which is of C3 class, due to the choice
of the coordinate system in Remark 3.2, under the assumption of the strong dissipative hypothesis
λσ2 < 1.

We observe that ξ is isotopic with the identity map, so N1 is an arc connected manifold.

Lemma 5.1 For K small enough the following set

MK = {f = ξ ◦ f1 ∈ N1 : k(ξ) = K}

is a C1 submanifold of codimension one in N1.

Proof:
The map k : ξ 7→ k(ξ), defined for all ξ ∈ Diff3(M) which verify the conditions (5.11), is

the second coordinate of the vector obtained by the evaluation of ξ − Id at q1 = (b1, 0) ∈ L1 =

15



L(f1). Therefore, the map k is a C1 real function defined in the set of diffeomorphims ξ verifying
conditions (5.11). Besides, its Fréchet derivative respect to ξ is the evaluation ξ 7→ ξ(q1) which
is a not null linear transformation on ξ in the tangent space of N1. Therefore the value K is a
regular value of the real function k, and so the equation k(ξ) = K for ξ such that ξ ◦ f1 ∈ N1

defines a C1 submanifold MK ⊂ N of codimension one in N1, as wanted. �

The conditions (5.10) and (5.11) mean that we are perturbing f1 only in the neighborhood
V near the line of tangencies L1 = L(f1) in such a way that we apply a vertical translation of
amplitude k(ξ) to L1 to obtain the new line of tangencies L(f) for f = ξ ◦ f1, and a horizontal
deformation.

In particular we neither perturb the horseshoe Λ, nor the diffeomorphism in a neighborhood
of Λ. Therefore, the local stable and unstable manifolds of Λ are the same, and the system of
local coordinates in U , as defined in Section 3, does not change when perturbing f .

For each i ≥ 1 we choose any sequence of periodic saddle points Pi ∈ Λ as in the subsection
3.3. Let us suppose a one-parameter family of diffeomorphisms in N1 having a sequence of dif-
feomorphism fi ∈ N1 which exhibits a homoclinic tangency at qi of the saddle Pi. We use the
notation of subsection 3.4.

We are working along the restricted space N1 of diffeomorphisms that coincide with f1 in a
neighborhood of the horseshoe Λ. Therefore, the values λi(x), σi(y) in Equation (3.1) and of

λ
(n)
i (x) and σ

(n)
i (y) in Equations (3.2) and (4.6), are the same for all f ∈ N1.

When passing from f1 to f ∈ N1, the horizontal local stable foliation remains fixed, and we
apply a transformation ξ preserving the horizontal direction in the points of the line of tangencies
L1 to obtain L(f). Then, the point qi = qi(f) = (bi(f), ci) remains in the same horizontal line (ci is
fixed) and the point fNi(ri) = (bi(f), ci+µi(f)) ∈ L(f) moves from fNi

1 (ri) = (bi(f1), ci+µi(f1)) ∈
L(f1) a vertical distance k = k(ξ) = k(f ◦ f−1

1 ), and slides horizontally preserving its quality of
being a point in the line of tangencies. Therefore, the numbers ai, ci and the point ri, defined in
subsection 3.5 and Figure 3, remain the same for all f ∈ N1 and µi(f)−µi(f1) = k(ξ) = k(f ◦f−1

1 ).
In particular if f = fi = ξi ◦ f1 such that µi(fi) = 0, we obtain −µi(f1) = k(ξi) and therefore
µi(f) + k(ξi) = k(ξ)∀ f ∈ N1∀ i ≥ 1.

We conclude the following:

Remark 5.2 The points Pi and ri, the real numbers ai and ci, and the functions σ
(n)
i and λ

(n)
i

do not depend on the diffeomorphism f ∈ N1.

Remark 5.3 µ1(f) = k(ξ) = k(f ◦ f−1
1 )∀ f ∈ N1, and for fi = ξi ◦ f1 ∈ N1 such that µi(fi) = 0

we obtain
k(ξ) = k(ξi) + µi(f)∀ f ∈ N1

νi(f) = ci + µi(f) = ci + k(f ◦ f−1
1 ) − k(fi ◦ f−1

1 )∀ f ∈ N1
(5.12)

We recall that (5.11) assumes ||ξ − id||C3 < δ, so we obtain the following:

Lemma 5.4 Given ε > 0 there exists δ > 0 such that if the manifold N1 = N1(δ) is constructed
fulfilling Equations (5.10) and (5.11), then the number βi(f) defined by the equations (3.3), verifies
the following inequalities for all f ∈ N1 and all i ≥ 1:

(1 − ε)|βi(f1)| < |βi(f)| < (1 + ε)|βi(f1)|
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Proof: We have f = ξ ◦ f1, with ξ(p) = p ∀ p 6∈ V , and V the neighborhood of the line of
tangencies defined in Remark 1.3.

Recall that for all i the point ri, and its first Ni − 1 forward iterates, do not lay in V , and
fNi

1 (ri) ∈ V . And this also holds for all the points p in a small open neighborhood of ri. As
f(p) = f1(p) ∀ p 6∈ V , we deduce fNi(p) = f ◦ fNi−1(p) = ξ ◦ fNi

1 (p) for all the points p in a small
open neighborhood of ri.

We recall the definition in equalities (3.3): the number βi(f) is the second order partial
derivative respect to y of the C3 transformation π2 ◦ fNi = π2 ◦ ξ ◦ fNi

1 at the point ri.

We will work in a new C2 system of coordinates (to be able to apply the chain rule), such that
the lines y constant coincide with the stable foliation in U and we take a non invariant foliation
as x constant. In these new coordinates the value of βi(f) is the same as in the former system.
The first derivative respect to x of π2 ◦ ξ at fN1

1 (ri) ∈ L(f) is null due to our assumption that
D(π2 ◦ ξ)(1, 0) = 0 in the line of tangencies L(f). On the other hand, its first derivative respect
to y is in (1 − δ, 1 + δ) due to ||ξ − id||C3 < δ.

Now, denoting (u, v) = fNi

1 (x, y):

∂(π2f
Ni)

∂y
=

∂(π2ξ)

∂u

∂u

∂y
+

∂(π2ξ)

∂v

∂v

∂y

and then, (we omit the points at which we evaluate the partial derivatives) using that ∂(π2ξ)
∂u

= 0,
∂v
∂y

= 0 it follows:

βi(f) =
∂2(π2f

Ni)

∂y2
=

∂2(π2ξ)

∂u2

(
∂u

∂y

)2

+
∂(π2ξ)

∂v

∂2v

∂y2

The first term is bounded by δα2
i (f1), which can be taken smaller than βi(f1)ε/2 taking

δ < inf i{
εβi

2α2
i

}. We note that βi

α2
i

is the concavity of the unstable parabolic arcs which are uni-

formly bounded away from 0 due to the quadratic hypothesis. The second term belongs to
((1−δ)βi(f1), (1+δ)βi(f1)). Then, taking δ < ε/2 , βi(f) belongs to the interval ((1−ε)βi(f1), (1+
ε)βi(f1)). �

Lemma 5.5 For each i ≥ 1 there exist real constants mi, Ki > 0 and ν
(0)
i (that are independent of

f ∈ N1) such that if ni > mi then the implicit function νi(f)(µ̂) = Gf (µ̂) defined by the equation
(4.9) in Lemma 4.3, verifies:

|Gf (0) − ν
(0)
i | ≤ Ki( max

(x,y)∈V i

{λ(x)})ni

(max(x,y)∈V i
{σ(y)})−2ni

(1 + ε)|βi(f1)|
< |G′

f (µ̂)| ≈
[σ

(ni)
i (νi)]

−2

|βi(f)|
<

σ̃−2ni

(1 − ε)|βi(f1)|
∀ µ̂ ∈ (−2, 2)

Moreover the constant number ν
(0)
i is the sum of the following two terms, each independent of

f ∈ N1:

ν
(0)
i = ci + (ai − y(Pi)) · [σ

(ni)
i (ν

(0)
i )]−1 (5.13)
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Proof: See figure 5. The equality (4.9) in Lemma 4.3 which defines the implicit function
νi(µ̂) = Gf (µ̂) has now the following expression, due to Remark 5.2:

νi = ci + (ai − y(Pi)) · [σ
(ni)
i (νi)]

−1+

+µ̂ ·
[σ

(ni)
i (νi)]

−2

βi(f)
− dists(qi, Pi) · γi(f) · [λ

(ni)
i (bi(f))]

(5.14)

If µ̂ = 0 the equation (5.14) depends on f ∈ N1 only because its last term does, and defines
Gf (0).

On the other hand, the equation (5.13), which is independent on f ∈ N1, defines ν
(0)
i .

Subtracting (5.13) and (5.14) with µ̂ = 0 and applying the Lagrange Theorem we obtain:

|Gf (0) − ν
(0)
i | =

|dists(qi, Pi)γi(f)[λ
(ni)
i (bi(f))]|

1 + (ai − y(Pi))[σ
(ni)
i ]−2[

∑
j σ

(ni−1)
i,j (Y )]σ′

i,j(Y )

where Y is an intermediate value between νi(0) and Gf (0). Using inequality (3.2) and arguing as
in Lemmas 3.8 and 4.1 we obtain:

|Gf (0) − ν
(0)
i | ≤ ki[ max

(x,y)∈V i

λ(x)]ni

We now compute its derivarive G′
f respect to µ̂ in any point where Gf is defined:

G′
f =

[
σ

(ni)
i

]−2

βi(f) ·

(
1 + (ai − y(Pi)) ·

[
σ

(ni)
i

]−2 ∑
j

[
σ

(ni−1)
i,j

]
σ′

i,j

)
+ 2µ̂ ·

[
σ

(ni)
i

]−3 ∑

j

[
σ

(ni−1)
i,j

]
σ′

i,j

Arguing as in Lemmas 3.8 and 4.1 we conclude that it is uniformly bounded for f ∈ N1.

Finally, using Lemma 5.4, the inequalities (3.2) and recalling that ni is large enough, we deduce
the bounds of |G′

f (µ̂)| in the thesis. �

Combining the results in Proposition 4.3 and Lemma 5.5 we obtain the following:

Lemma 5.6 For each i ≥ 1 and for each sufficiently large ni there exist constants ν−
i < ν0

i < ν+
i ,

independent of f ∈ N1, such that:

|ν+
i − ν−

i | =
1

8(1 + ε)βi(f1)
(max
y∈V i

{σ(y)})−2ni

ν
(0)
i = ci + (ai − y(Pi))[σ

(ni)
i (νi(0)]

−1

and, if

f ∈ N1 : νi(f) ∈ (ν−
i , ν+

i ) (5.15)

then f exhibits a sink si(f). Even more, if f, g ∈ N1 are arc connected in N1 and all the connecting
arc verifies the condition (5.15), then the sink si(g) is the continuation of the sink si(f).
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Proof: See figure 5. Consider the C1 real function νi(f) = Gf (µ̂) of real variable µ̂ defined as
in Lemma 5.5. It is strictly monotone because its first derivative is never zero. Applying the
Lagrange Theorem to Gf , and the lower bound of its derivative given in Lemma 5.5, we deduce
that the images by Gf of the intervals (−3/8, 0] and [0, 1/8) are two intervals of length:

|Gf (1/8) − Gf (0)| =
|G′

f (µ̂
(1)
f )|

8
>

1

8(1 + ε)βi(f1)
(max
y∈V i

{σ(y)})−2ni = Ci > 0 (5.16)

|Gf (0) − Gf (−3/8)| =
3|G′

f (µ̂
(2)
f )|

8
>

3

8(1 + ε)βi(f1)
(max
y∈V i

{σ(y)})−2ni = 3Ci > 0

where Ci is a constant independent of f ∈ N1, but depending on ni.

On the other hand, due to Lemma 5.5, there exists a real number ν
(0)
i , independent of f ∈ N1

such that
|ν

(0)
i − Gf (0)| ≤ Ki[ max

(x,y)∈V i

λ(x)]ni , Gf (0) ∈ Gf ((−3/8, 1/8))

As the horseshoe is strongly dissipative, λni(x) � σ−2ni(y) if ni is large enough, for all points
of the rectangle V i, in particular, for the point (x, y) where maxλ(x) and max σ(y) are obtained.

So we can assume that |ν
(0)
i −Gf (0)| < Ci/2 and then [ν

(0)
i −Ci/2, ν

(0)
i +Ci/2] ⊂ Gf ((−3/8, 1/8)).

We define ν+
i = ν

(0)
i +Ci/2 and ν−

i = ν
(0)
i −Ci/2. Both values are independent of f ∈ N1 and

included in the image by Gf of the interval (−3/8, 1/8).
We use the definition of the constant Ci in the Equality (5.16) to get the exact value of

|ν+
i − ν−

i |.
The real function Gf (µ̂) is strictly monotone. Therefore, given νi(f) ∈ (ν−

i , ν+
i ) there exists a

single value of µ̂ ∈ (−3/8, 1/8) such that νi(f) = Gf (µ̂). Therefore, the hypothesis of Proposition
4.3 is fulfilled, and so its thesis about the existence and continuation of the sink si is verified. �

PSfrag replacements

ci

Gf (0)ν
(0)
i

ν+
i

1
[σ(ni)]2Ki

ai−y(Pi)

σ
(ni)
i

(νi(0))

≤ kiλ
(ni)

secondary
primary

ai

ν−
i

Figure 5: Determination of parameters for the sinks

Proposition 5.7 The infinite dimensional arc-connected manifold MK ⊂ N1 in Lemma 5.1,
(which has codimension one in N1) verifies, for each i ≥ 1, the following properties:

(a) If f ∈ MK with the constant K = k(fi ◦ f−1
1 ), then f exhibits a homoclinic tangency at

the point qi ∈ V of the saddle Pi ∈ Λ.
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(b) If f ∈ MK with the constant K ∈ k(fi ◦f−1
1 )−ci +(ν−

i , ν+
i ), where ν−

i < ν+
i are defined as

in Lemma 5.6, then f exhibits a sink si(f) ∈ V . Even more, if f, g ∈ MK then they are isotopic
and the sink si(g) is the continuation of the sink si(f).

Proof:

As proved in Lemma 5.1, the manifolds MK with K constant are codimension one submani-
folds of N1.

First choose, for each i ≥ 1, a fixed fi ∈ N1 such that fi exhibits a homoclinic quadratic
tangency at the point qi ∈ V . Due to the definition of µi(f) in subsection 3.5, such fi verifies
µi(fi) = 0. Recall Equalities (5.12) and note that for all f ∈ N1: µi(f) = 0 if and only if f
exhibits a homoclinic tangency at the point qi. This condition is fulfilled if and only if k(f ◦f−1

1 ) =
k(fi ◦ f−1

1 ), which proves part a).

To prove part b) argue similarly, using Equalities (5.12) with νi(f) ∈ (ν−
i , ν+

i ), and applying
Lemma 5.6. �

6 Proof of Theorem 2.8.

For the given diffeomorphism f1 as in the hypothesis of Theorem 2.8, we shall work along the
infinite dimensional manifold N1 3 f1 of C3 diffeomorphisms, defined in Section 5, by conditions
(5.10) and (5.11).

Let us construct, as in Newhouse-Robinson theorem (see [N 1974] and [R 1983]), a sequence
of sinks si which are produced along a monoparametric family of diffeomorphisms (which we will
call primary family), which generically unfolds a sequence of homoclinic quadratic tangencies q i.
By induction, each sink si+1 shall be produced while the i sinks that were previously generated,
still survive. The key to get this result is the persistence of tangencies of the Theorem of New-
house in [N 1974]. For a seek of completeness we reproduce here the details of the inductive
proof of Newhouse-Robinson Theorem to obtain infinitely many simultaneous sinks. We improve
the argument, adding the conclusions of our previous sections, to obtain also the simultaneous
continuation of the infinitely many sinks.

Definition 6.1 Given a small enough real number δ > 0 we fix a one -parameter family {f̃t}t∈(−ε,ε) ∈
N1, called the primary family, such that:

f̃t = ξt ◦ f1 where ξt verifies the conditions (5.11) and besides:

‖ξt − id‖C3 < δ∀ t ∈ (−ε, ε)

ξ0 = Id, and thus f̃0 = f1 and k(ξ0) = 0

k(ξt) = t

We call “secondary family” gt to any other one-parameter family {gt}t∈(−ε,ε) ∈ N1 such that

k(gt ◦ f−1
1 ) = k(f̃t ◦ f−1

1 ) = t for all t ∈ (−ε, ε).

We observe that the primary family is transversal to the manifolds MK defined in Lemma 5.1,
for all K ∈ (−ε,+ε), and that it unfolds generically any homoclinic tangency qi produced in the
line of tangencies L

f̃t
, in particular the given homoclinic tangency q1 ∈ Lf1 . After the density of

tangencies (see [N 1974]) the hypothesis of large thickness of the stable and unstable Cantor sets
Ks and Ku of Λ along the line of tangencies Lf , assumed in Theorem 2.8, implies the following:
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Remark 6.2 If ε > 0 is small enough then there exists a dense set of parameter values t ∈ (−ε, ε)
in the primary family, such that the diffeomorphism f̃t exhibits a homoclinic tangency in some
point q in the line of tangencies L

f̃t
of some saddle periodic point P ∈ Λ.

We take the system of coordinates in the open neighborhood U ⊃ Λ, as defined in Section 3
and such that the saddle P1 = (0, 0). We shall choose the tangency q1 ∈ U such that q1 = (b1, 0)
(i.e. in the connected local stable leaf of P1), and then the small neighborhood q1 ∈ V ⊂ U (see
Remark 1.3). We use the notation of Section 5:

We have t = 0, k(ξ0) = k(id) = 0 and µ1(f1) = 0, ν1(f1) = c1 + µ1(f1) = 0 and there is a
tangency at the point q1 = (b1, 0) ∈ L1 = L(f1).

Applying Lemma 5.6 we choose n1 sufficiently large so the fixed numbers ν−
1 and ν+

1 verify

|ν±
1 | < ε. Applying Proposition 5.7, if t = k(f̃t ◦f−1

1 ) ∈ (ν−
1 , ν+

1 ) then f̃t exhibits a sink s1(f̃t) and
for all secondary diffeomorphism g ∈ N1 such that k(g ◦ f−1

1 ) = t there exists the continuation

s1(g) of the sink s1(f̃t).
We now argue by induction in the number of simultaneous sinks exhibited by f̃t in the primary

family:
Let us suppose that there exist parameter values −ε < t−i < t+i < ε such that for all t ∈ (t−i , t+i )

the diffeomorphism f̃t of the primary family exhibits i sinks s1(f̃t), s2(f̃t), . . . , si(f̃t) ∈ V , and any
secondary diffeomorphism gt exhibits the continuations s1(gt), s2(gt), . . . , si(gt) ∈ V of those i
sinks.

We shall construct an interval with non void interior [t−i+1, ti+1]
+ ∈ (t−i , t+i ) such that if t ∈

(t−i+1, t
+
i+1) then the diffeomorphisms f̃t of the primary family exhibit a new sink si+1(f̃t) ∈ V , and

besides all secondary diffeomorphisms gt with t ∈ (t−i+1, t
+
i+1) exhibit the continuation si+1(gt) of

si+1(f̃t).
After the density of tangencies (see Remark 6.2), there exists a parameter value

ti+1 ∈

(
t−i +

t+i − t−i
4

, t−i +
3(t+i − t−i )

4

)
(6.17)

such that some periodic saddle point Pi+1 in the horseshoe Λ, has a homoclinic tangency at
qi+1 = (bi+1, ci+1) ∈ L(f̃ti+1).

Unfolding the tangency of fi+1 = f̃ti+1 when moving along the primary family, we will create
a new sink si+1 in such a way that t is still in the interval (t−i , t+i ) where the i previous sinks still
persist.

To construct the new sink si+1 and a parameter interval inside (t−i , t+i ) in which this new sink
is exhibited, we argue as follows:

If t = ti+1 verifies condition (6.17), there exists a homoclinic tangency at qi+1 = (bi+1, ci+1)
of a saddle Pi+1 ∈ Λ. Therefore the height of the parabolic unstable arc of Pi+1 is µi+1(fi+1) =
0, νi+1 = ci+1 (see Figure 4). On the other hand, by Definition 6.1 of the primary family, we
have: ti+1 = k(fi+1 ◦ f−1

1 ).
Applying Lemma 5.6, we shall find the parameter values t−i+1 < t+i+1 and the diffeomorphisms

f̃t in the primary family such that νi+1(f̃t) ∈ [ν−
i+1, ν

+
i+1] if t ∈ [t−i+1, t

+
i+1] ⊂ (t−i , t+i ). Also from

Lemma 5.6, we can choose a sufficiently large ni+1 so that |ν±
i+1 − ci+1| < (t+i − t−i )/8.

After equalities (5.12), and recalling that t = k(f̃t ◦ f−1
1 ) we obtain: νi+1(f̃t)− ci+1 = t− ti+1.

So, if t ∈ ti+1 − ci+1 + (ν−
i+1, ν

+
i+1), then νi+1(f̃t) ∈ [ν−

i+1, ν
+
i+1], and applying Lemma 5.6, the map

f̃t will exhibit a new sink si+1(f̃t).
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Applying Proposition 5.7, for any secondary family {gt}t, if t = k(g ◦ f−1
1 ) ∈ ti+1 − ci+1 +

[ν−
i+1, ν

+
i+1] then the map gt will exhibit the continuation si+1(gt) of the sink si+1(f̃t).

We then define

t±i+1 = ti+1 − ci+1 + ν±
i+1 ∈ (ti+1 − (t+i − t−i )/8, ti+1 + (t+i − t−i )/8)

From condition (6.17), the equality above implies [t−i+1, t
+
i+1] ⊂ (t−i , t+i ) as wanted. We conclude

that for t ∈ (t−i+1, t
+
i+1) the diffeomorphisms f̃t of the primary family exhibit the sink si+1(f̃t) and

the secondary diffeomorphisms gt exhibit the continuation si+1(gt) of that sink.
We observe that we can make this new sink si+1 of arbitrary period ni+1 + Ni+1, provided

that it shall be large enough, because in Lemma 5.6 we can arbitrarily choose the natural number
ni+1, from a minimum value. If we choose ni+1 such that ni+1 + Ni+1 is not a multiple of the
periods of the previous i sinks s1, s2, . . . , si, then the sink si+1 shall be necessarily a new one.

Finally, taking t∞ =
⋂∞

i=1[t
−
i , t+i ], as we constructed each compact interval in the interior of

the previous one, the real value t∞ is in the interior of all intervals, and thus, by construction,
there exists the sink {si(g)} for all i ≥ 1 and for all diffeomorphism g ∈ Mt∞ , being each sink
si(g) the continuation of the respective sink si(f̃t∞) exhibited by the diffeomorphism f̃t∞ in the
primary family. This ends the proof of Theorem 2.8. �

7 Conclusion of the main results.

End of the Proof of Theorem 1:
Due to Newhouse-Robinson Theorem 2.6, we find a diffeomorphism f1 ∈ N , arbitrarily near

the given f0, such that f1 has a horseshoe Λ, which is strongly dissipative and fulfils the condition
of large thickness, and besides there is an homoclinic quadratic tangency q1 of a saddle P1 ∈ Λ.
These last assertions are the hypothesis of Theorem 2.8 which we have already proved in the last
section, ending the proof of Theorem 1. �

Proof of part A) of Theorem 2 (see Figure 3): The given one-parameter family {f̃t}t∈(−ε,ε)

generically unfolds the quadratic tangency at q0 of a saddle point P0. The generic unfolding is
defined by the condition. v = dµ0(f̃t)/dt 6= 0 for all t ∈ (−ε, ε), where µ0(f̃t) is the height of the
parabolic arc in the unstable leaf of the saddle P0 respect to the local stable arc of P0, to which
it is tangent when t = 0 (i.e. µ0(f̃t)|t=0 = 0).

After the Theorem of Newhouse-Robinson (revisited in Theorem 2.6), there exists an interval
I ⊂ (−ε, ε) such that for all t ∈ I there is a horseshoe Λ fulfilling the large thickness condition (see
Definition 2.3) which is strongly dissipative (see Lemma 2.7). Even more, Newhouse-Robinson
Theorem asserts that there exist a dense set H ⊂ I of parameter values, such that f̃t exhibits
some homoclinic tangency, for all t ∈ H. Let us choose some t1 ∈ H, such that f̃t1 = f1 exhibits
such homoclinic tangency at a point q1 ∈ V (see remark 1.3) of a saddle P1 ∈ Λ.

Consider for this f1 a small neighborhood N such that, for all f ∈ N (in particular for all
f̃t with t near t1), there exist the real numbers a1(f), b1(f), c1(f), α1(f), β1(f), γ1(f), ν1(f), µ1(f)
defined in Section 3, Figure 3 and Equations (3.3).

Observe that |dµ1(f̃t)/dt| ≥ |v|/2 6= 0. Suppose dµ1(f̃t)/dt > 0, then µ1(f̃t) is a strictly
increasing diffeomorphic function which is zero for t = t1, and there exists δ1 > 0 such that
µ1(f̃t) ∈ (−δ1, δ1) ⇒ t ∈ I.
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We will repeat the well known argument of Newhouse, improving it to get the eigenvalues of
the sinks as small as wanted:

First, we shall construct some interval (t−1 , t+1 ) ⊂ I of the parameter values t for which f̃t

exhibits a sink in V , whose eigenvalues have modulus smaller than the given number 0 < ρ < 1.

Consider, for each f̃t, the first equation (4.7) giving µ1(f̃t) diffeomorphically as a function of the
new parameter µ̂, for each fixed n = n1 ≥ 1. If n1 is large enough, there exist −δ1 < µ−

1 < µ+
1 < δ1

such that if µ1(f̃t) ∈ (µ−
1 , µ+

1 ) then µ̂ ∈ (k(ρ)−, k(ρ)+), defined in Proposition 4.3. Therefore, the

thesis of this proposition implies that f̃t has a sink in V whose eigenvalues have modulus smaller
than ρ. Considering that the real function µ1(f̃t) depends diffeomorphically on t, the preimage
by µ1(ft) of the interval (µ−

1 , µ+
1 ) is an interval (t−1 , t+1 ) ⊂ I. By construction, if t ∈ (t−1 , t+1 ) then

f̃t exhibits a sink s1 in V whose eigenvalues have modulus smaller than ρ.
Now, by induction, suppose that there is an open interval (t−i , t+i ) ⊂ I such that, if t ∈ (t−i , t+i ),

then f̃t exhibits i simultaneous different orbits of the sinks s1, s2, . . . , si in V , whose eigenvalues
have all modulus smaller than ρ. As the set H ⊂ I, where the homoclinic tangencies are produced,
is dense in I, we can choose ti+1 ∈ (t−i +(1/4)(t+i − t−i ), t−i +(3/4)(t+i − t−i )) such that f̃ti exhibits
a homoclinic point qi+1 ∈ V of a saddle Pi+1. As above, the function µi+1(ft) is an increasing
diffeomorphism from the interval (t−i , t+i ), to an interval of the real variable µi+1(f̃t), such that

µi+1(f̃ti+1) = 0. Therefore, there exists δn+1 > 0 such that, if µi+1(f̃t) ∈ (−δn+1, δn+1), then
|t − ti+1| < 1/8(t+i − t−i ).

Arguing as in the first step, if ni+1 is large enough there exist −δn+1 < µ−
n+1 < µ+

n+1 <

δn+1 such that if µn+1(f̃t) ∈ (µ−
n+1, µ

+
n+1) then µ̂ ∈ (k(ρ)−, k(ρ)+), defined in Proposition 4.3.

Therefore, the thesis of this proposition implies that f̃t has a sink si+1 in V whose eigenvalues
have modulus smaller than ρ. This new sink is different from the i sinks that were previously
constructed, provided one can choose any integer number ni+1 large enough, so one can get the
period of the new sink larger and not a multiple, of the periods of the i sinks that were previously
constructed.

Considering that the real function µi+1(f̃t) depends diffeomorphically on t, the preimage by
µi+1(ft) of the interval (µ−

i+1, µ
+
i+1) is an interval

[t−i+1, t
+
i+1] ∈ ti+1 + [−(t+i − t−i )/8, (t+i . − t−i )/8] ⊂ (t−i , t+i )

By construction, if t ∈ (t−i+1, t
+
i+1) then f̃t exhibits simultaneously i+1 sinks in V , whose eigenvalues

have modulus smaller than ρ.

Finally define g0 = f̃t∞ where t∞ ∈
⋂∞

i=1[t
−
i , t+i ]. By construction, the set J of such values

where the inifinitely many sinks exist is dense in I. �

Remark 7.1 We observe that in in the proof of part (A) of Theorem 2, the construction of the
map g0 = ft∞ , which exhibits infinitely many sinks in V , allows us to choose, for each i ≥ 1,
any integer ni provided it is large enough. So, we can obtain the same thesis if, besides, we ask
ni ≥ mi, where mi → +∞ is any previously specified sequence of integer numbers.

Proof of part B) of Theorem 2: We will show that there exists a sequence mi → +∞ such
that, if g0 is constructed as in the proof of part (A) and besides verifying ni > mi for all i ≥ 1,
then the thesis (B) of Theorem 2 holds for this g0.
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Choose δ > 0 small enough (to be fixed at the end of the proof) and define the following
manifold N1 ⊂ Diff3(M), which is δ − C3 near g0:

N1 = {g ∈ Diff3(M) : g = ξ ◦ g0}

where ξ ∈ Diff3(M) is such that ‖ξ − id‖C3 < δ and besides it verifies conditions (5.11), replacing
g0 instead of f1, in a small fixed neighborhood V of the line of tangencies L0 = L(g0) (instead of
the line of tangencies L1 = L(f1)).

As in equalities (5.12), we now have

k(g ◦ g−1
0 ) = µi(g) − µi(g0) = νi(g) − νi(g0) ∀ i ≥ 1

Consider the set M, as follows:

M = {g ∈ N1 : k(g ◦ g−1
0 ) = 0}

As seen in Lemma 5.1, M is an infinite dimensional, arc connected manifold, with codimension
one in N1. By construction:

g ∈ M ⇒ µi(g) = µi(g0), νi(g) = νi(g0) ∀ i ≥ 1 (7.18)

Let us prove that, if g ∈ M, then the infinitely many sinks si(g0) have continuation sinks
si(g).

We apply, for g and g0, the respective changes of variables and parameter given by Equations
(4.6) and (4.7). We recall from the proof of part (A) of Theorem 2, that µi(g0) was constructed
such that:

µ̂(g0) ∈ (k−(ρ), k+(ρ))

where

−
3

8
< k−(ρ) < 0 < k+(ρ) <

1

8

are the numbers defined in Proposition 4.3.
By contradiction, if g ∈ M ⊂ N1 did not have the continuation of the sink si(g0), then, due to

Proposition 4.3 we obtain µ̂(g) 6∈ (−3/8, 1/8). In fact, we note that g0 and g are not isotopic by
any one-parameter family of diffeomorhphisms {gt}0≤t≤1 such that µ̂(gt) ∈ (−3/8, 1/8) ∀t ∈ [0, 1].
So considering in particular some one-parameter family in M, there would exist an interval [t0, t1]
such that µ̂(gt0) ∈ {k−(ρ), k+(ρ)}, µ̂(gt1) ∈ {−3/8, 1/8} and ∀ t ∈ [t0, t1], µ̂(g(t)) 6= 0.

Therefore:
∣∣∣∣
µ̂(gt0) − µ̂(gt1)

µ̂(gt1)

∣∣∣∣ ≥
min{|1/8 − k+(ρ)|, |k−(ρ) − 3/8|}

3/8
= η(ρ) = η > 0

0 <
µ̂(gt0)

µ̂(gt1)
6∈ (1 − η, 1 + η) (7.19)

From equation (7.18), we observe that µi(gt1) = µi(gt0). Then, taking into account (4.7) in
the points y = νi(gt1) = νi(gt0), x = bi(gt1) or x = bi(gt0) and subtracting:

0 =
µ̂(gt1)

βi(gt1)
(σ

(ni)
i )−2 −

µ̂(gt0)

βi(gt0)
(σ

(ni)
i )−2 + Ri(gt1 , gt0) (7.20)
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where Ri(gt1 , gt0) is obtained as the difference of the two terms (one computed for gt1 and the

other for gt0) in Equations (4.7), that have the factor λ
(ni)
i (x). By the strong dissipative condition

we have λ
(ni)
i � (σ

(ni)
i )−2 if ni is large enough. Besides, the other terms or coefficients depending

continuously on g in the Equation (4.7), are upper and lower bounded from zero, due to Lemma
3.8. Therefore given 0 < ε there exists mi large enough such that if ni ≥ mi then

|Ri(gt1 , gt0)| ≤ kiλ
(ni)
i ≤

ε

8 supg∈N |βi(g)|
(σni

i )−2 ≤
ε|µ̂(gt1)|

|βi(gt1)|
(σni

i )−2

Substituting in 7.20 we obtain:

1 − ε

1 + ε
≤

1

1 + ε

∣∣∣∣
βi(gt1)

βi(gt0)

∣∣∣∣ ≤
∣∣∣∣
µ̂(gt1)

µ̂(gt0)

∣∣∣∣ ≤
1

1 − ε

∣∣∣∣
βi(gt1)

βi(gt0)

∣∣∣∣ ≤
1 + ε

1 − ε
(7.21)

In the last inequalities we have used Lemma 5.4. Take ε > 0 such that
(

1 − ε

1 + ε
,
1 + ε

1 − ε

)
⊂ (1 − η, 1 + η)

and then fix δ = δ(ε) as in Lemma 5.4 to define N1. Therefore (7.21) implies
∣∣∣∣
µ̂(gt1)

µ̂(gt0)

∣∣∣∣ ∈ (1 − η, 1 + η)

contradicting (7.19). �

Proof of part C) of Theorem 2:
Consider g0 constructed as in the proof of the part (A) of Theorem 2. The given one-parameter

family {gt}t∈(−ε,ε) is not necessarily in the space N1 defined in that proof, but nevertheless it
unfolds generically the tangencies along L(gt), i.e.:

∣∣∣∣
dµi(t)

dt

∣∣∣∣ ≥ v > 0 ∀i ≥ 1, ∀t ∈ (−ε, ε)

where µi is defined in subsection 3.5. We have:

|µi(gt) − µi(g0)| = |(νi(gt) − ci(gt)) − (νi(g0) − ci(g0))| ≥ v|t| ∀ i ≥ 1

Consider the implicit function νi(f) ∈ G
(i)
f (µ̂) verifying equation (4.9) for any f ∈ N . We can

not apply directly the thesis of Lemma 5.5 because it is valid only if f ∈ N1 and our diffeomorphism
gt does not necessarily belong to the manifold N1. Nevertheless we use equation (4.9), Lemma
3.8 and similar arguments of those in the proof of Lemma 5.5 to obtain the following bounds for
all f ∈ N and for all ni large enough:

|G
(i)
f (0) − ci(f)| =

∣∣∣∣∣∣
ai(f) − y(Pi(f))

σ
(ni)
i (G

(i)
f (0))

− dists(qi(f).Pi(f))γi(f)λi(f)(ni)(bi(f))

∣∣∣∣∣∣
<

1

i
(7.22)

∣∣∣∣∣∣
dG

(i)
f (µ̂)

dµ̂

∣∣∣∣∣∣
≤

2

Ki(σ
(ni)
i (G

(i)
f (µ)))2

(7.23)
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In particular we apply (7.22) to f = gt and f = g0 to obtain

|(G(i)
gt

(0) − ci(gt)) − (G(i)
g0

(0) − ci(g0))|i→+∞ → 0 (7.24)

Suppose that gt exhibits infinitely many sinks si(gt) that are continuations from those of g0.
Applying part (C) of Proposition 4.3 we deduce that there exists µ̂ ∈ (−1, 1) such that

νi(gt) = Ggt
(µ̂) (7.25)

Combining (7.25) with (7.23) applied to f = gt and using the Lagrange Theorem:

νi(gt) ∈ G(i)
gt

(0) +
[σ

(ni)
i (gt)(Yi(t))]

−2

Ki
(−2, 2)

But σ
(ni)
i (gt)(Yi(t)) > σ̃ni with σ̃ > 1 and ni → ∞ as fast as needed.

Recalling (7.24):

0 < v, 0 ≤ v|t| ≤ |(νi(gt) − ci(gt)) − (νi(g0) − ci(g0))|i→+∞ → 0

and then |t| = 0. �
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