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Part IIntroductionWe will present in this paper some results obtained in an attempt to formalize the theoryof integers in Martin-L�of's theory of sets with the help of the proof-assistant Alf [10]. Inparticular we focus on the task of proving that the set Z of integers with the operations+ and � form an integral domain.Although we follow closely the presentation of these topics in Birkho� [3], our work isbased on a substantially di�erent approach. It is not a relevant problem for the authorsof [3], for instance, to de�ne Z , it is just assumed to exist. We will grasp what it meansto be an integer following the general explanation in type theory (described in Martin-L�of[12], for instance) of what it means to be a set. There, a set is de�ned by prescribing howits canonical elements are formed as well as how two equal canonical elements of the setare formed. We will also follow the pattern of introducing a set by means of the formation,introduction, elimination and equality rules associated to it.The former says that we can form a certain set from other certain sets or familiesof sets. With the introduction rules all the possible ways of constructing the canonicalelements are made explicit. Thus, every set is inductively de�ned. The elimination rulestates what one has to know in order to prove properties of (construct functions over)the elements of the set. It can be regarded as a kind of structural induction rule. Theintroduction and elimination rules are linked by means of the equality rules showing howthe constructions de�ned in terms of the latter operate on the elements of the set gen-erated by the introduction rules. Reading these equalities as conversions, one can thinkof the elimination rule as an operator de�ned for the set which can be naturally given acomputational semantics. For example, the set N of natural numbers would be de�ned as:N-formation N setN-introduction1 0 �NN-introduction2 n �Nsucc(n) �NN-elimination C(x) set [x �N]b � C(0)e(x; y) � C(succ(x)) [x �N; y �C(x)]n �N natrec(b; e; n) � C(n)where C is a family of sets indexed by N . Let us look at the explanation of natrec:� �rst execute n getting a canonical element of N.5



� if n = 0 then execute b which yields a canonical element f �C(0). By the substitu-tivity rule for families of sets f �C(n).� otherwise n = succ(m), with m�N. Then execute e(m;natrec(b; e;m)). If m hasnot the value 0 continue as in the second case until this value is reached.The evident equality rules that follow from this explanation are:natrec(d; e; 0) = d � C(0)natrec(d; e; succ(m)) = e(m;natrec(d; e;m)) � C(succ(m))It can be noted that looking at these equalities as the de�nition of a function, it �ts theschema of de�nition for primitive recursion:f(x1; : : : ; xn; 0) = d(x1; : : : ; xn)f(x1; : : : ; xn; succ(m)) = g(m;x1; : : : ; xn; f(x1; : : : ; xn;m))So, every function de�ned in terms of natrec will be computable. The addition operation+ for N , for instance, can be de�ned as:a + b � natrec(a; (u; v)succ(v); b)That is, apply b times succ to a.In type theory propositions are identi�ed with sets, then proofs of propositions areidenti�ed with elements of sets. A proposition is de�ned by prescribing how we are allowedto prove it, and it is true if it is possible to exhibit a proof of it. So, we can think of afamily C(x) (x � S) of sets as a propositional function (or a property) de�ned over theelements of the set S. If the proofs (constructions) in the second and third premisses andin the conclusion of the rule introducing natrec are suppressed, we can read that rule asa formulation of the principle of mathematical induction:C(x) prop [x �N]C(0) trueC(succ(x)) true[x �N;C(x) true]n �N C(n) trueSo, as remarked in [12], when propositions are identi�ed with sets recursion and in-duction turn out to be the same concept. The usual properties of the addition a + b(which can be easily proved inductively) are then formalized as functions (noncanonicalconstants) de�ned in terms of natrec. Thence proofs objects can be regarded as compu-tational procedures.With the intention of obtaining similar features for our formulation of the arithmeticof integers we are interested in working with an inductive de�nition of the set. Then,the disjoint union (�N) + f0Zg + N is the formalization we propose of Z. However,the elimination rule associated to this de�nition of the set (Zcases) works just as a caseoperator. When trying to de�ne the basic arithmetical operations for the set (+ and �,for instance) and prove some of their elementary properties we realized that the operatorwas not suitable enough to work with. For that reason the formalization of an induction6



principle for the set is proposed and shown to be derivable in the theory. The recursionoperator obtained (expressed in terms of Zcases and natrec) allows to de�ne primitiverecursive functions over the set.An alternative approach for de�ning noncanonical constructions which dismisses theuse of elimination rules is introduced in Coquand [5]. That approach aims at providing thepossibility of de�ning functions in Martin-L�of's logical framework using pattern matching.It is argued (and illustrated with some examples) that the discipline of introducing newconstants just by means of the elimination rules has some drawbacks. Let us look forinstance how the de�nition of + above could be reformulated:+(a; 0) = a+(a; succ(m)) = succ(+(a;m))The readability of the de�nition is improved and the intuition of the computational be-haviour of the constant is better displayed. With the aim of achieving mathematical con-structions closer to programs we chose this approach to develop our proofs. It is knownthat at least for some subtle proofs this pattern-matching discipline is more powerful thanthe discipline of using elimination constants. However, that does not happen in the kindof proofs that we are interested in. All that we proved could be done using eliminationrules.In Martin-L�of [11] the character of (functional) programming language of type theoryis emphasized and shown to be a suitable framework to reect the close relation betweenconstructive mathematics and programming. We use it as a programming logic, identi-fying speci�cations with propositions and sets, thus the proofs of the propositions canbe interpreted as methods to construct elements in sets, or programs �tting a speci�ca-tion. The algorithmic nature of the proofs of the properties is then formally reected as aconstruction in the language.Nevertheless, we are also interested in gaining knowledge about the task of formalizingmathematics in type theory. For that reason we also present some basic proofs developedfor a formalization of the set of integers following a more traditional approach. That is,we will regard Z as the quotient of the set of pairs of natural numbers by an appropriateequivalence relation. We briey discuss what kind of proofs are obtained when workingwith this approach and, point out some drawbacks when one is interested in associating acomputational meaning to the proofs.As with every algebraic structure, from the postulates of an integral domain manyproperties can be derived by equational reasoning. Having formalized di�erent concreteintegral domains (the two representations of Z with the operations satisfying the postu-lates) one could think that it would be desirable to have the possibility of working withsome formalization of the abstract notion of this algebraic system. Thus, we could reasonabout the derivations of the proofs independently of the concrete algebras we are workingwith. Moreover, it would also be interesting to be able to translate the results obtainedfrom the abstract formalization to the concrete cases. This work is also concerned witha proposal of formalization of algebraic structures oriented to ful�ll these requirements.We will regard algebraic systems as lists of hypotheses, where each clause will correspondto one of the components of the structure (carrier sets, function symbols or axioms). Weuse for this the notion of context. Then, for instance we could introduce the notion ofsemigroup as the context: 7



[S : Set; op : (S;S)S; assoc : (x; y; z : S)Id(S; op(x; op(y; z)); op(op(x; y); z))]where Id is the propositional equality for the set S.The proofs of the properties derived from the postulates of those systems will beformalized as scheme of proofs developed under the corresponding hypotheses. In thatsense our proofs will be close to the style of algebra texts. This is naturally reected inthe framework where all the forms of judgements are relativized with respect to a context.We will also show that with this approach we can not only formalize algebraic systemsand their derived properties but we will also be able to represent particular instances ofthem. These features are achieved using the notion of substitution. We will representa concrete algebra by providing a substitution �tting the context which describes thecorresponding abstract algebra. For the example presented above we could de�ne theparticular semigroup formed by hN;+i as the substitution:fS := N; op := +; assoc := +assocgwhere +assoc : (a; b; c : N)Id(N;+(a;+(b; c));+(+(a; b); c)) is the constant associated tothe proof that + is associative.The formalization of algebraic constructions will be presented in part II of this work.The inductive representation of the set Z, the discussion on inductive de�nitions andproofs, and the quotient version of the set are presented in part III. Finally, we discusssome drawbacks we think the approach of using contexts to formalize algebraic notionshas.
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Part IIAlgebraic Structures as Contexts1 IntroductionThe de�nition of what an algebraic system is can be found in most books on modernalgebra. Following MacLane [8], we will say that an algebraic system consists of :1. A nonempty set S, called the domain of the algebra.2. A set of relations on S.3. A set of operations over S.4. A set of postulates (or axioms) that are basic rules which the operations satisfy.An algebraic system S, whose domain is S and whose (�nite) set of operations (oroperation symbols) is ff1; : : : ; fkg, is denoted by S = hS; f1; : : : ; fki.Well known examples of algebraic systems are semigroups and monoids which arede�ned as :A semigroup hS;+i is a set S together with a binary operation + : S � S ! S which isassociative. A monoid hM;+; 0i is a semigroup hM;+i with an element 0 of M which isa unit for +, i.e., the following identities hold for every x; y; z in M :� M1. (x+y)+z = x+(y+z)� M2. x+0 = 0+x = x2 Using contexts to formalize algebraic systemsAs mentioned in the introduction we will regard an algebraic system as a list of hypothe-ses where each clause (type assignment) will be associated to a component of the system.Then it will be needed to assume sets and function symbols ranging over those sets as wellas formally express (as types) the axioms that describe the system. All these requirementswill be achieved using Martin-L�of's logical framework (which is implemented in Alf) as thesetting to formalize those notions. The introduction of a hypothetical set S is formulatedas the type declaration S : Set, being Set a primitive type of the framework. A binaryfunction symbol f de�ned over S, for instance, is introduced as f : (x : S; y : S)S, where(x1 : A1; : : : ;xn : An)B is the notation for dependent function types. As well as sets areextended to families of sets in type theory, families of types extend types in this theory.This will allow to express the axioms as types depending on the variables and parameterswhich are involved in them. Each assumption associated to an axiom will have the form ofa variable whose type is the dependent product of the type expressing the axiom indexedby the variables acting in that type. Lists of type declarations are formalized as contexts,constructions which are governed by the following rules:
9



[ ] : Context � : Context � : type [�][�;x : �] : Contextwhere x does not occur free in � and [�;x : �] is the extension of the context � with theclause x : �. Thus, a context is either empty or an extension of a proper context.However, when formalizing an algebraic system its carrier will not just be assumed tobe a set as intended in type theory, but a pair < S;R >, with R an equivalence relationon S. This requirement follows from the fact that we do not want to restrict the notion ofequality |which plays a decisive role in the formulation of the postulates and derivationof new properties| to that of propositional equality which is the primitive notion ofequality in Martin-L�of's set theory. Since we also want to work with the formalizedsystems as equational logics, every time a new operation is de�ned on the set the proof ofthe congruence of the relation R with respect to this operation must be provided. Whena predicate over the set S is introduced we will also ask for the proof of the substitutivityproperty of the predicate w.r.t. the relation R. An example of what we achieve withthese conditions is that we will be able to prove that di�erent formalizations of a concretealgebra satisfy the conditions required to be a speci�c algebraic system. This feature willbe illustrated when we show that two di�erent formalizations of the set Z of integers,an inductive one with the equality taken as the propositional equality on the set, and aquotient version with a provided congruence relation, satisfy the postulates of an integraldomain.Let us see how the notion of set introduced above could be de�ned using contexts:SET is [S:Set; R:(S;S)Set;refl:(x:S)R(x,x);symm:(x:S;y:S;R(x,y))R(y,x);trans:(x:S;y:S;z:S;R(x,y);R(y,z))R(x,z)]The operator is is used to introduce abbreviations of contexts.Another feature we want to reect is that of de�ning new algebraic systems as exten-sions of previously de�ned ones. Suppose that we want to introduce a binary operationde�ned over the set S together with the proof that the relation R is congruent with respectto this operation. In order to formalize this we could de�ne the following structure:Grupoid is SET + [op:(S;S)S;opcong:(x:S;y:S;z:S;w:S;R(x,y);R(z,w))R(op(x,z),op(y,w))]The operator + is also provided by the system; it denotes iterated extension of contexts.Note that we can refer explicitly to the components of the context SET (the set S and therelation R) when de�ning this new structure.2.1 Concrete algebras as substitutionsAs mentioned above we are also interested in formalizing the fact that some particularrepresentation is an instance of one abstract system. For that, we will use the notion ofsubstitution, or more precisely of a substitution for the variables that belong to a givencontext. This notion is carefully explained in Tasistro [19] and we give here the basic10



explanations. To say that  is a substitution �tting the context � means that  is an as-signment of objects of appropriate types to the variables of the context �. This situationis generalized to the case where the objects may depend on variables of another context,say �, written as  : � [�]. Suppose now that we know that � is a type under the context�. Then we can perform the substitution  on � to obtain the type � under the context�. The rules governing the construction of substitutions are listed below :f g : [ ] [�]  : � [�] � : type [�] a : � [�]f;x := ag : [�;x : �] [�]where f;x := ag is the extension of the substitution  with the assignment of the objecta to the fresh variable x. Then we will assert that some concrete algebraic structure  isclassi�ed as a particular case of an abstract algebraic structure � if  : � [ ]. To illustratethis, assume that we have:� de�ned the set N of natural numbers,� the binary operation + on N,� the set IdN(m;n) = Id(N;m; n) for m;n 2 N .� constructed the proof (named addcong) that IdN is congruent with respect to +.We could then de�ne the substitutions Neq and N+ as:Neq is {S:=N; R:=IdN; refl:=Idrefl;symm:=Idsymm; trans:=Idtrans} : SET []N+ is {Neq;op := +; cong := addcong} : Groupoid []2.2 A further example: groups and the concrete group Z2First, we will introduce the de�nition of Semigroup as an extension of Groupoid:Semigroup is Groupoid + [assoc:(x:S;y:S;z:S)R(op(x,op(y,z)),op(op(x,y),z))]That is, assoc is the assumption that op is associative on S. Then we de�ne Monoid as anextension of Semigroup:Monoid is Semigroup + [unit:S;ident:(x:S)and(R(op(x,unit),x),R(op(unit,x),x))]That is, unit will be a distinguished element of the set S and ident states the axiom thatunit is the identity element for op. Finally, Group is de�ned as :Group is Monoid + [inv:(S)S;opinv:(x:S)and(R(op(x,inv(x)),unit),R(op(inv(x),x),unit))]11



That is, inv denotes a unary operation on S and opinv characterizes the inversion propertyof inv.A familiar algebraic structure is Z2, which is formed by the set with two di�erentelements (ze; one) , together with a binary operation xor : (Z2;Z2)Z2, which is de�ned asfollows: xor(ze,ze) = zexor(one,ze) = onexor(ze,one) = onexor(one,one) = zeIf we take the equality relation to be the propositional equality over Z2 (IdZ2) and theinverse as the identity function on Z2 (i2), we can prove that:� IdZ2 is congruent with respect to xor (xorcong)� xor is associative (xorassoc)� ze is the identity element for xor (xorunit)� the result of applying xor to x and the inverse of x yields ze (xorinv)Then, we can de�ne the following substitution:GroupZ_two is {S:= Z_two; R:=IdZ_two; refl:=Idrefl(Z_two);symm:=Idsymm(Z_two); trans:=Idtrans(Z_two); op:=xor;cong:=xorcong; assoc:=xorassoc; unit:=ze;ident:=xorunit; inv:=i_two; opinv:=xorinv} : Group []It can be interpreted as the veri�cation that Z2 is a group.3 Proofs over algebraic systemsWe now turn to how to deal with proving the properties that can be derived from thepostulates of such a system. Furthermore, suppose that a proof schema for, say, a propertyP which is a consequence of the postulates of a system A is constructed and, that a concreterepresentation Ains of A is provided. Then, we will show how to obtain the proof termPins which will represent the instantiation of the property P to the particular algebraAins.3.1 Proof schemeWe will construct the derivation of one property that is satis�ed for any group G, the leftcancellation law, which is formulated as:For all a; b; c 2 GSet, if op(c; a) �= op(c; b) holds, then a �= bwhere GSet denotes the carrier set of the group (S above) and �= is a more usual notationfor R.ProofIf a; b; c 2 GSet, then 12



i) op(c; a) �= op(c; b) (by hypothesis)ii) op(inv(c); op(c; a)) �= op(inv(c); op(c; b)) (by i and cong)iii) op(op(inv(c); c); a) �= op(op(inv(c); c); b) (by ii and assoc)iv) op(unit; a) �= op(unit; b) (by iii, opinv and cong)v) a �= b (by iv and ident)In each deduction step of this proof a simple but useful property of the equivalence relation�= is used:If x �= y, x �= z and y �= w hold, then z �= w with x; y; z; w 2 S.This is proved using the symmetric and transitive properties of �=. It will be referred belowas simrepl.In the case of this kind of derivations, the task of constructing the proof term isstraightforward. With the help of the proof assistant, the proof construction process isstrictly top-down, one only has to do sequential re�nements of the goal using the proofterms associated to each deduction step. Each of these terms is formalized as a functionalexpression which for given values of the types corresponding to the premisses yields a valueof the type corresponding to the conclusion. The entire derivation will also be a functionalexpression built up from the combination of those functions. As an example, here is theformalization of the derivation of the cancellation property,cancelleft =[a,b,c,h]simrepl(op(unit,a),op(unit,b),a,b,simrepl(op(op(inv(c),c),a),op(op(inv(c),c),b),op(unit,a),op(unit,b),simrepl(op(inv(c),op(c,a)),op(inv(c),op(c,b)),op(op(inv(c),c),a),op(op(inv(c),c),b),cong(inv(c),inv(c),op(c,a),op(c,b),refl(inv(c)),h),assoc(inv(c),c,a),assoc(inv(c),c,b)),cong(op(inv(c),c),unit,a,a,snd(opinv(c)),refl(a)),cong(op(inv(c),c),unit,b,b,snd(opinv(c)),refl(b))),fst(ident(a)),fst(ident(b))) : (a,b,c:S;h:R(op(c,a),op(c,b)))R(a,b) GroupThe notation [x1; : : : ; xn]e is used to express the abstraction of the variables x1; : : : ; xn inthe expression e. The outermost application of simrepl is associated to the deductionstep from iv) to v); the next inner to the step from iii) to iv), and so on.3.2 Proofs as instancesIn section 2 we showed how to de�ne particular representations of an algebraic systemusing substitutions. We will now present how to obtain also instantiations of properties13



derived from the postulates of the system for those representations.We de�ned GroupZ2 to be the substitution that establishes that Z2 is a group. Then,we can construct the proof that the cancellation property holds for the operation xor inthis way:xorcancel = cancelleft{GroupZ_two}:(x,y,z:Z_two,IdZ_two(xor(z,x),xor(z,y)))IdZ_two(x,y)and now we get a term which represents the proof of the cancellation law for the operationof Z2. These kind of de�nitions are justi�ed by means of the following rules of substitution: : � [�] � : type [�]� : type [�]  : � [�] a : � [�]a : � [�]They are explained as:\ if we know that  is a substitution for the variables of the context� depending on the variables of the context � and � is type (resp. a is an element of type�) under the context �, then � (resp. a) with  is a type (resp. an element of � with )under the context �.3.3 Using derived properties to de�ne concrete algebrasAll the examples above are concerned with de�nition of abstract algebras and propertiesthat can be derived from the postulates, and their respective instantiations. Now we willshow another way of obtaining instances of algebraic systems. There is a well knowntheorem in the theory of groups which says:If G is a group, and for all x 2 GSet, x2 �= unit, then G is an abelian groupwhere x2 is a more convenient way of writing op(x; x).To assert that a group is abelian we have to provide the proof that the binary operationop is commutative. Then, assume that for all x 2 GSet, x2 �= unit and the lemmas belowwhich follow (easily) from the axioms of group:1. For all x; y 2 GSet; op(x; y)�1 �= op(y�1; x�1).2. For all x 2 GSet; if x2 �= unit holds then x �= x�1reading x�1 as inv(x). The commutativity of the operation op can be derived as follows:For all x; y 2 GSet,i) op(x; y) �= op(x; y)�1 (by lemma 2 and hypothesis)ii) op(x; y)�1 �= op(y�1; x�1) (by lemma 1)iii) op(x; y) �= op(y�1; x�1) (by i,ii and trans)iv) op(y�1; x�1) �= op(y; x) (by lemma 2 and cong)v) op(x; y) �= op(y; x) (by iii,iv and trans)As done with cancelleft, we can introduce the de�nition:commop = <proof-code>:(x:S)R(op(x,x),unit)(y,z:S)R(op(y,z),op(z,y)) Group14



It can be noted that this property holds for Z2, because:� xor(ze; ze) �= ze,� xor(one; one) �= ze,� ze is the identity element for Z2.Then if xorsqid is the name of the proof that for all x 2 Z2 xor(x; x) �= ze, we can de�ne:commxor = commop{GroupZ_two}(xorsqid) : (x,y:Z_two)IdZ_two(xor(x,y),xor(y,x)) []Then commxor is the name associated to the proof that xor is commutative on Z2.Now we extend the structure Group with the proof that op is commutative to de�nethe structure abelian group as:AbGroup is Group + [comm : (x,y:S)R(op(x,y),op(y,x)]We could then introduce this new concrete structure as a substitution:AbGroupZ_two is {GroupZ_two;comm := commxor} : AbGroupto state that Z2 is an abelian group.4 Integral DomainsIt is very common to �nd the set of integers presented as a particular case of an algebraicsystem. In [3] the authors assume that the set Z together with the binary operations+ and � satis�es the postulates required to be an integral domain. We list below thesepostulates assuming that S is a set and + and � are de�ned over S:(i) Commutative laws. For all a and b in S, a+ b = b+ a and a � b = b � a;(ii) Associative laws. For all a, b, and c in S, a+ (b+ c) = (a+ b) + c and a � (b � c) =(a � b) � c;(iii) Distributive law (left). For all a, b, and c in S, a � (b+ c) = a � b+ a � c;(iv) Zero. S contains an element 0 such that a+ 0 = a for all a in S;(v) Unity. S contains an element 1 6= 0 such that a � 1 = a for all a in S;(vi) Additive inverse. For each a in S, the equation a+ x = 0 has a solution x in S;(vii) Cancellation law. If c 6= 0 and c � a = c � b, then a = bIn more concise terms, S is a commutative ring with unit and a left cancellation law on �.From these postulates, and using that = is an equivalence relation, many well-knownproperties involving + and � can be deduced using equational reasoning. On this facta meaningful reexion is added by the authors \. . . one must, however, take some carein deducing consequences from postulates in this way in order to be sure that the proofsuse only the postulates listed and rules of logic". With the formalization we have done ofalgebraic systems together with the congruence and substitutivity requirements and theproof-assistant control we achieve the required safeness.15



4.1 Formalization of integral domainsWe extend the de�nition of abelian group to de�ne ring as:Ring is AbGroup + [mult:(S;S)S;multcong:(x,y,z,w:S;R(x,y);R(z,w))R(mult(x,z),mult(y,w));munit:S; diff:not(R(munit,unit));massoc:(x,y,z:S)R(mult(x,mult(y,z)),mult(mult(x,y),z));mident:(x:S)R(mult(x,munit),x);distlft:(x,y,z:S)R(mult(x,op(y,z)),op(mult(x,y),mult(x,z)))]Then we de�ne commutative ring as:CommRing is Ring + [*comm:(x,y:S)R(*(x,y),*(y,x))]to �nally introduce the de�nition of Integral Domain:IntDom is CommRing + [*cancel:(x,y,z:S;not(R(z,unit));R(*(z,x),*(z,y))R(x,y)]4.2 Derived propertiesThis is an example of formal proof of a property valid in any integral domain which canbe derived from the postulates and the fact that ' is an equivalence relation.For S, the law is formulated in this way:Distributive law (right). For all a,b, and c in S, (a+ b) � c ' a � c+ b � cProof.Assume a, b, c in S ; then:i) (a+ b) � c ' c � (a+ b) (by commutative law for �)ii) c � (a+ b) ' c � a+ c � b (by left distributive law)iii) (a+ b) � c ' c � a+ c � b (by i, ii and transitivity of ')iv) c � a ' a � c (by commutative law for �)v) c � b ' b � c (by commutative law for �)vi) c � a+ c � b ' a � c+ b � c (by iv, v and substitutivity of +)vii) (a+ b) � c ' a � c+ b � c (by iii, vi and transitivity of ')The Alf term representing this derivation is an explicit de�nition which combines the proofterms associated to each postulate and the properties of ' involved in the deduction. Itcan be found in Appendix A.Other derived properties holding for any particular integral domain that we have alsoformally proved are:1. If z in S has the property that a+ z ' a for all a in S, then z ' unit.16



2. For a and b in S, there is one and only one x in S such that a+ x ' b.3. If u has the property that a � u ' a, for all a in S, then u ' �unit.4. For all a in S, a � unit ' unit ' unit � a.5. For all a and b in S, a�1 � b�1 ' (a � b)�1.6. If a � b ' unit and a 6= unit then b ' unit.The formal proofs of some of these properties can be found in appendix A.
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Part IIIFormalization of the Integers inMartin-L�of's Theory of Sets1 IntroductionWe mainly devote this part to present how recursion over Z can be formalized. In section 2we present the de�nition of the integers. In section 3 two possible inductive principlesthat can be represented by recursion operators derived from the basic de�nitions of thetheory are discussed. In this section we also introduce as an alternative the possibility ofde�ning noncanonical constants by computation rules that are pattern matching equations(see Coquand [5]). This latter feature is provided by Alf [10].We illustrate with one example (associativity of addition) the kind of proofs we hadto develop in order to formally prove that our representation of Z satis�es the postulatesof an integral domain.An alternative way of formalizing the integers |regarding them as equivalence classesof pairs of natural numbers| is also presented. Although we did not formalize all theproofs of the properties for the quotient version of the set, some of them are displayed inorder to point out the di�erences between both approaches.Finally, using the concrete representation of the set, the operations and their properties,a substitution �tting the algebraic system IntDom is de�ned.2 Inductive de�nitionThe set of integers will be regarded as the set f: : : ;�2;�1; 0; 1; 2; : : :g, which can beformalized as the disjoint union (�N) + f0Zg+N. Here are our rules:Z-formation Z setZ-introduction1 0Z �ZZ-introduction2 n �Npos(n) �ZZ-introduction3 n �Nneg(n) �Zwhere, if n �N, pos(n) will represent the integer n+ 1 and neg(n) the integer �(n+ 1).The elimination rule will be just a case analysis over these three possibilities, that is:
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Z-elimination C(x) set [x �Z]b �C(0Z)d(n) � C(pos(n)) [n �N]e(n) � C(neg(n)) [n �N]z �ZZcases(b; d; e; z) � C(z)and the equality rules are de�ned as one would expect. We will follow the notation ofNordstr�om et al. [14].When one works in type theory, the only implicit functions that one is allowed tointroduce are the elimination constants de�ned for each set. Every other de�nition mustbe given in terms of them. As we were interested in extending the above de�nition of theset Z with the usual arithmetical operations, and above all to prove some properties ofthose operations, a good formulation for them was the �rst goal to achieve.In Szasz [16] it is shown that if you want to de�ne addition (+Z) over the integersin terms of Zcases, one possibility is to use addition and subtraction over N as well aspropositional equality =N and the order relation <. Moreover, it is also necessary to proveassociativity and commutativity of natural addition, that =N is an equivalence relation,and transitivity and trichotomy of <. In such case, the intuition behind the expressionobtained for +Z is not easy to grasp, and looking at it as a program, it is computationallyine�cient. Another possibility could be to treat the complicated cases pos(m) + neg(n)and neg(m) + pos(n) doing double induction over m and n, but that would not improvethe readability of the expression.A more elegant solution is proposed below.3 Recursion on ZIn this section we will discuss alternative ways of introducing de�nitions and constructproofs of properties inductively over our formalization of the set.3.1 Two di�erent recursion operators for ZWe will present two possible versions of an induction principle for our formulation of Zthat behave similarly to the one corresponding to N. Both recursion operators are derivedinside the theory and expressed in terms of Zcases and natrec.The main di�culty when de�ning the operator is that the usual order over Z is notwell-founded. The way this problem is treated is what makes the di�erence between thetwo approaches.Using sign predicatesThis version was also presented in [16]. Assuming that P is a propositional function overZ an induction principle can be formulated as follows:P (0Z) P (succZ(x)) [x �Z;nonneg(x); P (x)] P (predZ(x)) [x �Z;nonpos(x); P (x)] z �ZP (z)20



The functions succZ and predZ are the successor and predecessor in Z respectively. Thepredicates nonpos and nonneg state the non-positivity and non-negativity of their argu-ments respectively. As we identify propositions with sets, the de�nition of nonpos andnonneg have to be functions that when applied to an integer return a set. Furthermore,the intended meaning of these predicates is to classify the canonical elements of the set(a similar problem as to prove that 0 6= succ(n), for all n �N). In [14] it is shown how todeal with this kind of problems introducing the set U of small sets (or the �rst universe).As we have constructed our proofs in Martin-L�of's logical framework, we can avoid usingthe universe by de�ning this special elimination rule:ZcasesU : (S:Set;pe:(N)Set;ne:(N)Set;z:Z)Setwhich follows the schema proposed in Smith [15] (note that the result of applying ZcasesUyields a Set, not an element in a set C(z) as in Zcases). The computation rules arede�ned as: ZcasesU(S,pe,ne,0Z) = S : SetZcasesU(S,pe,ne,pos(n)) = pe(n) : SetZcasesU(S,pe,ne,neg(n)) = ne(n) : Setwith S:Set, pe:(N)Set, ne:(N)Set, n:N.Now, we can de�ne the predicate nonneg in this way:noneg(z) = ZcasesU(T,[n]T,[n]fg,z) : Set [z � Z]where T represents the one-element set (the true proposition), and fg the empty set(absurdity). The predicate nonpos can be de�ned in a similar way.The derived induction rule associated to the induction principle for Z presented aboveis:ZrecU P (x) set [x �Z]b � P (0Z )hp(x; nn; hx) � P (succZ(x)) [x �Z; nn �nonneg(x); hx � P (x)]hn(y; np; hy) � P (predZ(y)) [y �Z; np �nonpos(y); hy � P (y)]z �Z ZrecU (b; hp; hn; z) � P (z)and ZrecU de�ned as:ZrecU(b; hp; hn; z) =Zcases(b;[n]natrec(hp(0Z ; tt; b); [u; v]hp(pos(u); tt; v); n);[n]natrec(hn(0Z ; tt; b); [u; v]hn(neg(u); tt; v); n);z)where tt �T.
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A di�erent formulationIn the de�nition of the rule above, nonneg and nonpos are needed to enforce that theinductive steps hp and hn are applied starting from 0Z along the positive and negativebranches respectively. Now, we will present another formulation of the induction principle|suggested by Bj�orn von Sydow| where the predicates are not needed at all.First, let us de�ne nonnegpred(n) �Z (predecessor of pos(n)) and nonpossucc(n) �Z(successor of neg(n)), with n �N as:nonnegpred(n) � natrec(0Z ; [u; v]pos(u); n) �Z [n �N]nonpossucc(n) � natrec(0Z ; [u; v]neg(u); n) �Z [n �N]Now we can de�ne this alternative induction principle:P (0Z) P (pos(x))[x �N; P (nonnegpred(x))] P (neg(x))[x �N; P (nonpossucc(x))] z �ZP (z)where P (nonnegpred(x)) and P (nonpossucc(x)) state that the property P holds for thepredecessor of pos(x) and the successor of neg(x) respectively. Note that by the de�nitionsof nonpossucc and nonnegpred, for the cases pos(0) and neg(0) those hypotheses becomeP (0Z). This induction rule can be derived from the earlier de�nitions.Assume:� P (x) set [x �Z],� b � P (0Z ),� ps(x; hx) � P (pos(x)) [x �N; hx � P (nonnegpred(x))],� ns(y; hy) � P (neg(y)) [y �N; hy � P (nonpossucc(y))], and� z �Z.Then from these assumptions we will construct an element in P (z) for all z in Z. For thecase z = 0Z we take b, for the cases z = pos(n) and z = neg(n) we proceed by inductionover n.- Let n �N- For n = 0 we have that nonnegpred(0) = 0Z �Z (by de�nition of nonnegpred) andthat b � P (0Z).So, ps(0; b) � P (pos(0)).- Now, assume u �N and v � P (pos(u)).We have that nonnegpred(succ(u)) = pos(u) �Z (by de�nition of nonnegpred)Then ps(succ(u); v) � P (pos(succ(u))).- In similar way, for any n �N, we can �nd an element in P (neg(n)).From this proof it is straightforward to de�ne a operator in terms of Zcases and natrec:Zrec(b; ps; ns; z) =Zcases(b;[n]natrec(ps(0Z ; b); [u; v]ps(succ(u); v); n);[n]natrec(ns(0Z ; b); [u; v]ns(succ(u); v); n);z)Thus, Zrec will work as an operator for de�ning functions over Z by primitive recursion.22



De�ning functions with ZrecLet us look how the de�nitions of the arithmetical operations for Z are expressed in termsof Zrec.First, we introduce the successor and predecessor functions for Z:succZ(z) � Zcases(pos(0); [n]pos(succ(n)); [n]nonpossucc(n); z) �Z [z �Z]predZ(z) � Zcases(neg(0); [n]nonnegpred(n); [n]neg(succ(n)); z) �Z [z �Z]Now we can de�ne the addition, subtraction and multiplication for Z in this way,a+Zb � Zrec(b; [n; h]succZ (h); [n; h]predZ(h); a) �Z [a; b �Z]a�Zb � Zrec(a; [n; h]predZ (h); [n; h]succZ (h); b) �Z [a; b �Z]a�Zb � Zrec(0Z ; [n; h]h+Zb; [n; h]h�Zb; a) �Z [a; b �Z]which look very similar to the de�nitions of the corresponding operations over N.3.2 Pattern MatchingA suitable recursion operator for Z should satisfy two requirements: it should of coursebe sound and the proofs constructed with it should be natural and readable.The former requirement is satis�ed by the de�nition of +Z in terms of Zcases wecommented above, but surely we can agree that the one line de�nition expressed usingZrec (which is de�ned in terms of Zcases and the elimination constant natrec) should beeasier to grasp. With this recursion operator, then, we could de�ne functions over Z like+Z ,�Z and �Z in the way one is used to do in Martin-L�of's Type Theory.In Coquand [5], a di�erent perspective is proposed introducing the possibility to de�neimplicit constants in Martin-L�of's logical framework whose computation rules are de�nedusing pattern matching over the arguments. To ensure correctness of the de�nitions twoconditions are required: the equations must be well-founded and patterns must not overlapand must cover all cases. If these requirements hold, a su�cient condition stating thetotality of the function de�ned is satis�ed.Another de�nition of +ZA de�nition of this function in Alf using pattern matching could be:zadd(0Z,b) = bzadd(pos(n),b) = zs(zadd(nonnegpred(n),b))zadd(neg(n),b) = zp(zadd(nonpossucc(n),b))The functions zs and zp denote the codi�cation of succZ and predZ respectively.Let us write again the expression obtained using Zrec:a+Zb � Zrec(b; [n; h]succZ (h); [n; h]predZ(h); a) �Z [a; b �Z]There is a clear relation between the right hand side of each equation in the de�nitionof zadd and the computation that is performed when the expression in terms of Zrec isapplied to the same pair of arguments. But there is one important di�erence, too. In thecase of the de�nition in terms of Zrec, we have a direct argument that the computation23



of +Z when applied to every pair of integers will always yield a value, because Zrec is arecursive operator which allows us to de�ne this function as a primitive recursive one.The condition proposed in [5] to ensure that the equations with recursive calls are well-founded is split into two requirements: nested occurrences of the constant f being de�nedare forbidden in the recursive calls f(v1; : : : ; vn) and there must exist one vi structurallysmaller than the argument in the same position in the left hand side of the equation. Thede�nition of the relation involved in the second requirement can be found in the samepaper.The �rst requirement is satis�ed by our de�nition above, but not the second. Althoughwe know that nonnegpred(resp. nonpossucc) is a total function over N and intuitively onecan see that the chain of the successive calls of zadd will stop at zadd(0Z ; b), the expressionnonnegpred(n) (resp. nonpossucc(n)) does not match the de�nition of being structurallysmaller than pos(n) (resp. neg(n)). We can re�ne the pattern n in the two last equationsabove, and de�ne now zadd as:zadd(0Z,b) = bzadd(pos(0),b) = zs(b)zadd(pos(s(m)),b) = zs(zadd(pos(m),b))zadd(neg(0),b) = zp(b)zadd(neg(s(m)),b) = zp(zadd(neg(m),b))However, pos(m) (resp. neg(m)) do not yet match the de�nition of being structurallysmaller than pos(s(m)) (resp. neg(s(m))). But it seems sensible to extend the de�nitionof this relation to consider cases like this here.4 Proving the postulatesThe binary operator �Z was also de�ned by pattern matching and the equality relationused in the postulates taken to be the propositional equality over the set Z.With the example below we want to illustrate how the postulates were proved usinginductive reasoning.4.1 An inductive proofAssociativity of +Z . For all x,y, and z in Z, (x +Z y) +Z z =Z x +Z (y +Z z)Proof.Assume that for all x, y in Z we have already proved the following properties :(szadd) succZ(x +Z y) = succZ(x) +Z y(pzadd) predZ(x +Z y) = predZ(x) +Z yLet now x � Z, then- For x = 0Z we have that� 0Z +Z (y +Z z) = y +Z z� (0Z +Z y) +Z z = y +Z z (both by de�nition of +Z).24



� 0Z +Z (y +Z z) = (0Z +Z y) +Z z (by symmetry and transitivity of =).- For x = pos(n), with n �N- If n = 0, then� (pos(0) +Z y) +Z z = succZ(y) +Z z.� pos(0) +Z (y +Z z) = succZ(y +Z z) (both by de�nition of +Z).� (pos(0) +Z y) +Z z = pos(0) +Z (y +Z z) (by szadd, symmetry andtransitivity of =).- Now, assume n = succ(u) and (pos(u) +Z y) +Z z = pos(u) +Z (y +Z z), then� (pos(succ(u)) +Z y) +Z z = (succZ(pos(u) +Z y)) +Z z) (by de�nition of+Z).� (succZ(pos(u) +Z y) +Z z) = succZ((pos(u) +Z y) +Z z) (by szadd).� (pos(succ(u)) +Z y) +Z z = succZ(pos(u) +Z (y +Z z)) (by substitutivityand transitivity of = and induction hypothesis).� succZ(pos(u) +Z (y +Z z)) = pos(succ(u)) +Z (y +Z z) (by szadd andde�nition of succZ).� (pos(succ(u)) +Z y) +Z z = pos(succ(u)) +Z (y +Z z) (by transitivityof =).- Then by induction over N we get the proof for every n � N, hence, for every positiveinteger.- In a similar way it is proved that the property holds for x = neg(n) (using pzaddinstead of szadd).For each postulate the same schema of proof as above is followed, that is, doing caseanalysis on Z and induction over N in the positive and negative case. This is very wellreected by the Alf proof terms when all the power of the pattern matching de�nitionis used. We will have one equation for each item described above and for the casespos(succ(u)) and neg(succ(u)) the right hand side of the equation will include a recursivecall on pos(u) and neg(u). The formalization of this proof, together with those of the restof the postulates, can be found in Appendix B.5 Integers as a quotient setWe remarked earlier that we were interested in developing the formalization of the setof integers as an inductively de�ned set. In this way the algorithmic nature of manyconstructions de�ned over the set could be better reected than when representing Zas a quotient set. We will now present the formalization following the more traditionalde�nition of the set of integers, that is, as the quotient of the set of pairs of naturalnumbers.There is no primitive construction in type theory which allows to introduce such kindof sets. We will de�ne Zp as an abbreviation for N �N and then introduce the de�nitionof the relation �=Zp on Zp together with the proofs that it is an equivalence relation. Wede�ne< m;n > �=Zp < p; q > to mean thatm +N q =N p +N n, where =N and +N denote25



the propositional equality and the addition operation over N. Thus, �=Zp is a decidablerelation. This is formalized as :Zp = N �N �Set m; n �Nint(m;n) � Z m; n; p; q �N m +N q =N p +N nint(m;n) �=Zp int(p; q)The proofs that �=Zp is an equivalence relation are strongly based on the fact that =N isan equivalence relation on N and congruent w.r.t. +N . Associativity and commutativityof +N are also needed to prove transitivity of �=Zp.Now we de�ne the addition operation +Z for Zp as :int(m;n) +Z int(p; q) = int(m +N p; n +N q)In order to guarantee that the operation behaves uniformly over elements belonging to thesame equivalence class we proved �rst that :a; b; c � Zp a �=Zp ba +Z c �=Zp b +Z c a; b; c � Zp a �=Zp bc +Z a �=Zp c +Z bto �nally prove that �=Zp is congruent w.r.t. +Z , that is :a; b; c; d � Zp a �=Zp b c �=Zp da +Z c �=Zp b +Z dWe were also interested in de�ning the subtraction and multiplication operations andproving the postulates as done with the inductive formalization of the set. As expected,in most cases the proofs of the properties rely mainly on the proofs developed for thearithmetical operations de�ned over N. For instance, to prove that +Z is associative, wecan proceed as follows:Assuming that a = int(m;n), b = int(p; q) and c = int(r; s),i) (a +Z b) +Z c = int(m +N p; n +N q) +Z int(r; s)ii) = int((m +N p) +N r; (n +N q) +N s)iii) = int(m +N (p +N r); n +N (q +N s))iv) = int(m;n) +Z int(p +N r; q +N s)v) = a +Z (b +Z c)In the deduction step from ii) to iii) we use the proof that this same property is satis�edby +N .Comparing this proof with that presented above for the inductive de�nition of the setit seems that to formalize the theory of integers using this approach would be simpler.One can realize that most of the postulates of an integral domain are also satis�ed by theset N of natural numbers. Their proofs have already been formalized in type theory andimplemented in the �rst version of Alf [2] (see for example Szasz [17] and von Sydow [20]).Those proofs can be seen as solving the positive case of the postulates for Z and in general,once you �nd the way of proving the positive case the negative one is solved in a similarway. But in spite of having all this work already done we could not use it to construct theproofs for the inductive version of Z. This was a consequence of the way in which +Z and�Z were de�ned, that is, independently of +N and �N .However, we are not only interested in constructing the proofs of the properties thatallow classifying Z as an integral domain, that is the axiomatic part of the theory of26



integers. When we started with this work we also aimed at setting the basic kernelneeded to develop the formalization of \computational" components of the theory, suchas the division and euclidian algorithm, i.e. to construct procedures that perform thosealgorithms and to provide also the proof of their correctness.As earlier mentioned we use type theory as a programming logic. The expressions ofthis theory are variables, canonical (constructors, data) and noncanonical(selectors, pro-grams) elements. The engine used to implement this powerful programming language isthe framework (the logical theory of types) implemented in Alf. The computations areexpressed de�ning functions by means of the (de�nitional) equality of the framework. Thisequality is explained by saying that every constant which is an abbreviation of an expres-sion of type � when evaluated will take as value one of the canonical values introducedfor �.When we de�ned the inductive version of the set we introduced its elements as 0Zor formed from the application of the functions pos and neg to a natural number. Weimplicitly also de�ned the notion of equality on Z which can be explicitly formulated as :m = n : Npos(m) = pos(n) : Z m = n : Nneg(m) = neg(n) : ZThey are justi�ed by the rules of the framework that state the reexivity of = and theextensionality of functional symbols. This notion of equality of canonical objects is struc-tural, that is two irreducible expressions are equal if they are syntactically the sameexpression. Then, by the conuence and normalization properties of the framework weforced integer expressions to have as value one and only one of these canonical forms above.When a set is de�ned as a quotient as presented above, we lose the notion of normalform and the equality of the elements of the set is provided from outside the system. Then,we cannot expect that the equality of two integers can be automatically checked. Suppose,for instance, that we want to prove that for all integers z, z +Z0Z=Zz. In the case of theinductive version of Z the proof is very simple:id(Z; z) : IdZ(z +Z 0Z ; z) [z : Z]The expression z +Z0Z is computed to z. Thus by introduction rule of IdZ the judgementholds. The substitutivity of IdZ is then automatic. This can never be the case whendealing with the quotient version of the set. Every time we introduce a new function(property) de�ned over (on) the elements of the set we must also provide the proof of thecongruence (substitutivity) of �=Zp with respect to the function (property). Those proofs,when needed, will always appear explicitly in the proof terms, but they are computationallyirrelevant. So, we will obtain constructions that when regarded as programs will containnon interesting information. Of course there are many proofs using the propositionalequality IdZ where its congruence and substitutivity properties have to be made explicit.However, those properties are de�ned once and for all function and property de�ned overthe elements of Z.In the same direction, since we identify propositions with sets, when predicates rangingover Zp=�=Zp are de�ned in terms of the components of the elements of this set ,di�erentpropositions could be associated to equal elements of Zp=�=Zp. Suppose that we de�ne thepredicate nonneg as :nonneg(int(m;n)) = Id(N;n; 0) : Set [m;n : N ]27



Then we could not prove that a nonnegative integer that is not normalized satis�es thispredicate, even though its equivalent normalized expression does. Moreover, we couldprove that the negation of the predicate holds for every nonnegative integer of that form.One possible solution to these problems could be to extend the framework with aprimitive schema for introducing quotient sets internalizing the equality of its elements.However, we do not really know what a sound formulation of that construction could be.Suppose that the following schematic rules were available in the framework:A Set eq : (A;A)BoolA=eq Set a : Aa : A=eq a; b : A eq(a; b) =Bool truea = b : A=eqwhere eq is a decidable equality de�ned over A. The �rst and second rules are the formationand introduction rules of the quotient set respectively. The third rule could be read asthe internalization of the equality (which indeed must be an equivalence relation) over thequotient set as an equality judgement in the theory. Then we could de�ne the integers asa quotient set using the rules above where A is Zp and eq is the boolean formulation of�=Zp. But still it would be problematic to deal with dependent sets indexed by elementsof Zp=eq. Suppose that we want to de�ne the order relation <Z as :int(m;n) <Z int(p; q) = (m +N q) <N (p +N n) � SetAssume that int(m;n) = int(p; q) : Zp=eq and that int(r; s) : Zp=eq, then it would beimpossible to check that :int(m;n) <Z int(r; s) = int(p; q) <Z int(r; s) � Setfor this entails to check that(m +N s) <N (r +N n) = (p +N s) <N (r +N q) � SetIn particular, it has to be checked that m +N s = p +N s �N which does not necessarilyhave to hold. That is, equality of sets in the framework is structural, then when trying tocheck the latter equality using the substitution rule it would be required of m and p to bethe same natural number. This is not the general case due to the de�nition of Zp=eq.This example is strongly inspired by the discussion in [4] on how to deal with typesdepending on objects of quotient types in NuPrl. A primitive rule for de�ning quotienttypes similar to that presented above is provided in this proof-assistant. Squashed typesis the solution proposed in order to deal with the problem of the dependencies describedabove. That means to throw away the computational content of the type and just keepthe notion of inhabitance. However, is not clear for us whether this would be a sensiblesolution when one is interested in regarding proofs as computational constructions.
28



6 A concrete Integral DomainNow, we will declare explicitly that our representation of the set of integers is an integraldomain. To do that we will use the proofs of the postulates that we have developed for Zto de�ne a substitution IntdomZ that �ts the context Intdom :IntdomZ is {S := Z;R := IdZ;refl := idreflZ;symm := idsymmZ;trans := idtransZ;op := zadd;opcong := zaddcong;unit := zz;assoc := Szaddssoc;ident := zaddident; inv := ~;opinv := zaddinv;comm := zaddcommut;mult := ztimes;multcong := ztimescong;munit := one;diff := onenotzero;massoc := Sztimesassoc;mident := ztimunit;distlft := ztimesdistL;mcomm := ztimescomm;mcancel := ztimcanlft} : Intdom []The proofs terms to which the constants assigned to the variables of the context Intdomare associated can be found in appendix B and C.In section 4 we listed some of the properties derived from the postulates of an inte-gral domain for which we constructed the corresponding proof terms. Their developmentdepends on the assumption that we can use hypothetical proofs of the postulates charac-terizing an integral domain as well as the properties of the equivalence relation de�nedover the set. We also showed in section 3.2 that we can combine substitutions with expres-sions of the framework in order to de�ne new expressions. Hence, we could now obtainthe particular instances of those proofs for the concrete integral domain represented byIntdomZ (see appendix C). It is not necessary, for instance, to construct the proof of theright distributivity law for the inductive representation of the set Z we have presented. Asillustrated above, we just need to introduce the following de�nition :distRZ = distrightfIntdomZg:(x,y,z:Z)IdZ(*(+(x,y),z),+(*(x,z),*(y,z)))where + and � denote zadd and ztimes respectively.Furthermore, we could also obtain the proofs of these properties for the quotient versionof the set, Zp, by de�ning another substitution, say IntdomZp. The values assigned to thevariables of the context IntDom would be then the set Zp, the operations and the proofsof the postulates developed for this di�erent representation of the set Z.
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Part IVDiscussionWe were interested in formalizing the arithmetics of integer numbers in Martin-L�of's typetheory with the help of the proof assistant Alf. What we developed at last amounts tothe formalization of the set of integers, the arithmetical operations and the propertiesestablishing that this concrete algebra is an integral domain. On top of what has beenexposed in this paper, the order relation < and the modulo function have also beenimplemented. This constitutes the basic kernel needed to develop the theory of divisibility,the notion of prime number, the division and g.c.d. algorithms and the fundamentaltheorem of arithmetics.As we have argued above, we wanted to work with an inductive de�nition of the set andthe complete development of the proofs is done within this approach. However, to thinkabout the de�nition of Z as a quotient set, to develop some basic proofs and compare bothformalizations provided interesting insights about the task of formalizing mathematics intype theory. It also motivated the attempt to formulate an abstract notion of integraldomain which could be used to reason about the properties satis�ed by the algebra ofintegers independently of the chosen representation, and thereby allowed to naturallytranslate the results to the two di�erent formalizations of this algebra.To formalize the notion of what an algebraic structure is, whose components are setsand n-ary operations on those sets which satisfy speci�ed axioms, we chose the notion ofcontext.The features of our approach that we have illustrated in this paper are mostly concernedwith de�nition of abstract algebras and how to deal with derivations of properties fromthe postulates that characterize such algebras. We have also shown that we can formalizethe notion of instantiation of those structures and derivations and how these constructionscan be combined to de�ne new ones. The way in which we de�ned the abstract notion ofalgebraic systems provides also the possibility of applying the abstract theory of particularalgebraic structures to concrete examples.However, we are aware that the approach we have presented to formalize algebraicsystems has many drawbacks. Since algebra is often considered as the study of the prop-erties of algebras which are invariant under isomorphism (algebraic properties), we shouldbe able to reason about constructions like morphisms between structures, homomorphicimages and quotient structures. The formalization of some of these constructions aboveusing contexts can be really unpleasant, and some others cannot even be de�ned.Suppose we want to de�ne the notion of morphism between groups:GroupX is [X : Set;RX : (X;X)Set; : : : ; opX : (X;X)X; : : :]GroupY is [Y : Set;RY : (Y ;Y )Set; : : : ; opY : (Y ;Y )Y ; : : :]MorphXY is GroupX +GroupY + [f : (X)Y ; (x; y : X)RY (f(opX(x; y)); opY (f(x); f(y)))]where GroupX and GroupY are de�ned as groups as shown above.Then, �rst we note that we must introduce GroupX and GroupY as abbreviations of two\di�erent" contexts, that di�erence being only the names of the variables. This is a clearconsequence of our choice of regarding algebraic systems as list of named hypotheses. Weare not thinking of those systems as classifying collections of mathematical objects. Hence,31



it is not possible to assume variables ranging over them. This also entails that we cannoteven de�ne a function (or better a functor) which given an algebraic structure returns astructure formed by components of the former (for instance, one that given an abeliangroup yields the corresponding group). Besides, we must be careful with the naming ofthe variables used in the third context (X;Y; opX and opY in this case) in order to makesure that we are expressing the property we want over the components of GroupX andGroupY we mean to.So, we are searching here for the possibility of formalizing algebraic structures in typetheory as entities describing mathematical constructions in such a way that we can refer toand de�ne operations on those constructions. But, what kind of entities? Should they bede�ned as sets or as types? By type here we mean a category (in the sense of [12]) whosede�nition does not require to know how its objects are constructed but just to grasp whatit means to be an object of such category. In this latter case, is the theory of types (theframework implemented in Alf) powerful or suitable enough to express the fundamentalalgebraic constructions?Along these last years some works dealing with formalization of algebraic concepts(directly or not) have been presented. To our knowledge the solutions have always followedthe approach of using either �-sets or �-types in the case of working with constructivetype theories (see for instance [14], [4], [7], [1],) or predicates involving logical constantsand prede�ned equalities as presented in [6].Algebraic structures as setsSince the early '80s the formalization of abstract data types has been an important topicof discussion in the programming language area. In Mitchell [13] the authors present afunctional language which incorporates existential types of the form 9t:�(t), where t isa type variable which may occur free in the type expression �(t). Values of such typesare also introduced and are intended to model abstract data types. They are called dataalgebras. The intuitionistic explanation of the existential quanti�er and what it means tobe a proof of an existential proposition together with the Curry-Howard correspondenceof propositions with types lies behind this formalization of abstract data types.In Nordstr�om et al. [14] a similar approach is used in order to propose a method-ology of module speci�cation in type theory. A module is there understood as a tuplehA1; A2; : : : ; Ani, where some Ai are sets and some are elements and functions de�ned onthese sets. An example of the application of these notions to formalize algebra could bethe de�nition of group as the tuple:hM; �; u; inv; Pass; Punit; Pinviwhere M is a set, � 2 M �M ! M ,u 2 M ! M and Pass,Punit and Pinv express thegroup properties.The natural way of expressing speci�cation of modules in type theory is using generalsums, written �x 2 A:B(x), which corresponds to the disjoint union of the family of setsB(x) with x ranging over the set A. The elements of this kind of sets are pairs wherethe �rst component determines the type of the second. We refer to Martin-L�of [12] fortheoretical explanations.So, going back to the example above, let us look now how the notion of group couldbe de�ned in terms of �-sets: 32



(�M 2 U)(�� 2M �M !M)(�u 2M)(�inv 2M !M)(�x; y; z 2M)[�(x; �(y; z)) =M �(�(x; y); z)] �[�(x; u) =M x] �[�(x; inv(x)) =M u]where U is the name for the set of the small sets (the �rst universe). Since in type theorythe sets have to be inductively de�ned, it is impossible to have the notion of the set ofall sets. But, as in our case, it is usually necessary to talk about sets whose elements (ortheir components) are sets. In order to deal with this situation, the notion of universe,intended as the least set closed under speci�c set forming operations, is introduced. Thisprocess could be iterated, obtaining then a hierarchical sequence of universes U = U0 2U1 2 : : : 2 Un 2 : : :.Now, turning back to the case which motivated this discussion the notion of morphismbetween two groups could be de�ned as:Morphism � (�X 2 Group)(�Y 2 Group)(�f 2 (Xset)Yset)(�x; y 2 Xset)(f(�X (x; y)) =Y �Y (f(x); f(y)))because now Group is a set (which belongs to the universe U1) and we can assume variablesranging over that set. The operations Xset; Yset; �X ; �Y and =Y are de�ned in terms ofthe projection functions. The functor we mentioned above taking abelian groups to theircorresponding groups could also be de�ned without problems. Moreover, we could de�nea special universe, say Ueq, as:Ueq � (�X 2 U)(�eq 2 (X;X)U)(Refeq � Symmeq � Transeq)which would be the universe of the sets with an equivalence relation de�ned over them.So, it seems that, if one wants to grasp algebraic structures as sets, their formalizationusing �-sets and universes forms an expressive and suitable alternative.However, in the mechanical formalization it could be hard to deal with the codi�cation.The set of natural numbers, for instance, would be represented by two di�erent symbols:N representing the set itself and NU the element of the universe U . That is, in orderto work with universes we are compelled to deal with the codes we use to reect the setstructure at the level of objects and the corresponding decodi�cation functions. And thisis rather cumbersome.Another consequence of working with universes is that the way of forming sets remains�xed because the canonical members of the universes are codings of a �xed number ofset constructing operations. Nevertheless, is not at all clear, at least for us, that thispresupposes a serious restriction when trying to formalize algebraic notions.
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Algebraic structures as typesAs an alternative to the approach presented above, we could try to grasp algebraic struc-tures as types. The immediate question is then. . . what kind of types are they?In Luo [7] and MacQueen [9] a higher order calculus (�CC) and a language with ram-i�ed dependent types (DL) are presented. The language includes a �-type constructortogether with the corresponding projection operations. In both works the adequacy of�-types as a basic mechanism to express abstract structures is analysed as well as a safemethodology to deal with the manipulation of independently developed theories. More-over, in [7] the power of the calculus to express mathematical problems is illustrated withmany examples of formalization of algebraic notions. All the limitations presented by thecontexts can be solved using this approach in a similar way as done with �-sets above.But the restriction that the domains of quanti�cation must be closed does not appear. Insuch systems the notion of set remains open.This same understanding of sets is proposed by Martin-L�of in the formulation of hislogical framework. A primitive type Set is introduced. It classi�es inductively de�nedsets but there is no longer the requirement of providing all the possible ways of formingthose sets. However, in order to de�ne � structures whose domains are types (the typeSet, for instance) it would be necessary to reect this notion at the level of types, too.One (among many) possible way of achieving this could be extending the type level withrules for dependent pairs:� type � type [x : �](x : �;�) type � type � type [x : �] a : � b : �(a)(a; b) : (x : �;�)p : (x : �;�)�1(p) : � p : (x : �;�)�2(p) : �(�1(p))The two �rst rules introduce the type and object constructors for dependent pairs respec-tively and �1 and �2 are the corresponding projections. But it is not clear for us whetherit is really necessary to abandon the setting provided by the theory of sets, where it seemspossible to formalize - even with some apparent restrictions - most of the basic algebraicnotions.In another direction, we have also the doubt whether �(dependent pairs)-types arethe best tool to express algebraic notions. In a recent paper (Tasistro [18]) an extensionto Martin-L�of's logical framework has been presented where the type level is enrichedwith labelled record types. After having done some examples using this kind of types toformalize algebraic notions we think that there are some features of this approach thatseem to be useful when formalizing algebra. We will illustrate this point with the followingexamples. Suppose �rst that we de�ne monoid as the following record type:monoid � hX : Set;R : (X;X)Set; : : : ; op : (X;X)X; : : : ; pri : Pid; pra : Passiwhere h: : :i is the notation for the record types constructor. Now we could de�ne groupand abelian monoid as the extensions:group � hM : monoid; inv : (X)X; prinv : Pinviabmonoid � hM : monoid; pco : Pcommi34



to �nally de�ne two \di�erent" formalizations of abelian group:abgroup1 � hG : group; pco : Pcommiabgroup2 � hAm : abmonoid; inv : (X)X; prinv : PinviIt can be noted that abgroup1 and abgroup2 only di�er in the order of their components.The explanation proposed in [18] of what it means to be a record type allows to justifya subtyping relation between records. This relation could be used for instance to showthat these two de�nitions above are equivalent. Furthermore, it is rather simple to provethat every record object of the form abgroup1 (resp. abgroup2) it is also an object of theform group (resp. abmonoid) and monoid. Moreover, it could also be proved that givena record object of the form abgroup1 (which extends group) it is also an object of theform abmonoid. Similarly for an object of the form abgroup2 (which extends abmonoid)with respect to group. So, relations between algebraic structures are naturally formalizedby their de�nitions as records extending other ones. This is a clear di�erence with thecontexts and � approaches. In the former there is no way of relating independently de�nedcontexts, in the latter the order of the components is in the very nature of the explanationof the type.Another interesting feature of records arises in the following case: As shown abovewith contexts we could de�ne a proof, say cancelrec : group ! Pcancel, that for everygroup the cancellation law holds. Now, let us suppose that we want to construct a newproof, say agpr : abgroup! Pagpr, which uses cancelrec. By the subtyping relation for thefunction types it can be inferred that cancelrec has also type abgroup! Pcancel. Then itcan be applied directly to the argument of agpr in the body of the de�nition. This kind ofinclusion polymorphism is very useful when one thinks of an incremental development ofalgebraic structures. All that has been proved for one structure can naturally be appliedfor those extending it. This can also be reected using the context approach. Every proofconstructed under certain context �, say, can be used in a proof developed under a context� which extends �. However using �-types(sets), in the example above for instance, weshould �rst apply the forgetful functor from abelian groups to groups that we have earliermentioned in order to be able to use cancelrec.Nevertheless, we do not claim that these advantages could enforce the decision ofchosing record types to formalize algebra. The same questions as for �-types hold. Wethink that, at least for us, it is necessary to better understand which is the appropriatetheoretical setting to formalize algebra in type theory.Other works with integers in proof-assistantsThe type of integers int is built into NuPRL (Constable et al. [4]). The canonical ele-ments of this type and the operations +;�; � are also built into the system. There is anoncanonical form associated to this type which provides a mechanism for de�nition andproof by induction to which the recursive operators presented in this paper are very close.The properties of the operations are provided by the system. We do not know works onformalization of algebraic notions using this system, but in [4] �-types are suggested as apossible methodology to represent algebraic structures.Valerie Menissier, at INRIA, has formalized the set Z together with the proofs thatit is an integral domain in Coq. She has the set inductively de�ned and uses inductivereasoning to construct the proofs of the properties. There is also a great coincidence with35



our work in the sequence and kind of lemmas needed in the development of the mainproofs.Integers have been formalized in LEGO, a proof assistant developed at the LCF ofEdinburgh, as equivalence classes of pairs of natural numbers. A work in progress onformalization of Galois theory has been presented in Aczel [1]. There, some basic algebraicnotions (sets, mappings and algebraic structures) are formalized in terms of �-types usingthe implementation of Luo's extended calculus of constructions provided by LEGO.Another formalization of the integers as equivalence classes of pairs of naturals butusing HOL is presented in Gunter [6]. There, it is also presented a method for representingalgebraic notions which is strongly based in the use of higher order predicates to describethe structures as well as constructions over them. The basic logic of HOL is an extendedversion of the simple theory of types, where propositions are interpreted classically.AcknowledgementsFirst, I would like to warmly thank my supervisor Bj�orn von Sydow. He spent many hoursof his time on discussions concerned with this work, and on reading and commenting ondi�erent versions of this paper.I am greatly indebted to Alvaro Tasistro and Nora Szasz, for careful reading of thispaper, many interesting discussions and their permanent support.I also received helpful comments from Bengt Nordstr�om, Kent Petersson and Jan Smithon an earlier version of this paper and from John Hughes who read a draft version of thepart on integers.Finally, I want to thank my former supervisor Juan Jos�e Cabezas for all his supportand encouragement along all these years.
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Part VAppendicesThe following appendices contain the complete de�nitions and proofs to which we havereferred in the paper.Appendix A includes the incremental de�nition of the algebraic structures from SETto Integral Domain and the proofs of the derived properties following from the postulatesof the latter. In appendix B all the de�nitions, lemmas and proofs required to prove thatthe set Z of integers is an integral domain are listed. The de�nition of the substitution�tting the context Intdom and the instantiation of the derived properties for Z are listedin appendix C.All the proofs have been developed using the formalization of Martin-L�of's set theoryprovided by the Alf library. For the proofs of the integers we also used the formalizationof the set N of natural numbers with its corresponding properties.Appart from the de�nitions of contexts and substitutions, three di�erent forms ofde�nitions will be found :1. c : � [�] C2. c : � [�] I3. c = e : � [�]The letter C at the end of a de�nition indicates that c is introduced as a canonical constant.With the letter I it is indicated that c is an implicit constant de�ned using patternmatching over (some) of its arguments. Following such de�nition, the equations associatedto each case of pattern are stated. In the third case, c is just an abbreviation (explicitconstant).
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A Formalization of integral domain and derived propertiesSET is [S:Set; R:(S;S)Set;refl:(x:S)R(x,x);symm:(x:S;y:S;R(x,y))R(y,x);trans:(x:S;y:S;z:S;R(x,y);R(y,z))R(x,z)]Grupoid is SET + [op:(S;S)S;opcong:(x:S;y:S;z:S;w:S;R(x,y);R(z,w))R(op(x,z),op(y,w))]Semigroup is Groupoid + [assoc:(x:S;y:S;z:S)R(op(x,op(y,z)),op(op(x,y),z))]Monoid is Semigroup + [unit:S;ident:(x:S)and(R(op(x,unit),x),R(op(unit,x),x))]Group is Monoid + [inv:(S)S;opinv:(x:S)and(R(op(x,inv(x)),unit),R(op(inv(x),x),unit))]AbGroup is Group + [comm:(x:S;y:S)R(op(x,y),op(y,x))]Ring is AbGroup + [mult:(S;S)S;multcong:(x,y,z,w:S;R(x,y);R(z,w))R(mult(x,z),mult(y,w));munit:S; diff:not(R(munit,unit));massoc:(x,y,z:S)R(mult(x,mult(y,z)),mult(mult(x,y),z));mident:(x:S)R(mult(x,munit),x);distlft:(x,y,z:S)R(mult(x,op(y,z)),op(mult(x,y),mult(x,z)))]CommRing is Ring + [mcomm:(x,y:S)R(mult(x,y),mult(y,x))]Intdom is CommRing + [mcancel:(x,y,z:S;not(R(z,unit));R(mult(x,z),mult(y,z)))R(x,y)]
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These are the proof terms of some of the properties derived from the postulates of an integraldomain that are presented in [3].Unicity of the additive inverse.uniqinv = [a,b,c,h,h1]cancelleft(a,b,c,trans(op(a,b),unit,op(a,c),h,symm(op(a,c),unit,h1))) : (a:S;b:S;c:S;R(op(a,b),unit);R(op(a,c),unit))R(b,c) IntdomUnicity of unit for op.uniqunit = [a,p]trans(a,op(unit,a),unit,symm(op(unit,a),a,snd(R(op(a,unit),a),R(op(unit,a),a),ident(a))),p(unit)) : (a:S;p:(x:S)R(op(x,a),x))R(a,unit) IntdomNon-zero divisor.nzdiv = [a,b,h1,h3]mcancel(b,unit,a,h3,trans(mult(b,a),mult(a,b),mult(unit,a),mcomm(b,a),trans(mult(a,b),unit,mult(unit,a),h1,trans(unit,mult(a,unit),mult(unit,a),symm(mult(a,unit),unit,timeszero(a)),mcomm(a,unit))))) : (a:S;b:S;R(mult(a,b),unit);not(R(a,unit)))R(b,unit) Intdom42



Zero of multiplication.timeszero = [x]cancelleft(mult(x,x),mult(x,unit),unit,trans(op(mult(x,x),mult(x,unit)),mult(x,op(x,unit)),op(mult(x,x),unit),symm(mult(x,op(x,unit)),op(mult(x,x),mult(x,unit)),distlft(x,x,unit)),trans(mult(x,op(x,unit)),mult(x,x),op(mult(x,x),unit),multcong(x,x,op(x,unit),x,refl(x),fst(R(op(x,unit),x),R(op(unit,x),x),ident(x))),symm(op(mult(x,x),unit),mult(x,x),fst(R(op(mult(x,x),unit),mult(x,x)),R(op(unit,mult(x,x)),mult(x,x)),ident(mult(x,x))))))) : (x:S)R(mult(x,unit),unit) IntdomRight distributivity.distr = [x,y,z]trans(mult(op(x,y),z),mult(z,op(x,y)),op(mult(x,z),mult(y,z)),mcomm(op(x,y),z),trans(mult(z,op(x,y)),op(mult(z,x),mult(z,y)),op(mult(x,z),mult(y,z)),distlft(z,x,y),cong(mult(z,x),mult(x,z),mult(z,y),mult(y,z),mcomm(z,x),mcomm(z,y)))) : (x:S;y:S;z:S)R(mult(op(x,y),z),op(mult(x,z),mult(y,z))) Intdom
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B IntegersDe�nition of the set ZZ : Set [] Czz : Z [] Cpos : (n:N)Z [] Cneg : (n:N)Z [] Cone = pos(0) : Z []Zcases : (C:(Z)Set;a:C(zz);b:(n:N)C(pos(n));c:(n:N)C(neg(n));z:Z)C(z) [] IZcases(C,a,b,c,zz) = aZcases(C,a,b,c,pos(n)) = b(n)Zcases(C,a,b,c,neg(n)) = c(n)zs : (Z)Z [] Izs(zz) = pos(0)zs(pos(n)) = pos(s(n))zs(neg(0)) = zzzs(neg(s(h))) = neg(h)zp : (Z)Z [] Izp(zz) = neg(0)zp(pos(0)) = zzzp(pos(s(h))) = pos(h)zp(neg(n)) = neg(s(n))Propositional equality (IdZ)IdZ = Id(Z) : (x:Z;y:Z)Set []Idzs = [x,y,p]idcongr(Z,Z,zs,x,y,p) : (x:Z;y:Z;p:IdZ(x,y))IdZ(zs(x),zs(y)) []Idzp = [x,y,p]idcongr(Z,Z,zp,x,y,p) : (x:Z;y:Z;p:IdZ(x,y))IdZ(zp(x),zp(y)) []multsubs = [x,y,z,w,h,h1,h2]idtrans(Z,z,y,w,idtrans(Z,z,x,y,idsymm(Z,x,z,h1),h),h2) : (x:Z;y:Z;z:Z;w:Z;IdZ(x,y);IdZ(x,z);IdZ(y,w))IdZ(z,w) []45



Discrimination of canonical elementsIsnotzz : (x:Z)Set [] IIsnotzz(zz) = EmptyIsnotzz(pos(n)) = N1Isnotzz(neg(n)) = N1posnotzz : (n:N;IdZ(pos(n),zz))Empty [] Iposnotzz(n,h) = case h ofendnegnotzz : (n:N;IdZ(neg(n),zz))Empty [] Inegnotzz(n,h) = case h ofendProperties relating successor and predeccessor (zs and zp)invzp : (z:Z)IdZ(zs(zp(z)),z) [] Iinvzp(zz) = id(Z,zz)invzp(pos(0)) = id(Z,pos(0))invzp(pos(s(h))) = id(Z,pos(s(h)))invzp(neg(0)) = id(Z,neg(0))invzp(neg(s(h))) = id(Z,neg(s(h)))invzs : (z:Z)IdZ(zp(zs(z)),z) [] Iinvzs(zz) = id(Z,zz)invzs(pos(0)) = id(Z,pos(0))invzs(pos(s(h))) = id(Z,pos(s(h)))invzs(neg(0)) = id(Z,neg(0))invzs(neg(s(h))) = id(Z,neg(s(h)))invzsp = [x]idtrans(Z,zs(zp(x)),x,zp(zs(x)),invzp(x),idsymm(Z,zp(zs(x)),x,invzs(x))) : (x:Z)IdZ(zs(zp(x)),zp(zs(x))) []
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Properties of addition (zadd)zadd : (Z;Z)Z [] Izadd(zz,h1) = h1zadd(pos(0),h1) = zs(h1)zadd(pos(s(h)),h1) = zs(zadd(pos(h),h1))zadd(neg(0),h1) = zp(h1)zadd(neg(s(h)),h1) = zp(zadd(neg(h),h1))zaddzs : (x:Z;y:Z)IdZ(zs(zadd(x,y)),zadd(zs(x),y)) [] Izaddzs(zz,y) = id(Z,zs(y))zaddzs(pos(n),y) = id(Z,zadd(zs(pos(n)),y))zaddzs(neg(0),y) = idtrans(Z,zs(zadd(neg(0),y)),y,zadd(zs(neg(0)),y),invzp(y),id(Z,y))zaddzs(neg(s(h)),y) = idtrans(Z,zs(zadd(neg(s(h)),y)),zadd(neg(h),y),zadd(zs(neg(s(h))),y),invzp(zadd(neg(h),y)),id(Z,zadd(neg(h),y)))zaddzp : (x:Z;y:Z)IdZ(zp(zadd(x,y)),zadd(zp(x),y)) [] Izaddzp(zz,y) = id(Z,zp(y))zaddzp(pos(0),y) = idtrans(Z,zp(zs(y)),y,y,invzs(y),id(Z,y))zaddzp(pos(s(h)),y) = idtrans(Z,zp(zadd(pos(s(h)),y)),zadd(pos(h),y),zadd(zp(pos(s(h))),y),invzs(zadd(pos(h),y)),id(Z,zadd(pos(h),y)))zaddzp(neg(n),y) = id(Z,zp(zadd(neg(n),y)))zadd0 : (x:Z)IdZ(zadd(x,zz),x) [] Izadd0(zz) = id(Z,zz)zadd0(pos(0)) = id(Z,pos(0))zadd0(pos(s(h))) = Idzs(zadd(pos(h),zz),pos(h),zadd0(pos(h)))zadd0(neg(0)) = id(Z,neg(0))zadd0(neg(s(h))) = Idzp(zadd(neg(h),zz),neg(h),zadd0(neg(h)))zaddsubstL = [a,b,y,p]idcongr(Z,Z,[h]zadd(h,y),a,b,p) : (a:Z;b:Z;y:Z;p:IdZ(a,b))IdZ(zadd(a,y),zadd(b,y)) []zaddsubstR = [a,b,x,p]idcongr(Z,Z,[h]zadd(x,h),a,b,p) : (a:Z;b:Z;x:Z;p:IdZ(a,b))IdZ(zadd(x,a),zadd(x,b)) []47



zaddcong = [x,y,z,w,p,q]idtrans(Z,zadd(x,z),zadd(y,z),zadd(y,w),zaddsubstL(x,y,z,p),zaddsubstR(z,w,y,q)): (x:Z;y:Z;z:Z;w:Z;p:IdZ(x,y);q:IdZ(z,w))IdZ(zadd(x,z),zadd(y,w)) []zaddpos : (m:N;n:N)IdZ(zadd(pos(m),pos(n)),pos(s(plus(m,n)))) [] Izaddpos(0,n) = id(Z,pos(s(n)))zaddpos(s(n1),n) = Idzs(zadd(pos(n1),pos(n)),pos(s(plus(n1,n))),zaddpos(n1,n))zaddneg : (m:N;n:N)IdZ(zadd(neg(m),neg(n)),neg(s(plus(m,n)))) [] Izaddneg(0,n) = id(Z,neg(s(n)))zaddneg(s(n1),n) = idtrans(Z,zadd(neg(s(n1)),neg(n)),zp(neg(s(plus(n1,n)))),neg(s(plus(s(n1),n))),Idzp(zadd(neg(n1),neg(n)),neg(s(plus(n1,n))),zaddneg(n1,n)),id(Z,neg(s(plus(s(n1),n)))))zaddssoc : (x:Z;y:Z;z:Z)IdZ(zadd(zadd(x,y),z),zadd(x,zadd(y,z))) [] Izaddssoc(zz,y,z) = id(Z,zadd(y,z))zaddssoc(pos(0),y,z) = idsymm(Z,zadd(pos(0),zadd(y,z)),zadd(zadd(pos(0),y),z),zaddzs(y,z))zaddssoc(pos(s(h)),y,z) = idtrans(Z,zadd(zadd(pos(s(h)),y),z),zs(zadd(zadd(pos(h),y),z)),zadd(pos(s(h)),zadd(y,z)),idsymm(Z,zs(zadd(zadd(pos(h),y),z)),zadd(zadd(pos(s(h)),y),z),zaddzs(zadd(pos(h),y),z)),Idzs(zadd(zadd(pos(h),y),z),zadd(pos(h),zadd(y,z)),zaddssoc(pos(h),y,z)))zaddssoc(neg(0),y,z) = idsymm(Z,zadd(neg(0),zadd(y,z)),zadd(zadd(neg(0),y),z),zaddzp(y,z))zaddssoc(neg(s(h)),y,z) = idtrans(Z,zadd(zadd(neg(s(h)),y),z),zp(zadd(zadd(neg(h),y),z)),zadd(neg(s(h)),zadd(y,z)),idsymm(Z,zp(zadd(zadd(neg(h),y),z)),zadd(zadd(neg(s(h)),y),z),zaddzp(zadd(neg(h),y),z)),Idzp(zadd(zadd(neg(h),y),z),zadd(neg(h),zadd(y,z)),zaddssoc(neg(h),y,z)))48



Szaddssoc = [a,b1,c]idsymm(Z,zadd(zadd(a,b1),c),zadd(a,zadd(b1,c)),zaddssoc(a,b1,c)) : (a:Z;b:Z;c:Z)IdZ(zadd(a,zadd(b,c)),zadd(zadd(a,b),c)) []zsaddsnd : (x:Z;y:Z)IdZ(zs(zadd(x,y)),zadd(x,zs(y))) [] Izsaddsnd(zz,y) = id(Z,zs(y))zsaddsnd(pos(0),y) = id(Z,zs(zs(y)))zsaddsnd(pos(s(h)),y) = Idzs(zs(zadd(pos(h),y)),zadd(pos(h),zs(y)),zsaddsnd(pos(h),y))zsaddsnd(neg(0),y) = invzsp(y)zsaddsnd(neg(s(h)),y) = idtrans(Z,zs(zadd(neg(s(h)),y)),zp(zs(zadd(neg(h),y))),zadd(neg(s(h)),zs(y)),invzsp(zadd(neg(h),y)),Idzp(zs(zadd(neg(h),y)),zadd(neg(h),zs(y)),zsaddsnd(neg(h),y)))zpaddsnd : (x:Z;y:Z)IdZ(zp(zadd(x,y)),zadd(x,zp(y))) [] Izpaddsnd(zz,y) = id(Z,zp(y))zpaddsnd(pos(0),y) = idsymm(Z,zadd(pos(0),zp(y)),zp(zadd(pos(0),y)),invzsp(y))zpaddsnd(pos(s(h)),y) = idtrans(Z,zp(zadd(pos(s(h)),y)),zs(zp(zadd(pos(h),y))),zadd(pos(s(h)),zp(y)),idsymm(Z,zs(zp(zadd(pos(h),y))),zp(zadd(pos(s(h)),y)),invzsp(zadd(pos(h),y))),Idzs(zp(zadd(pos(h),y)),zadd(pos(h),zp(y)),zpaddsnd(pos(h),y)))zpaddsnd(neg(0),y) = id(Z,zp(zp(y)))zpaddsnd(neg(s(h)),y) = Idzp(zp(zadd(neg(h),y)),zadd(neg(h),zp(y)),zpaddsnd(neg(h),y))zaddcommut : (x:Z;y:Z)IdZ(zadd(x,y),zadd(y,x)) [] Izaddcommut(zz,y) = idtrans(Z,zadd(zz,y),y,zadd(y,zz),id(Z,y),idsymm(Z,zadd(y,zz),y,zadd0(y)))
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zaddcommut(pos(0),y) = idtrans(Z,zadd(pos(0),y),zs(zadd(y,zz)),zadd(y,pos(0)),Idzs(y,zadd(y,zz),idsymm(Z,zadd(y,zz),y,zadd0(y))),zsaddsnd(y,zz))zaddcommut(pos(s(h)),y) = idtrans(Z,zadd(pos(s(h)),y),zs(zadd(y,pos(h))),zadd(y,pos(s(h))),Idzs(zadd(pos(h),y),zadd(y,pos(h)),zaddcommut(pos(h),y)),zsaddsnd(y,pos(h)))zaddcommut(neg(0),y) = idtrans(Z,zadd(neg(0),y),zp(zadd(y,zz)),zadd(y,neg(0)),Idzp(y,zadd(y,zz),idsymm(Z,zadd(y,zz),y,zadd0(y))),zpaddsnd(y,zz))zaddcommut(neg(s(h)),y) = idtrans(Z,zadd(neg(s(h)),y),zp(zadd(y,neg(h))),zadd(y,neg(s(h))),Idzp(zadd(neg(h),y),zadd(y,neg(h)),zaddcommut(neg(h),y)),zpaddsnd(y,neg(h)))Properties of the inverse function~ : (Z)Z [] I~(zz) = zz~(pos(n)) = neg(n)~(neg(n)) = pos(n)zs~ : (x:Z)IdZ(~(zs(x)),zp(~(x))) [] Izs~(zz) = id(Z,neg(0))zs~(pos(n)) = id(Z,neg(s(n)))zs~(neg(0)) = id(Z,zz)zs~(neg(s(h))) = id(Z,pos(h))Szs~(x) = [x]idsymm(Z,~(zs(x)),zp(~(x)),zs~(x)): (x:Z)IdZ(zp(~(x)),~(zs(x))) []zp~ : (x:Z)IdZ(~(zp(x)),zs(~(x))) [] I50



zp~(zz) = id(Z,pos(0))zp~(pos(0)) = id(Z,zz)zp~(pos(s(h))) = id(Z,neg(h))zp~(neg(n)) = id(Z,pos(s(n)))Szp~(x) = idsymm(Z,~(zp(x)),zs(~(x)),zp~(x)) :(x:Z)IdZ(zs(~(x)),~(zp(x))) []idem~ : (x:Z)IdZ(~(~(x)),x) [] Iidem~(zz) = id(Z,zz)idem~(pos(n)) = id(Z,pos(n))idem~(neg(n)) = id(Z,neg(n))Sidem~ = [x]idsymm(Z,~(~(x)),x,idem~(x)) : (x:Z)IdZ(x,~(~(x))) []distadd~ : (x:Z;y:Z)IdZ(~(zadd(x,y)),zadd(~(x),~(y))) [] Idistadd~(zz,y) = id(Z,~(y))distadd~(pos(0),y) = zs~(y)distadd~(pos(s(n1)),y) = idtrans(Z,~(zadd(pos(s(n1)),y)),zp(zadd(neg(n1),~(y))),zadd(~(pos(s(n1))),~(y)),idtrans(Z,~(zadd(pos(s(n1)),y)),zp(~(zadd(pos(n1),y))),zp(zadd(neg(n1),~(y))),zs~(zadd(pos(n1),y)),Idzp(~(zadd(pos(n1),y)),zadd(neg(n1),~(y)),distadd~(pos(n1),y))),idtrans(Z,zp(zadd(neg(n1),~(y))),zadd(zp(neg(n1)),~(y)),zadd(~(pos(s(n1))),~(y)),zaddzp(neg(n1),~(y)),id(Z,zadd(~(pos(s(n1))),~(y)))))distadd~(neg(0),y) = zp~(y)distadd~(neg(s(n1)),y) = idtrans(Z,~(zadd(neg(s(n1)),y)),zs(zadd(pos(n1),~(y))),zadd(~(neg(s(n1))),~(y)),idtrans(Z,~(zadd(neg(s(n1)),y)),zs(~(zadd(neg(n1),y))),zs(zadd(pos(n1),~(y))),zp~(zadd(neg(n1),y)),Idzs(~(zadd(neg(n1),y)),zadd(pos(n1),~(y)),distadd~(neg(n1),y))),id(Z,zs(zadd(pos(n1),~(y)))))51



Properties of subtraction (zminus)zminus : (x:Z;y:Z)Z [] Izminus(x,zz) = xzminus(x,pos(0)) = zp(x)zminus(x,pos(s(h))) = zp(zminus(x,pos(h)))zminus(x,neg(0)) = zs(x)zminus(x,neg(s(h))) = zs(zminus(x,neg(h)))zmintoadd : (x:Z;y:Z)IdZ(zminus(x,y),zadd(x,~(y))) [] Izmintoadd(x,zz) = idtrans(Z,zminus(x,zz),x,zadd(x,~(zz)),id(Z,x),idsymm(Z,zadd(x,~(zz)),x,zadd0(x)))zmintoadd(x,pos(0)) = idtrans(Z,zminus(x,pos(0)),zp(x),zadd(x,~(pos(0))),id(Z,zp(x)),idtrans(Z,zp(x),zadd(~(pos(0)),x),zadd(x,~(pos(0))),id(Z,zp(x)),zaddcommut(~(pos(0)),x)))zmintoadd(x,pos(s(h))) = idtrans(Z,zminus(x,pos(s(h))),zp(zadd(x,neg(h))),zadd(x,~(pos(s(h)))),Idzp(zminus(x,pos(h)),zadd(x,neg(h)),zmintoadd(x,pos(h))),zpaddsnd(x,neg(h)))zmintoadd(x,neg(0)) = idtrans(Z,zminus(x,neg(0)),zs(x),zadd(x,~(neg(0))),id(Z,zs(x)),idtrans(Z,zs(x),zadd(~(neg(0)),x),zadd(x,~(neg(0))),id(Z,zs(x)),zaddcommut(~(neg(0)),x)))zmintoadd(x,neg(s(h))) = idtrans(Z,zminus(x,neg(s(h))),zs(zadd(x,pos(h))),zadd(x,~(neg(s(h)))),Idzs(zminus(x,neg(h)),zadd(x,pos(h)),zmintoadd(x,neg(h))),zsaddsnd(x,pos(h)))Szmintoadd = [x,y]idsymm(Z,zminus(x,y),zadd(x,~(y)),zmintoadd(x,y)) : (x:Z;y:Z)IdZ(zadd(x,~(y)),zminus(x,y)) []52



zzminus : (x:Z)IdZ(zminus(zz,x),~(x)) [] Izzminus(zz) = id(Z,zz)zzminus(pos(n)) = idtrans(Z,zminus(zz,pos(n)),zadd(zz,~(pos(n))),~(pos(n)),zmintoadd(zz,pos(n)),id(Z,neg(n)))zzminus(neg(n)) = idtrans(Z,zminus(zz,neg(n)),zadd(zz,pos(n)),~(neg(n)),zmintoadd(zz,neg(n)),id(Z,pos(n)))Szzminus = [x]idsymm(Z,zminus(zz,x),~(x),zzminus(x)) : (x:Z)IdZ(~(x),zminus(zz,x)) []zadditinvR : (x:Z)IdZ(zadd(x,~(x)),zz) [] IzadditinvR(zz) = id(Z,zz)zadditinvR(pos(0)) = id(Z,zz)zadditinvR(pos(s(n1))) = idtrans(Z,zadd(pos(s(n1)),~(pos(s(n1)))),zs(zminus(pos(n1),pos(s(n1)))),zz,Idzs(zadd(pos(n1),~(pos(s(n1)))),zp(zminus(pos(n1),pos(n1))),Szmintoadd(pos(n1),pos(s(n1)))),idtrans(Z,zs(zminus(pos(n1),pos(s(n1)))),zs(zp(zadd(pos(n1),~(pos(n1))))),zz,idcongr(Z,Z,[x]zs(zp(x)),zminus(pos(n1),pos(n1)),zadd(pos(n1),~(pos(n1))),zmintoadd(pos(n1),pos(n1))),idtrans(Z,zs(zp(zadd(pos(n1),~(pos(n1))))),zadd(pos(n1),~(pos(n1))),zz,invzp(zadd(pos(n1),~(pos(n1)))),zadditinvR(pos(n1)))))
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zadditinvR(neg(0)) = id(Z,zz)zadditinvR(neg(s(n1))) = idtrans(Z,zadd(neg(s(n1)),~(neg(s(n1)))),zadd(neg(n1),zp(pos(s(n1)))),zz,zpaddsnd(neg(n1),~(neg(s(n1)))),zadditinvR(neg(n1)))zadditinvL = [x]idtrans(Z,zadd(~(x),x),zadd(x,~(x)),zz,zaddcommut(~(x),x),zadditinvR(x)) : (x:Z)IdZ(zadd(~(x),x),zz) []SzadditinvL = [x]idsymm(Z,zadd(~(x),x),zz,zadditinvL(x)) : (x:Z)IdZ(zz,zadd(~(x),x)) []uniqinv = [x,y,h]zaddcancelft(x,y,~(y),idtrans(Z,zadd(~(y),x),zadd(x,~(y)),zadd(~(y),y),zaddcommut(~(y),x),idtrans(Z,zadd(x,~(y)),zz,zadd(~(y),y),h,SzadditinvL(y)))) : (x:Z;y:Z;IdZ(zadd(x,~(y)),zz))IdZ(x,y) []~minus = [x,y]idtrans(Z,~(zminus(x,y)),~(zadd(x,~(y))),zadd(~(x),y),idcongr(Z,Z,[x]~(x),zminus(x,y),zadd(x,~(y)),zmintoadd(x,y)),idtrans(Z,~(zadd(x,~(y))),zadd(~(x),~(~(y))),zadd(~(x),y),distadd~(x,~(y)),zaddsubstR(~(~(y)),y,~(x),idem~(y)))): (x:Z;y:Z)IdZ(~(zminus(x,y)),zadd(~(x),y)) []
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minus~ = [x,y]idtrans(Z,zadd(x,y),zadd(x,~(~(y))),zminus(x,~(y)),zaddsubstR(y,~(~(y)),x,Sidem~(y)),Szmintoadd(x,~(y))) : (x:Z;y:Z)IdZ(zadd(x,y),zminus(x,~(y))) []Properties of multiplication (ztimes)ztimes : (x:Z;y:Z)Z [] Iztimes(zz,y) = zzztimes(one,y) = yztimes(pos(s(h)),y) = zadd(ztimes(pos(h),y),y)ztimes(~(one),y) = zminus(zz,y)ztimes(neg(s(h)),y) = zminus(ztimes(neg(h),y),y)ztimessubstL = [a,b,y,p]idcongr(Z,Z,[h]ztimes(h,y),a,b,p) : (a:Z;b:Z;y:Z;p:IdZ(a,b))IdZ(ztimes(a,y),ztimes(b,y)) []ztimessubstR = [a,b,x,p]idcongr(Z,Z,[h]ztimes(x,h),a,b,p) : (a:Z;b:Z;x:Z;p:IdZ(a,b))IdZ(ztimes(x,a),ztimes(x,b)) []ztimescong = [x,y,w,z,p,q]idtrans(Z,ztimes(x,w),ztimes(y,w),ztimes(y,z),ztimessubstL(x,y,w,p),ztimessubstR(w,z,y,q)) : (x:Z;y:Z;w:Z;z:Z;p:IdZ(x,y);q:IdZ(w,z))IdZ(ztimes(x,w),ztimes(y,z)) []ztimeszz : (x:Z)IdZ(ztimes(x,zz),zz) [] Iztimeszz(zz) = id(Z,zz)ztimeszz(one) = id(Z,zz)ztimeszz(pos(s(n1))) = idtrans(Z,ztimes(pos(s(n1)),zz),ztimes(pos(n1),zz),zz,zadd0(ztimes(pos(n1),zz)),ztimeszz(pos(n1)))ztimeszz(~(one)) = id(Z,zz)
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ztimeszz(neg(s(n1))) = idtrans(Z,ztimes(neg(s(n1)),zz),ztimes(neg(n1),zz),zz,id(Z,ztimes(neg(n1),zz)),ztimeszz(neg(n1)))Sztimeszz = [x]idsymm(Z,ztimes(x,zz),zz,ztimeszz(x)) : (x:Z)IdZ(zz,ztimes(x,zz)) []ztimunit : (x:Z)IdZ(ztimes(x,one),x) [] Iztimunit(zz) = id(Z,zz)ztimunit(one) = id(Z,one)ztimunit(pos(s(n1))) = idtrans(Z,ztimes(pos(s(n1)),one),zadd(pos(n1),one),pos(s(n1)),zaddcong(ztimes(pos(n1),one),pos(n1),one,one,ztimunit(pos(n1)),id(Z,one)),idtrans(Z,zadd(pos(n1),one),zadd(one,pos(n1)),pos(s(n1)),zaddcommut(pos(n1),one),id(Z,pos(s(n1)))))ztimunit(~(one)) = id(Z,~(one))ztimunit(neg(s(n1))) = idtrans(Z,ztimes(neg(s(n1)),one),zp(neg(n1)),neg(s(n1)),idcongr(Z,Z,zp,ztimes(neg(n1),one),neg(n1),ztimunit(neg(n1))),id(Z,neg(s(n1))))Sztimunit = [x]idsymm(Z,ztimes(x,one),x,ztimunit(x)) : (x:Z)IdZ(x,ztimes(x,one)) []negztimesL : (x:Z;y:Z)IdZ(~(ztimes(x,y)),ztimes(~(x),y)) [] InegztimesL(zz,y) = id(Z,zz)negztimesL(pos(0),y) = Szzminus(y))
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negztimesL(pos(s(n1)),y) = idtrans(Z,~(ztimes(pos(s(n1)),y)),zadd(~(ztimes(pos(n1),y)),~(y)),ztimes(~(pos(s(n1))),y),distadd~(ztimes(pos(n1),y),y),idtrans(Z,zadd(~(ztimes(pos(n1),y)),~(y)),zadd(ztimes(neg(n1),y),~(y)),ztimes(~(pos(s(n1))),y),zaddsubstL(~(ztimes(pos(n1),y)),ztimes(neg(n1),y),~(y),negztimesL(pos(n1),y)),Szmintoadd(ztimes(neg(n1),y),y)))negztimesL(neg(0),y) = idtrans(Z,~(ztimes(neg(0),y)),~(~(y)),ztimes(~(neg(0)),y),idcongr(Z,Z,[x]~(x),zminus(zz,y),~(y),zzminus(y)),idem~(y))negztimesL(neg(s(n1)),y) = idtrans(Z,~(ztimes(neg(s(n1)),y)),~(zadd(ztimes(neg(n1),y),~(y))),ztimes(~(neg(s(n1))),y),idcongr(Z,Z,[x]~(x),zminus(ztimes(neg(n1),y),y),zadd(ztimes(neg(n1),y),~(y)),zmintoadd(ztimes(neg(n1),y),y)),idtrans(Z,~(zadd(ztimes(neg(n1),y),~(y))),zadd(~(ztimes(neg(n1),y)),~(~(y))),ztimes(~(neg(s(n1))),y),distadd~(ztimes(neg(n1),y),~(y)),zaddcong(~(ztimes(neg(n1),y)),ztimes(pos(n1),y),~(~(y)),y,negztimesL(neg(n1),y),idem~(y))))SnegztimesL = [x,y]idsymm(Z,~(ztimes(x,y)),ztimes(~(x),y),negztimesL(x,y)) : (x:Z;y:Z)IdZ(ztimes(~(x),y),~(ztimes(x,y))) []negztimesR : (x:Z;y:Z)IdZ(~(ztimes(x,y)),ztimes(x,~(y))) [] I57



negztimesR(zz,y) = id(Z,zz)negztimesR(pos(0),y) = id(Z,~(y))negztimesR(pos(s(n1)),y) = idtrans(Z,~(ztimes(pos(s(n1)),y)),zadd(~(ztimes(pos(n1),y)),~(y)),ztimes(pos(s(n1)),~(y)),distadd~(ztimes(pos(n1),y),y),zaddsubstL(~(ztimes(pos(n1),y)),ztimes(pos(n1),~(y)),~(y),negztimesR(pos(n1),y)))negztimesR(neg(0),y) = idtrans(Z,~(ztimes(neg(0),y)),~(~(y)),ztimes(neg(0),~(y)),idcongr(Z,Z,[x]~(x),zminus(zz,y),~(y),zzminus(y)),Szzminus(~(y))))negztimesR(neg(s(n1)),y) = idtrans(Z,~(ztimes(neg(s(n1)),y)),zadd(~(ztimes(neg(n1),y)),y),ztimes(neg(s(n1)),~(y)),~minus(ztimes(neg(n1),y),y),idtrans(Z,zadd(~(ztimes(neg(n1),y)),y),zadd(ztimes(neg(n1),~(y)),y),ztimes(neg(s(n1)),~(y)),zaddsubstL(~(ztimes(neg(n1),y)),ztimes(neg(n1),~(y)),y,negztimesR(neg(n1),y)),minus~(ztimes(neg(n1),~(y)),y)))SnegztimesR = [x,y]idsymm(Z,~(ztimes(x,y)),ztimes(x,~(y)),negztimesR(x,y)) : (x:Z;y:Z)IdZ(ztimes(x,~(y)),~(ztimes(x,y))) []negztimesLtoR = [x,y]idtrans(Z,ztimes(~(x),y),~(ztimes(x,y)),ztimes(x,~(y)),idsymm(Z,~(ztimes(x,y)),ztimes(~(x),y),negztimesL(x,y)),negztimesR(x,y)):(x:Z;y:Z)IdZ(ztimes(~(x),y),ztimes(x,~(y))) []
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timdoub~ = [x,y]idtrans(Z,ztimes(~(x),~(y)),~(ztimes(x,~(y))),ztimes(x,y),idsymm(Z,~(ztimes(x,~(y))),ztimes(~(x),~(y)),negztimesL(x,~(y))),idtrans(Z,~(ztimes(x,~(y))),~(~(ztimes(x,y))),ztimes(x,y),idsymm(Z,~(~(ztimes(x,y))),~(ztimes(x,~(y))),idcongr(Z,Z,[x]~(x),~(ztimes(x,y)),ztimes(x,~(y)),negztimesR(x,y))),idem~(ztimes(x,y)))) : (x:Z;y:Z)IdZ(ztimes(~(x),~(y)),ztimes(x,y)) []ztiminone : (x:Z)IdZ(ztimes(x,~(one)),~(x)) [] Iztiminone(zz) = id(Z,zz)ztiminone(pos(n)) = idtrans(Z,ztimes(pos(n),~(one)),~(ztimes(pos(n),one)),~(pos(n)),idsymm(Z,~(ztimes(pos(n),one)),ztimes(pos(n),~(one)),negztimesR(pos(n),one)),idcongr(Z,Z,[x]~(x),ztimes(pos(n),one),pos(n),ztimunit(pos(n))))ztiminone(neg(n)) = idtrans(Z,ztimes(neg(n),~(one)),~(ztimes(neg(n),one)),~(neg(n)),idsymm(Z,~(ztimes(neg(n),one)),ztimes(neg(n),~(one)),negztimesR(neg(n),one)),idcongr(Z,Z,[x]~(x),ztimes(neg(n),one),neg(n),ztimunit(neg(n))))Sztiminone = [a]idsymm(Z,ztimes(a,neg(0)),~(a),ztiminone(a))) : (a:Z)IdZ(~(a),ztimes(a,neg(0))) []
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lemmdistL1 = [a,b1,c,d1]idtrans(Z,zadd(zadd(zadd(a,b1),c),d1),zadd(zadd(a,zadd(b1,c)),d1),zadd(zadd(a,c),zadd(b1,d1)),zaddsubstL(zadd(zadd(a,b1),c),zadd(a,zadd(b1,c)),d1,zaddssoc(a,b1,c)),idtrans(Z,zadd(zadd(a,zadd(b1,c)),d1),zadd(zadd(a,zadd(c,b1)),d1),zadd(zadd(a,c),zadd(b1,d1)),zaddsubstL(zadd(a,zadd(b1,c)),zadd(a,zadd(c,b1)),d1,zaddsubstR(zadd(b1,c),zadd(c,b1),a,zaddcommut(b1,c))),idtrans(Z,zadd(zadd(a,zadd(c,b1)),d1),zadd(zadd(zadd(a,c),b1),d1),zadd(zadd(a,c),zadd(b1,d1)),zaddsubstL(zadd(a,zadd(c,b1)),zadd(zadd(a,c),b1),d1,Szaddddssoc(a,c,b1))),zaddssoc(zadd(a,c),b1,d1)))) : (a:Z;b:Z;c:Z;d:Z)IdZ(zadd(zadd(zadd(a,b),c),d),zadd(zadd(a,c),zadd(b,d))) []lemdistL2 = [a,b1,c,d1]idtrans(Z,zadd(zadd(a,b1),zadd(c,d1)),zadd(zadd(zadd(a,b1),c),d1),zadd(zadd(a,c),zadd(b1,d1)),Szaddssoc(zadd(a,b1),c,d1),lemmdistL1(a,b1,c,d1)) : (a:Z;b:Z;c:Z;d:Z)IdZ(zadd(zadd(a,b),zadd(c,d)),zadd(zadd(a,c),zadd(b,d))) []
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lemmdistL3 = [a,b,c,d]idtrans(Z,zminus(zadd(a,b),zadd(c,d)),zadd(zadd(a,b),~(zadd(c,d))),zadd(zminus(a,c),zminus(b,d)),zmintoadd(zadd(a,b),zadd(c,d)),idtrans(Z,zadd(zadd(a,b),~(zadd(c,d))),zadd(zadd(a,b),zadd(~(c),~(d))),zadd(zminus(a,c),zminus(b,d)),zaddsubstR(~(zadd(c,d)),zadd(~(c),~(d)),zadd(a,b),distadd~(c,d)),idtrans(Z,zadd(zadd(a,b),zadd(~(c),~(d))),zadd(zadd(a,~(c)),zadd(b,~(d))),zadd(zminus(a,c),zminus(b,d)),lemmdistL2(a,b,~(c),~(d)),zaddcong(zadd(a,~(c)),zminus(a,c),zadd(b,~(d)),zminus(b,d),Szmintoadd(a,c),Szmintoadd(b,d))))) : (a:Z;b:Z;c:Z;d:Z)IdZ(zminus(zadd(a,b),zadd(c,d)),zadd(zminus(a,c),zminus(b,d))) []ztimesdistL : (a:Z;b:Z;c:Z)IdZ(ztimes(c,zadd(a,b)),zadd(ztimes(c,a),ztimes(c,b))) [] IztimesdistL(a,b,zz) = id(Z,zz)ztimesdistL(a,b,pos(0)) = id(Z,zadd(a,b))ztimesdistL(a,b,pos(s(n1))) = idtrans(Z,ztimes(pos(s(n1)),zadd(a,b)),zadd(zadd(ztimes(pos(n1),a),ztimes(pos(n1),b)),zadd(a,b)),zadd(ztimes(pos(s(n1)),a),ztimes(pos(s(n1)),b)),zaddsubstL(ztimes(pos(n1),zadd(a,b)),zadd(ztimes(pos(n1),a),ztimes(pos(n1),b)),zadd(a,b),ztimesdistL(a,b,pos(n1))),lemmdistL2(ztimes(pos(n1),a),ztimes(pos(n1),b),a,b))
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ztimesdistL(a,b,neg(0)) = idtrans(Z,ztimes(neg(0),zadd(a,b)),~(zadd(a,b)),zadd(ztimes(neg(0),a),ztimes(neg(0),b)),zzminus(zadd(a,b)),idtrans(Z,~(zadd(a,b)),zadd(~(a),~(b)),zadd(ztimes(neg(0),a),ztimes(neg(0),b)),distadd~(a,b),zaddcong(~(a),zminus(zz,a),~(b),zminus(zz,b),Szzminus(a)),Szzminus(b)))))ztimesdistL(a,b,neg(s(n1))) = idtrans(Z,ztimes(neg(s(n1)),zadd(a,b)),zminus(zadd(ztimes(neg(n1),a),ztimes(neg(n1),b)),zadd(a,b)),zadd(ztimes(neg(s(n1)),a),ztimes(neg(s(n1)),b)),idcongr(Z,Z,[x]zminus(x,zadd(a,b)),ztimes(neg(n1),zadd(a,b)),zadd(ztimes(neg(n1),a),ztimes(neg(n1),b)),ztimesdistL(a,b,neg(n1))),lemmdistL3(ztimes(neg(n1),a),ztimes(neg(n1),b),a,b))SztimesdistL = [a,b1,c]idsymm(Z,ztimes(c,zadd(a,b1)),zadd(ztimes(c,a),ztimes(c,b1)),ztimesdistL(c,a,b1)) : (a:Z;b:Z;c:Z)IdZ(zadd(ztimes(c,a),ztimes(c,b)),ztimes(c,zadd(a,b))) []lemmcomm1 = [a,b]idtrans(Z,zadd(ztimes(a,b),a),zadd(ztimes(a,b),ztimes(a,one)),ztimes(a,zadd(b,one)),zaddsubstR(a,ztimes(a,one),ztimes(a,b),Sztimunit(a)),SztimesdistL(b,one,a)) : (a:Z;b:Z)IdZ(zadd(ztimes(a,b),a),ztimes(a,zadd(b,one))) []62



lemcomm2 = [a,b]idtrans(Z,zminus(ztimes(a,b),a),zadd(ztimes(a,b),~(a)),ztimes(a,zminus(b,one)),zmintoadd(ztimes(a,b),a),idtrans(Z,zadd(ztimes(a,b),~(a)),zadd(ztimes(a,b),ztimes(a,neg(0))),ztimes(a,zminus(b,one)),zaddsubstR(~(a),ztimes(a,neg(0)),ztimes(a,b),Sztiminone(a)),idtrans(Z,zadd(ztimes(a,b),ztimes(a,neg(0))),ztimes(a,zadd(b,neg(0))),ztimes(a,zminus(b,one)),SztimesdistL(b,neg(0),a)),ztimessubstR(zadd(b,neg(0)),zminus(b,one),a,Szmintoadd(b,pos(0))))) : (a:Z;b:Z)IdZ(zminus(ztimes(a,b),a),ztimes(a,zminus(b,one))) []ztimescomm : (a:Z;b:Z)IdZ(ztimes(a,b),ztimes(b,a)) []ztimescomm(zz,b) = idsymm(Z,ztimes(b,zz),zz,ztimeszz(b))ztimescomm(pos(0),b) = Sztimunit(b)ztimescomm(pos(s(n1)),b) = idtrans(Z,zadd(ztimes(pos(n1),b),b),zadd(ztimes(b,pos(n1)),b),ztimes(b,zadd(one,pos(n1))),zaddsubstL(ztimes(pos(n1),b),ztimes(b,pos(n1)),b,ztimescomm(pos(n1),b)),idtrans(Z,zadd(ztimes(b,pos(n1)),b),ztimes(b,zadd(pos(n1),one)),ztimes(b,zadd(one,pos(n1))),lemmcomm1(b,pos(n1)),ztimessubstR(zadd(pos(n1),one),zadd(one,pos(n1)),b,zaddcommut(pos(n1),one))))ztimescomm(neg(0),b) = idtrans(Z,zminus(zz,b),~(b),ztimes(b,neg(0)),zzminus(b),Sztiminone(b)))63



ztimescomm(neg(s(n1)),b) = idtrans(Z,ztimes(neg(s(n1)),b),zminus(ztimes(b,neg(n1)),b),ztimes(b,neg(s(n1))),idcongr(Z,Z,[x]zminus(x,b),ztimes(neg(n1),b),ztimes(b,neg(n1)),ztimescomm(neg(n1),b)),lemcomm2(b,neg(n1)))ztimesdistR = [a,b,c]idtrans(Z,ztimes(zadd(a,b),c),ztimes(c,zadd(a,b)),zadd(ztimes(a,c),ztimes(b,c)),ztimescomm(zadd(a,b),c),idtrans(Z,ztimes(c,zadd(a,b)),zadd(ztimes(c,a),ztimes(c,b)),zadd(ztimes(a,c),ztimes(b,c)),ztimesdistL(c,a,b),zaddcong(ztimes(c,a),ztimes(a,c),ztimes(c,b),ztimes(b,c),ztimescomm(c,a),ztimescomm(c,b)))) : (a:Z;b:Z;c:Z)IdZ(ztimes(zadd(a,b),c),zadd(ztimes(a,c),ztimes(b,c))) []SztimesdistR = [a,b,c]idsymm(Z,ztimes(zadd(a,c),b),zadd(ztimes(a,b),ztimes(c,b)),ztimesdistR(a,c,b)) : (a:Z;b:Z;c:Z)Id(Z,zadd(ztimes(a,b),ztimes(c,b)),ztimes(zadd(a,c),b)) []lemmassoc1 = [a,b]idtrans(Z,zadd(ztimes(a,b),b),zadd(ztimes(a,b),ztimes(pos(0),b)),ztimes(zadd(a,pos(0)),b),zaddsubstR(b,ztimes(pos(0),b),ztimes(a,b),idrefl(Z,b)),SztimesdistR(a,b,pos(0))) : (a:Z;b:Z)IdZ(zadd(ztimes(a,b),b),ztimes(zadd(a,pos(0)),b)) []
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lemmassneg = [a,b1,c]idtrans(Z,ztimes(zminus(a,b1),c),ztimes(zadd(a,~(b1)),c),zminus(ztimes(a,c),ztimes(b1,c)),ztimessubstL(zminus(a,b1),zadd(a,~(b1)),c,zmintoadd(a,b1)),idtrans(Z,ztimes(zadd(a,~(b1)),c),zadd(ztimes(a,c),ztimes(~(b1),c)),zminus(ztimes(a,c),ztimes(b1,c)),ztimesdistR(a,~(b1),c),idtrans(Z,zadd(ztimes(a,c),ztimes(~(b1),c)),zadd(ztimes(a,c),~(ztimes(b1,c))),zminus(ztimes(a,c),ztimes(b1,c)),zaddsubstR(ztimes(~(b1),c),~(ztimes(b1,c)),ztimes(a,c),SnegztimesL(b1,c)),Szmintoadd(ztimes(a,c),ztimes(b1,c))))) : (a:Z;b:Z;c:Z)IdZ(ztimes(zminus(a,b),c),zminus(ztimes(a,c),ztimes(b,c))) []ztimesassoc : (x,y,z:Z)IdZ(ztimes(ztimes(x,y),z),ztimes(x,ztimes(y,z))) [] Iztimesassoc(zz,y,z) = id(Z,zz)ztimesassoc(pos(0),y,z) = id(Z,ztimes(y,z))ztimesassoc(pos(s(n1)),y,z) = idtrans(Z,ztimes(zadd(ztimes(pos(n1),y),y),z),zadd(ztimes(ztimes(pos(n1),y),z),ztimes(y,z)),zadd(ztimes(pos(n1),ztimes(y,z)),ztimes(y,z)),ztimesdistR(ztimes(pos(n1),y),y,z),zaddsubstL(ztimes(ztimes(pos(n1),y),z),ztimes(pos(n1),ztimes(y,z)),ztimes(y,z),ztimesassoc(pos(n1),y,z)))ztimesassoc(neg(0),y,z) = idtrans(Z,ztimes(zminus(zz,y),z),ztimes(~(y),z),zminus(zz,ztimes(y,z)),ztimessubstL(zminus(zz,y),~(y),z,zzminus(y)),idtrans(Z,ztimes(~(y),z),~(ztimes(y,z)),zminus(zz,ztimes(y,z)),SnegztimesL(y,z),Szzminus(y,z)))65



ztimesassoc(neg(s(n1)),y,z) = idtrans(Z,ztimes(ztimes(neg(s(n1)),y),z),zminus(ztimes(ztimes(neg(n1),y),z),ztimes(y,z)),ztimes(neg(s(n1)),ztimes(y,z)),lemmassneg(ztimes(neg(n1),y),y,z),idcongr(Z,Z,[x]zminus(x,ztimes(y,z)),ztimes(ztimes(neg(n1),y),z),ztimes(neg(n1),ztimes(y,z)),ztimesassoc(neg(n1),y,z)))(* Lemmas for and proof of cancellation on ztimes *)pos_times_pos : (m:N;n:N)IdZ(ztimes(pos(m),pos(n)),pos(plus(mult(m,s(n)),n))) [] Ipos_times_neg : (m:N;n:N)IdZ(ztimes(pos(m),neg(n)),neg(plus(mult(m,s(n)),n))) [] Ineg_times_pos = [m,n]idtrans(Z,ztimes(neg(m),pos(n)),ztimes(pos(n),neg(m)),neg(plus(mult(n,s(m)),m)),ztimescomm(neg(m),pos(n)),pos_times_neg(n,m)) : (m:N;n:N)IdZ(ztimes(neg(m),pos(n)),neg(plus(mult(n,s(m)),m))) []neg_times_neg = [m,n]idtrans(Z,ztimes(neg(m),neg(n)),ztimes(pos(m),pos(n)),pos(plus(mult(m,s(n)),n)),timdoub~(pos(m),pos(n)),pos_times_pos(m,n)) : (m:N;n:N)IdZ(ztimes(neg(m),neg(n)),pos(plus(mult(m,s(n)),n))) []nzeroptp = [m,n,h]posnotzz(plus(mult(m,s(n)),n),idtrans(Z,pos(plus(mult(m,s(n)),n)),ztimes(pos(m),pos(n)),zz,idsymm(Z,ztimes(pos(m),pos(n)),pos(plus(mult(m,s(n)),n)),pos_times_pos(m,n)),h)) : (m:N;n:N;IdZ(ztimes(pos(m),pos(n),zz))Empty []66



nzeroptn = [m,n,h]negnotzz(plus(mult(m,s(n)),n),idtrans(Z,neg(plus(mult(m,s(n)),n)),ztimes(pos(m),neg(n)),zz,idsymm(Z,ztimes(pos(m),neg(n)),neg(plus(mult(m,s(n)),n)),pos_times_neg(m,n)),h)) : (m:N;n:N;IdZ(ztimes(pos(m),neg(n)),zz))Empty []nzerontpz = [m,n,h]negnotzz(plus(mult(n,s(m)),m),idtrans(Z,neg(plus(mult(n,s(m)),m)),ztimes(neg(m),pos(n)),zz,idsymm(Z,ztimes(neg(m),pos(n)),neg(plus(mult(n,s(m)),m)),neg_times_pos(m,n)),h)) : (m:N;n:N;IdZ(ztimes(neg(m),pos(n)),zz))Empty []nzerontn = [m,n,h]posnotzz(plus(mult(m,s(n)),n),idtrans(Z,pos(plus(mult(m,s(n)),n)),ztimes(neg(m),neg(n)),zz,idsymm(Z,ztimes(neg(m),neg(n)),pos(plus(mult(m,s(n)),n)),neg_times_neg(m,n)),h)) : (m:N;n:N;IdZ(ztimes(neg(m),neg(n)),zz))Empty []
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lemmcancel1 : (x:Z;y:Z;IdZ(ztimes(x,y),zz);Isnotzz(x))IdZ(y,zz) [] Ilemmcancel1(zz,y,h,h1) = case h1 of endlemmcancel1(pos(n),y,h,h1) =case y ofneg(n1) => case nzeroptn(n,n1,h) of endpos(n1) => case nzeroptp(n,n1,h) of endzz => id(Z,zz)endlemmcancel1(neg(n),y,h,h1) =case y ofneg(n1) => case nzerontn(n,n1,h) of endpos(n1) => case nzerontpz(n,n1,h) of endzz => id(Z,zz)endlemmcancel2 = [a,b]idtrans(Z,zadd(ztimes(a,~(b)),ztimes(a,b)),zadd(~(ztimes(a,b)),ztimes(a,b)),zz,zaddsubstL(ztimes(a,~(b)),~(ztimes(a,b)),ztimes(a,b),SnegztimesR(a,b)),zadditinvL(ztimes(a,b))) : (a:Z;b:Z)IdZ(zadd(ztimes(a,~(b)),ztimes(a,b)),zz) []ztimcanlft = [a,b,c,h,h1]uniqinv(a,b,lemmcancel1(c,zadd(a,~(b)),multsubs(zadd(ztimes(c,a),ztimes(c,~(b))),zadd(ztimes(c,b),ztimes(c,~(b))),ztimes(c,zadd(a,~(b))),zz,zaddsubstL(ztimes(c,a),ztimes(c,b),ztimes(c,~(b)),h),SztimesdistL(a,~(b),c),idtrans(Z,zadd(ztimes(c,b),ztimes(c,~(b))),zadd(ztimes(c,~(b)),ztimes(c,b)),zz,zaddcommut(ztimes(c,b),ztimes(c,~(b))),lemmcancel2(c,b))),h1)) : (a:Z;b:Z;c:Z;IdZ(ztimes(c,a),ztimes(c,b));Isnotzz(c)) IdZ(a,b) []68



C The integral domain formed by hZ; zadd; ztimesiidreflZ = idrefl(Z) :(x:Z)IdZ(x,x) []idsymmZ = idsymm(Z) : (x,y:Z;IdZ(x,y))IdZ(y,x) []idtransZ = idtrans(Z) : (x,y,z:Z;IdZ(x,y);IdZ(y,z))IdZ(x,z) []onenotzero = lambda(IdZ(one,zz),Empty,posnotzz(0)) : not(IdZ(one,zz)) []zaddident = [x]And_intro(IdZ(zadd(x,zz),x),Id(Z,zadd(zz,x),x),zadd0(x),idrefl(Z,zadd(zz,x))) : (x:Z)And(IdZ(zadd(x,zz),x),IdZ(zadd(zz,x),x)) []zaddinv = [x]And_intro(IdZ(zadd(x,~(x)),zz),IdZ(zadd(~(x),x),zz),zadditinvR(x),zadditinvL(x)):(x:Z)And(IdZ(zadd(x,~(x)),zz),IdZ(zadd(~(x),x),zz)) []IntdomZ is {S := Z;R := IdZ;refl := idreflZ;symm := idsymmZ;trans := idtransZ;op := zadd;opcong := zaddcong;unit := zz;assoc := Szaddssoc;ident := zaddident; inv := ~;opinv := zaddinv;comm := zaddcommut;mult := ztimes;multcong := ztimescong;munit := one;diff := onenotzero;massoc := Sztimesassoc;mident := ztimunit;distlft := ztimesdistL;mcomm := ztimescomm;mcancel := ztimcanlft} : Intdom []The derived properties for ZuniqinvZ = uniqinv{Intdomz} : (a,b,c:Z;IdZ(zadd(a,b),zz);IdZ(zadd(a,c),zz))IdZ(b,c) []uniqunitZ = uniqunit{IntdomZ} : (a:Z;p:(x:Z)IdZ(zadd(x,a),x))IdZ(a,zz) []timeszeroZ = timeszero{IntdomZ} : (x:Z)IdZ(ztimes(x,zz),zz) []nzdivZ = nzdiv{IntdomZ} : (a,b:Z;IdZ(ztimes(a,b),zz);not(IdZ(a,zz)))IdZ(b,zz) []distrZ = distr{IntdomZ} : (x,y,z:Z)IdZ(ztimes(zadd(x,y),z),zadd(ztimes(x,z),ztimes(y,z))) []
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