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Abstract

We present a formalization of the set Z of integers using Martin-Lof’s type theory.
In particular we focus on the task of proving that this set with the operations + and *
form an Integral Domain. The proofs are developed for an inductive definition of Z,
but we also discuss what kind of proofs could be obtained for a formulation where
the set is defined as a quotient. The differences between both approaches when one is
interested in regarding the computational meaning of proofs are pointed out.

In order to better reason about the proofs of the properties following from the
postulates of an integral domain, an abstract formalization of this algebraic system
is also proposed. With this, we aimed at not just being able to formally reflect
the derivation of the properties independently of the concrete representation we were
interested in, but also to translate these results to every algebraic structure satisfying
those postulates.
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Part 1
Introduction

We will present in this paper some results obtained in an attempt to formalize the theory
of integers in Martin-Lo6f’s theory of sets with the help of the proof-assistant Alf [10]. In
particular we focus on the task of proving that the set Z of integers with the operations
+ and * form an integral domain.

Although we follow closely the presentation of these topics in Birkhoff [3], our work is
based on a substantially different approach. It is not a relevant problem for the authors
of [3], for instance, to define Z , it is just assumed to exist. We will grasp what it means
to be an integer following the general explanation in type theory (described in Martin-Lof
[12], for instance) of what it means to be a set. There, a set is defined by prescribing how
its canonical elements are formed as well as how two equal canonical elements of the set
are formed. We will also follow the pattern of introducing a set by means of the formation,
introduction, elimination and equality rules associated to it.

The former says that we can form a certain set from other certain sets or families
of sets. With the introduction rules all the possible ways of constructing the canonical
elements are made explicit. Thus, every set is inductively defined. The elimination rule
states what one has to know in order to prove properties of (construct functions over)
the elements of the set. It can be regarded as a kind of structural induction rule. The
introduction and elimination rules are linked by means of the equality rules showing how
the constructions defined in terms of the latter operate on the elements of the set gen-
erated by the introduction rules. Reading these equalities as conversions, one can think
of the elimination rule as an operator defined for the set which can be naturally given a
computational semantics. For example, the set N of natural numbers would be defined as:

N-formation
N set
N-introduction;
OeN
N-introductions
neN
succ(n) e N

N-elimination
C(z) set [z e N]
be C(0)
e(z,y) e C(succ(z)) [zeN;ye C(z)]
neN

natrec(b,e,n) e C(n)
where C is a family of sets indexed by N. Let us look at the explanation of natrec:

e first execute n getting a canonical element of N.



e if n = 0 then execute b which yields a canonical element feC(0). By the substitu-
tivity rule for families of sets feC(n).

e otherwise n = succ(m), with meN. Then execute e(m,natrec(b,e,m)). If m has
not the value 0 continue as in the second case until this value is reached.

The evident equality rules that follow from this explanation are:

natrec(d, e, 0) = d e C(0)

natrec(d, e, succ(m)) = e(m,natrec(d,e,m)) e C(succ(m))

It can be noted that looking at these equalities as the definition of a function, it fits the
schema of definition for primitive recursion:

flzy,...,2,,0) = d(z1,...,zpn)
flx1, ..., xp, succ(m)) = g(m,x1,...,¢n, f(x1,...,Tn,m))

So, every function defined in terms of natrec will be computable. The addition operation
+ for N, for instance, can be defined as:

a + b = natrec(a, (u,v)succ(v), b)

That is, apply b times succ to a.

In type theory propositions are identified with sets, then proofs of propositions are
identified with elements of sets. A proposition is defined by prescribing how we are allowed
to prove it, and it is true if it is possible to exhibit a proof of it. So, we can think of a
family C(z) (ze S) of sets as a propositional function (or a property) defined over the
elements of the set S. If the proofs (constructions) in the second and third premisses and
in the conclusion of the rule introducing natrec are suppressed, we can read that rule as
a formulation of the principle of mathematical induction:

C(x) prop [z e N]

C(0) true

C(succ(z)) true[z e N; C(x) true]
neN

C(n) true

So, as remarked in [12], when propositions are identified with sets recursion and in-
duction turn out to be the same concept. The usual properties of the addition a + b
(which can be easily proved inductively) are then formalized as functions (noncanonical
constants) defined in terms of natrec. Thence proofs objects can be regarded as compu-
tational procedures.

With the intention of obtaining similar features for our formulation of the arithmetic
of integers we are interested in working with an inductive definition of the set. Then,
the disjoint union (—N) + {0z} + N is the formalization we propose of Z. However,
the elimination rule associated to this definition of the set (Zcases) works just as a case
operator. When trying to define the basic arithmetical operations for the set (+ and x,
for instance) and prove some of their elementary properties we realized that the operator
was not suitable enough to work with. For that reason the formalization of an induction



principle for the set is proposed and shown to be derivable in the theory. The recursion
operator obtained (expressed in terms of Zcases and natrec) allows to define primitive
recursive functions over the set.

An alternative approach for defining noncanonical constructions which dismisses the
use of elimination rules is introduced in Coquand [5]. That approach aims at providing the
possibility of defining functions in Martin-Lof’s logical framework using pattern matching.
It is argued (and illustrated with some examples) that the discipline of introducing new
constants just by means of the elimination rules has some drawbacks. Let us look for
instance how the definition of 4+ above could be reformulated:

+(a,0) = a
+(a, succ(m)) = succ(+(a,m))

The readability of the definition is improved and the intuition of the computational be-
haviour of the constant is better displayed. With the aim of achieving mathematical con-
structions closer to programs we chose this approach to develop our proofs. It is known
that at least for some subtle proofs this pattern-matching discipline is more powerful than
the discipline of using elimination constants. However, that does not happen in the kind
of proofs that we are interested in. All that we proved could be done using elimination
rules.

In Martin-Lof [11] the character of (functional) programming language of type theory
is emphasized and shown to be a suitable framework to reflect the close relation between
constructive mathematics and programming. We use it as a programming logic, identi-
fying specifications with propositions and sets, thus the proofs of the propositions can
be interpreted as methods to construct elements in sets, or programs fitting a specifica-
tion. The algorithmic nature of the proofs of the properties is then formally reflected as a
construction in the language.

Nevertheless, we are also interested in gaining knowledge about the task of formalizing
mathematics in type theory. For that reason we also present some basic proofs developed
for a formalization of the set of integers following a more traditional approach. That is,
we will regard Z as the quotient of the set of pairs of natural numbers by an appropriate
equivalence relation. We briefly discuss what kind of proofs are obtained when working
with this approach and, point out some drawbacks when one is interested in associating a
computational meaning to the proofs.

As with every algebraic structure, from the postulates of an integral domain many
properties can be derived by equational reasoning. Having formalized different concrete
integral domains (the two representations of Z with the operations satisfying the postu-
lates) one could think that it would be desirable to have the possibility of working with
some formalization of the abstract notion of this algebraic system. Thus, we could reason
about the derivations of the proofs independently of the concrete algebras we are working
with. Moreover, it would also be interesting to be able to translate the results obtained
from the abstract formalization to the concrete cases. This work is also concerned with
a proposal of formalization of algebraic structures oriented to fulfill these requirements.
We will regard algebraic systems as lists of hypotheses, where each clause will correspond
to one of the components of the structure (carrier sets, function symbols or axioms). We
use for this the notion of context. Then, for instance we could introduce the notion of
semigroup as the context:



[S : Set;op : (S;S5)S;assoc: (z,y,z : S)Id(S, op(z,op(y, z)), op(op(z,y), z))]

where Id is the propositional equality for the set S.

The proofs of the properties derived from the postulates of those systems will be
formalized as scheme of proofs developed under the corresponding hypotheses. In that
sense our proofs will be close to the style of algebra texts. This is naturally reflected in
the framework where all the forms of judgements are relativized with respect to a context.

We will also show that with this approach we can not only formalize algebraic systems
and their derived properties but we will also be able to represent particular instances of
them. These features are achieved using the notion of substitution. We will represent
a concrete algebra by providing a substitution fitting the context which describes the
corresponding abstract algebra. For the example presented above we could define the
particular semigroup formed by (N, +) as the substitution:

{S = J\]’7 Op = —l—7 assocC .= +assoc}

where +4550c : (a,b,¢ : N)Id(N,+(a,+(b,c)), +(+(a,b),c)) is the constant associated to
the proof that + is associative.

The formalization of algebraic constructions will be presented in part IT of this work.
The inductive representation of the set Z, the discussion on inductive definitions and
proofs, and the quotient version of the set are presented in part III. Finally, we discuss

some drawbacks we think the approach of using contexts to formalize algebraic notions
has.



Part 11
Algebraic Structures as Contexts

1 Introduction

The definition of what an algebraic system is can be found in most books on modern
algebra. Following MacLane [8], we will say that an algebraic system consists of :

1. A nonempty set S, called the domain of the algebra.
2. A set of relations on S.
3. A set of operations over S.

4. A set of postulates (or axioms) that are basic rules which the operations satisfy.

An algebraic system S, whose domain is S and whose (finite) set of operations (or
operation symbols) is {f1,..., fx}, is denoted by S = (S, f1,..., fx)-

Well known examples of algebraic systems are semigroups and monoids which are
defined as :

A semigroup (S,+) is a set S together with a binary operation + : S xS — S which is
associative. A monoid (M,+,0) is a semigroup (M, +) with an element 0 of M which is
a unit for +, i.e., the following identities hold for every z,y,z in M :

e M1. (z+4y)+z = z+(y+2)

o M2. 40 = 04z ==z

2 Using contexts to formalize algebraic systems

As mentioned in the introduction we will regard an algebraic system as a list of hypothe-
ses where each clause (type assignment) will be associated to a component of the system.
Then it will be needed to assume sets and function symbols ranging over those sets as well
as formally express (as types) the axioms that describe the system. All these requirements
will be achieved using Martin-Lof’s logical framework (which is implemented in Alf) as the
setting to formalize those notions. The introduction of a hypothetical set S is formulated
as the type declaration S : Set, being Set a primitive type of the framework. A binary
function symbol f defined over S, for instance, is introduced as f : (z : S;y : S)S, where
(x1: Ar;...52, @ Ay)B is the notation for dependent function types. As well as sets are
extended to families of sets in type theory, families of types extend types in this theory.
This will allow to express the axioms as types depending on the variables and parameters
which are involved in them. Each assumption associated to an axiom will have the form of
a variable whose type is the dependent product of the type expressing the axiom indexed
by the variables acting in that type. Lists of type declarations are formalized as contexts,
constructions which are governed by the following rules:



I': Context o« :type [I]
[]: Context ;2 : o] : Context

where z does not occur free in I' and [[';z : o] is the extension of the context I with the
clause z : a. Thus, a context is either empty or an extension of a proper context.

However, when formalizing an algebraic system its carrier will not just be assumed to
be a set as intended in type theory, but a pair < S, R >, with R an equivalence relation
on S. This requirement follows from the fact that we do not want to restrict the notion of
equality —which plays a decisive role in the formulation of the postulates and derivation
of new properties— to that of propositional equality which is the primitive notion of
equality in Martin-Lof’s set theory. Since we also want to work with the formalized
systems as equational logics, every time a new operation is defined on the set the proof of
the congruence of the relation R with respect to this operation must be provided. When
a predicate over the set S is introduced we will also ask for the proof of the substitutivity
property of the predicate w.r.t. the relation R. An example of what we achieve with
these conditions is that we will be able to prove that different formalizations of a concrete
algebra satisfy the conditions required to be a specific algebraic system. This feature will
be illustrated when we show that two different formalizations of the set Z of integers,
an inductive one with the equality taken as the propositional equality on the set, and a
quotient version with a provided congruence relation, satisfy the postulates of an integral
domain.

Let us see how the notion of set introduced above could be defined using contexts:

SET 1is [S:Set; R:(S;S)Set;
refl: (x:S)R(x,x);
symm: (x:S;y:5;R(x,y))R(y,x);
trans: (x:5;y:S;z:S;R(x,y);R(y,2))R(x,2)]

The operator is is used to introduce abbreviations of contexts.

Another feature we want to reflect is that of defining new algebraic systems as exten-
sions of previously defined ones. Suppose that we want to introduce a binary operation
defined over the set S together with the proof that the relation R is congruent with respect
to this operation. In order to formalize this we could define the following structure:

Grupoid is SET +  [op:(S;8)S;
opcong: (x:S5;y:5;z:5;w:S;R(x,y);R(z,w))
R(op(x,z) ,0p(y,w))]
The operator 4 is also provided by the system; it denotes iterated extension of contexts.

Note that we can refer explicitly to the components of the context SET (the set S and the
relation R) when defining this new structure.

2.1 Concrete algebras as substitutions

As mentioned above we are also interested in formalizing the fact that some particular
representation is an instance of one abstract system. For that, we will use the notion of
substitution, or more precisely of a substitution for the variables that belong to a given
context. This notion is carefully explained in Tasistro [19] and we give here the basic
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explanations. To say that 7 is a substitution fitting the context A means that « is an as-
signment of objects of appropriate types to the variables of the context A. This situation
is generalized to the case where the objects may depend on variables of another context,
say I, written as v : A [[']. Suppose now that we know that « is a type under the context
A. Then we can perform the substitution v on a to obtain the type a7y under the context
I'. The rules governing the construction of substitutions are listed below :

v:A [l a:type [A] a:ay [T]
{3:01 1] {viz:=a}:[Asz:a] [T

where {v;z := a} is the extension of the substitution y with the assignment of the object
a to the fresh variable z. Then we will assert that some concrete algebraic structure vy is
classified as a particular case of an abstract algebraic structure A if y: A []. To illustrate
this, assume that we have:

e defined the set N of natural numbers,
e the binary operation + on N,
e the set IdN(m,n) = Id(N,m,n) for m,n € N.
e constructed the proof (named addcong) that IdN is congruent with respect to +.
We could then define the substitutions Neq and N+ as:
Neq 1is {S:=N; R:=IdN; refl:=Idrefl;
symm:=Idsymm; trans:=Idtrans} : SET []

N+ is  {Neq;op := +; cong := addcong} : Groupoid []

2.2 A further example: groups and the concrete group 7

First, we will introduce the definition of Semigroup as an extension of Groupoid:

Semigroup is Groupoid + [assoc:(x:S;y:S;z:S)R(op(x,0p(y,2)),
op(op(x,y),2))]

That is, assoc is the assumption that op is associative on S. Then we define Monoid as an
extension of Semigroup:

Monoid is  Semigroup + [unit:S;
ident: (x:S)and(R(op(x,unit),x),
R(op(unit,x) ,x))]

That is, unit will be a distinguished element of the set S and ident states the axiom that
unit is the identity element for op. Finally, Group is defined as :

Group is  Momoid + [inv: (S)S;
opinv: (x:S)and(R(op(x,inv(x)),unit),
R(op(inv(x),x),unit))]

11



That is, inv denotes a unary operation on S and opinv characterizes the inversion property
of inv.

A familiar algebraic structure is Zz, which is formed by the set with two different
elements (ze, one) , together with a binary operation zor : (Zy; Z3)Zo, which is defined as
follows:

xor(ze,ze) = ze
xor (one,ze) = one
xor (ze,one) = one
xor(one,one) = ze

If we take the equality relation to be the propositional equality over Z, (IdZs) and the
inverse as the identity function on Z (i2), we can prove that:

e IdZ, is congruent with respect to zor (zorcong)

e zor is associative (zorassoc)

e ze is the identity element for zor (zorunit)

e the result of applying zor to x and the inverse of x yields ze (zorinv)

Then, we can define the following substitution:

GroupZ_two is {S:= Z_two; R:=IdZ_two; refl:=Idrefl(Z_two);
symm:=Idsymm(Z_two) ; trans:=Idtrans(Z_two); op:=xor;
CONng:=xX0rcong; assocC:=x0rassoc; unit:=ze;
ident:=xorunit; inv:=i_two; opinv:=xorinv} : Group []

It can be interpreted as the verification that Z, is a group.

3 Proofs over algebraic systems

We now turn to how to deal with proving the properties that can be derived from the
postulates of such a system. Furthermore, suppose that a proof schema for, say, a property
P which is a consequence of the postulates of a system A is constructed and, that a concrete
representation A;,s; of A is provided. Then, we will show how to obtain the proof term
P;ns which will represent the instantiation of the property P to the particular algebra
Ains-

3.1 Proof scheme

We will construct the derivation of one property that is satisfied for any group G, the left
cancellation law, which is formulated as:

For all a,b,c € Ggey, if op(c,a) = op(c,b) holds, then a = b

where Gge; denotes the carrier set of the group (S above) and 22 is a more usual notation
for R.

Proof

If a,b, ¢ € Gget, then
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¢, b) (by hypothesis)

i) op(c,a (
opgim)(c) op(c,b))  (by i and cong)
(

i) op(inv(c),op(c,a ,b)
iii) op(op(inv(c),c),a op(inv(c),c),b) (by ii and assoc)
iv) op(unit,a op(unit, b) (by iii, opinv and cong)

v) b (by iv and ident)

In each deduction step of this proof a simple but useful property of the equivalence relation
2 is used:

1R 1R 1R 1R

S

Ifx=y, = 2zand y = w hold, then z = w with z,y,z,w € S.

This is proved using the symmetric and transitive properties of 2. It will be referred below
as simrepl.

In the case of this kind of derivations, the task of constructing the proof term is
straightforward. With the help of the proof assistant, the proof construction process is
strictly top-down, one only has to do sequential refinements of the goal using the proof
terms associated to each deduction step. Each of these terms is formalized as a functional
expression which for given values of the types corresponding to the premisses yields a value
of the type corresponding to the conclusion. The entire derivation will also be a functional
expression built up from the combination of those functions. As an example, here is the
formalization of the derivation of the cancellation property,

cancelleft =
[a,b,c,h]
simrepl (op(unit,a),op(unit,b),
a,b,
simrepl (op(op(inv(c),c),a),op(op(inv(c),c),b),
op(unit,a),op(unit,b),
simrepl(op(inv(c) ,op(c,a)),op(inv(c),op(c,b)),
op(op(inv(c),c),a),op(op(inv(c),c),b),
cong(inv(c) ,inv(c),
op(c,a),op(c,b),refl(inv(c)),h),
assoc(inv(c),c,a),
assoc(inv(c),c,b)

),
cong(op(inv(c),c),unit,a,a,snd(opinv(c)),refl(a)),
cong(op(inv(c),c),unit,b,b,snd(opinv(c)) ,refl(b))

),
fst(ident(a)),
fst(ident (b))
) : (a,b,c:S;h:R(op(c,a),op(c,b)))R(a,b) Group

The notation [z1,...,z,]e is used to express the abstraction of the variables z1,...,z, in
the expression e. The outermost application of simrepl is associated to the deduction
step from iv) to v); the next inner to the step from iii) to iv), and so on.

3.2 Proofs as instances

In section 2 we showed how to define particular representations of an algebraic system
using substitutions. We will now present how to obtain also instantiations of properties
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derived from the postulates of the system for those representations.

We defined GroupZs to be the substitution that establishes that Zs is a group. Then,
we can construct the proof that the cancellation property holds for the operation zor in
this way:

xorcancel = cancelleft{GroupZ_two}:(x,y,z:Z_two,
IdZ_two (xor(z,x) ,xor(z,y))
)IdZ_two(x,y)

and now we get a term which represents the proof of the cancellation law for the operation
of Z3. These kind of definitions are justified by means of the following rules of substitution:
v:A I «a:type [A] v:A [l a:a [A]
ay : type [1] ay:ay [I]

They are explained as:“ if we know that v is a substitution for the variables of the context
A depending on the variables of the context I" and « is type (resp. a is an element of type
«) under the context A, then « (resp. a) with 7 is a type (resp. an element of « with )
under the context T'.

3.3 Using derived properties to define concrete algebras

All the examples above are concerned with definition of abstract algebras and properties
that can be derived from the postulates, and their respective instantiations. Now we will
show another way of obtaining instances of algebraic systems. There is a well known
theorem in the theory of groups which says:

If G is a group, and for all z € G s, 22 = unit, then G is an abelian group

where 22

is a more convenient way of writing op(z, z).
To assert that a group is abelian we have to provide the proof that the binary operation
op is commutative. Then, assume that for all z € Gg.s, 22 = unit and the lemmas below

which follow (easily) from the axioms of group:

1. For all 2,y € Gser, op(z,y) ' Zopy~t,z7h).

2. For all € Ggey, if % = unit holds then z = !

reading ! as inv(z). The commutativity of the operation op can be derived as follows:

For all z,y € Gget,

i) op(z,y) = op(z,y)~! (by lemma 2 and hypothesis)
ii) op(z,y) ' = oply Lz ') (bylemma 1)

iii) op(z,y) = op(y~',z~Y) (by i,ii and trans)

iv) oply tLzl) = oply,z) (by lemma 2 and cong)

v) op(z,y) = op(y,z) (by iii,iv and trans)

As done with cancelleft, we can introduce the definition:

commop = <proof-code>:(x:S)R(op(x,x),unit) (y,z:S)R(op(y,z),op(z,y)) Grou
p p 1% y ply plz,y p

14



It can be noted that this property holds for Z,, because:
e zor(ze,ze) = ze,
e zor(one,one) = ze,
e zc is the identity element for Z,.
Then if zorsqid is the name of the proof that for all x € Zy zor(z,z) = ze, we can define:

commxor = commop{GroupZ_two}(xorsqid) : (x,y:Z_two)IdZ_two(xor(x,y),
xor(y,x)) [l

Then commxor is the name associated to the proof that xor is commutative on Zs.
Now we extend the structure Group with the proof that op is commutative to define
the structure abelian group as:

AbGroup is Group + [comm : (x,y:S)R(op(x,y),op(y,x)]
We could then introduce this new concrete structure as a substitution:
AbGroupZ_two is {GroupZ_two;comm := commxor} : AbGroup

to state that Z5 is an abelian group.

4 Integral Domains

It is very common to find the set of integers presented as a particular case of an algebraic
system. In [3] the authors assume that the set Z together with the binary operations
+ and * satisfies the postulates required to be an integral domain. We list below these
postulates assuming that S is a set and + and * are defined over S:

(i) Commutative laws. For alla and bin S, a+b=>b+a and a xb = b* a;

(ii) Associative laws. For all a, b, and cin S, a+ (b+¢) = (a+b) +cand a* (b*c) =
(a xb) ¢

(iii) Distributive law (left). For all a, b, and cin S, a* (b+c¢) =a*xb+ax¢;

(iv) Zero. S contains an element 0 such that a + 0 = a for all a in S;

(v) Unity. S contains an element 1 # 0 such that a * 1 = ¢ for all ¢ in S;

(vi) Additive inverse. For each a in S, the equation a + z = 0 has a solution z in S;
(vii) Cancellation law. If c # 0 and cxa =c#*b, thena =b

In more concise terms, S is a commutative ring with unit and a left cancellation law on .

From these postulates, and using that = is an equivalence relation, many well-known
properties involving + and * can be deduced using equational reasoning. On this fact
a meaningful reflexion is added by the authors “ ..one must, however, take some care
in deducing consequences from postulates in this way in order to be sure that the proofs
use only the postulates listed and rules of logic”. With the formalization we have done of
algebraic systems together with the congruence and substitutivity requirements and the
proof-assistant control we achieve the required safeness.
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4.1 Formalization of integral domains
We extend the definition of abelian group to define ring as:

Ring is AbGroup + [mult:(S;S)S;
multcong: (x,y,z,w:S;R(x,y);R(z,w))
R(mult (x,z) ,mult(y,w));
munit:S; diff:not (R(munit,unit));
massoc: (x,y,z:S)R(mult (x,mult(y,z)),
mult (mult(x,y),2z));
mident: (x:S)R(mult (x,munit) ,x);
distlft:(x,y,z:S)R(mult(x,op(y,z)),
op(mult(x,y) ,mult(x,z)))]

Then we define commutative ring as:
CommRing is  Ring + [*comm: (x,y:S)R(*(x,y),*(y,x))]
to finally introduce the definition of Integral Domain:

IntDom is CommRing + [*cancel:(x,y,z:S;
not (R(z,unit));
R(*(z,x),*(z,y))R(x,y)]

4.2 Derived properties

This is an example of formal proof of a property valid in any integral domain which can
be derived from the postulates and the fact that ~ is an equivalence relation.
For S, the law is formulated in this way:

Distributive law (right). For all a,b, and ¢ in S, (a+b)xc ~ axc+bxc

Proof.

Assume a, b, ¢ in S ; then:

i) (a+0b)xc
ii) c*(a+0b)
iii) (a+b)xc
iv) cka
v) c*xb
vi) cxa+cx*b
viil)  (a+b)xc

c*x(a+0b)  (by commutative law for *)
cxa+cxb (by left distributive law)
cxa+cxb (by i, ii and transitivity of ~)
a*c (by commutative law for *)

bxc (by commutative law for *)
axc+bxc (byiv, v and substitutivity of +)
axc+bxc (by iii, vi and transitivity of ~)

10101 1IRIRR

The Alf term representing this derivation is an explicit definition which combines the proof
terms associated to each postulate and the properties of ~ involved in the deduction. It
can be found in Appendix A.

Other derived properties holding for any particular integral domain that we have also
formally proved are:

1. If z in S has the property that a + z >~ a for all ¢ in S, then z ~ unit.
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2. For ¢ and b in S, there is one and only one z in S such that ¢ + x ~ b.
3. If u has the property that a *x u =~ a, for all ¢ in S, then u ~ *xunit.

4. For all @ in S, a * unit ~ unit ~ unit * a.

5. For alla and bin S, a=' b~ ~ (a xb)~%.

6. If a * b ~ unit and a # unit then b ~ unit.

The formal proofs of some of these properties can be found in appendix A.
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Part 111

Formalization of the Integers in
Martin-Lof’s Theory of Sets

1 Introduction

We mainly devote this part to present how recursion over Z can be formalized. In section 2
we present the definition of the integers. In section 3 two possible inductive principles
that can be represented by recursion operators derived from the basic definitions of the
theory are discussed. In this section we also introduce as an alternative the possibility of
defining noncanonical constants by computation rules that are pattern matching equations
(see Coquand [5]). This latter feature is provided by Alf [10].

We illustrate with one example (associativity of addition) the kind of proofs we had
to develop in order to formally prove that our representation of Z satisfies the postulates
of an integral domain.

An alternative way of formalizing the integers —regarding them as equivalence classes
of pairs of natural numbers— is also presented. Although we did not formalize all the
proofs of the properties for the quotient version of the set, some of them are displayed in
order to point out the differences between both approaches.

Finally, using the concrete representation of the set, the operations and their properties,
a substitution fitting the algebraic system IntDom is defined.

2 Inductive definition

The set of integers will be regarded as the set {...,—2,—1,0,1,2,...}, which can be
formalized as the disjoint union (—N) + {0z} + N. Here are our rules:

Z-formation

Z set
Z-introduction
O0z¢Z
Z-introductions
neN
pos(n)eZ
Z-introductiong
neN
neg(n)eZ

where, if ne N, pos(n) will represent the integer n + 1 and neg(n) the integer —(n + 1).
The elimination rule will be just a case analysis over these three possibilities, that is:
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Z-elimination
C(z) set [z € Z]
beC(0z)
d(n) e C(pos(n)) [neN]
e(n) e C(neg(n)) [neN]|
zeZ
Zcases(b,d, e, z) e C(z)

and the equality rules are defined as one would expect. We will follow the notation of
Nordstrém et al. [14].

When one works in type theory, the only implicit functions that one is allowed to
introduce are the elimination constants defined for each set. Every other definition must
be given in terms of them. As we were interested in extending the above definition of the
set Z with the usual arithmetical operations, and above all to prove some properties of
those operations, a good formulation for them was the first goal to achieve.

In Szasz [16] it is shown that if you want to define addition (+z) over the integers
in terms of Zcases, one possibility is to use addition and subtraction over N as well as
propositional equality =5 and the order relation <. Moreover, it is also necessary to prove
associativity and commutativity of natural addition, that =5 is an equivalence relation,
and transitivity and trichotomy of <. In such case, the intuition behind the expression
obtained for +z is not easy to grasp, and looking at it as a program, it is computationally
inefficient. Another possibility could be to treat the complicated cases pos(m) + neg(n)
and neg(m) + pos(n) doing double induction over m and n, but that would not improve
the readability of the expression.

A more elegant solution is proposed below.

3 Recursion on Z

In this section we will discuss alternative ways of introducing definitions and construct
proofs of properties inductively over our formalization of the set.

3.1 Two different recursion operators for 7

We will present two possible versions of an induction principle for our formulation of Z
that behave similarly to the one corresponding to N. Both recursion operators are derived
inside the theory and expressed in terms of Zcases and natrec.

The main difficulty when defining the operator is that the usual order over Z is not
well-founded. The way this problem is treated is what makes the difference between the
two approaches.

Using sign predicates
This version was also presented in [16]. Assuming that P is a propositional function over
Z an induction principle can be formulated as follows:

P(0z) P(succz(x)) [reZ, nonneg(x),P(z)] P(predz(x)) [ze€Z, nonpos(x),P(z)] zeZ
P(z)
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The functions succz and predz are the successor and predecessor in Z respectively. The
predicates nonpos and nonneg state the non-positivity and non-negativity of their argu-
ments respectively. As we identify propositions with sets, the definition of nonpos and
nonneg have to be functions that when applied to an integer return a set. Furthermore,
the intended meaning of these predicates is to classify the canonical elements of the set
(a similar problem as to prove that 0 # succ(n), for all neN). In [14] it is shown how to
deal with this kind of problems introducing the set U of small sets (or the first universe).
As we have constructed our proofs in Martin-Lof’s logical framework, we can avoid using
the universe by defining this special elimination rule:

ZcasesU : (S:Set;pe:(N)Set;ne: (N)Set;z:Z)Set

which follows the schema proposed in Smith [15] (note that the result of applying ZcasesU
yields a Set, not an element in a set C(z) as in Zcases). The computation rules are
defined as:

ZcasesU(S,pe,ne,0z) = S : Set
ZcasesU(S,pe,ne,pos(n)) = pe(n) : Set
ZcasesU(S,pe,ne,neg(n)) = ne(n) : Set

with S:Set, pe: (N)Set, ne:(N)Set, n:N.
Now, we can define the predicate nonneg in this way:

noneg(z) = ZcasesU(T,[n]T,[nl{},z) : Set [z ¢ Z]

where T represents the one-element set (the true proposition), and {} the empty set
(absurdity). The predicate nonpos can be defined in a similar way.

The derived induction rule associated to the induction principle for Z presented above
is:

Zrecy
P(z) set [z € Z]
be P(0y)
hp(z,nn, hx) e P(succz(x)) [z € Z, nn e nonneg(x), hx € P(z)]

hn(y,np, hy) € P(predz(y)) [y € Z, np e nonpos(y), hy € P(y)]
zel

Zrecy (b, hp, hn, z) € P(z)
and Zrecy defined as:

Zrecy (b, hp, hn, z) =Zcases(b,
[n]natrec(hp(OZ, tt, b)a [’LL, ’U]hp(pOS(ll), tt, 'U)v n)7
[n]natrec(hn(0z, tt,b), [u, v]hn(neg(u), tt,v),n),
z

~—

where tteT.
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A different formulation

In the definition of the rule above, nonneg and nonpos are needed to enforce that the
inductive steps hp and hn are applied starting from 0z along the positive and negative
branches respectively. Now, we will present another formulation of the induction principle
—suggested by Bjorn von Sydow— where the predicates are not needed at all.

First, let us define nonnegpred(n)e Z (predecessor of pos(n)) and nonpossucc(n)eZ
(successor of neg(n)), with neN as:

natrec(0z, [u,v]pos(u),n) e Z [neN|
natrec(0z, [u,v]neg(u),n) € Z [neN]

nonnegpred (n)
nonpossucc(n)

Now we can define this alternative induction principle:

P(0z) P(pos(x))[zeN,P(nonnegpred(x))] P(neg(x))[zeN,P(nonpossucc(x))] zeZ
P(z)

where P(nonnegpred(x)) and P(nonpossucc(x)) state that the property P holds for the

predecessor of pos(x) and the successor of neg(x) respectively. Note that by the definitions

of nonpossucc and nonnegpred, for the cases pos(0) and neg(0) those hypotheses become

P(0z). This induction rule can be derived from the earlier definitions.
Assume:

e P(x)set [xeZ],
° bGP(Oz),

e ps(xz,hz)e P(pos(x)) [z €N, hx e P(nonnegpred(x))],
e ns(y, hy) e P(neg(y)) [y € N, hy e P(nonpossucc(y))], and

o zc/.

Then from these assumptions we will construct an element in P(z) for all z in Z. For the
case z = 0z we take b, for the cases z = pos(n) and z = neg(n) we proceed by induction
over n.

- Let ne N

- For n = 0 we have that nonnegpred(0) = 0z € Z (by definition of nonnegpred) and
that be P(0z).
So, ps(0,b) e P(pos(0)).

- Now, assume ue N and v e P(pos(u)).
We have that nonnegpred(succ(u)) = pos(u) e Z (by definition of nonnegpred)
Then ps(succ(u),v) € P(pos(succ(u))).

- In similar way, for any ne N, we can find an element in P(neg(n)).

From this proof it is straightforward to define a operator in terms of Zcases and natrec:

Zrec(b, ps,ns, z) =Zcases(b,
[n|natrec(ps(0z,b), [u, v]ps(succ(u),v),n),
[n|natrec(ns(0z,b), [u, v|ns(succ(u),v),n),

z)

Thus, Zrec will work as an operator for defining functions over Z by primitive recursion.
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Defining functions with Zrec

Let us look how the definitions of the arithmetical operations for Z are expressed in terms
of Zrec.
First, we introduce the successor and predecessor functions for Z:

Zcases(pos(0), [n]pos(succ(n)), [n]nonpossucc(n), z) € Z [z € Z]
Zcases(neg(0), [n]nonnegpred(n), [n|neg(succ(n)), z) e Z [z € Z]

succy(z)
predy(z)

Now we can define the addition, subtraction and multiplication for Z in this way,

a+zb = Zrec(b,[n,hlsuccz(h),[n,h|predz(h),a)eZ |a,be Z]
a—zb = Zrec(a,[n, h]predz(h),[n,h|succz(h),b) e Z [a,be Z]
axzb = Zrec(0gz,[n,hlh+zb,[n,hlh—zb,a)eZ [a,be Z]

which look very similar to the definitions of the corresponding operations over N.

3.2 Pattern Matching

A suitable recursion operator for Z should satisfy two requirements: it should of course
be sound and the proofs constructed with it should be natural and readable.

The former requirement is satisfied by the definition of +7 in terms of Zcases we
commented above, but surely we can agree that the one line definition expressed using
Zrec (which is defined in terms of Zcases and the elimination constant natrec) should be
easier to grasp. With this recursion operator, then, we could define functions over Z like
+z ,—z and xz in the way one is used to do in Martin-Lo6f’s Type Theory.

In Coquand [5], a different perspective is proposed introducing the possibility to define
implicit constants in Martin-Lof’s logical framework whose computation rules are defined
using pattern matching over the arguments. To ensure correctness of the definitions two
conditions are required: the equations must be well-founded and patterns must not overlap
and must cover all cases. If these requirements hold, a sufficient condition stating the
totality of the function defined is satisfied.

Another definition of +

A definition of this function in Alf using pattern matching could be:

zadd (0z,b)
zadd (pos (n) ,b)
zadd (neg(n) ,b)

b
zs (zadd (nonnegpred(n) ,b))
zp(zadd (nonpossucc(n) ,b))

The functions zs and zp denote the codification of succy and predy respectively.
Let us write again the expression obtained using Zrec:

a+zb = Zrec(b,[n,hlsuccy(h),[n, h|predz(h),a)eZ [a,be Z]

There is a clear relation between the right hand side of each equation in the definition
of zadd and the computation that is performed when the expression in terms of Zrec is
applied to the same pair of arguments. But there is one important difference, too. In the
case of the definition in terms of Zrec, we have a direct argument that the computation
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of +z when applied to every pair of integers will always yield a value, because Zrec is a
recursive operator which allows us to define this function as a primitive recursive one.

The condition proposed in [5] to ensure that the equations with recursive calls are well-
founded is split into two requirements: nested occurrences of the constant f being defined
are forbidden in the recursive calls f(v1,...,v,) and there must exist one v; structurally
smaller than the argument in the same position in the left hand side of the equation. The
definition of the relation involved in the second requirement can be found in the same
paper.

The first requirement is satisfied by our definition above, but not the second. Although
we know that nonnegpred(resp. nonpossucc) is a total function over N and intuitively one
can see that the chain of the successive calls of zadd will stop at zadd(0yz, b), the expression
nonnegpred(n) (resp. nonpossucc(n)) does not match the definition of being structurally
smaller than pos(n) (resp. neg(n)). We can refine the pattern n in the two last equations
above, and define now zadd as:

Zadd(Oz,b) = b

zadd (pos (0) ,b) zs(b)

zadd (pos(s(m)),b) zs (zadd (pos(m) ,b))
zadd (neg(0) ,b) = zp(b)
zadd(neg(s(m)) ,b) zp(zadd(neg(m) ,b))

However, pos(m) (resp. meg(m)) do not yet match the definition of being structurally
smaller than pos(s(m)) (resp. neg(s(m))). But it seems sensible to extend the definition
of this relation to consider cases like this here.

4 Proving the postulates

The binary operator xz was also defined by pattern matching and the equality relation
used in the postulates taken to be the propositional equality over the set Z.

With the example below we want to illustrate how the postulates were proved using
inductive reasoning.

4.1 An inductive proof

Associativity of +. For all z,y, and z in Z, (x+zy)+z2z =z z+z (y+z 2)

Proof.
Assume that for all z, y in Z we have already proved the following properties :
(szadd) succz(x +zy) = succz(x)+zy
(pzadd) predz(x +zy) = predz(x)+zy

Let now = € Z, then
- For x = 07 we have that

e Uz+z(y+z2)=y+zz
e (07 +2zvy)+z2z=1y+z z (both by definition of +z).
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e 07 +7 (y+z2) = (07 +2zy) +z z (by symmetry and transitivity of =).

- For z = pos(n), withn e N

- If n =0, then
e (pos(0) +z y) +z z = succz(y) +z 2.
e pos(0) +z (y +z z) = succz(y +z z) (both by definition of +z).
e (pos(0) +z y) +z z = pos(0) +z (y +z z) (by szadd, symmetry and
transitivity of =).
- Now, assume n = succ(u) and (pos(u) +z y) +z z = pos(u) +z (y +z z), then

e (pos(succ(u)) +z y) +z z = (succz(pos(u) +z y)) +z z) (by definition of
+2z).

e (succz(pos(u) +z y) +z z) = succz((pos(u) +z y) +z z) (by szadd).

e (pos(succ(u)) +z y) +z z = succz(pos(u) +z (y +z 2)) (by substitutivity
and transitivity of = and induction hypothesis).

e succz(pos(u) +z (y +z z)) = pos(succ(u)) +z (y +z z) (by szadd and
definition of succy ).

e (pos(succ(u)) +z y) +z z = pos(succ(u)) +z (y +z z) (by transitivity
of =).

- Then by induction over N we get the proof for every n € N, hence, for every positive
integer.

- In a similar way it is proved that the property holds for z = neg(n) (using pzadd
instead of szadd).

For each postulate the same schema of proof as above is followed, that is, doing case
analysis on Z and induction over N in the positive and negative case. This is very well
reflected by the Alf proof terms when all the power of the pattern matching definition
is used. We will have one equation for each item described above and for the cases
pos(succ(u)) and neg(succ(u)) the right hand side of the equation will include a recursive
call on pos(u) and neg(u). The formalization of this proof, together with those of the rest
of the postulates, can be found in Appendix B.

5 Integers as a quotient set

We remarked earlier that we were interested in developing the formalization of the set
of integers as an inductively defined set. In this way the algorithmic nature of many
constructions defined over the set could be better reflected than when representing Z
as a quotient set. We will now present the formalization following the more traditional
definition of the set of integers, that is, as the quotient of the set of pairs of natural
numbers.

There is no primitive construction in type theory which allows to introduce such kind
of sets. We will define Z,, as an abbreviation for NV x N and then introduce the definition
of the relation =z, on Z, together with the proofs that it is an equivalence relation. We
define < m,n > =z, < p,q > to mean that m +x ¢ =y p +n n, where =y and + denote
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the propositional equality and the addition operation over N. Thus, =z, is a decidable
relation. This is formalized as :
m,neN m,n,p,qeN m+Nqg=Np+nND
Zy = N x NeSet int(m,n)eZ int(m,n) =z, int(p,q)

The proofs that =, is an equivalence relation are strongly based on the fact that =y is
an equivalence relation on N and congruent w.r.t. +x. Associativity and commutativity
of +x are also needed to prove transitivity of =z,.

Now we define the addition operation +z for Z, as :

int(m,n) +z int(p,q) = int(m +n p,n +n q)

In order to guarantee that the operation behaves uniformly over elements belonging to the
same equivalence class we proved first that :

a,b,ceZ, a=z,0b a,byceZ, a=z,0b
a+zc=z,b+zc ct+za=z,c+zb

to finally prove that =y, is congruent w.r.t. +z, that is :

a,byc,deZ, a=z,b c=z,d
a+zc=z,b+zd

We were also interested in defining the subtraction and multiplication operations and
proving the postulates as done with the inductive formalization of the set. As expected,
in most cases the proofs of the properties rely mainly on the proofs developed for the
arithmetical operations defined over N. For instance, to prove that +, is associative, we
can proceed as follows:

Assuming that a = int(m,n), b = int(p,q) and ¢ = int(r, s),

i) (a+zD)+zc¢ = int(m +yp,n+yq) +zint(r,s)

i) = int((m +np) +n 7 (n+N q) +n 8)
011 = dnttm+ny (p+n7),n+n (¢ +n 9))
iv) = int(m,n) +z int(p +n r,q +n 3)

v) = a-+yz (b +z C)

In the deduction step from %) to iii) we use the proof that this same property is satisfied
by +n.

Comparing this proof with that presented above for the inductive definition of the set
it seems that to formalize the theory of integers using this approach would be simpler.
One can realize that most of the postulates of an integral domain are also satisfied by the
set N of natural numbers. Their proofs have already been formalized in type theory and
implemented in the first version of Alf [2] (see for example Szasz [17] and von Sydow [20]).
Those proofs can be seen as solving the positive case of the postulates for Z and in general,
once you find the way of proving the positive case the negative one is solved in a similar
way. But in spite of having all this work already done we could not use it to construct the
proofs for the inductive version of Z. This was a consequence of the way in which 4+ and
xz were defined, that is, independently of +y and *y.

However, we are not only interested in constructing the proofs of the properties that
allow classifying Z as an integral domain, that is the axiomatic part of the theory of
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integers. When we started with this work we also aimed at setting the basic kernel
needed to develop the formalization of “computational” components of the theory, such
as the division and euclidian algorithm, i.e. to construct procedures that perform those
algorithms and to provide also the proof of their correctness.

As earlier mentioned we use type theory as a programming logic. The expressions of
this theory are variables, canonical (constructors, data) and noncanonical(selectors, pro-
grams) elements. The engine used to implement this powerful programming language is
the framework (the logical theory of types) implemented in Alf. The computations are
expressed defining functions by means of the (definitional) equality of the framework. This
equality is explained by saying that every constant which is an abbreviation of an expres-
sion of type a when evaluated will take as value one of the canonical values introduced
for a.

When we defined the inductive version of the set we introduced its elements as 0z
or formed from the application of the functions pos and neg to a natural number. We
implicitly also defined the notion of equality on Z which can be explicitly formulated as :

m=mn_: N m=mn_: N
pos(m) = pos(n) : Z neg(m) = neg(n) : Z

They are justified by the rules of the framework that state the reflexivity of = and the
extensionality of functional symbols. This notion of equality of canonical objects is struc-
tural, that is two irreducible expressions are equal if they are syntactically the same
expression. Then, by the confluence and normalization properties of the framework we
forced integer expressions to have as value one and only one of these canonical forms above.

When a set is defined as a quotient as presented above, we lose the notion of normal
form and the equality of the elements of the set is provided from outside the system. Then,
we cannot expect that the equality of two integers can be automatically checked. Suppose,
for instance, that we want to prove that for all integers z, z +z0z=zz. In the case of the
inductive version of Z the proof is very simple:

id(Z,z) + 1dZ(z +7 0z,2) [z: Z]

The expression z +z0yz is computed to z. Thus by introduction rule of IdZ the judgement
holds. The substitutivity of IdZ is then automatic. This can never be the case when
dealing with the quotient version of the set. Every time we introduce a new function
(property) defined over (on) the elements of the set we must also provide the proof of the
congruence (substitutivity) of =, with respect to the function (property). Those proofs,
when needed, will always appear explicitly in the proof terms, but they are computationally
irrelevant. So, we will obtain constructions that when regarded as programs will contain
non interesting information. Of course there are many proofs using the propositional
equality IdZ where its congruence and substitutivity properties have to be made explicit.
However, those properties are defined once and for all function and property defined over
the elements of Z.

In the same direction, since we identify propositions with sets, when predicates ranging
over Z,/=z, are defined in terms of the components of the elements of this set ,different
propositions could be associated to equal elements of Z,/2,. Suppose that we define the
predicate nonneg as :

nonneg(int(m, n)) = Id(N,n,0) : Set [m,n : N]
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Then we could not prove that a nonnegative integer that is not normalized satisfies this
predicate, even though its equivalent normalized expression does. Moreover, we could
prove that the negation of the predicate holds for every nonnegative integer of that form.

One possible solution to these problems could be to extend the framework with a
primitive schema for introducing quotient sets internalizing the equality of its elements.
However, we do not really know what a sound formulation of that construction could be.
Suppose that the following schematic rules were available in the framework:

A Set eq: (A; A)Bool a: A a,b: A eq(a,b) =poo true
Aleq Set a:Aleq a=>b:Aleq

where eq is a decidable equality defined over A. The first and second rules are the formation
and introduction rules of the quotient set respectively. The third rule could be read as
the internalization of the equality (which indeed must be an equivalence relation) over the
quotient set as an equality judgement in the theory. Then we could define the integers as
a quotient set using the rules above where A is Z,, and eq is the boolean formulation of
=7p. But still it would be problematic to deal with dependent sets indexed by elements
of Z,/eq. Suppose that we want to define the order relation < as :

int(m,n) <z int(p,q) = (m+nxq) <y (p+nn) e Set

Assume that int(m,n) = int(p,q) : Z,/eq and that int(r,s) : Z,/eq, then it would be
impossible to check that :

int(m,n) <z int(r,s) = int(p,q) <z int(r,s) € Set
for this entails to check that
(m4+ns) <y (r+nxn) = (p+ns) <nv (r+nq) € Set

In particular, it has to be checked that m +x s = p +xn s€ N which does not necessarily
have to hold. That is, equality of sets in the framework is structural, then when trying to
check the latter equality using the substitution rule it would be required of m and p to be
the same natural number. This is not the general case due to the definition of Z,/eq.
This example is strongly inspired by the discussion in [4] on how to deal with types
depending on objects of quotient types in NuPrl. A primitive rule for defining quotient
types similar to that presented above is provided in this proof-assistant. Squashed types
is the solution proposed in order to deal with the problem of the dependencies described
above. That means to throw away the computational content of the type and just keep
the notion of inhabitance. However, is not clear for us whether this would be a sensible
solution when one is interested in regarding proofs as computational constructions.
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6 A concrete Integral Domain

Now, we will declare explicitly that our representation of the set of integers is an integral
domain. To do that we will use the proofs of the postulates that we have developed for Z
to define a substitution IntdomZ that fits the context Intdom :

IntdomZ is {S := Z;R := IdZ;

refl := idreflZ;symm := idsymmZ;trans := idtransZ;

op := zadd;opcong := zaddcong;unit := zz;assoc := Szaddssoc;
ident := zaddident; inv := ";opinv := zaddinv;

comm := zaddcommut;

mult := ztimes;multcong := ztimescong;

munit := one;diff := onenotzero;massoc := Sztimesassoc;
mident := ztimunit;distlft := ztimesdistL;

mcomm := ztimescomm;mcancel := ztimcanlft} : Intdom []

The proofs terms to which the constants assigned to the variables of the context Intdom
are associated can be found in appendix B and C.

In section 4 we listed some of the properties derived from the postulates of an inte-
gral domain for which we constructed the corresponding proof terms. Their development
depends on the assumption that we can use hypothetical proofs of the postulates charac-
terizing an integral domain as well as the properties of the equivalence relation defined
over the set. We also showed in section 3.2 that we can combine substitutions with expres-
sions of the framework in order to define new expressions. Hence, we could now obtain
the particular instances of those proofs for the concrete integral domain represented by
IntdomZ (see appendix C). It is not necessary, for instance, to construct the proof of the
right distributivity law for the inductive representation of the set Z we have presented. As
illustrated above, we just need to introduce the following definition :

distRZ = distright{IntdomZ}: (x,y,z:Z)IdZ(*(+(x,y),2z),+(*(x,2),*(y,2)))

where + and * denote zadd and ztimes respectively.

Furthermore, we could also obtain the proofs of these properties for the quotient version
of the set, Z,, by defining another substitution, say IntdomZp. The values assigned to the
variables of the context IntDom would be then the set Z,, the operations and the proofs
of the postulates developed for this different representation of the set Z.
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Part IV
Discussion

We were interested in formalizing the arithmetics of integer numbers in Martin-Lof’s type
theory with the help of the proof assistant Alf. What we developed at last amounts to
the formalization of the set of integers, the arithmetical operations and the properties
establishing that this concrete algebra is an integral domain. On top of what has been
exposed in this paper, the order relation < and the modulo function have also been
implemented. This constitutes the basic kernel needed to develop the theory of divisibility,
the notion of prime number, the division and g.c.d. algorithms and the fundamental
theorem of arithmetics.

As we have argued above, we wanted to work with an inductive definition of the set and
the complete development of the proofs is done within this approach. However, to think
about the definition of Z as a quotient set, to develop some basic proofs and compare both
formalizations provided interesting insights about the task of formalizing mathematics in
type theory. It also motivated the attempt to formulate an abstract notion of integral
domain which could be used to reason about the properties satisfied by the algebra of
integers independently of the chosen representation, and thereby allowed to naturally
translate the results to the two different formalizations of this algebra.

To formalize the notion of what an algebraic structure is, whose components are sets
and n-ary operations on those sets which satisfy specified axioms, we chose the notion of
context.

The features of our approach that we have illustrated in this paper are mostly concerned
with definition of abstract algebras and how to deal with derivations of properties from
the postulates that characterize such algebras. We have also shown that we can formalize
the notion of instantiation of those structures and derivations and how these constructions
can be combined to define new ones. The way in which we defined the abstract notion of
algebraic systems provides also the possibility of applying the abstract theory of particular
algebraic structures to concrete examples.

However, we are aware that the approach we have presented to formalize algebraic
systems has many drawbacks. Since algebra is often considered as the study of the prop-
erties of algebras which are invariant under isomorphism (algebraic properties), we should
be able to reason about constructions like morphisms between structures, homomorphic
images and quotient structures. The formalization of some of these constructions above
using contexts can be really unpleasant, and some others cannot even be defined.

Suppose we want to define the notion of morphism between groups:

Groupx is [X : Set; Rx : (X; X)Set;...;opx : (X;X)X;.. ]
Groupy is [Y : Set; Ry : (Y;Y)Set;...;opy : (Y;Y)Y;.. ]
Morphxy is Groupx + Groupy + [f + (X)Y; (z,y : X)Ry (f(opx (z,9)), opy (f (2), f(y)))]

where Groupx and Groupy are defined as groups as shown above.

Then, first we note that we must introduce Groupx and Groupy as abbreviations of two
“different” contexts, that difference being only the names of the variables. This is a clear
consequence of our choice of regarding algebraic systems as list of named hypotheses. We
are not thinking of those systems as classifying collections of mathematical objects. Hence,
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it is not possible to assume variables ranging over them. This also entails that we cannot
even define a function (or better a functor) which given an algebraic structure returns a
structure formed by components of the former (for instance, one that given an abelian
group yields the corresponding group). Besides, we must be careful with the naming of
the variables used in the third context (X,Y,opx and opy in this case) in order to make
sure that we are expressing the property we want over the components of Groupx and
Groupy we mean to.

So, we are searching here for the possibility of formalizing algebraic structures in type
theory as entities describing mathematical constructions in such a way that we can refer to
and define operations on those constructions. But, what kind of entities? Should they be
defined as sets or as types? By type here we mean a category (in the sense of [12]) whose
definition does not require to know how its objects are constructed but just to grasp what
it means to be an object of such category. In this latter case, is the theory of types (the
framework implemented in Alf) powerful or suitable enough to express the fundamental
algebraic constructions?

Along these last years some works dealing with formalization of algebraic concepts
(directly or not) have been presented. To our knowledge the solutions have always followed
the approach of using either Y-sets or -types in the case of working with constructive
type theories (see for instance [14], [4], [7], [1],) or predicates involving logical constants
and predefined equalities as presented in [6].

Algebraic structures as sets

Since the early ’80s the formalization of abstract data types has been an important topic
of discussion in the programming language area. In Mitchell [13] the authors present a
functional language which incorporates existential types of the form Jt.o(t), where ¢ is
a type variable which may occur free in the type expression o(t). Values of such types
are also introduced and are intended to model abstract data types. They are called data
algebras. The intuitionistic explanation of the existential quantifier and what it means to
be a proof of an existential proposition together with the Curry-Howard correspondence
of propositions with types lies behind this formalization of abstract data types.

In Nordstrom et al. [14] a similar approach is used in order to propose a method-
ology of module specification in type theory. A module is there understood as a tuple
(A1, Ag, ..., Ay), where some A; are sets and some are elements and functions defined on
these sets. An example of the application of these notions to formalize algebra could be
the definition of group as the tuple:

(M, *, U, Z"I’LU, Pass» Pum'ta va)

where M isaset, x € M xM — Mu € M — M and P, Py, and Pj,, express the
group properties.

The natural way of expressing specification of modules in type theory is using general
sums, written Xx € A.B(z), which corresponds to the disjoint union of the family of sets
B(z) with = ranging over the set A. The elements of this kind of sets are pairs where
the first component determines the type of the second. We refer to Martin-Lof [12] for
theoretical explanations.

So, going back to the example above, let us look now how the notion of group could
be defined in terms of 3-sets:
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(XM eU)

(Sx € M x M — M)
(Xu e M)
(Xinv € M — M)
(lz,y,z € M)
[x(z, %(y, 2)) =m *(x(2,y),2)] ¥
[x(x,u) =pr x] X
[*(x,inv(z)) =n ul

where U is the name for the set of the small sets (the first universe). Since in type theory
the sets have to be inductively defined, it is impossible to have the notion of the set of
all sets. But, as in our case, it is usually necessary to talk about sets whose elements (or
their components) are sets. In order to deal with this situation, the notion of universe,
intended as the least set closed under specific set forming operations, is introduced. This
process could be iterated, obtaining then a hierarchical sequence of universes U = Uy €
Uie...elU,€....

Now, turning back to the case which motivated this discussion the notion of morphism
between two groups could be defined as:

Morphism = (XX € Group)(XY € Group)
(Bf € (Xset)Yser) (I, y € Xser) (f (+x (2,9)) =y *v (f(z), f(y)))

because now Group is a set (which belongs to the universe U;) and we can assume variables
ranging over that set. The operations Xe, Yser, *x,*y and =y are defined in terms of
the projection functions. The functor we mentioned above taking abelian groups to their
corresponding groups could also be defined without problems. Moreover, we could define
a special universe, say U, as:

Ueg = (BX €U)(Zeq € (X, X)U)(Refeqg X Symmeg X Transeg)

which would be the universe of the sets with an equivalence relation defined over them.

So, it seems that, if one wants to grasp algebraic structures as sets, their formalization
using Y-sets and universes forms an expressive and suitable alternative.

However, in the mechanical formalization it could be hard to deal with the codification.
The set of natural numbers, for instance, would be represented by two different symbols:
N representing the set itself and Ny the element of the universe U. That is, in order
to work with universes we are compelled to deal with the codes we use to reflect the set
structure at the level of objects and the corresponding decodification functions. And this
is rather cumbersome.

Another consequence of working with universes is that the way of forming sets remains
fixed because the canonical members of the universes are codings of a fixed number of
set constructing operations. Nevertheless, is not at all clear, at least for us, that this
presupposes a serious restriction when trying to formalize algebraic notions.
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Algebraic structures as types

As an alternative to the approach presented above, we could try to grasp algebraic struc-
tures as types. The immediate question is then...what kind of types are they?

In Luo [7] and MacQueen [9] a higher order calculus (3XCC) and a language with ram-
ified dependent types (DL) are presented. The language includes a X-type constructor
together with the corresponding projection operations. In both works the adequacy of
d-types as a basic mechanism to express abstract structures is analysed as well as a safe
methodology to deal with the manipulation of independently developed theories. More-
over, in [7] the power of the calculus to express mathematical problems is illustrated with
many examples of formalization of algebraic notions. All the limitations presented by the
contexts can be solved using this approach in a similar way as done with X-sets above.
But the restriction that the domains of quantification must be closed does not appear. In
such systems the notion of set remains open.

This same understanding of sets is proposed by Martin-Lof in the formulation of his
logical framework. A primitive type Set is introduced. It classifies inductively defined
sets but there is no longer the requirement of providing all the possible ways of forming
those sets. However, in order to define ¥ structures whose domains are types (the type
Set, for instance) it would be necessary to reflect this notion at the level of types, too.
One (among many) possible way of achieving this could be extending the type level with
rules for dependent pairs:

atype B type [z : ql atype Btype [z:a] a:a b:B(a)
(2 : a; B) type (a,0) : (z : o3 B)
p:(z:0o;0) p:(z:a;p)
m(p) : @ ma(p) : B(m1(p))

The two first rules introduce the type and object constructors for dependent pairs respec-
tively and 7y and 7y are the corresponding projections. But it is not clear for us whether
it is really necessary to abandon the setting provided by the theory of sets, where it seems
possible to formalize - even with some apparent restrictions - most of the basic algebraic
notions.

In another direction, we have also the doubt whether ¥(dependent pairs)-types are
the best tool to express algebraic notions. In a recent paper (Tasistro [18]) an extension
to Martin-Lof’s logical framework has been presented where the type level is enriched
with labelled record types. After having done some examples using this kind of types to
formalize algebraic notions we think that there are some features of this approach that
seem to be useful when formalizing algebra. We will illustrate this point with the following
examples. Suppose first that we define monoid as the following record type:

monoid = (X : Set; R: (X;X)Set,...,op: (X;X)X,...,pri: Pg,pra: Ps)

where (...) is the notation for the record types constructor. Now we could define group
and abelian monoid as the extensions:

(M : monoid;inv : (X)X;prinv : Py,)
(M : monoid; pco : Peomm)

group
abmonoid
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to finally define two “different” formalizations of abelian group:

abgroup; = (G : group;pco : Peomm)
abgroups = (Am : abmonoid;inv : (X)X;prinv : Py,)

It can be noted that abgroup; and abgroupy only differ in the order of their components.
The explanation proposed in [18] of what it means to be a record type allows to justify
a subtyping relation between records. This relation could be used for instance to show
that these two definitions above are equivalent. Furthermore, it is rather simple to prove
that every record object of the form abgroup; (resp. abgroups) it is also an object of the
form group (resp. abmonoid) and monoid. Moreover, it could also be proved that given
a record object of the form abgroup; (which extends group) it is also an object of the
form abmonoid. Similarly for an object of the form abgroup, (which extends abmonoid)
with respect to group. So, relations between algebraic structures are naturally formalized
by their definitions as records extending other ones. This is a clear difference with the
contexts and ¥ approaches. In the former there is no way of relating independently defined
contexts, in the latter the order of the components is in the very nature of the explanation
of the type.

Another interesting feature of records arises in the following case: As shown above
with contexts we could define a proof, say cancelyec : group — Peoncer, that for every
group the cancellation law holds. Now, let us suppose that we want to construct a new
proof, say agpr : abgroup — P4, which uses cancel,... By the subtyping relation for the
function types it can be inferred that cancel,¢. has also type abgroup — P.qpce;- Then it
can be applied directly to the argument of agpr in the body of the definition. This kind of
inclusion polymorphism is very useful when one thinks of an incremental development of
algebraic structures. All that has been proved for one structure can naturally be applied
for those extending it. This can also be reflected using the context approach. Every proof
constructed under certain context I', say, can be used in a proof developed under a context
A which extends I'. However using Y-types(sets), in the example above for instance, we
should first apply the forgetful functor from abelian groups to groups that we have earlier
mentioned in order to be able to use cancel,¢..

Nevertheless, we do not claim that these advantages could enforce the decision of
chosing record types to formalize algebra. The same questions as for ¥-types hold. We
think that, at least for us, it is necessary to better understand which is the appropriate
theoretical setting to formalize algebra in type theory.

Other works with integers in proof-assistants

The type of integers int is built into NuPRL (Constable et al. [4]). The canonical ele-
ments of this type and the operations +, —, * are also built into the system. There is a
noncanonical form associated to this type which provides a mechanism for definition and
proof by induction to which the recursive operators presented in this paper are very close.
The properties of the operations are provided by the system. We do not know works on
formalization of algebraic notions using this system, but in [4] 3-types are suggested as a
possible methodology to represent algebraic structures.

Valerie Menissier, at INRIA, has formalized the set Z together with the proofs that
it is an integral domain in Coq. She has the set inductively defined and uses inductive
reasoning to construct the proofs of the properties. There is also a great coincidence with
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our work in the sequence and kind of lemmas needed in the development of the main
proofs.

Integers have been formalized in LEGO, a proof assistant developed at the LCF of
Edinburgh, as equivalence classes of pairs of natural numbers. A work in progress on
formalization of Galois theory has been presented in Aczel [1]. There, some basic algebraic
notions (sets, mappings and algebraic structures) are formalized in terms of 3-types using
the implementation of Luo’s extended calculus of constructions provided by LEGO.

Another formalization of the integers as equivalence classes of pairs of naturals but
using HOL is presented in Gunter [6]. There, it is also presented a method for representing
algebraic notions which is strongly based in the use of higher order predicates to describe
the structures as well as constructions over them. The basic logic of HOL is an extended
version of the simple theory of types, where propositions are interpreted classically.
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Part V
Appendices

The following appendices contain the complete definitions and proofs to which we have
referred in the paper.

Appendix A includes the incremental definition of the algebraic structures from SET
to Integral Domain and the proofs of the derived properties following from the postulates
of the latter. In appendix B all the definitions, lemmas and proofs required to prove that
the set Z of integers is an integral domain are listed. The definition of the substitution
fitting the context Intdom and the instantiation of the derived properties for Z are listed
in appendix C.

All the proofs have been developed using the formalization of Martin-Lof’s set theory
provided by the Alf library. For the proofs of the integers we also used the formalization
of the set N of natural numbers with its corresponding properties.

Appart from the definitions of contexts and substitutions, three different forms of
definitions will be found :

The letter C at the end of a definition indicates that c is introduced as a canonical constant.
With the letter I it is indicated that c¢ is an implicit constant defined using pattern
matching over (some) of its arguments. Following such definition, the equations associated
to each case of pattern are stated. In the third case, c¢ is just an abbreviation (explicit
constant).
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A Formalization of integral domain and derived properties

SET is [S:Set; R:(S;S)Set;
refl: (x:S)R(x,x);
symm: (x:S;y:S;R(x,y))R(y,x);
trans: (x:5;y:5;z:S;R(x,y);R(y,2) )R(x,2)]

Grupoid is SET + [op:(S;S)S;
opcong: (x:S;y:S;z:S;w:S;R(x,y);R(z,w))
R(op(x,2z) ,0p(y,w))]

Semigroup is Groupoid + [assoc:(x:S;y:S;z:S)R(op(x,0p(y,2)),
op(op(x,y),2))]

Monoid is Semigroup + [unit:S;
ident: (x:S)and (R(op(x,unit) ,x),
R(op(unit,x),x))]

Group is  Monoid + [inv: (S)S;
opinv: (x:S)and(R(op(x,inv(x)) ,unit),
R(op(inv(x),x),unit))]

AbGroup is Group +  [comm:(x:S;y:S)R(op(x,y),op(y,x))]

Ring is  AbGroup + [mult:(S;S)S;
multcong: (x,y,z,w:S;R(x,y);R(z,w))
R(mult(x,z) ,mult(y,w));
munit:S; diff:not(R(munit,unit));
massoc: (x,y,z:S)R(mult(x,mult(y,z)),
mult (mult(x,y),z));
mident: (x:S)R(mult (x,munit) ,x);
distlft: (x,y,z:S)R(mult (x,o0p(y,z)),
op(mult(x,y) ,mult(x,z)))]

CommRing is Ring +  [mcomm: (x,y:S)R(mult(x,y),mult(y,x))]

Intdom is  CommRing + [mcancel: (x,y,z:S;not(R(z,unit));
R(mult (x,z) ,mult(y,z)))R(x,y)]
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These are the proof terms of some of the properties derived from the postulates of an integral
domain that are presented in [3].

Unicity of the additive inverse.

uniqinv = [a,b,c,h,hl]
cancelleft(a,b,c,

trans (op(a,b),

unit,

op(a,c),

h:

symm(op(a,c) ,unit,hl))
) : (a:S;b:S;c:S;

R(op(a,b) ,unit);

R(op(a,c),unit))

R(b,c) Intdom

Unicity of unit for op.

uniqunit = [a,p]
trans(a,

op(unit,a),

unit,

symm(op (unit,a),a,snd(R(op(a,unit) ,a),
R(op(unit,a),a),ident(a))),

p(unit)

) : (a:S;p:(x:S)R(op(x,a),x))R(a,unit) Intdom

Non-zero divisor.

nzdiv = [a,b,h1,h3]
mcancel (b,unit,a,h3,
trans(mult(b,a),
mult(a,b),
mult (unit,a),
mcomm(b,a),
trans (mult(a,b),
unit,
mult(unit,a),
hi,
trans (unit,
mult(a,unit),
mult(unit,a),
symm(mult(a,unit) ,unit,timeszero(a)),
mcomm(a,unit))))
) : (a:S;b:S;
R(mult(a,b) ,unit);
not(R(a,unit)))
R(b,unit) Intdom
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Zero of multiplication.

timeszero = [x]
cancelleft (mult(x,x),
mult(x,unit),
unit,
trans (op (mult (x,x) ,mult(x,unit)),
mult (x,op(x,unit)),
op(mult(x,x),unit),
symm(mult (x,o0p(x,unit)),
op(mult(x,x) ,mult(x,unit)),
distlft(x,x,unit)),
trans (mult (x,op(x,unit)),
mult(x,x),
op(mult(x,x),unit),
multcong(x,x,op(x,unit),x,
refl(x),
fst(R(op(x,unit) ,x),
R(op(unit,x),x),
ident(x))),
symm (op (mult (x,x),unit),
mult(x,x),
fst(R(op(mult(x,x),unit),
mult(x,x)),
R(op(unit,mult(x,x)),
mult(x,x)),
ident (mult(x,x))))))
) ¢ (x:S)R(mult(x,unit) ,unit) Intdom

Right distributivity.

distr = [x,y,z]
trans (mult (op(x,y),2),
mult(z,op(x,y)),
op(mult(x,z) ,mult(y,z)),
mcomm (op (x,y) ,2),
trans (mult(z,op(x,y)),
op(mult(z,x) ,mult(z,y)),
op(mult(x,z) ,mult(y,z)),
distlft(z,x,y),
cong(mult(z,x),
mult(x,z),
mult(z,y),
mult(y,z),
mcomm(z,x),
mcomm (z,y)
)
)
) ¢ (x:S;y:S;z:9)
R(mult (op(x,y),2z),op(mult(x,z) ,mult(y,z))) Intdom
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B Integers

Definition of the set Z

Z : Set (1c
zz : Z [1c¢
pos : (n:N)Z (1c
neg : (n:N)Z [1c¢

one = pos(0) : Z []

Zcases : (C:(Z)Set;a:C(zz);
b: (n:N)C(pos(n));
c: (n:N)C(neg(n));
z:Z)C(z) 0rI

Zcases(C,a,b,c,zz) = a
Zcases(C,a,b,c,pos(n))
Zcases(C,a,b,c,neg(n))

b(n)
c(n)

zs : (Z)Z 01

zs(zz) = pos(0)
zs(pos(n)) = pos(s(n))
zs(neg(0)) = zz
zs(neg(s(h))) = neg(h)

zp : (2)Z I
zp(zz) = neg(0)
zp(pos(0)) = zz

zp(pos(s(h))) = pos(h)
zp(neg(n)) = neg(s(n))

Propositional equality (IdZ)
IdZ = Id(Z) : (x:Z;y:Z)Set (]

Idzs = [x,y,p]

idcongr(Z,Z,zs,x,y,p) : (x:Z;y:Z;p:1dZ(x,y))IdZ(zs(x),zs(y))

Idzp = [x,y,p]

idcongr(Z,Z,zp,x,y,p) : (x:Z;y:Z;p:1dZ(x,y))IdZ(zp(x),zp(y))

multsubs = [x,y,z,w,h,h1,h2]
idtrans(Z,z,y,w,

idtrans(Z,z,x,y,idsymm(Z,x,z,h1) ,h),
h2) : (x:Z;y:Z;z:Z;w:Z;1dZ(x,y);
IdZ(x,z) ;I1dZ(y,w))IdZ(z,w) 1
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Discrimination of canonical elements
Isnotzz : (x:Z)Set [1 I

Isnotzz(zz) = Empty

Isnotzz(pos(n)) = N1

Isnotzz(neg(n)) = Ni

posnotzz : (n:N;IdZ(pos(n),zz))Empty [11I

posnotzz(n,h) = case h of
end

negnotzz : (n:N;IdZ(neg(n),zz))Empty [11I

negnotzz(n,h) = case h of
end

Properties relating successor and predeccessor (zs and zp)

invzp : (z:Z)IdZ(zs(zp(z)),z) 01

invzp(zz) = id(Z,zz)

invzp(pos(0)) = id(Z,pos(0))
invzp(pos(s(h))) = id(Z,pos(s(h)))
invzp(neg(0)) = id(Z,neg(0))
invzp(neg(s(h))) = id(Z,neg(s(h)))

invzs : (2:2)IdZ(zp(zs(z)),z) 11

invzs(zz) = id(Z,zz)

invzs(pos(0)) = id(Z,pos(0))
invzs(pos(s(h))) = id(Z,pos(s(h)))
invzs(neg(0)) = id(Z,neg(0))
invzs(neg(s(h))) = id(Z,neg(s(h)))

invzsp = [x]idtrans(Z,
zs(zp(x)),
X,
zp(zs(x)),
invzp(x),
idsymm(Z,
zp(zs(x)),
X,
invzs(x))) : (x:Z2)IdZ(zs(zp(x)),
zp(zs(x)))
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Properties of addition (zadd)
zadd : (Z;Z)Z lrI

zadd(zz,hl) = hil

zadd (pos(0) ,h1) = zs(hl)

zadd (pos(s(h)),hl) = zs(zadd(pos(h),hl))
zadd (neg(0) ,h1) = zp(hl)

zadd (neg(s(h)),hl) = zp(zadd(neg(h),hl))

zaddzs : (x:Z;y:2)IdZ(zs(zadd(x,y)),zadd(zs(x),y)) 11

zaddzs(zz,y) = id(Z,zs(y))
zaddzs (pos(n),y) = id(Z,zadd(zs(pos(n)),y))
zaddzs (neg(0),y) = idtrans(Z,
zs (zadd (neg(0),y)),
Y
zadd (zs (neg(0)),y),
invzp(y),
id(z,y))
zaddzs (neg(s(h)),y) = idtrans(Z,
zs(zadd (neg(s(h)),y)),
zadd (neg(h),y),
zadd (zs(neg(s(h))),y),
invzp(zadd(neg(h),y)),
1d(Z,zadd (neg(h),y)))

zaddzp : (x:Z;y:Z2)IdZ(zp(zadd(x,y)) ,zadd(zp(x),y)) Nz

zaddzp(zz,y) = id(Z,zp(y))
zaddzp (pos(0),y) = idtrans(Z,zp(zs(y)),y,y,invzs(y),id(Z,y))
zaddzp(pos(s(h)),y) = idtrans(Z,
zp (zadd (pos(s(h)),y)),
zadd (pos (h) ,y) ,zadd (zp(pos(s(h))),y),
invzs(zadd(pos(h),y)),
id(Z,zadd (pos(h),y)))
zaddzp(neg(n) ,y) = id(Z,zp(zadd(neg(n),y)))

zadd0 : (x:Z)IdZ(zadd(x,zz),x) 11
zadd0(zz) = id(Z,zz)
zadd0(pos(0)) = id(Z,pos(0))
zadd0(pos(s(h))) = Idzs(zadd(pos(h),zz),pos(h),zadd0(pos(h)))
zadd0(neg(0)) = id(Z,neg(0))
zadd0(neg(s(h))) = Idzp(zadd(neg(h),zz) ,neg(h),zadd0(neg(h)))

zaddsubstL = [a,b,y,plidcongr(Z,Z, [h]lzadd(h,y),a,b,p
) @ (a:Z;b:Z;y:Z;p:1dZ(a,b))
IdZ(zadd(a,y) ,zadd(b,y)) 1

zaddsubstR

[a,b,x,plidcongr(Z,Z, [h]zadd(x,h) ,a,b,p
) : (a:Z;b:Z;x:Z;p:1dZ(a,b))
1dZ (zadd(x,a) ,zadd(x,b)) ]
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zaddcong = [x,y,z,w,p,qlidtrans(Z,zadd(x,z) ,zadd(y,z),zadd(y,w),
zaddsubstL(x,y,z,p),
zaddsubstR(z,w,y,q))
i (x:2;y:2;2:Z;w:Z;p:1dZ(x,y) ;9:1dZ(z,w) ) IdZ(zadd (x,z) ,zadd (y,w)) ]

zaddpos : (m:N;n:N)IdZ(zadd(pos(m),pos(n)),pos(s(plus(m,n)))) NI

zaddpos (0,n) = id(Z,pos(s(n)))
zaddpos(s(nl),n) = Idzs(zadd(pos(nl),pos(n)),pos(s(plus(nl,n))),
zaddpos(nil,n))

zaddneg : (m:N;n:N)IdZ(zadd(neg(m),neg(n)),neg(s(plus(m,n)))) I

zaddneg(0,n) = id(Z,neg(s(n)))
zaddneg(s(nl),n) = idtrans(Z,
zadd (neg(s(n1)) ,neg(n)),
zp(neg(s(plus(ni,n)))),
neg(s(plus(s(nl),n))),
Idzp(zadd(neg(nl) ,neg(n)) ,neg(s(plus(nl,n))),
zaddneg(nl,n)),id(Z,neg(s(plus(s(nl),n)))))

zaddssoc : (x:Z;y:Z;z:Z)IdZ(zadd(zadd(x,y),2z) ,zadd(x,zadd(y,z))) 11

zaddssoc(zz,y,z) = id(Z,zadd(y,z))
zaddssoc(pos(0),y,z) = idsymm(Z,zadd(pos(0),zadd(y,z)),
zadd (zadd (pos(0) ,y) ,z) ,zaddzs (y,z))
zaddssoc(pos(s(h)),y,z) = idtrans(Z,
zadd (zadd (pos(s(h)),y),z),
zs (zadd (zadd (pos (h),y),2z)),
zadd (pos(s(h)),zadd(y,z)),
idsymm(Z,
zs (zadd (zadd (pos(h) ,y),z)),
zadd (zadd (pos(s(h)),y),z),
zaddzs (zadd (pos(h),y),z)),
Idzs(zadd(zadd (pos(h),y),=z),
zadd (pos (h) ,zadd(y,z)),
zaddssoc (pos(h) ,y,2)))

zaddssoc(neg(0),y,z) = idsymm(Z,zadd(neg(0) ,zadd(y,z)),
zadd (zadd (neg(0) ,y) ,z) ,zaddzp(y,z))
zaddssoc(neg(s(h)),y,z) = idtrans(Z,
zadd (zadd(neg(s(h)),y),z),
zp(zadd (zadd (neg(h),y),z)),
zadd (neg(s(h)) ,zadd(y,z)),
idsymm(Z,
zp(zadd (zadd (neg(h) ,y),z)),
zadd (zadd (neg(s(h)),y),2z),
zaddzp (zadd(neg(h) ,y),z)),
Idzp(zadd(zadd(neg(h),y),z),
zadd (neg(h) ,zadd(y,z)),
zaddssoc(neg(h),y,z)))
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Szaddssoc = [a,bl,clidsymm(Z,zadd(zadd(a,bl),c),zadd(a,zadd(bl,c)),
zaddssoc(a,bl,c)
) : (a:Z;b:Z;c:Z)IdZ(zadd(a,zadd(b,c)),
zadd(zadd(a,b),c)) 1

zsaddsnd : (x:Z;y:Z)IdZ(zs(zadd(x,y)),zadd(x,zs(y))) 11

zsaddsnd(zz,y) = id(Z,zs(y))
zsaddsnd (pos(0),y) = id(Z,zs(zs(y)))
zsaddsnd(pos(s(h)),y) = Idzs(zs(zadd(pos(h),y)),zadd(pos(h),zs(y)),
zsaddsnd (pos(h),y))
zsaddsnd(neg(0),y) = invzsp(y)
zsaddsnd (neg(s(h)),y) = idtrans(Z,
zs (zadd (neg(s(h)),y)),
zp(zs(zadd(neg(h),y))),
zadd (neg(s(h)),zs(y)),
invzsp(zadd(neg(h),y)),
Idzp(zs(zadd (neg(h),y)),
zadd(neg(h),zs(y)),
zsaddsnd (neg(h),y)))

zpaddsnd : (x:Z;y:Z)IdZ(zp(zadd(x,y)),zadd(x,zp(y))) 01

zpaddsnd(zz,y) = id(Z,zp(y))
zpaddsnd (pos(0) ,y) = idsymm(Z,zadd(pos(0),zp(y)) ,zp(zadd(pos(0),y)),
invzsp(y))
zpaddsnd(pos(s(h)),y) = idtrans(Z,
zp (zadd (pos (s (h)),y)),
zs (zp(zadd(pos(h),y))),
zadd (pos(s(h)),zp(y)),
idsymm(Z,
zs (zp(zadd(pos(h),y))),
zp(zadd (pos(s(h)),y)),
invzsp(zadd(pos(h),y))),
Idzs (zp(zadd(pos(h),y)),zadd (pos(h),zp(y)),
zpaddsnd (pos(h),y)))
zpaddsnd (neg(0) ,y) = id(Z,zp(zp(y)))
zpaddsnd (neg(s(h)),y) = Idzp(zp(zadd(neg(h),y)),zadd(neg(h),zp(y)),
zpaddsnd (neg(h),y))

zaddcommut : (x:Z;y:Z)IdZ(zadd(x,y),zadd(y,x)) 11

zaddcommut (zz,y) = idtrans(Z,
zadd(zz,y),
Vs
zadd(y,zz),
id(Z,y),
idsymm(Z,zadd(y,zz),y,zadd0(y)))
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zaddcommut (pos(0) ,y) = idtrans(Z,
zadd (pos(0),y),
zs(zadd(y,zz)),
zadd (y,pos(0)),
Idzs(y,
zadd(y,zz),
idsymm(Z,zadd(y,zz) ,y,zadd0(y))),
zsaddsnd (y,zz) )
zaddcommut (pos(s(h)),y) = idtrans(Z,
zadd(pos(s(h)),y),
zs(zadd(y,pos(h))),
zadd (y,pos(s(h))),
Idzs(zadd(pos(h),y),
zadd (y,pos(h)),
zaddcommut (pos (h) ,y)),
zsaddsnd (y,pos(h)))
zaddcommut (neg(0) ,y) = idtrans(Z,
zadd (neg(0),y),
zp(zadd(y,zz)),
zadd (y,neg(0)),
Idzp(y,
zadd (y,zz),
idsymm(Z,zadd (y,zz) ,y,zadd0(y))),
zpaddsnd (y,zz))
zaddcommut (neg(s(h)),y) = idtrans(Z,
zadd(neg(s(h)),y),
zp(zadd(y,neg(h))),
zadd(y,neg(s(h))),
Idzp(zadd(neg(h),y),
zadd(y,neg(h)),
zaddcommut (neg(h) ,y)),
zpaddsnd (y,neg(h)))

Properties of the inverse function

: (2)Z 0z
“(zz) = zz
“(pos(n)) = neg(n)
“(neg(n)) = pos(n)

T (x:Z2)IAZ (7 (zs(x)) ,zp(T(x))) I

zs” (zz) = id(Z,neg(0))
zs” (pos(n)) = id(Z,neg(s(n)))
zs” (neg(0)) = id(Z,zz)
zs” (neg(s(h))) = id(Z,pos(h))

Szs™ (x) = [x]idsymm(Z,” (zs(x)),zp("(x)),zs™ (x)

)i (x:Z)IdZ(zp(~(x)), (zs(x))) [1

o (x:Z2)IdAZ(" (zp(x)),zs (T (x))) I
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zp~(zz) = id(Z,pos(0))
zp~ (pos(0)) = id(Z,zz)
zp~ (pos(s(h))) = id(Z,neg(h))
zp~ (neg(n)) = id(Z,pos(s(n)))

Szp~(x) = idsymm(Z,” (zp(x)),zs("(x)),zp~ (%)
) 1 (x:Z2)IdZ(zs (" (%)),  (zp(x))) []

idem”™ : (x:Z)IdZ("("(x)),x) 0r

idem~ (zz) = id(Z,zz)
idem” (pos(n)) = id(Z,pos(n))
idem” (neg(n)) = id(Z,neg(n))

Sidem™ = [x]idsymm(Z, (" (x)),x,idem” (x)) : (x:2)IdZ(x,”("(x))) 1
distadd™ : (x:Z;y:Z)IdZ(" (zadd(x,y)),zadd (" (x), " (y))) 11

distadd”(zz,y) = id(Z,"(y))
distadd” (pos(0),y) = zs~(y)
distadd” (pos(s(n1)),y) = idtrans(Z,
~(zadd(pos(s(nl)),y)),
zp(zadd(neg(n1),” (y))),
zadd (" (pos(s(n1))), (y)),
idtrans(Z,
~(zadd(pos(s(nl)),y)),
zp (7 (zadd (pos (n1),y))),
zp(zadd(neg(nl),” (y))),
zs” (zadd (pos(nl),y)),
Idzp(~ (zadd (pos(nl),y)),
zadd(neg(nl),~(y)),
distadd” (pos(nl),y))),
idtrans(Z,
zp(zadd(neg(nl),” (y))),
zadd (zp(neg(n1)),~(y)),
zadd (" (pos(s(n1))), (y)),
zaddzp (neg(nl),~ (y)),
id(Z,zadd (" (pos(s(n1))), " (y)))))
distadd” (neg(0),y) = zp~(y)
distadd” (neg(s(n1)),y) = idtrans(Z,
~(zadd(neg(s(n1)),y)),
zs(zadd(pos(n1),~(y))),
zadd (" (neg(s(n1))), (y)),
idtrans(Z,
~(zadd (neg(s(n1)),y)),
zs (" (zadd (neg(nl),y))),
zs(zadd(pos(n1),”(y))),
zp~ (zadd (neg(nl),y)),
Idzs (" (zadd (neg(nl),y)),
zadd (pos(n1),~(y)),
distadd” (neg(nl),y))),
id(Z,zs(zadd(pos(nl),~ (y)))))
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Properties of subtraction (zminus)

zminus : (x:Z;y:2)Z 11

zminus(x,zz) = x

zminus (x,pos(0)) = zp(x)

zminus (x,pos(s(h))) = zp(zminus(x,pos(h)))
zminus (x,neg(0)) = zs(x)

zminus (x,neg(s(h))) = zs(zminus(x,neg(h)))

zmintoadd : (x:Z;y:Z)IdZ(zminus(x,y),zadd(x,”(y))) 0z

zmintoadd(x,zz) = idtrans(Z,zminus(x,zz),x,zadd(x,” (zz)),
id(Z,x) ,idsymm(Z,zadd (x,” (zz)) ,x,zadd0(x)))
zmintoadd(x,pos(0)) = idtrans(Z,
zminus (x,pos(0)),
zp(x),
zadd (x, " (pos(0))),
id(z,zp(x)),
idtrans(Z,zp(x) ,zadd (" (pos(0)),x),
zadd(x, " (pos(0))),id(Z,zp(x)),
zaddcommut (~ (pos (0)) ,x)))
zmintoadd (x,pos(s(h))) = idtrans(Z,
zminus (x,pos(s(h))),
zp(zadd(x,neg(h))),
zadd (x,~ (pos(s(h)))),
Idzp(zminus(x,pos(h)),zadd(x,neg(h)),
zmintoadd(x,pos(h))),
zpaddsnd (x,neg(h)))
zmintoadd(x,neg(0)) = idtrans(Z,
zminus (x,neg(0)),
zs(x),
zadd (x, " (neg(0))),
id(z,zs(x)),
idtrans(Z,
zs(x),
zadd (" (neg(0)),x),
zadd(x,” (neg(0))),
id(Z,zs(x)),
zaddcommut (~ (neg(0)),x)))
zmintoadd(x,neg(s(h))) = idtrans(Z,
zminus (x,neg(s(h))),
zs(zadd(x,pos(h))),
zadd (x, " (neg(s(h)))),
Idzs(zminus(x,neg(h)),
zadd (x,pos(h)),
zmintoadd(x,neg(h))),
zsaddsnd (x,pos(h)))

Szmintoadd = [x,ylidsymm(Z,zminus(x,y),zadd(x,”(y)),

zmintoadd(x,y)) : (x:Z;y:Z)IdZ(zadd(x,~(y)),
zminus (x,y)) 1
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zzminus : (x:Z)IdZ(zminus(zz,x),” (x)) NI

zzminus(zz) = id(Z,zz)

zzminus (pos(n)) = idtrans(Z,
zminus (zz,pos(n)),
zadd(zz,~ (pos(n))),
“(pos(n)),
zmintoadd (zz,pos(n)),
id(Z,neg(n)))

zzminus (neg(n)) = idtrans(Z,
zminus (zz,neg(n)),
zadd(zz,pos(n)),
“(neg(n)),
zmintoadd (zz,neg(n)),
id(Z,pos(m)))

Szzminus = [x]idsymm(Z,zminus(zz,x),” (x),zzminus(x)
) : (x:Z)IdZ(" (x) ,zminus(zz,x)) ]

zadditinvR : (x:Z)IdZ(zadd(x, (x)),zz) 01

zadditinvR(zz) = id(Z,zz)
zadditinvR(pos(0)) = id(Z,zz)
zadditinvR(pos(s(nl))) = idtrans(Z,
zadd (pos(s(nl)),” (pos(s(nl)))),
zs (zminus (pos(nl) ,pos(s(nl)))),
zz,
Idzs(zadd (pos(nl),” (pos(s(nl)))),
zp (zminus (pos (nl) ,pos(nl))),
Szmintoadd (pos(nl) ,pos(s(nl)))),
idtrans(Z,
zs (zminus (pos (nl) ,pos(s(n1)))),
zs (zp(zadd (pos(nl),” (pos(n1))))),
zz,
idcongr(Z,
Z:
[x]zs(zp(x)),
zminus (pos(nl) ,pos(nl)),
zadd (pos(nl),” (pos(nl))),
zmintoadd(pos(nl) ,pos(nl))),
idtrans(Z,
zs (zp(zadd(pos(nl),
“(pos(n1))))),
zadd (pos(n1),~ (pos(nl))),
zz,
invzp(zadd(pos(nl),
“(pos(n1)))),
zadditinvR(pos(nl)))))
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zadditinvR(neg(0)) = id(Z,zz)

zadditinvR(neg(s(nl))) = idtrans(Z,
zadd (neg(s(nl1)),” (neg(s(n1)))),
zadd (neg(n1) ,zp(pos(s(n1)))),
zz,
zpaddsnd (neg(n1),” (neg(s(n1)))),
zadditinvR(neg(nl)))

zadditinvL = [x]idtrans(Z,zadd(" (x),x),zadd(x,” (x)),zz,
zaddcommut (~ (x) ,x) ,zadditinvR(x)
) (x:Z)IdZ(zadd (" (x),x),zz) (]

SzadditinvL = [x]idsymm(Z,zadd(" (x),x),zz,zadditinvL(x)
) ¢ (x:Z)IdZ(zz,zadd("(x),x)) 1

uniqinv = [x,y,h]zaddcancelft(x,y,  (y),
idtrans(Z,
zadd (" (y) ,x),
zadd(x,~ (y)),
zadd (" (y),y),
zaddcommut (~ (y) ,x),
idtrans(Z,
zadd(x,~ (y)),
zz,
zadd (" (y),y),
h,
SzadditinvL(y)))
)+ (x:Z;y:Z;1dZ(zadd(x,~ (y)) ,zz))IdZ(x,y)

“minus = [x,ylidtrans(Z,
“(zminus(x,y)),
“(zadd(x," (y))),
zadd (" (x),y),
idcongr(z,Z,
[x]1~(x),
zminus(x,y),
zadd(x,” (y)),
zmintoadd(x,y)),
idtrans(Z,
“(zadd(x,"(y))),
zadd (" (x)," (" (y))),
zadd (" (x),y),
distadd~ (x,~(y)),
zaddsubstR(" (" (y)),
Yy,
“(x),
idem™(y)))
): (x:Z;y:Z)IdZ(" (zminus (x,y)) ,zadd (" (x),y))
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minus™ = [x,ylidtrans(Z,
zadd (x,y),
zadd(x, (" (y))),
zminus (%, (y)),
zaddsubstR(y,
(),
X,
Sidem™ (y)),
Szmintoadd(x,~ (y))
) ¢ (x:Z;y:2)IdZ(zadd(x,y),zminus(x,” (y))) 1

Properties of multiplication (ztimes)

ztimes : (x:Z;y:Z2)Z 01

ztimes(zz,y) = zz

ztimes(one,y) =y

ztimes (pos(s(h)),y) = zadd(ztimes(pos(h),y),y)
ztimes (" (one),y) = zminus(zz,y)
ztimes(neg(s(h)),y) = zminus(ztimes(neg(h),y),y)

ztimessubstL = [a,b,y,plidcongr(Z,Z, [h]ztimes(h,y),a,b,p
) : (a:Z;b:Z;y:Z;p:1dZ(a,b))
IdZ(ztimes(a,y) ,ztimes(b,y)) 1
ztimessubstR = [a,b,x,plidcongr(Z,Z, [h]lztimes(x,h),a,b,p

) : (a:Z;b:Z;x:Z;p:1dZ(a,b))
IdZ (ztimes(x,a),ztimes(x,b)) ]

ztimescong = [x,y,w,z,p,qlidtrans(Z,

ztimes(x,w),

ztimes(y,w),

ztimes(y,z),

ztimessubstL(x,y,w,p),

ztimessubstR(w,z,y,q)

) ¢ (x:Z;y:Z;w:Z;z:Z;p:1dZ(x,y) ;q:1dZ(w,z))
IdZ(ztimes (x,w) ,ztimes(y,z)) ]

ztimeszz : (x:Z)IdZ(ztimes(x,zz),zz) 11

ztimeszz(zz) = id(Z,zz)
ztimeszz(one) = id(Z,zz)
ztimeszz(pos(s(nl))) = idtrans(Z,
ztimes (pos(s(nl)),zz),
ztimes (pos(nl),zz),
zz,
zadd0 (ztimes (pos(nl),zz)),
ztimeszz (pos(nl)))
ztimeszz(~ (one)) = id(Z,zz)
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ztimeszz (neg(s(nl))) = idtrans(Z,
ztimes(neg(s(nl)),zz),
ztimes (neg(nl) ,zz),
zz,
id(Z,ztimes (neg(nl),zz)),
ztimeszz (neg(nl)))

Sztimeszz = [x]idsymm(Z,ztimes(x,zz),zz,ztimeszz(x)
) : (x:Z)IdZ(zz,ztimes(x,zz)) []

ztimunit : (x:Z)IdZ(ztimes(x,one),x) 11

ztimunit(zz) = id(Z,zz)
ztimunit (one) = id(Z,one)
ztimunit (pos(s(nl))) = idtrans(Z,
ztimes (pos(s(nl)),one),
zadd (pos(nl) ,one),
pos(s(nl)),
zaddcong(ztimes (pos(nl) ,one),
pos(nl) ,one,one,
ztimunit (pos(nl)),
id(Z,one)),
idtrans(Z,
zadd (pos(nl) ,one),
zadd (one,pos(nl)),
pos(s(nl)),
zaddcommut (pos (nl) ,one),
id(Z,pos(s(n1)))))

ztimunit (" (one)) = id(Z,~ (one))
ztimunit (neg(s(nl))) = idtrans(Z,
ztimes (neg(s(n1)) ,one),
zp(neg(nl)),
neg(s(nl)),
idcongr(Z,Z,zp,
ztimes(neg(nl) ,one),
neg(nl),
ztimunit (neg(nl))),
id(Z,neg(s(n1))))

Sztimunit = [x]idsymm(Z,ztimes(x,one),x,ztimunit (x)
) : (x:Z)IdZ(x,ztimes(x,one)) 1

negztimesL : (x:Z;y:Z)IdZ(" (ztimes(x,y)) ,ztimes("(x),y)) 11

negztimesL(zz,y) = id(Z,zz)
negztimesL(pos(0),y) = Szzminus(y))
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negztimesL(pos(s(nl)),y) = idtrans(Z,
~(ztimes(pos(s(nl)),y)),
zadd (" (ztimes (pos(nl),y)), (1)),
ztimes (" (pos(s(nl))),y),
distadd” (ztimes(pos(nl),y),y),
idtrans(Z,
zadd (" (ztimes (pos(nl),y)),  (y)),
zadd(ztimes (neg(nl),y), (y)),
ztimes (" (pos(s(nl))),y),
zaddsubstL(” (ztimes(pos(nl),y)),
ztimes(neg(nl),y),
“(y),
negztimesL(pos(nl),y)),
Szmintoadd(ztimes (neg(nl),y),y)))
negztimesL(neg(0),y) = idtrans(Z,
~(ztimes(neg(0),y)),
@),
ztimes (" (neg(0)),y),
idcongr(Z,Z, [x]1~(x),
zminus(zz,y),” (y) ,zzminus(y)),
idem” (y))
negztimesL(neg(s(nl)),y) = idtrans(Z,
~(ztimes(neg(s(nl)),y)),
~(zadd(ztimes (neg(nl),y),  (y¥))),
ztimes (" (neg(s(nl))),y),
idcongr(Z,Z, [x]1~ (x),
zminus (ztimes (neg(nl),y),y),
zadd (ztimes (neg(nl),y), " (y)),
zmintoadd (ztimes (neg(nl),y),y)),
idtrans(Z,
“(zadd (ztimes (neg(nl),y),
"y,
zadd (" (ztimes (neg(nl),y)),
N,
ztimes (" (neg(s(nl))),y),
distadd” (ztimes (neg(nl),y),
(),
zaddcong(~ (ztimes(neg(nl),
),
ztimes(pos(nl),y),
(),
Y
negztimesL(neg(nl),
y),
idem~ (y))))

SnegztimesL = [x,ylidsymm(Z,~ (ztimes(x,y)),ztimes("(x),y),
negztimesL(x,y)

) (x:Z;y:2)IdZ(ztimes (" (x),y),  (ztimes(x,y))) []

negztimesR : (x:Z;y:Z)IdZ(" (ztimes(x,y)),ztimes(x,~ (y))) Or
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negztimesR(zz,y) = id(Z,zz)
negztimesR(pos(0),y) = 1d(Z,~(y))
negztimesR(pos(s(nl)),y) = idtrans(Z,
“(ztimes (pos(s(nl)),y)),
zadd (" (ztimes (pos(nl),y)), (1)),
ztimes (pos(s(nl1)),  (y)),
distadd~ (ztimes(pos(nl),y),y),
zaddsubstL(” (ztimes (pos(nl),y)),
ztimes (pos(nl),~ (y)),
“(y,
negztimesR(pos(nl),y)))
negztimesR(neg(0),y) = idtrans(Z,
~(ztimes(neg(0),y)),
(),
ztimes (neg(0),~ (y)),
idcongr(Z,Z, [x] " (x),zminus(zz,y),  (y),
zzminus (y)) ,Szzminus (" (y))))
negztimesR(neg(s(nl)),y) = idtrans(Z,
“(ztimes (neg(s(nl)),y)),
zadd (" (ztimes (neg(nl),y)),y),
ztimes (neg(s(nl1)),  (y)),
“minus (ztimes(neg(nl),y),y),
idtrans(Z,
zadd (" (ztimes(neg(nl),y)),y),
zadd (ztimes (neg(nl),  (y)),y),
ztimes (neg(s(nl)), (y)),
zaddsubstL (" (ztimes(neg(nl),y)),
ztimes(neg(n1),~ (y)),
Yy
negztimesR(neg(nl),y)),
minus” (ztimes (neg(nl),~ (y)),y)))

SnegztimesR = [x,y]lidsymm(Z,~ (ztimes(x,y)),ztimes(x,”(y)),
negztimesR(x,y)
) (x:Z;y:2)IdZ(ztimes(x,” (y)),  (ztimes(x,y))) []

negztimesLtoR = [x,y]idtrans(Z,

ztimes (" (x),y),

“(ztimes(x,y)),

ztimes(x,” (y)),

idsymm(Z,”~ (ztimes (x,y)),

ztimes (" (x),y) ,negztimesL(x,y)),
negztimesR(x,y)
):(x:Z;y:2)IdZ(ztimes (" (x),y),
ztimes(x,”(y))) (]
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timdoub™ = [x,ylidtrans(Z,
ztimes (" (x),7(y)),
“(ztimes(x, (y))),
ztimes(x,y),
idsymm(Z,~ (ztimes (x,” (y))) ,ztimes (" (x),~(y)),
negztimesL(x,” (y))),
idtrans(Z,
“(ztimes(x, (y))),
“ (" (ztimes(x,y))),
ztimes(x,y),
idsymm(Z,
~ (" (ztimes(x,y))),
“(ztimes(x,  (y))),
idcongr(Z,Z, [x]1” (x),
~(ztimes(x,y)),
ztimes (x,” (y)),
negztimesR(x,y))),
idem™ (ztimes(x,y)))
) ¢ (x:Z;y:2)I1dZ(ztimes (" (x),  (y)),ztimes(x,y)) (]

ztiminone : (x:Z)IdZ(ztimes(x,~ (one)),~ (x)) Or

ztiminone(zz) = id(Z,zz)
ztiminone(pos(n)) = idtrans(Z,
ztimes (pos(n),~ (one)),
“(ztimes(pos(n) ,one)),
“(pos(n)),
idsymm(Z,
“(ztimes(pos(n) ,one)),
ztimes (pos(n),~ (one)),
negztimesR (pos(n) ,one)),
idcongr(z,Z, [x]" (x),
ztimes (pos(n) ,one),
pos(n),
ztimunit (pos(n))))
ztiminone(neg(n)) = idtrans(Z,
ztimes (neg(n),~ (one)),
“(ztimes(neg(n) ,one)),
“(neg(n)),
idsymm(Z,
“(ztimes(neg(n) ,one)),
ztimes (neg(n),~ (one)),
negztimesR(neg(n) ,one)),
idcongr(Z,Z, [x] " (x) ,ztimes (neg(n) ,one),
neg(n) ,ztimunit (neg(n))))

Sztiminone = [a]lidsymm(Z,ztimes(a,neg(0)),”(a),ztiminone(a))
) ¢ (a:Z)IAZ(" (a) ,ztimes(a,neg(0))) []
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lemmdistLl = [a,bl,c,dl]
idtrans(Z,
zadd(zadd(zadd(a,bl),c),d1),
zadd(zadd(a,zadd(bl,c)),d1),
zadd(zadd(a,c) ,zadd(b1,d1)),
zaddsubstL(zadd(zadd(a,bl),c),
zadd (a,zadd(bl,c)),d1,
zaddssoc(a,bl,c)),
idtrans(Z,zadd(zadd(a,zadd(bl,c)),d1),
zadd(zadd(a,zadd(c,bl)),d1),
zadd(zadd(a,c) ,zadd(b1,d1)),
zaddsubstL(zadd(a,zadd(bl,c)),
zadd(a,zadd(c,bl)),d1,
zaddsubstR (zadd(bl,c),
zadd(c,bl) ,a,
zaddcommut (b1,c))),
idtrans(Z,
zadd (zadd (a,zadd(c,bl)),d1),
zadd (zadd(zadd(a,c),bl),d1),
zadd (zadd(a,c) ,zadd(b1,d1)),
zaddsubstL(zadd(a,zadd(c,bl)),
zadd(zadd(a,c),bl),d1,
Szaddddssoc(a,c,bl))),
zaddssoc(zadd(a,c),bl1,d1)))
) : (a:Z;b:Z;c:Z;d:Z)I1dZ(zadd(zadd(zadd(a,b),c),d),
zadd(zadd(a,c) ,zadd(b,d)))

lemdistL2 = [a,bl,c,dl]
idtrans(Z,
zadd(zadd(a,bl) ,zadd(c,dl1)),
zadd(zadd(zadd(a,bl),c),d1),
zadd(zadd(a,c) ,zadd(b1,d1)),
Szaddssoc(zadd(a,bl),c,dl),
lemmdistLi(a,bl,c,dl)
) : (a:Z;b:Z;c:Z;d:Z)IdZ(zadd(zadd(a,b) ,zadd(c,d)),
zadd(zadd(a,c) ,zadd(b,d)))
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lemmdistL3 = [a,b,c,d]
idtrans(Z,
zminus (zadd(a,b),zadd(c,d)),
zadd(zadd(a,b),  (zadd(c,d))),
zadd(zminus(a,c),zminus(b,d)),
zmintoadd(zadd(a,b) ,zadd(c,d)),
idtrans(Z,
zadd (zadd(a,b),  (zadd(c,d))),
zadd (zadd(a,b) ,zadd (" (c),~(d))),
zadd (zminus (a,c) ,zminus (b,d)),
zaddsubstR(~ (zadd(c,d)),
zadd (" (c),~(d)),
zadd(a,b),
distadd~(c,d)),
idtrans(Z,
zadd (zadd (a,b),
zadd (" (c),~(d))),
zadd (zadd(a,~ (c)),
zadd(b,~(d))),
zadd (zminus (a,c) ,zminus(b,d)),
lemmdistL2(a,b, (c),~(d)),
zaddcong(zadd(a,~(c)),
zminus(a,c),
zadd (b, (d)),
zminus(b,d),
Szmintoadd(a,c),
Szmintoadd(b,d))))
) : (a:Z;b:Z;c:Z;d:Z)IdZ(zminus(zadd(a,b) ,zadd(c,d)),
zadd (zminus(a,c),zminus(b,d))) []

ztimesdistL : (a:Z;b:Z;c:Z)IdZ(ztimes(c,zadd(a,b)),
zadd(ztimes(c,a),ztimes(c,b))) NI

ztimesdistL(a,b,zz) = id(Z,zz)
ztimesdistL(a,b,pos(0)) = id(Z,zadd(a,b))
ztimesdistL(a,b,pos(s(nl))) = idtrans(Z,
ztimes (pos(s(nl)),zadd(a,b)),
zadd (zadd (ztimes (pos(nl),a),
ztimes (pos(nl),b)),
zadd(a,b)),
zadd (ztimes (pos(s(nl)),a),
ztimes (pos(s(nl)),b)),
zaddsubstL(ztimes (pos(nl) ,zadd(a,b)),
zadd (ztimes (pos(nl) ,a),
ztimes (pos(nl),b)),
zadd(a,b),
ztimesdistL(a,b,pos(nl))),
lemmdistL2(ztimes (pos(nl),a),
ztimes (pos(nl),b),a,b))

61



ztimesdistL(a,b,neg(0)) = idtrans(Z,
ztimes (neg(0) ,zadd(a,b)),
~(zadd(a,b)),
zadd (ztimes (neg(0) ,a) ,ztimes(neg(0),b)),
zzminus (zadd(a,b)),
idtrans(Z,
~(zadd(a,b)),
zadd (" (a)," (b)),
zadd (ztimes (neg(0) ,a),
ztimes (neg(0),b)),
distadd~(a,b),
zaddcong(~(a),
zminus(zz,a),
”(b) )
zminus(zz,b),
Szzminus(a)),
Szzminus(b)))))

ztimesdistL(a,b,neg(s(nl))) = idtrans(Z,
ztimes (neg(s(nl)),zadd(a,b)),
zminus (zadd (ztimes (neg(nl),a),
ztimes (neg(nl),b)),
zadd(a,b)),
zadd (ztimes (neg(s(nl)),a),
ztimes (neg(s(nl)),b)),
idcongr(Z,Z,
[x]zminus(x,zadd(a,b)),
ztimes (neg(nl) ,zadd(a,b)),
zadd (ztimes (neg(nl) ,a),
ztimes(neg(nl),b)),
ztimesdistL(a,b,neg(nl))),
lemmdistL3(ztimes (neg(nl) ,a),
ztimes(neg(nl),b),a,b))

SztimesdistL = [a,bl,c]idsymm(Z,
ztimes(c,zadd(a,bl)),
zadd(ztimes(c,a),ztimes(c,bl)),
ztimesdistL(c,a,bl)
) : (a:Z;b:Z;c:Z)IdZ(zadd(ztimes(c,a),
ztimes(c,b)),
ztimes(c,zadd(a,b))) []
lemmcomml = [a,b]
idtrans(Z,
zadd (ztimes(a,b),a),
zadd(ztimes(a,b) ,ztimes(a,one)),
ztimes(a,zadd(b,one)),
zaddsubstR(a,ztimes(a,one) ,ztimes(a,b),
Sztimunit(a)),
SztimesdistL(b,one,a)
) : (a:Z;b:Z)IdZ(zadd(ztimes(a,b),a),
ztimes(a,zadd(b,one))) 1
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lemcomm2 = [a,b]
idtrans(Z,
zminus (ztimes(a,b) ,a),
zadd(ztimes(a,b),(a)),
ztimes(a,zminus(b,one)),
zmintoadd(ztimes(a,b) ,a),
idtrans(Z,
zadd(ztimes(a,b),”(a)),
zadd (ztimes(a,b) ,ztimes (a,neg(0))),
ztimes(a,zminus(b,one)),
zaddsubstR(™ (a),
ztimes(a,neg(0)),
ztimes(a,b),
Sztiminone(a)),
idtrans(Z,
zadd(ztimes(a,b) ,ztimes(a,neg(0))),
ztimes (a,zadd(b,neg(0))),
ztimes(a,zminus(b,one)),
SztimesdistL(b,neg(0),a)),
ztimessubstR(zadd(b,neg(0)),
zminus (b,one) ,a,
Szmintoadd (b,pos(0))))
) : (a:Z;b:Z)IdZ(zminus(ztimes(a,b),a),
ztimes(a,zminus(b,one))) 1

ztimescomm : (a:Z;b:Z)IdZ(ztimes(a,b),ztimes(b,a)) ]

ztimescomm(zz,b) = idsymm(Z,ztimes(b,zz),zz,ztimeszz(b))
ztimescomm(pos(0),b) = Sztimunit(b)
ztimescomm(pos(s(nl)),b) = idtrans(Z,
zadd (ztimes (pos(nl),b),b),
zadd (ztimes (b,pos(nl)),b),
ztimes(b,zadd(one,pos(nl))),
zaddsubstL(ztimes (pos(nl),b),
ztimes(b,pos(nl)),b,
ztimescomm(pos(nl),b)),
idtrans(Z,
zadd (ztimes (b,pos(nl)),b),
ztimes(b,zadd(pos(nl) ,one)),
ztimes(b,zadd(one,pos(nl))),
lemmcomml (b,pos(nl)),
ztimessubstR(zadd(pos(nl) ,one),
zadd (one,pos(nl)),
b,
zaddcommut (pos(nl) ,one))))
ztimescomm(neg(0) ,b) = idtrans(Z,
zminus(zz,b),
“(b),
ztimes (b,neg(0)),
zzminus (b) ,
Sztiminone(b)))
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ztimescomm(neg(s(nl)),b) = idtrans(Z,
ztimes (neg(s(n1)),b),
zminus (ztimes(b,neg(nl)),b),
ztimes (b,neg(s(nl))),
idcongr(Z,Z,
[x]zminus(x,b),
ztimes(neg(nl),b),
ztimes(b,neg(nl)),
ztimescomm(neg(nl),b)),
lemcomm2 (b,neg(nl)))
ztimesdistR = [a,b,c]
idtrans(Z,
ztimes(zadd(a,b),c),
ztimes(c,zadd(a,b)),
zadd(ztimes(a,c) ,ztimes(b,c)),
ztimescomm(zadd(a,b),c),
idtrans(Z,
ztimes(c,zadd(a,b)),
zadd(ztimes(c,a) ,ztimes(c,b)),
zadd(ztimes(a,c) ,ztimes(b,c)),
ztimesdistL(c,a,b),
zaddcong(ztimes(c,a) ,ztimes(a,c),
ztimes(c,b) ,ztimes(b,c),
ztimescomm(c,a),
ztimescomm(c,b)))
) : (a:Z;b:Z;c:Z)IdZ(ztimes(zadd(a,b),c),
zadd(ztimes(a,c) ,ztimes(b,c)))

SztimesdistR = [a,b,c]lidsymm(Z,
ztimes(zadd(a,c),b),
zadd (ztimes(a,b) ,ztimes(c,b)),
ztimesdistR(a,c,b)
) : (a:Z;b:Z;c:Z)I1d(Z,zadd(ztimes(a,b),
ztimes(c,b)),
ztimes(zadd(a,c),b))

lemmassocl = [a,blidtrans(Z,

zadd(ztimes(a,b),b),

zadd (ztimes(a,b) ,ztimes (pos(0),b)),

ztimes(zadd(a,pos(0)),b),

zaddsubstR(b,ztimes(pos(0) ,b) ,ztimes(a,b),
idrefl(Z,b)),

SztimesdistR(a,b,pos(0))

) : (a:Z;b:Z)IdZ(zadd(ztimes(a,b),b),

ztimes (zadd(a,pos(0)),b))
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lemmassneg = [a,bl,c]
idtrans(Z,
ztimes (zminus(a,bl),c),
ztimes(zadd(a,~(b1)),c),
zminus (ztimes(a,c),ztimes(bl,c)),
ztimessubstL (zminus(a,bl) ,zadd(a,~ (b1)),c,
zmintoadd(a,bl)),
idtrans(Z,
ztimes(zadd(a,~(bl1)),c),
zadd (ztimes (a,c) ,ztimes(~(bl),c)),
zminus (ztimes(a,c),ztimes(bl,c)),
ztimesdistR(a,~(bl),c),
idtrans(Z,
zadd (ztimes (a,c) ,ztimes (" (bl),c)),
zadd (ztimes(a,c),” (ztimes(bl,c))),
zminus (ztimes(a,c) ,ztimes(bl,c)),
zaddsubstR(ztimes ("~ (b1),c),
~“(ztimes(bil,c)),
ztimes(a,c),
SnegztimesL(bl,c)),
Szmintoadd(ztimes(a,c) ,ztimes(bl,c))))
) : (a:Z;b:Z;c:Z)IdZ(ztimes(zminus(a,b),c),
zminus (ztimes(a,c) ,ztimes(b,c))) []

ztimesassoc : (x,y,z:2)IdZ(ztimes(ztimes(x,y),z),ztimes(x,ztimes(y,z))) [1 I

ztimesassoc(zz,y,z) = id(Z,zz)
ztimesassoc(pos(0),y,z) = id(Z,ztimes(y,z))
ztimesassoc(pos(s(nl)),y,z) = idtrans(Z,
ztimes (zadd (ztimes (pos(nl),y),y),z),
zadd (ztimes (ztimes (pos(nl),y),z),
ztimes(y,z)),
zadd (ztimes (pos(nl) ,ztimes(y,z)),
ztimes(y,z)),
ztimesdistR(ztimes (pos(nl),y),y,z),
zaddsubstL(ztimes (ztimes (pos(nl),y),z),
ztimes(pos(nl) ,ztimes(y,z)),
ztimes(y,z),
ztimesassoc(pos(nl),y,z)))

ztimesassoc(neg(0),y,z) = idtrans(Z,
ztimes (zminus(zz,y) ,z),
ztimes (" (y),z),
zminus (zz,ztimes(y,z)),
ztimessubstL(zminus (zz,y), " (y),z,
zzminus (y)),
idtrans(Z,
ztimes (" (y),z),
“(ztimes(y,z)),
zminus (zz,ztimes(y,z)),
SnegztimesL(y,z),
Szzminus (y,z)))
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ztimesassoc(neg(s(nl)),y,z) = idtrans(Z,
ztimes (ztimes (neg(s(nl)),y),2),
zminus (ztimes (ztimes (neg(nl),y),z),
ztimes(y,z)),

ztimes (neg(s(nl)) ,ztimes(y,z)),

lemmassneg(ztimes (neg(nl),y),y,z),

idcongr(Z,Z,
[x]zminus (x,ztimes(y,z)),
ztimes (ztimes(neg(nl),y),z),
ztimes(neg(nl) ,ztimes(y,z)),
ztimesassoc(neg(nl),y,z)))

(* Lemmas for and proof of cancellation on ztimes *)

pos_times_pos : (m:N;n:N)IdZ(ztimes(pos(m),pos(n)),
pos (plus (mult(m,s(n)),n))) 11

pos_times_neg : (m:N;n:N)IdZ(ztimes(pos(m),neg(n)),
neg(plus (mult(m,s(n)),n))) 1z

neg_times_pos = [m,n]idtrans(Z,
ztimes (neg(m) ,pos(n)),
ztimes (pos(n) ,neg(m)),
neg(plus (mult(n,s(m)),m)),
ztimescomm(neg(m) ,pos(n)),
pos_times_neg(n,m)
) : (m:N;n:N)IdZ(ztimes(neg(m),pos(n)),
neg(plus(mult(n,s(m)),m))) ]

neg_times_neg = [m,n]idtrans(Z,
ztimes (neg(m) ,neg(n)),
ztimes (pos(m) ,pos(n)),
pos (plus(mult (m,s(n)),n)),
timdoub” (pos(m) ,pos(n)),
pos_times_pos(m,n)
) ¢ (m:N;n:N)IdZ(ztimes (neg(m),neg(n)),
pos (plus (mult(m,s(n)),n))) 1

nzeroptp = [m,n,h]posnotzz(plus(mult(m,s(n)),n),
idtrans(Z,
pos (plus (mult(m,s(n)),n)),
ztimes (pos(m),pos(n)),
zz,
idsymm(Z,
ztimes (pos(m) ,pos(n)),
pos (plus(mult(m,s(n)),n)),
pos_times_pos(m,n)),
h)
) : (m:N;n:N;IdZ(ztimes (pos(m),pos(n),
zz))Empty (1
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nzeroptn = [m,n,h]negnotzz(plus(mult(m,s(n)),n),
idtrans(Z,
neg(plus(mult(m,s(n)),n)),
ztimes (pos(m) ,neg(n)),
zz,
idsymm(Z,
ztimes (pos(m) ,neg(n)),
neg(plus (mult(m,s(n)),n)),
pos_times_neg(m,n)),
h)
) ¢ (m:N;n:N;IdZ(ztimes (pos(m) ,neg(n)),
zz) )Empty ]

nzerontpz = [m,n,h]lnegnotzz(plus(mult(n,s(m)),m),
idtrans(Z,
neg(plus(mult(n,s(m)),m)),
ztimes (neg(m) ,pos(n)),
zz,
idsymm(Z,
ztimes (neg(m) ,pos(n)),
neg(plus(mult(n,s(m)),m)),
neg_times_pos(m,n)),
h)
) ¢ (m:N;n:N;IdZ(ztimes (neg(m),pos(n)),
zz))Empty (1

nzerontn = [m,n,h]posnotzz(plus(mult(m,s(n)),n),
idtrans(Z,
pos (plus(mult(m,s(n)),n)),
ztimes (neg(m) ,neg(n)),

zz,
idsymm(Z,
ztimes (neg(m) ,neg(n)),
pos (plus(mult(m,s(n)),n)),
neg_times_neg(m,n)),
h)
) ¢ (m:N;n:N;IdZ(ztimes (neg(m) ,neg(n)),

zz) )Empty (]
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lemmcancell :

lemmcance
lemmcance
case y of

end
lemmcance
case y of

end

lemmcancel?2

ztimcanlft

(x:Z;y:Z;1dZ(ztimes (x,y) ,2zz) ; Isnotzz(x)) IdZ(y,z=z) l1I

11(zz,y,h,hl) = case hl of end
li(pos(n),y,h,hl) =

neg(nl) => case nzeroptn(n,nl,h) of end
pos(nl) => case nzeroptp(n,nl,h) of end
zz => id(Z,zz)

li(neg(n),y,h,hl) =

neg(nl) => case nzerontn(n,nl,h) of end
pos(nl) => case nzerontpz(n,nl,h) of end
zz => id(Z,zz)

= [a,blidtrans(Z,

zadd (ztimes(a, (b)) ,ztimes(a,b)),

zadd (" (ztimes(a,b)) ,ztimes(a,b)),

zz,

zaddsubstL(ztimes(a, (b)),
~“(ztimes(a,b)),
ztimes(a,b),
SnegztimesR(a,b)),

zadditinvL(ztimes(a,b))

) : (a:Z;b:Z)IdZ(zadd(ztimes(a, (b)),

ztimes(a,b)) ,zz) ]

= [a,b,c,h,hl]
uniqinv(a,b,
lemmcancell(c,
zadd(a,” (b)),
multsubs(zadd(ztimes(c,a),ztimes(c,  (b))),
zadd(ztimes(c,b) ,ztimes(c, (b))),
ztimes(c,zadd(a, " (b))),
zz,
zaddsubstL(ztimes(c,a),
ztimes(c,b),
ztimes(c,~ (b)) ,h),
SztimesdistL(a,~ (b),c),
idtrans(Z,
zadd(ztimes(c,b),
ztimes(c, (b))),
zadd(ztimes(c,~ (b)),
ztimes(c,b)),
zz,
zaddcommut (ztimes(c,b),
ztimes(c, (b))),
lemmcancel2(c,b))),
h1)
) : (a:Z;b:Z;c:Z;
IdZ(ztimes(c,a),ztimes(c,b)) ;Isnotzz(c)) IdZ(a,b)
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C The integral domain formed by (7, zadd, ztimes)

idreflZ = idrefl(Z) :(x:Z)Idz(x,x) []
idsymmZ = idsymm(Z) : (x,y:Z;IdZ(x,y))IdZ(y,x) []
idtransZ = idtrans(Z) : (x,y,z:Z;IdZ(x,y);I1dZ(y,z))IdZ(x,z) []

onenotzero = lambda(IdZ(one,zz) ,Empty,posnotzz(0)) : not(IdZ(one,zz)) []

zaddident = [x]And_intro(IdZ(zadd(x,zz),x),
Id(Z,zadd(zz,x),x),
zaddO (x),
idrefl(Z,zadd(zz,x))
) : (x:Z)And(IdZ(zadd(x,zz),x),I1dZ(zadd(zz,x),x)) []

zaddinv = [x]And_intro(IdZ(zadd(x,~(x)),zz),
1dZ(zadd (" (x),x) ,zz),
zadditinvR(x),
zadditinvL(x)
) : (x:2)And (1dZ(zadd (x,” (x)) ,2z2) , 1dZ(zadd (" (x) ,x),2zz)) []

IntdomZ is {S := Z;R := IdZ;

refl := idreflZ;symm := idsymmZ;trans := idtransZ;

op := zadd;opcong := zaddcong;unit := zz;assoc := Szaddssoc;
ident := zaddident; inv := ";opinv := zaddinv;comm := zaddcommut;
mult := ztimes;multcong := ztimescong;

munit := one;diff := onenotzero;massoc := Sztimesassoc;

mident := ztimunit;distlft := ztimesdistL;mcomm := ztimescomm;
mcancel := ztimcanlft} : Intdom []

The derived properties for Z

uniqinvZ = uniqinv{Intdomz} : (a,b,c:Z;
IdZ(zadd(a,b) ,zz);
IdZ(zadd(a,c),zz)
)YIdZ(b,c) []

uniqunitZ = uniqunit{IntdomZ} : (a:Z;p:(x:Z)IdZ(zadd(x,a),x))IdZ(a,zz) []

timeszeroZ = timeszero{IntdomZ} : (x:Z)IdZ(ztimes(x,zz),zz) []

nzdivZ = nzdiv{IntdomZ} : (a,b:Z;
IdZ(ztimes(a,b) ,zz);
not (IdZ(a,zz))
YIdZ(b,zz) []
distrZ = distr{IntdomZ} : (x,y,z:Z)IdZ(ztimes(zadd(x,y),z),

zadd (ztimes(x,z) ,ztimes(y,z))) []
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