Dependent Record Types and
Formal Abstract Reasoning:
Theory and practice

Gustavo Betarte

Department of Computing Science
Chalmers University of Technology and
University of Goteborg

S-412 96 Goteborg, Sweden.

A Dissertation for the Ph.D. Degree in Computing Science
at the University of Goteborg.

Department of Computing Science
S5-412 96 Goteborg, Sweden.

ISBN 91-7197-601-9
Goteborg, 1998.

ABSTRACT iii

Abstract

This work contains investigations on the formal correctness and use of an exten-
sion of Martin-Lof’s type theory with dependent record types and subtyping. We
put forward the adequacy of dependent record types as a natural type theoretic set-
ting for expressing the notion of abstract data type — in particular we explore the
formal representation of systems of algebras — and for the modular development of
proofs. By virtue of the mechanism of subtyping available, in addition, it is possible
to reutilize code that has been developed for a certain system when reasoning about
any other system that conforms to an specialization, or extension, of it. We study
the problem of the mechanical verification of the forms of judgement of the extended
theory and the outcome is a proof checker that provides assistance in the use of the
language of the calculus for the formal development of proofs. The algorithm of
type checking, which constitutes the logical heart of the implemented system, is de-
veloped for a particular reformulation of the extension. This latter calculus, which
is also presented and analysed in this work, incorporates the notion of parameter
to stand for that of a free variable of a certain type. We present some experiments
on the formalization of algebraic constructions that have been carried out using the
proof checker

iv

ACKNOWLEDGEMENTS v

Acknowledgements

[am deeply indebted to Bjorn von Sydow, my supervisor. He has always been
there for me, enlightening, supportive and patient. I have a profound respect for
him and I admire his capacity as a computing scientist. The conception, elaboration
and final writing of this thesis immensely benefited from Bjorn. I have been very
fortunate to have him as my advisor, he has also been a caring friend and a good
comrade.

[am most grateful to Bengt Nordstréom, who opened the doors of the Pro-
gramming Logic group to me. It has been a privilege to partake in the research
environment he has greatly contributed to create and develop.

The influence of Alvaro Tasistro, Tato, in my research education has been per-
manent. He motivated my interest in type theory and taught me to understand it,
he also created the subject on which this thesis concentrates. To work with him
has been an extremely enriching experience. Besides, Tato together with Ana Bove,
Daniel Fridlender, Verdnica Gaspes and Nora Szasz are dear friends with whom
I shared many enjoyable moments during all these years we have been living in
Goteborg.

I want to thank the members of my supervision committee, Thierry Coquand
and Jan Smith, for their comments and advice regarding this work.

Many people have contributed to this thesis through fruitful discussions or by
reading and commenting previous versions of it. Special thanks to Peter Dybjer,
Daniel Fridlender, Verénica Gaspes, Christine Paulin-Mohring, Henrik Persson and
Alvaro Tasistro.

To work at this Department has definitely been a very challenging and pleasant
experience. The academic environment is thought-provoking, based on solid scien-
tific criteria and friendly. This is complemented with the work of many people who
take care of us with great efficiency and a nice disposition. I specially want to thank
Marie Larsson, who is also a very good friend, Christer Carlsson and Hans “Hasse”
Hellstrom, for all their help. Among the people that work at the Department I have
found very nice persons that also become good friends. Thanks to all of them for
making my stay here even more comfortable.

During all these years in Go6teborg [have never stopped feeling a member of
InCo, the Department of Computing Science at Universidad de la Republica in
Montevideo. [am certainly indebted to Juan José Cabezas, his academic vision
sparked and stimulated the attitude that eventually led many of us to come to
different places to pursue our research education. I want to express my gratitude to
all my friends from InCo, who have helped me in so many occasions. Special thanks
to Cristina Cornes and Juan José Prada, for being so cheerful and supportive. I had
the opportunity of visiting InCo many times in these last years, and some of these

vi
visits were financially supported by the Uruguayan councils of scientific research,

PEDECIBA and CONICYT, to which I am grateful.

Finally, I want to acknowledge the constant support and loving care that I have
received from my family and friends in Uruguay.

Contents

Chapter 1. Introduction

Chapter 2. Doing abstract algebra in type theory extended with
dependent record types and subtyping

Introduction

Representation of systems of algebras in type theory

Boolean Algebras and DeMorgan’s laws formalized

The extension

Ll

Chapter 3. Type checking: informal explanations and discussion
1. Type checking in the original theory
2. Type checking in the extended theory
3. Towards an implementation of the algorithm

Chapter 4. Formulation of the extended theory with parameters
Introduction

The category of expressions

Forms of judgement

Rules of inference

Weak head reduction

Basic meta-properties of the calculus

SRRl

Chapter 5. The proof checker
Introduction

The system

The type checking algorithm
Correctness of the algorithm
Implementation of the proof checker

Otk Lo

Chapter 6. Applications: Integral domains and Cayley’s theorem
1. Introduction
2. Integral domains
3. Transformations and Cayley’s theorem

Chapter 7. Related Work and Conclusions
Related work
Conclusions and further work

Bibliography

vii

101
101
102
106

113
113
117

119

viii CONTENTS

Appendices 123
A - Category of expressions, substitutions and properties 125
B - The calculus 133

CHAPTER 1

Introduction

The work we present in this monograph was originally motivated by a devel-

opment of the formal representation of the arithmetic of integers using the proof-
assistant ALF [Mag95]. There we study, in the first place, an inductive formulation
of the mentioned set, which we denote by Z, and provide the formal proofs that it
constitutes an integral domain. A natural next step was to investigate the possibil-
ity of giving a formal account inside type theory of the algebraic theory of integral
domains, write down proofs of properties that can be derived from its postulates and
transfer those results to our implementation of the concrete integral domain Z. This,
in turn, was accomplished by making use of the notion of context and substitution
as implemented in the mentioned system:
Let ID be a context where assumptions have been introduced to the effect that a
certain set and binary operations on that set form an integral domain. To formally
reflect that a property, which is formally expressed by the type ®, is valid for all
integral domains, we then construct a proof object ¢ of type ® under the context
ID. On the other hand, once a system of algebras has been given a representation in
terms of a particular context I', for stating that a particular construction conforms
a concrete instance of that system we introduce a substitution, also as implemented
in ALF, for I'. Thus, if we have constructed a proof like the one described above,
formally represented by the judgement ¢ : ®[ID], and 7y, is a substitution for the
context ID, we can obtain that ¢y, : ®v,. In words, if we have a proof that & is
a property valid for all integral domains, and we know one such structure, then we
also have a proof of the property for the latter, namely, it is the object ¢y ,.

This work has been reported in [Bet93] and is considered to be a complementary
part of the one we shall introduce here.

We, however, found the use of contexts for the formal representation of systems
of algebras a quite limited practice. When we started developing a little more in-
volved algebraic constructions than the ones needed for the work described above,
like defining the notion of an isomorphism between groups for instance, some dis-
advantages of this approach emerged rendering the formalization task, and the re-
sults, quite unsatisfactory. This led our investigation to considering alternative type
theoretic mechanisms better suited for the representation of abstract theories and
modular development of proofs. We first investigated an extension of Martin-Lof’s
logical framework [Mar87, NPS89] with dependent pairs (also called ¥ types in
the literature). A type checking algorithm was implemented for this extension and
some case studies were developed using it. Most of the difficulties present in the
“context approach” were overcome by using pairs. There remained, however, some
drawbacks concerning, in particular, the possibility of making incremental definition

2 1. INTRODUCTION

of theories and the reutilization of proofs. We then turned our attention to the study
of an extension of Martin-L&f’s logical framework with dependent record types and
subtyping. This extension has been proposed by A. Tasistro and is described in
[Tas97, BT97]. Hereafter, we shall refer to it as the extended theory or sometimes
plainly as the extension.

We now proceed to describe how records and subtyping can act as the formal
counterpart to algebraic constructions consistently used in the informal practice.

Let us consider the problem of formalizing in type theory the notion of a set
and an equivalence relation on it. The name Setoid has elsewhere been used for this
notion. Just for the sake of presentation we shall consider setoids as constructed
from a still simpler notion, namely that of a set with a binary relation on it. So
we start by introducing just binary relations on sets and will obtain the formal
definition of setoid by enriching the previous notion with further structure, namely,
the components that establish that the relation is reflexive, symmetric and transitive.

The system of types of the original formulation of the theory is constituted, in
the first place, by the type Set, the type of inductively defined sets. Then, any
individual set A, gives rise to the type of its elements. Type families are expressions
of the language that when applied to individuals of the appropriate type give rise
to a type. Moreover, it is possible to introduce arbitrary families of types in the
formal language. One such family can be constructed by an operation of abstraction,
denoted as [z]c, which binds the occurrences of the variable z in the type a. Finally,
there exists a mechanism for the formation of (dependent) function types: if « is a
type, and 3 is a family of types indexed by objects of type a then a—(is also a
type. The application of an object f of this latter type yields an object fa of type
Ba, if a is an object of type a.

The understanding of propositions as inductively defined by their introduction
rules, as explained and justified in [Mar87], allows us to grasp propositions as sets,
and thereby, their proofs as elements of those sets. There is, in principle, no formal
distinction in the language of the theory between the type of sets and the type
of propositions. Further, in the presence of families of types, this interpretation
of propositions can be transfered to propositions about generic individuals. For
instance, given a set A, A—[z](A—[y|Set) is the type of binary relations on A.
Then, if R is such a relation, for each element x of A we have a set Rxx. Since each
set determines a type, we can form here a family of types over A, namely [z]Rzz.
Then A—[z]Rxx is the type of proofs that R is reflexive. This function type is
usually written as (x : A)Rzx, that can be read: “for any x in A, Rxx”.

As another example, consider the type (z,y : A)Rry— Ryx. A function of this
type will produce a proof of Ryx given any two elements xz, y of A and a proof of
Rxy. In virtue of the given explanations, this is the same as proving that if Rzxy
holds then so does Ryx, for arbitrary x, y in A, i.e. the symmetry of R.

So now let us turn our attention to sets with binary relations on them. We shall
call this notion just binary relation and define it to be a pair (S,~) where S is a set

1. INTRODUCTION 3

and ~ a binary relation on S. Thus, were we to define the type of binary relations,
it should be introduced as a type of tuples.

Now, regarding the mechanisms of type formation we have described above the
only way to get tuple types in type theory is to introduce sets of tuples. But consider
now binary relations as defined above. If S can be any set, then the type of binary
relations cannot itself be a set or it would be allowed to form a part of some of
its own elements. Circular constructions of the latter kind are not allowed in the
predicative language of type theory.

Another possibility would be to restrict S in the pair (S, /) to be an element
of a previously constructed set of sets that we call a universe. Then the type of
setoids could be introduced as a set, obviously then not belonging to the universe.
But now the universe encloses a fixed number of set constructors. And we still want
to be able to introduce new set constructors, i.e. new sets that could be carriers of
setoids. For this, what we need is types of structures of which arbitrary sets may be
specified as components.

Dependent record types are just sequences of fields in which labels are declared as
of certain types: (Ly : aq,...,L, : a,). The type a;4; may depend on the preceding
labels Ly,...,L;. We could then introduce the type of binary relations on a set as:

BinRel : type
BinRel = (S : Set,~ : S—»S—Set)

Labels may participate in the formation of types in the same way as ordinary
variables or constants do. In order to avoid ambiguities they are syntactically dis-
tinguished from the latter. Here we use the font label. A type declaration like the
one just introduced is nothing but the explicit definition of a type.

Now we turn to consider the definition of setoid. In the extended theory the pos-
sibility of incremental definition is given directly by the rules of formation of record
types. This is formally stipulated as the iteration of the operation of extending a
record type with one more field, starting from the record type with no fields. Thus:

Setoid : type
Setoid = (BinRel,
ref: (z:S) Rz,
symm: (z,y:S)Rry— Ky,
trans: (z,y,2:S)Rry—>Ryz—>xr2)

This example shows how systems of algebras can be represented as record types:
in informal language algebraic structures are defined as tuples of elements satisfy-
ing certain properties. As was already illustrated, in type theory these properties
become in general function types. Therefore, to each property required by the def-
inition of a system of algebras there corresponds a field in the record type that
represents the system. Since proofs are objects, we can express this requirement
by making proofs actual components of the structures being defined. Formally,
then, the distinction between elements of a structure and proofs of the demanded
properties disappears.

4 1. INTRODUCTION

We have now seen one example of incremental definition of systems. Informally,
it would be stated thus: “A setoid is a set with a binary relation in which the latter
is an equivalence relation”. Still informally it is then natural to use directly that
every setoid is a set with a binary relation. In the formal language, this means that
an object of type Setoid has also the type BinRel, i.e. a form of polymorphism. Now,
both Setoid and BinRel are record types and it is naturally given in the definition
of record types that this form of polymorphism should be allowed.

As systems of algebras are represented by record types, the representation of a
concrete algebra corresponds to a record object of the type representing the system.
Record objects, as usual, are constructed as sequences of fields that are bindings of
objects of appropriate types to labels.

An interesting point is that once a derived property has been proved for a system,
any concrete algebra for that system should also have this property. In our case,
proofs are represented as (functional) objects. Thus, a natural way of obtaining
instantiation of properties is by application of the proof object to the representation
of the concrete algebra. Let us illustrate this with a simple example.

Suppose that we have introduced the type Group as a record type that repre-
sents this system of algebras and in addition we have available an object cancelL
of type (G : Group) (z,y,2: G.S) G.~ (G.ozzx) (Gozy) — Gxy . Thus in
words, cancell, proves that the operation of the group G is left cancellative.

Suppose, now, that we have defined the set Z of integers and the propositional
equality =z on it, as usually done in type theory. Furthermore, we also intro-
duced the binary operation +; the unary operation ~z and the distinguished
element 0z. Suppose then that we have proved all the properties characterising
(Z,=z,+z,~z,0z) as a group (a formalization of these proofs in type theory is
presented in [Bet93]). Thus, we could define the algebra Groupy to be:

Groupyz : Group
G?”OUpZ - (Szzaz::Za s ,0 =4z, -,€e :0Z7 Tty — Y2 >

The labels o, e; and — correspond to the operation, the unit and the inverse function
of the group, respectively. So, now we could apply the function cancelL to the record
object Groupy to obtain the proof that +, is cancellative as follows

cancell+yz : (v,y,2: Z) =z (+z 22) (+22y) > =z 2y
cancelL.+; = cancelL Groupy

We can discern in what we have described different facets of the research con-
nected to type theory. Firstly, its use, as a formal language, to carry out construc-
tive mathematics. There is also the activity of understanding the theory itself, and
moreover, its possible extensions. There exists, in addition, one more aspect to be
recognized. Type theory is a formal logic, therefore the assertions about mathe-
matical objects that can be expressed in terms of the forms of judgement of the
theory can mechanically be verified to hold. This has given rise to a whole area of
research concerned with the study, design and implementation of systems that pro-
vide assistance in the use of the language. In this direction, we have implemented a

1. INTRODUCTION 5

proof checker that verifies the formal correctness of the judgements of the extended
theory. The outcomes in connection with this latter subject form what we consider
the main contribution of this work.

The structure of this monograph

The next chapter summarises to a great extent the mainstream of the investi-
gations that constitute this monograph. We start by giving a concise description
of type theory and its use for carrying out constructive mathematics. In particu-
lar we focus on the formalization of abstract algebra. We concentrate on a simple
case-study, namely, a little portion of the theory of Boolean algebras. Then, we
give a succinct description of the proof checker that has been implemented and also
of the form of expressions and declarations that it reads. Thereafter, we present
(portions of) the formal code, which was checked using the system, representing the
algebraic constructions in question. The intension is there to illustrate the features
we consider relevant in connection with records and subtyping. This first part of the
chapter has almost literally been taken from [Bet97]|. Finally, we give a detailed
account of the extended theory, as originally presented in [Tas97, BT97].

In chapter 3 we give an informal discussion concerning the design of the type
checking algorithm for the extended theory. As it can be regarded as a quite direct
extension of the one for the original theory, we then start by describing this latter
algorithm. In addition, this will bring into attention the problems posed by the
checking of unlabeled abstractions. This is important because those problems are
carried over to the procedures for checking the typing judgements of the extended
theory. In another direction, even though still in connection with the checking of
abstraction operators, we then confine attention to the treatment of free names. We
then motivate the use of parameters, in the sense of [Coq91, Pol94a], to stand for
the generic values (or free variables) of the various types. As a consequence of this
choice, thus, as we are interested in obtaining a final formulation of the type checking
algorithm such that it can be easily proven to be correct, we set ourselves to give a
formulation of the extended calculus that incorporates the notion of parameters.

The resulting calculus is then presented in chapter 4. The complete formalization
of the proof rules that it embodies is presented following the syntactico-semantical
method used by P. Martin-Lo6f in [Mar84], and thenceforth consistently exploited in
[Mar87, Mar92, Tas97|. In principle, there is no need for introducing a notion of
reduction for understanding the computational meaning of the calculus, it naturally
emerges from the use of definitional equality, which finds its formal counterpart in
judgemental equality. Nevertheless, regarding implementation issues, it is convenient
to make explicit a procedure that performs the computation of an expression to some
normal form. This latter, in turn, can be grasped to be the value of the expression.
Thus, we introduce the concept of weak head normal form and define a weak head
reduction relation over the expressions of the calculus. Then we prove some meta-
theoretic results concerning the interplaying of this relation and the judgements of
the calculus. Particularly relevant concerning the correctness of the type checking
algorithm is the result establishing a sort of subject reduction property.

6 1. INTRODUCTION

We then in chapter 5 concentrate in the design, final specification, implemen-
tation and correctness of a proof checker, whose logical heart is a type checking
algorithm for the forms of judgement of the calculus presented in the previous chap-
ter. In doing this, we maintain the spirit of the informal presentation given in
chapter 3. After explaining the procedures that verify the correctness of the various
forms of declaration, the input to the system, we then first present the algorithms
for the judgements of the original theory and then we show how they are modified to
cope with the judgements of the calculus extended with record types and subtyping.
We then give an informal proof of the soundness of the algorithm with respect to the
calculus in question. In order for this chapter to be an all-embracing presentation of
the system we end it up giving a flavour of its implementation, which was developed
using the language Haskell [Pet96].

In chapter 6 we present some of the experiments we have done concerning the
formalization of abstract algebra using the proof checker described in the previous
chapter. We show first (parts of) the reformulation of the results on integral domains
we presented in [Bet93]. The representation of the system integral domain is now
given in terms of record types. The incremental definitions of systems of algebras
are directly accomplished by using record extension. We also illustrate a simple
application of subtyping, namely, the reutilization of proofs developed for groups
and commutative rings when reasoning about integral domains. Then we highlight
the constructions we needed to develop for the formal representation of Cayley’s
theorem for group theory, that is to say, that any abstract group is isomorphic to a
group of permutations. The formal proof of this theorem per se is not a significant
contribution. Nevertheless, it allows to illustrate the adequacy of the extended the-
ory for building up a little more involved algebraic constructions, like isomorphisms
between groups, the construction of groups of transformation and permutations over
a given space, and morphisms between (these) groups. The corresponding represen-
tation of most of these notions using contexts was either inadequate or, in some
cases, impossible to achieve.

Finally, in chapter 7 we comment on the connections with related works, give
some final conclusions and consider possible further work.

CHAPTER 2

Doing abstract algebra in type theory extended with
dependent record types and subtyping

1. Introduction

We shall use an extension of Martin-Lof’s theory of logical types [Mar87] with
dependent record types and subtyping as the formal language in which constructions
concerning systems of algebras are going to be represented.

The original formulation of Martin-Lof’s theory of types, from now on referred to
as the logical framework, has been presented in [NPS89, Tas93b, CNSvS94|. The
system of types that this calculus embodies are the type Set (the type of inductively
defined sets), dependent function types and for each set A, the type of the elements
of A.

The extension of the logical framework with dependent record types and sub-
typing is presented in [BT97, Tas97]. Dependent record types are just sequences
of fields in which labels are declared as of certain types. These types, in turn, may
not only depend on objects but also on labels. How this dependency is obtained is
formally introduced in the rules for record types formation that we present in sec-
tion 2.3. Record objects, as in programming languages, are sequences of assignments
of objects of appropriate types to labels. Each of these objects can be accessed by
selecting the corresponding label of the record object. The mechanism of subtyping
or type inclusion introduced is, in the first place, the one naturally induced by record
types. However, once record inclusion is formally stipulated it is also required that
rules of subtyping have to be given for the rest of the type formers.

In [BT97] is illustrated the use of record types and subtyping for the formaliza-
tion of systems of algebras by developing a formal definition of group as a record
type. A very simple application of subtyping is there provided as well. In this chap-
ter, we also focus on a simple example: We start out from binary relations, and by
successively enriching previously defined notions with further structure, we finally
define a Boolean algebra as a distributive lattice with additional structure. Then, we
develop a little piece of the theory of Boolean algebras concerned with the proof of
DeMorgan’s laws. This example will allow us to illustrate what we consider to be
the relevant features of the extended theory.

The rest of the chapter proceeds as follows: in the next section we give a brief
review of type theory and how it can be used to formally represent mathematical
constructions. Then we discuss the different alternatives that emerged when trying
to represent algebraic constructions in type theory. In particular, we focus on the
notions of contexts, Y-sets and dependent pairs, intending at the same time, to

8 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

motivate the use of dependent record types as an appropriate mechanism for the
formulation of types of tuples. In section 2.3 we summarize the features introduced
by the extension of the framework with record types and subtyping. This will allow
for better understanding of the formalization of the case study we present.

In section 3.1 we present the informal formulation of the algebraic notions with
which we are concerned. These are literally taken from text books on lattice theory
and universal algebra. In section 3.2 we go over the syntax of the input expressions
and forms of declaration that the implemented proof checker reads. We proceed then,
in section 3.3, presenting the formal constructions developed in order to formalize the
case study at hand. We do not provide the whole code involved in the formalization
but rather concentrate on the fragments that we consider most interesting, that is to
say, those that illustrate how algebraic constructions commonly used in the informal
practice are reflected in the formal language.

Finally, in section 4 we present a detailed account of the extension of Martin-
Lof’s logical framework with dependent record types and subtyping. This extension
was first presented by A. Tasistro in the TYPES workshop held at Nijmegen in 1993
and also reported in a draft paper [Tas93a|. This formulation of the calculus was
subjected to some modifications and its final version is included in Tasistro’s thesis
[Tas97] and in the reference [BT97]|. The content of section 4 is almost literally
taken from the latter, except for some remarks we have introduced in order to help
the understanding of the work that follows this chapter.

2. Representation of systems of algebras in type theory

We start this section by giving a brief description of type theory as formulated
using the theory of types as logical framework. For a more comprehensive presen-
tation we refer to [NPS89, CNSvS94, Tas93b].

2.1. The logical framework. The system of types of the original formulation
of the theory is constituted, in the first place, by the type Set, the type of inductively
defined sets. Then, any individual set A, gives rise to the type of its elements. This
latter type is denoted in [NPS89] as El(A), where El is a (primitive) family of
types over the type Set. Type families are expressions of the language that when
applied to individuals of the appropriate type give rise to a type. Moreover, it is
possible to introduce arbitrary families of types in the formal language. One such
family can be constructed by an operation of abstraction, denoted as [z]c, which
binds the occurrences of the variable x in the type «. In what follows, we shall omit
the family El in the notation and write just A for both the object of type set and
the type that it determines. Finally, there exists a mechanism for the formation of
(dependent) function types: if « is a type, and [is a family of types over the type
a then a—f is also a type. The application of an object f of this latter type yields
an object fa of type (a, if a is an object of type «.

The understanding of propositions as inductively defined by their introduction
rules, explained and justified in [Mar87], allows to grasp propositions as sets, and
thereby, their proofs as elements of those sets. There is no formal distinction in
the language of the theory between the type of sets and the type of propositions.

2. REPRESENTATION OF SYSTEMS OF ALGEBRAS IN TYPE THEORY 9

Further, in the presence of families of types, this interpretation of propositions can
be transfered to propositions about generic individuals. For instance, given a set A,
A—[x](A—[y|Set) is the type of binary relations on A. Then, if R is such a relation,
for each element x of A we have a set Rxx. Since each set determines a type, we can
form here a family of types over A, namely [z]Rzz. Then A—[z|Rzx is the type of
proofs that R is reflexive. This function type is usually written as (x : A) Rzx, that
can be read: “for all x in A, Rxa”.

As another example, consider the type (x,y : A)Rry— Ryx. A function of this
type will produce a proof of Ryx given any two elements xz, y of A and a proof of
Rxy. In virtue of the given explanations, this is the same as proving that if Rzxy
holds then so does Ryx, for arbitrary x, y in A, i.e. the symmetry of R.

2.2. Formal abstract algebra. In [Bet93] is presented a formalization of the
arithmetic of integer in Martin-Lof’s type theory. The result of the whole work,
which was carried out using the proof assistant ALF [Mag95], amounts to the
formalization of (an inductive definition of) Z, the set of integers, the arithmetical
operations + and x and the proofs of the properties establishing that the algebra
formed by that particular representation of Z, 4+ and * is an integral domain.

In addition, some of those proofs were also developed for a formalization of Z
as a quotient set. As expected, due to the different nature of the respective repre-
sentations of the set and therefore the corresponding formulation of the mentioned
operators, proofs of properties like associativity of the operation + followed quite a
different pattern of reasoning in each case. This provided us with interesting insights
about the task of formalizing mathematics in type theory. Furthermore, having in
mind the properties that can be derived from the postulates of an integral domain,
it also motivated the formulation of an abstract notion of algebraic system which
could be used to reason about the properties satisfied by the algebra of integers
independently of the chosen representation.

To formalize the notion of what an algebraic structure is, whose components are
sets and n-ary operations on those sets which satisfy specified axioms, we chose the
notion of context as implemented in ALF: let 1D be a context where assumptions
have been introduced to the effect that a certain set and binary operations on that
set form an integral domain. To formally reflect that a property, which is formally
expressed by the type @, is valid for all integral domains, we then construct a proof
object ¢ of type ® under the context ID.

On the other hand, once a system of algebras has been given a representation in
terms of a particular context [, for stating that a particular construction conforms
a concrete instance of that system we introduce a substitution, also as implemented
in ALF, for I'.

Thus, if we have constructed a proof like the one described above, formally
represented by the judgement ¢ : ®[ID], and 7, is a substitution for the context
ID, we can obtain that ¢y, : ®v,. In words, if we have a proof that ® is a property
valid for all integral domains, and we know one such structure, then we also have a
proof of the property for the latter, namely, it is the object ¢v,,.

10 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

Using these mechanisms we managed to reflect some of the abstract reasoning
usually carried out when doing algebra, and moreover, to transfer those results to
the (representation of) concrete algebras.

However, this use of contexts and substitutions as the support for developing
formal algebra, could not be further exploited. As soon as one wants to reason
about constructions like morphisms between algebraic structures, for instance, the
limitations imposed by the very nature of contexts render the process of formal-
ization quite a cumbersome task. Furthermore, notions like that of a functor that
when applied to a group returns its underlying monoid, when both systems are rep-
resented as contexts, cannot be expressed as an object in the formal language of
ALF. This is in accordance, however, with the fact that contexts are not types. We
refer to [Bet93] for a more detailed discussion on this.

We turned then to investigate alternatives which, most importantly, would allow
us to express systems of algebras as types, and therefore, concrete algebras as objects
of a certain type. In particular, thus, the definition of a functor as the one mentioned
above would conform as to the one of a function between the corresponding types.

We found an adequate starting point in the pioneering work by MacQueen
[Mac86| on the explanation of the notion of module in terms of a ramified sys-
tem of dependent types with X-types. These types, in turn, are there understood as
presented by Martin-Lof in, for instance, [Mar84]. One such type, usually written
down as Yz € A.B(x), corresponds to the disjoint union of the family of types B(z)
with = ranging over the type A. The elements of this type are pairs of the form
(a,b) such that a is an object of type A and b has type B(a). Thus, the type of
the second component may depend on the first component of the pair. This same
understanding of modules, or more precisely of abstract data type in this case, as
formally represented by Y-types is also proposed in [Luo88| where an extension
of the Calculus of Constructions [CH88] with X-types (XCC) is presented. As a
motivating example Luo illustrates the adequacy of this latter calculus to express
algebraic constructions.

In the context of Martin-Lof’s set theory, a particular methodology for the rep-
resentation of the above understanding of the notion of module or abstract data
types is proposed in [NPS89|.

A module is in that work grasped as a tuple (A, As, ..., A,), where some A;
are sets and some are elements and functions defined on these sets. An example of
the application of these notions to formalize algebra could be the definition of group
as the tuple:

<G7 *, U, inv, Pass; Punit; va>

where G isaset, x € G X G — G, u € G, inv € G — G and P, Punir and Py,
express the postulates of groups. To be a group can then be understood as to be an
element of the following set:

(X Gel)
(E+xeGxG—G)
(X u€q)
(X inv e G — G)

2. REPRESENTATION OF SYSTEMS OF ALGEBRAS IN TYPE THEORY 11

(Ilz,y, 2 € G)
[*(I, *(ya Z)) =q *(*(:L', y): Z)] X
[#(z,u) =¢] X
[x(x,inv(z)) =¢ ul

where U is the name for the set of the small sets, as defined in [NPS89]. Notice
that it is assumed that the set G is equipped with a (propositional) equality.

The need for introducing the set U corresponds, in the first place, to the fact
that type theory is a predicative theory, no quantification is allowed over a collection
of elements (in this case Set) when defining a particular element of that collection.
However, we have to formally express the intention that the first component of (the
tuple that represents) a concrete group is indeed a set.

This way of formalizing algebraic structures, however, has in our opinion some
drawbacks. In the first place, once a set S is defined, in order to be able to express
that this set is the carrier of a particular group it has in addition to be an element of
the set U. In other words, we must provide the code, and define the corresponding
decodification, that allow us to grasp S both as a set and as an element of the set U.
Now, sets in type theory have to be inductively defined, so the previous procedure
amounts to say that when it comes to define the notion of group as is done above
the set of carriers of groups is already closed. This is clearly a more restricted
understanding than the one that asks for carriers of groups just to be sets, where
this remains an open notion.

In order to achieve a formal representation of systems of algebras as (tuple)
types, and therefore classifying a collection of objects that is in principle open, we
considered an extension of Martin-Lof’s logical framework with a mechanism for
forming types of dependent pairs.

One possible way of accomplishing this could be extending the calculus with the
following rules:

atype (B : a—type atype B : a—type a:a b: fa
(c; B) type (a,0) : (o B)
p:(e;0) _pi(ef)
mp -« T2p - ﬁ(ﬂ'lp)

The first two rules say what has to be known in order to introduce a type of de-
pendent pairs and how objects of one such type are constructed, respectively. The
last two rules, usually called of projection, express (part of) the meaning of being
an object p of type (a;3); that its first projection is an object of type « and the
second one an object of the type that results from applying 3 to the first projection
of p. There must also be rules of equality that conform to the justification of the
rule of object construction above.

Observe that now the type of groups defined above can be reformulated to require
from a carrier of a group only to be an object of type Set, which as already mentioned,
is the (open) type of inductively defined sets. And the formulation of the notion of
group is still a predicative one.

12 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

A type checking algorithm for the logical framework extended with dependent
pairs was implemented and some small-size case studies were developed using it.
In particular, we focused on transferring the results on integral domains obtained
using contexts into a formulation using dependent pairs. Now, in some of the proofs
developed using the context approach, we could formally express the following rea-
soning: once we succeed in proving a property of monoids we can directly use that
proof as one of groups. This was naturally reflected in the formal language by the
simple reason that the context Group was defined as to be an extension of the con-
text Monoid. Thus, “by thinning”, any proof developed under the latter context
is also valid under the first one. However, this is not the case once the systems of
algebras are represented as dependent pairs. In order to be able to reuse the proof
obtained for monoids, that now are objects, one must first apply a function that
given an object of type Group yields the object that forms the underlying monoid.
Actually, this function can be grasped as a coercion from groups to monoids. There
is, in principle, no possible way to obtain in a direct manner, in the formal language
, that any object of type G'roup can also be considered as an object of type Monoid.

The combination of X-types and mechanisms for introducing coercions between
types, which once they are declared can be left implicit, has received an increasing
amount of attention in recent years. From an original proposal put forward by
Aczel [Acz94], where a notion of class and method for predicative type theories is
proposed, type theoretical explanations and formulations of the notion of coercion
[Bar95, Luo96] have been laid down. The implementation of coercion mechanisms
and their use for the formalization of algebraic constructions has been reported in
[Bai9T7].

Close enough to this approach is the work presented in [Sai97], which is also an
adaptation of the ideas proposed by Aczel, where algebraic systems are represented
in terms of class constructors. We shall more extensively comment on this in the
chapter on related work.

What we in the following sections intend to do, instead, is to motivate the
use of dependent record types as the formal counterpart to the notion of a system
of algebras, and more in general, Martin-Lof’s logical framework extended with
dependent record types and subtyping as the formal language to carry out algebraic
constructions.

2.3. Record types. In order to achieve a formal definition of Boolean algebra
we will start by introducing the notion of a set with an equivalence relation on it.
The reason to have this as the most basic kind of structure is that in formalizing
systems of algebras it appears natural to require the relation informally denoted by
the equality symbol =~ to be given explicitly as a component of the system being
defined. We have already introduced this basic structure, which we called Setoid.
Then we will proceed by successively enriching the type of setoids with further
structure, obtaining definitions for lattice and distributive lattice, until we get the
formalization corresponding to Boolean algebras.

2. REPRESENTATION OF SYSTEMS OF ALGEBRAS IN TYPE THEORY 13

Dependent record types are just sequences of fields in which labels are declared
as of certain types:

(Ly:aq, ., Ly o).
In dependent record types, the type «;y; may depend on the preceding labels
Ly,...,L;. More precisely, «;.1 has to be a family of types over the record type

(Ly :aq,...,L; : ;). This is formally expressed by the following two rules of record
type formation:

p : record-type (3 : p—type
() : record-type {(p, L:3) : record-type

L fresh in p

We make use of the judgement 3 : p—type, which should be read “f is a family of
types over the type p”, to formally reflect that families of types are associated to
labels in the formation of record types.

In the case of record types generated by the second clause, L:f is a field and
L a label, which we say to be declared in the field in question. Labels are just
identifiers, i.e. names. In the formal notation that we are introducing there will
actually arise no situation in which labels can be confused with either constants or
variables. Notice that labels may occur at most once in each record type. That a
label L is not declared in a record type p is referred to as L fresh in p. Finally, that
these are dependent record types is expressed in the second clause, in the following
way. The “type” declared to the new label is in fact a family 3 on p, i.e. it is allowed
to use the labels already present in p. In fact, what /3 is allowed to use is a generic
object (i.e. a variable) r of type p. Then the labels in p will appear in [as taking
part in selections from r. Here below we show how the type of binary relations on
a given set is formally written.

(((),S : [r]Set),~ : [r](x,y : r.S)Set).

For the sake of readability, however, in the notation that we are going to use in what
follows labels are allowed to participate in the formation of types in the same way as
ordinary variables or constants do. Then, they have to be syntactically distinguished
from the latter, in order to avoid ambiguities. We do this by writing labels in
a distinguished font. This is harmless, since it is possible to give a mechanical
procedure to translate from the informal notation, where labels are singled out by
means of a particular notation, to the corresponding formal representation involving
families of types.

We can now write the type of binary relations on a set as:
(S : Set,~ : S—S—Set).

We have called this type BinRel.
Record objects are constructed as sequences of fields that are assignments of
objects of appropriate types to labels:
r:p e:fr

e L fresh in p

00 (r,L=e): (p, L:f)

14 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

For instance, if N is the set of natural numbers and Idy the usual propositional
equality on NV, then the following is an object of type BinRel:

(S=N,r~ = Idy).

That two objects r and s of type (L, : ay, ..., L, : a;,) are the same means that the
selection of the labels L;’s from r and s result in equal objects of the corresponding

types.

Subtyping. The formalization of the example that we shall study introduces
several types of algebraic structures by the procedure of extending previously defined
types with further components and axioms. Eventually, we formulate the definition
of Boolean algebra as that of a distributive lattice together with a unary operation ~,
two nullary operations 0 and 1 and the corresponding axioms for universal bounds
and complementation.

We will obtain a formal definition of the system that sustains in a natural way
the usual informal reasoning associated to these latter concepts. For example, one
makes use in the informal language of the fact that any Boolean algebra is also
a distributive lattice; a property ¢ valid for all lattices is directly used as one of
Boolean algebras when reasoning about properties of this latter system. In the
formal language this is obtained by the (inclusion) polymorphism induced by record
types : given a record type p;, it may be possible to drop and permute fields of
p, and still get a record type p,. If that is the case, any object of type p; also
satisfies the requirements imposed by the type p,. That is, given r : p;, we are
justified in asserting also 7 : p,. This is so because what is required to make the
latter judgement is that the selections of the labels declared in p, from r are defined
as objects of the appropriate types. And we have this, since every label declared in
po is also declared in p; and with the same type.

In the formal language this idea is accomplished by introducing two new forms of
judgement, namely, oy C «y for types ay and s and 3 C 3, : a—type for families
B3, and (3, indexed by the type . The reading of these forms of judgement is as
follows: ay is a subtype of a, also referred sometimes as of type inclusion, and 3, is
a subfamily of [3,.

In the case of record types, the condition for p; C p, is in words as follows: for
each field L : 3, in p, there must be a field L : 3, in p; with 8, C 3, : p,—type.
We will show in section 4 that if L : 3, is a field of a record type p; then by the
subtyping induced on families of types (3; can be considered to be a family over p,;
and thereby the previous (informal) explanation makes sense.

The formal stipulation of this latter rule requires that rules of subtyping are
given for all the type formers of the language: Set is a subtype only of itself, and if
A and B are sets they are in the inclusion relation only if they are convertible. The
rule of subtyping for function types departs from the one usually presented in the
literature in that it also takes care of the dependencies.

We give a detailed presentation of the extended theory, with the corresponding
meaning explanations and justification of the rules of inference, in section 4.

3. BOOLEAN ALGEBRAS AND DEMORGAN’S LAWS FORMALIZED 15

3. Boolean Algebras and DeMorgan’s laws formalized

We now consider the formalization of a piece of the theory of Boolean algebras in
type theory extended with record types and subtyping. The definitions introduced
in the next section as well as the enunciation of some of the propositions are taken
from [BS81] and [Gra7l].

3.1. Informal presentation. There are two standard ways of defining lattices:
one is to grasp them as an algebraic system and the other is based on the notion of
order. Here, we shall follow the first approach.

DEFINITION 2.1. A nonempty set L, with an equivalence relation = defined on
it, together with two binary operations V and A (read join and meet respectively)
on L is called a lattice if it satisfies the following identities:

L1: (V) zVyryVaz
A zANyxyAx (commutative laws)

L2 :

> <

s ANYyAz)= (T AYy) Az (associative laws)

V
N zAhz=T (idempotent laws)

)
)
)
) zVr=rx
)
L4 :)
)

(
(
(
L3: (
(
(
(

V
A xzxzA(zVy) (absorption laws)

As is well known, it is in the very nature of the above definition that any property
® valid for all lattices is also valid if all occurrences of the operators V and A in
the formulation of the property are interchanged. The resulting property is called

the dual of ®. This observation can usually be found in text books enunciated as
follows

Duality Principle. If a statement ® is true in all lattices, then its dual is also
true in all lattices.

There is nothing profound in this principle, however it gives rise to one of the
most used methods of proof reutilization. Moreover, and particularly more conve-
nient for the task we have in mind, the above principle can be equivalently grasped
in terms of dual structures. That is to say, once we succeed in constructing a proof
¢ for a certain property ® of any lattice L it can also be read, if carried out on the
dual lattice of L, as a proof of the property dual to ®.

There are many properties that can be proved to be derivable from the postulates
(L1)-(L4). Here, however, we shall only enunciate the one that will manifest itself
to be important in the development below.

PROPOSITION 2.1. A lattice L satisfies the following property

Ifr~xzVyandx~x Ay then x = y.

16 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

From now on, an algebraic system S, whose carrier is the set S and whose
(finite) set of operations (or operation symbols) is {fi, ..., fi} shall be denoted by
(S, f1,.-., fr). We shall also use |S| to stand for the carrier set of the algebra S.

We now introduce the following

DEFINITION 2.2. A distributive lattice is a lattice which satisfies the following
(distributive) laws,

Dl: zA(yVz)=(xAy)V(xA2)
D2: zV(yAz)=(xVy) AxV2)
The theorem below makes explicit that it suffices to require one of the laws above
to be satisfied by a lattice L in order for it to be distributive.
THEOREM 2.1. A lattice L satisfies D1 iff it satisfies D2

DEFINITION 2.3. A Boolean algebra is an algebra (B, V, A, ~,0,1) with two bi-
nary operations, one unary operation (called complementation), and two nullary
operations which satisfies:

Bl: (B,V,A) is a distributive lattice
B2: (V) zVl1x

(A) A0
B3: (V) zV~r~ral

(A) zA~z

3.1.1. DeMorgan’s laws. To begin with we enunciate some propositions that any
Boolean algebra satisfies. In what follows B is used to stand for a Boolean algebra
and x and y are arbitrary elements of the carrier |B| of that algebra.

PROPOSITION 2.2.

i) if t Ay~ 0 then ~z =~z Vy

ii) ifzVy~1then ~x x~z Ay
Observe that they are dual propositions.

The following proposition can easily be proved using Proposition 2.2 and Propo-
sition 2.1.

PROPOSITION 2.3. Ifz Ay~0 andxVy=1 then ~x ~y

PrROOF. We can use that © A y =~ 0 and the first property in Proposition 2.2 to
obtain that ~x ~ ~x Vy. In a similar manner, from z V y ~ 1 and applying the
second part of that same lemma we get ~x ~ ~x Ay. Thus, as B is a lattice, we
can finally use Proposition 2.1 to get the desired conclusion. O

It can readily be verified that using this latter proposition and the postulates
B3, any Boolean algebra B satisfies that ~(~xz) &~ z, for all elements z of |B)|.

3. BOOLEAN ALGEBRAS AND DEMORGAN’S LAWS FORMALIZED 17
One more proposition is introduced before we turn to the laws with which we
are concerned in this section
PROPOSITION 2.4.
1) (xVy)A(~xA~y)x0
ii) (xVy)V(~zA~y) 1

Finally, then, we are ready to formulate and prove DeMorgan’s laws for Boolean
algebras

THEOREM (DeMorgan). Let B be a Boolean algebra, then for all elements x
and y of B,

i) ~(xVy) R~z A~y
i) ~(x ANy) =~V y

PrROOF. We show the proof of the first law. The second follows by duality.

Notice that we know, by Proposition 2.4, that B satisfies the following two propo-
sitions: (zVy) A (~x A~y) =~ 0 and (zVy)V (~z A ~y) ~ 1. Therefore, Proposi-
tion 2.3 can directly be applied to get that ~(z V y) &~ ~x A ~y. O

3.2. The proof checker. A script for the proof checker looks very much like
one for a functional programming language. The syntax of input expressions is given
by the grammar in Figure 2.1.

e u= x| c| [zle| erea] ()] (e1,L=ce3)| e.L
let x:ey=eyine|useer:eyine
€1—€9 | (61,L2€2>

FIGURE 2.1. Syntax of input expressions

The proof checker reads (non recursive) declarations of the following form:

T : type=«
F(z:a):type =
c(xytaq, ..., ot) x=¢e
with 7', F' and ¢ constant names, x a variable and e, a and «4,. .. ,q, belonging to

the language of expressions above.

The first one is called a type declaration. It allows to give an explicit definition
for the type a.

The second form of declaration is called a type family declaration. It expresses
the definition of the constant F as the type family [z]a; over the type a. The index
type has to be made explicit in order for the declaration to be type checked.

The third form of declaration allows the explicit definition, with name ¢, of an
expression [x|[za] ... [z,]e of type ay—[z1](e— ... (y—[z,]a) ...), with n > 0.

18 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

The two first are the counterpart in the system to the nominal definitions of
types and families of types introduced in [BT97]. The latter form of declaration is
not present in the proof-assistant ALF.

The third form of declaration corresponds to the so-called explicit definition of
a constant in ALF. We are considering neither definitions of inductive (families of)
sets nor the implicit definition of constants, these latter usually defined using a
pattern-matching mechanism provided by the proof-assistant.

Any declaration is checked under a current environment. Once the declaration
D is checked to be correct, the environment is extended with it. Thereby, the
definiendum of D may occur in any declaration introduced after it.

3.2.1. Let and Use expressions. The motivation for using let expressions as a
means to introduce local declarations of proofs shares the motivation for using these
expression formers in functional languages like ML or Haskell.

The possibility of abbreviating a proof object by a name, which in turn may
occur in what is defined as its valid scope, not only alleviates notation, but may
also render the process of proof checking more efficient. The way let expressions are
checked in our system is heavily influenced by a proposal by Coquand in [Coq96].
Namely, in order to check that an expression let x : oy = ey in e has a certain type
« in a environment £ proceed as follows: check first that = : a; =e; is a valid
declaration in £. If this succeeds check then that e is an object of type « in the
environment & locally extended with x : oy = e;. The checking of the expression e,
in addition to consider that x has type oy, may also make use of the fact that x is
definitionally equal to the expression e;. This latter is not needed for performing
the type checking of a let expression in ML or Haskell.

Actually, it is possible to define let expressions involving a list of local decla-
rations to the expression e. These, however, can not be mutually defined as they
are in the programming languages mentioned above or in the proof-assistant Alfa
currently being implemented at the Department of Computing Science at Chalmers
University.

On the other hand, we have lately been experimenting with use expressions. The
effect of “using” an expression r of type p in an expression e is almost analogous
to the one achieved by the Pascal command with, that is to say, all the fields that
constitute the object r are made directly available in the scope of use. Therefore,
in the first place, it does not suffice for p to be a type, it has to be a record type.
Then, if L is an identifier syntactically equal to a label associated to a type family
0 in the fields of p it is, both for type checking and computation, considered to
be definitionally equal to the object r.L of type (r. This is correct if it has previ-
ously been checked that r : p. We can, then, informally explain how the expression
use r : pin e is checked to have type « in an environment £: check first that p is a
record type in the environment £. If this is the case, check whether r is an object
of type p in that same environment. Now, as p is a record type, it has necessarily
to be either of the form () or (L; : §,,...,L, : 3,,), with n > 1. In the first case just
proceed by checking that e is an object of type o in £. Otherwise, locally extend

3. BOOLEAN ALGEBRAS AND DEMORGAN’S LAWS FORMALIZED 19

the environment £ with declarations L; : 8,r = r.L;, for i« = 1..n, and proceed by
checking that e has type « in this latter environment.

We shall illustrate in next section how wuse expressions allow to overcome the
notational burden introduced by selections. Further, we think that the combination
of use expressions and subtyping might provide a mechanism to prevent accessing
fields of a record object, in other words, the type p associated to the object r in a
use expression may act as a sort of interface to the object. This latter, however,
needs to be further investigated.

3.3. Formalization. We shall now proceed to give a formal account of the
concepts in section 3.1. Thus, in the first place, we will have that the formulation
of a property ® is represented by a type T. Correspondingly, a particular proof ¢
of ®, then, is introduced as an object of type 1. Systems of algebras are formally
introduced as record types. The use of type definitions and record types extension
allows to naturally reflect the incremental definition of the various systems with
which we were concerned in section 3.1.

We do not intend to give a complete presentation of the formalization but rather
to illustrate the use of the extended type theory in the representation of algebraic
constructions. More accurately, what we here mean by type theory is a particular
implementation of the system described in section 3.2.

T : type F : a—type c:«a

T=« Fr=qu c =e

FIGURE 2.2. Forms of declaration

3.3.1. Preliminary definitions. For the sake of readability we shall deviate a
little from the syntax presented in section 3.2 for the forms of declaration and input
expressions that the type checker reads. In Figure 2.2 we show how we denote in
this section the definition of a type, a family of types and the abbreviation of an
object of a certain type. At some points, when there is no interest in showing the
code that a constant abbreviates, we make use of declarations of the form ¢ : a.

We consider now, in Figure 2.3, the definition of some useful types and families
of types intending, at the same time, to clarify the syntax of type expressions used in
what follows. To begin with, the constant binOp is a type family over the type Set,
whose intended meaning is that when applied to a certain set A it yields the type
of the binary operations on that set. Observe that we are using that every set A is
also a type. As propositions are identified with sets, the constant Rel, also a family
indexed by Set, results in the type of binary relations over the set A if applied to
this latter set. The definitions of SetRel and RelOp illustrate the two possible ways
of defining a record type. Labels of records are written using the font label. Notice,
particularly in the definition of RelOp, that when extending a given record type it
is possible to make reference to any of its labels in the fields that constitute the
extension proper. The definition of isTrans shows the use of (functional) dependent
types to express propositions. The type isTrans B can be read as follows: for all

20 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

binOp : Set—type
binOpA=A—-A— A

Rel : Set—type
Rel A=A — A — Set

SetRel : type
SetRel = (A : Set,R : Rel A)

RelOp : type
RelOp = (SetRel, o : binOp A)

isTrans : SetRel—type
isTrans B = (x,y,z: BA) BRzy— B.Ryz— BRzz

isCong : RelOp—type
isCong Rop = wuse Rop : RelOp
in (rv,y,z,w:A)Rrz—>Ryw — R(ocxy) (ozw)

FIGURE 2.3. Types and families of types

elements x, y and z of A, if R relates x and y, and y and z, then it also relates x
and z. Finally, we show how a type can be defined by means of a use expression.

isComm : RelOp—type
isComm Rop = use Rop : RelOp in (z,y: A) R(ocxy) (oy z)

isAssoc : RelOp—type
isAssoc Rop = use Rop : RelOp in (x,y,z: A) R(ocx (oy z)) (o (oxy) 2)

isldemp : RelOp—type
isldemp Rop = use Rop : RelOp in (v: A)R(ox)

RelOps : type
RelOps = (RelOp, * : binOp A)

isAbsorb : RelOps—type
isAbsorb Rops = use Rops : RelOps in (z,y: A) Rx (o x (x z y))

FIGURE 2.4. Axioms of lattices

3.3.2. Lattices. We now turn to introduce the constructions corresponding to
the ones presented in section 3.1. Thus, we start by defining the type of lattices.

3. BOOLEAN ALGEBRAS AND DEMORGAN’S LAWS FORMALIZED 21

For the representation of this latter notion, and the other systems of algebras there
introduced, we adopt the following methodology: we define, first, a record type that
acts as the counterpart of the algebra — as defined in section 3.1 — that the system
embodies. Then, this latter record type is extended with fields that conform to the
axioms of the system in question. In the case of lattices, in particular, there are
two (dual) formulations of each law involved in the axiomatic part of the system.
In Figure 2.4 we give a definition of various families of types indexed by the types
RelOp and RelOps. They express respectively the different laws for lattices as types
parameterized by a set, a binary relation defined on it and, in the three first cases,
a binary operation over that same set. The last family is further parameterized by
a second binary operation.

Now we carry on commenting the definition of lattices we present in Figure 2.5.

PreLatt : type
PreLatt = (Setoid, V : binOp S, A : binOp S)

dualPreLatt : PreLatt— PreLatt
dualPreLatt Pl = (Pl,V = PI.A,\ = PL.V)

opOfLatt : RelOps—type

opOfLatt Rops = (cong : isCong Rops,
L1 : isComm Rops,
L2 : isAssoc Rops,
L3 : isldemp Rops,
L4 : isAbsorb Rops

Latt : type

Latt =
(PreLatt,
VProps : opOfLatt (A =S,R=",0 =V, % = A),
AProps : opOfLatt (A =S,R==,0=A,* = V)

)

dualLatt : Latt— Latt

dualLatt L = (dualPreLatt L,
VProps = L.AProps,
AProps = L.VProps

)

FIGURE 2.5. Lattice

22 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

As already anticipated, we first define a record type PreLatt as the formal coun-
terpart of the algebra (B,V,A). Notice that instead of asking just for a set to
stand for the carrier of the algebra we consider the structure Setoid, which is a set
S together with a binary equivalence relation & defined on that set. The labels
corresponding to the properties of & are refl, symm and trans respectively.

Then, we define a function on PreLatt, whose intended meaning is to construct
the dual out of an object of this latter type. This definition illustrates, on the
one hand, how to obtain a record object by extending a given one. Moreover, and
most significantly, notice that Pl is already an object of type PreLatt, however its
extension is still considered to be an object of that type. This is correct because, in
the first place, as Pl is an object of type PreLatt it is also an object of type Setoid,
by record inclusion. Furthermore, the objects PI.A and PI.V are both objects of
the appropriate type, namely, binOp S. On the other hand, by field overriding, the
selection of the label V (resp. A) from the object resulting from the application of
dualPreLatt to any object Pl of type PreLatt yields the object PI.A (resp. PL.V)
as intended.

We then introduce a family of record types opOfLatt over the type RelOps. This
family expresses, principally, the properties that any two binary operations must
satisfy in order to constitute, together with a given set, a particular lattice. Observe
that the families in the field declarations are all applied to the same variable Rops of
type RelOps. However, only isAbsorb was defined as a family over this latter type,
the rest being indexed by RelOp. Their application to Rops is correct nevertheless
due to the subtyping induced by record inclusion on families of types.

According to the observation made at the beginning of this section, the type of
lattices is defined as the record type obtained by extending PreLatt with two more
fields corresponding to the laws to be satisfied by the operators V and A respectively.
Thus, for instance, if L is an object of type Latt, the object L.VProps.L1 is the proof
that L.V is commutative.

As to the definition of the function dualLatt, besides having with dualPreLatt
in common the behaviour commented above, it also illustrates the use of subtyping
but now for function objects, namely, the application of dualPreLatt to the variable
L of type Latt.

From now on, we make use of % — comment — % to informally express the
property being proved.

The definitions of congRV and congL.A in Figure 2.6 illustrate the abbreviation of
proof objects and the use of nested selection to access components of record objects.
The expression [L = y z hle should be read as the abstraction of the variables
L, z, y, z and h in the expression e. The variable h corresponds to the hypotheses

.~y z and L.& x y respectively.

In Figure 2.7 is the (almost complete) code of the proof that Proposition 2.1 is
valid for any lattice L. The notation ...h... is used to stress the dependency on
the hypothesis h;.

3. BOOLEAN ALGEBRAS AND DEMORGAN’S LAWS FORMALIZED 23

%— VBVz,y,z€ Bly~zDaVy~azVz —%

congRV : (L : Latt) (x,y,z: LS) L~y z— L~ (LVzy) (LVzz2)
congRV = [L xy z h|L.VProps.cong x y z (L.refl x) h

%— VBVr,y,z€|BlaxydzAz=yAz —%

congLA : (L : Latt) (z,y,2: LS) L~z y — La (LAx z2) (LAY 2)
congLA = [L x y z h| L.AProps.cong x y z h (L.refl z)

FIGURE 2.6. Congruences

%— VBVz,ye|Bl.lrxzAy)D(x~xzVy) dDe~y —%

antisymmL : (L : Latt) (z,y : L.S)
Lz (LAzy)— L~z (LVzy — Lxay

antisymmL =
[L Ty hl hg]
let
lemmy : L~z (LVy(LAzy)=...h...
lemmy : L~ (LVy (LAzy)y=...hy...

in
L.trans x (L.V y (LA zy)) y lemmy lemmy

FIGURE 2.7. Antisymmetric property of lattices

DistrLatt : type

DistrLatt = (Latt,
Dl:=(Vz(Ayz)(ANVzy) (Vrz),
D2:~ (Ax (Vyz) (V(Azy) (Axz)))

dualDistrLatt : DistrLatt— DistrLatt

FIGURE 2.8. Distributive lattice

The type of distributive lattices is shown in Figure 2.8. We declare as well the
function dualDistrLatt, which behaves as expected.

3.3.3. Boolean Algebra. The representation of the system of boolean algebras,
the type BoolAlg in Figure 2.9, is built up in a similar manner as done for lattices.
In order to make the code more legible, however, we chose not to group the ax-
ioms corresponding to the operators V and A. We illustrate use expressions in the
definition of the function dualBoolAlg.

24 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

PreBoolAlg : type

PreBoolAlg = (DistrLatt,
~:S5S—=S,
0:5,
1:S)

dualPreBoolAlg : PreBoolAlg— PreBoolAlg
dualPreBoolAlg Pba = (dualDistrLatt Pba,

~ = Pba.~,
0 = Pba.1,
1= Pba.0)
BoolAlg : type
BoolAlg = (PreBoolAlg,
compCong : (z,y:S) Rz y = & ~r ~y,
Bl:(z:S)=~(Val)l,
B2:(z:S) =~ (Az0)0,
B3: (z: S)%(V:L"Nx) ,
B4:(z:S)~ (Ax~x)0)

dualBoolAlg : BoolAlg— BoolAlg

dualBoolAlg Ba = wuse Ba : BoolAlg
tn (dualPreBoolAlg Ba,
compCong = compCong,

Bl = B2,
B2 = Bl,
B3 = B4,
B4 =B3)

FIGURE 2.9. Boolean algebra

3.3.4. Proof of propositions 2.2-2.4 and DeMorgan laws. We consider now the
presentation of the proofs that were sketched in section 3.1 .

In Figure 2.10 we give the code of the proof of the first part of Proposition 2.2.
Notice how use expressions improve the readability of the code, there is no need for
explicit construction of selections. Moreover, observe that in the type of prop2.2(i)
the variable Ba is used as an object of type PreLatt. The objects transs, lemm;
and lemmsy, which are locally declared by means of the let constructor, are typical
examples of local lemmas. Note that the constants congRV and congLA defined in
Figure 2.6 for lattices are applied to the variable Ba of type BoolAlg.

The constants OidentRV, lidentLA and commArgsB3 abbreviate the proofs of
three properties which can easily be proved to be derivable from the postulates

B1-B4. They are declared in Figure 2.11.

3. BOOLEAN ALGEBRAS AND DEMORGAN’S LAWS FORMALIZED 25

%— VBVr,y€|BlzAy~0D~r~~rVy —%

prop2.2(i) : (Ba : BoolAlg) (x,y : Ba.S)
use Ba : PreLatt in =& (Azy)0— = (~z) (V(~x)y)
prop2.2(i) =
[Ba x y h]
use Ba : BoolAlg
n
let
transy : (r,y,z,w:S)RTY I RYZz >R 2 W >R T 2
= [ryzwhy hy h3]trans x z w (trans z y z hy hy) hg
lemmy : = ~x (A (V ~x) (V~2Y))
= transy ~x (V ~x 0) (V~z (Azy)) (A (V ~zz) (V~Ty))
(OidentRV Ba ~x)
(congRV Ba ~z 0 (A z y) (symm (A z y) 0 h))
(D1 ~x x y)
lemmy : = (A (V ~x x) (V~xy)) (V e~z y)
= trans (A (V ~z z) (V~zy) (A1 (V ~zy)) (Ve y)
(congLA Ba (V ~x x) 1 (V ~x y) (commArgsB3 Ba x))
(lidentLA Ba (V ~z y))
in
trans ~x (A (V ~x) (V ~zy)) (V ~x y) lemmy lemmg

FIGURE 2.10. Proposition 2.2(i)

%— VBYVYre|Bl.z=zVv0 —%

OidentRV : (Ba : BoolAlg) (xz : Ba.S) = x (Ba.V z 0)

%— VBNVze|Bl.l1ANz=x~z —%

lidentLA : (Ba : BoolAlg) (z : Ba.S) &~ (Ba.Alx)x

%— VBNze|Bl.~zVzxl —%

commArgsB3 : (Ba : BoolAlg) (¢ : Ba.S) & (Ba.V ~x z) 1

FIGURE 2.11. Simple derived properties of Boolean algebras

Let us now consider the second part of Proposition 2.2. We made, on page 12
of section 3.1, the remark on the duality of the properties enunciated in this latter

26 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

%— VBVr,ye|BlaVy~rlDd~rx~rAy —%

prop2.2(ii) : (Ba : BoolAlg) (x,y : Ba.S)
use Ba : PreBoolAlg in = (Vzy)l =~ (~z) (A (~x)y)
prop2.2(ii) = [Ba] prop2.2(i) (dualBoolAlg Ba)

%— VBVz,y€|BlaAy=0DazVyxld~r~y —%

prop2.3 : (Ba : BoolAlg) (z,y : Ba.S)
use Ba : PreBoolAlg in = (Azy) 0>~ (Vzy)l -~ (~ax)y

prop2.3 =
[Ba x y hy hy)
antisymmL Ba (Ba.~ x) y (prop2.2(i) Ba x y hy) (prop2.2(ii) Ba x y hy)

FIGURE 2.12. Propositions 2.2(ii) - 2.3

%— VBVz,y€|Bl.(xVy) A~z A~y)=0 —%
prop2.4(i) : (Ba : BoolAlg) (z,y : Ba.S)
use Ba : PreBoolAlg in =~ (A (Vzy) (A (~z)(~y)))0
% — VBVz,y€|Bl.(zVy) A(~zVr~y)x=1l —%
)

prop2.4(ii) : (Ba : BoolAlg) (z,y : Ba.S
use Ba : PreBoolAlg in = (A (Vzy) (V(~z) (~y))) 1

FIGURE 2.13. Proposition 2.4

proposition, and our intention of obtaining the proof of the dual of a given property
® on a certain structure S in terms of a proof ¢ of ®. Accordingly, then, the proof
of the part i) of the above proposition is constructed by applying —and with this
we mean function application— the object prop2.2(i) to the dual structure of Ba,

i.e. dualBoolAlg Ba. This construction is shown in Figure 2.12.

The informal argument given for the validity of Proposition 2.3 is straightfor-
wardly codified, as presented in that same figure. Note the application of antisymmlL

to the variable Ba of type BoolAlg.

In Figure 2.13 we declare the constants prop2.4(i) and prop2.4(ii) to stand for
the proofs of the two properties of Proposition 2.4. The construction of those proofs

1s routine.

4. THE EXTENSION 27

DeMorgan(i) : (Ba : BoolAlg) (x,y : Ba.S)
use Ba : PreBoolAlg in = (~ (V zy)) (A (~x) (~7y))
DeMorgan(i) =
[B x y]
use B : BoolAlg
in prop23 B (V1 y) (A (~ 1) (~ 1))
(prop2.4(i) B x y) (prop2.4(ii) B z y)

%— VBNz,y € |Bl.~rAy) = (~xVey) —%

DeMorgan(ii) : (Ba : BoolAlg) (x,y : Ba.S)
use Ba : PreBoolAlg in = (~ (A zy)) (V (~z) (~y))
DeMorgan(ii) = [Ba] DeMorgan(i) (dualBoolAlg Ba)

FIGURE 2.14. DeMorgan laws

We end up presenting in Figure 2.14 the proof objects corresponding to DeMor-
gan’s laws. Again, the object abbreviated by DeMorgan(i) is a direct formaliza-
tion of the argument given in section 3.1 for showing the validity of this property.
As expected, the proof DeMorgan(ii) of the second law is obtained by applying
DeMorgan(i) to the object dualBoolAlg Ba.

4. The extension

4.1. Formulation of the extension. We now proceed to give the formal stip-
ulation of the extension of type theory with record types and subtyping. We will
follow the syntactico-semantical method exposed in [Mar84] and used in every for-
mal presentation of Martin-Lof’s type theory to which we refer in this work. There-
fore the first step is to introduce the various forms of judgement of the extended
theory. This is done by exhibiting their syntax and at the same time explaining
them semantically, i.e. stating what it is that has to be known in order to assert a
judgement of each of the forms in question. In the extended theory, three new forms
of judgement are added to those of the original theory. After having introduced
them, we set up a system of formal rules of inference. Each individual rule is to be
justified by showing that the meaning of the conclusion follows from those of the
premisses.

The forms of judgement.
4.1.1. The original forms of judgement. Let us recall the forms of categorical
judgement of type theory:

28 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

«a : type a1=qy ttype

B a—type [(,=0,: a—type
a: o a=b: «.

To know that « : type is to know what it means to be an object of type « as
well as what it means for two objects of type « to be the same. That « is an object
of type « is written a : a. Given a : « and b : «, that they are the same object of
type « is written a=b : a.

That two types oy, as are the same — in symbols a; =« :type — means that to be
an object of type « is the same as to be an object of type as and to be the same
object of type «; is the same as to be the same object of type as.

That (is a family of types over the type a means that for any a : «, [a is a type
and that for any two objects a, b of type « such that a=b : o, fa and (b are the
same type. Given type «, that (is a family of types over « is written 3 : a—type.

That two families of types 3, and 3, over a type a are the same — in symbols
B,=05 : a—type — means that 3,a=0,a :type for any a : a.

The present notion of a family of types was introduced in the formulation of the
calculus of substitutions for type theory [Mar92, Tas97]. It makes it possible to
have abstraction as a uniform mechanism of variable binding in the language.

The forms of judgements above are generalized to forms of relative judgements, i.e.
of judgements depending on variables xi:aq, ... , x,:q,. For the sake of brevity, here
we consider this as done in the way it was usual in the formulations of type theory
prior to the calculus of substitutions, i.e. in for instance [Mar84, Mar87, NPS89].

It may be useful to remark that we make (nominal) definitions of types and
of families of types in addition to those of objects of the various types which are
ordinary in type theory. An (explicit) definition of a type is as follows. Let « be
a type and A a name not previously given any meaning. Then we define A as the
type « by stating the two axioms:

A : type

A=« :type.
Then as a consequence of the second axiom, a : A and a=b : A have identical mean-
ing as a : a and a=b : «, respectively. We say that A is the definiendum and « the
definiens of the definition. We shall also say that A has « as its definiens.

Definitions of families of types are explained similarly. Let F' be a name not yet
given any meaning, o a type and «; a type depending on a variable z of type «.
Then we define F' as a family of types over o by means of the following two axioms:
F: a—type
Fr=q; :type [z:q].
Then by virtue of the second axiom, Fa turns out to be the type obtained by
substituting a for the occurrences of x in «; for a : ol.

'In definitions of the present form, the dependence of a; on z must be uniform. That is to
say, families of types cannot be defined by case analysis of the argument.

4. THE EXTENSION 29

4.1.2. Judgements of inclusion. We have now to introduce some new forms of
judgement. We consider first those for expressing inclusion of types and of families
of types on a given type:

ap & oay B, E By : a—type.

Given types aq and ap, that oy is a subtype of ay —in symbols a; C as— means
that every object of type a; is also an object of type ay and equal objects of type
ay are equal objects of type asm.

Given a type « and families 3, and 3, over «, that 3, is a subfamily of 3, —in
symbols 3, C 3, : a—type— means that $,a C (,a for every object a of type a.

4.1.3. Record types and families of record types. We intend to introduce a new
type former, namely that of record types. In principle, all that we would have to
do for that is to formulate a number of rules. But in the present case something
else has to be considered first. Record types are constructed as lists of fields. We
formalize this as it is usual with lists, i.e. from the record type with no fields, by
means of an operation of extension of a record type with a further field. And then,
as has just been said, the operation of extension must require that what is to be
extended is indeed a record type. We will express this condition by means of a
further form of judgement. This, in turn, is most simply explained as being about
types. That is, for type p we will have the judgement that p is a record type —in
symbols, p : record-type. Similarly, we need to distinguish families of record types
on a type « since they give rise to record types when applied to appropriate objects.
Therefore we will have also the form of judgement o : a—record-type for o a family
of types over a. These two new forms of judgement are now to be explained.

For explaining what it is for a type to be a record type we have to distinguish
between defined and primitive types. A defined type is a record type if its definiens
is a record type. A primitive type is a record type if it is generated by the rules
referred to above, namely:

() is a record type.
If p is a record type and [a family of types over p, then (p, L:3) is a record
type, provided L is not already declared in p.

We will later justify rules to the effect that there are indeed types generated by
the clauses above. In the case of record types generated by the second clause, L:3
is a field and L a label, which we say to be declared in the field in question. Labels
are just identifiers, i.e. names. In the formal notation that we are introducing there
will actually arise no situation in which labels can be confused with either constants
or variables. Notice that labels may occur at most once in each record type. That
a label L is not declared in a record type p will be later referred to as L fresh in p.
Finally, that these are dependent record types is expressed in the second clause, in
the following way. The “type” declared to the new label is in fact a family 3 on p,
i.e. it is allowed to use the labels already present in p. In fact, what 3 is allowed
to use is a generic object (i.e. a variable) r of type p. Then the labels in p will
appear in 3 as taking part in selections from r. Here below we show how the type
of binary relations on a given set is formally written. Families of types are formed

30 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

by abstraction, which we write using square brackets.
(((), S :[r]Set), R : [r](r.S)(r.S)Set).

There is a direct way of translating the notation used in the previous section into
the present formal notation.

We conclude by explaining what a family of record types is. Given a type a and
o : a—type, that o : a—record-type means that oa is a record type for arbitrary
a: .

The forms of judgements introduced are all categorical. From now on we consider
their generalizations to forms of relative judgements as given in the way indicated
at the beginning of this section.

4.2. Inference Rules. We will now formulate a system of inference rules in-
volving the preceding forms of relative judgement. The rules will be written as of
natural deduction, i.e. only the discharged variables will be mentioned. In princi-
ple, the rules ought to have enough premisses for them to be completely formal and
thereby make it possible to justify each rule individually using only the explanations
of the various forms of judgement. We will, for conciseness, often omit premisses.
A general principle allowing to recover the omitted premisses of a rule is that they
are just those strictly necessary for guaranteeing that every (explicit) premiss and
the conclusion of the rule are well formed as instances of the respective forms of
judgement. Also, we allow ourselves to mention side conditions to rules. These are
of two simple forms, each of them of a purely syntactic nature. We give detailed
explanations of rules in the cases in which we think it could be relevant. The entire
system corresponding to the extended theory that we are presenting is obtained by
adding to the rules below the rule of assumption and the various substitution rules,
which are just the same as those of the original theory [Mar92, Tas97].

4.2.1. General rules of equality and inclusion. To begin with, we have that the

various equality judgements give rise to equivalence relations. That is, we have rules
of:

Reflexivity, symmetry and transitivity of identity of types, identity of objects of a
given type and identity of families of types over a given type.
Next we have rules expressing that inclusion follows from identity:

1=y itype B1=0y + a—type
ay & oy B, E By« a—type.

The first of these rules will be seen later to connect type checking to checking identity
of types and thereby identity of objects. Using these two rules it is possible to derive
those of reflexivity of type inclusion and of inclusion of type families. We also have:

Transitivity of type inclusion and of inclusion of type families.

The following are the rules of type subsumption. They are justified immediately in
virtue of the explanations of the judgements of inclusion.

a:ay ooy a=b:ay ayC oy
a: o a=b: oy

4. THE EXTENSION 31

a1 Eay [ay—type
B : ap—type

a1 Cay [,=0, : ap—type ar Eay B E By ar—type
B,=05 : a;—type B, E Byt ay—type.
4.2.2. Informal remarks. A number of comments about the preceding rules are

now in place. Let us first consider the rules of type subsumption. They replace
those called type conversion in the original theory, i.e. for instance the rule:

a: g Qo= type
a:oq.

The rules of type conversion can actually be derived from those of type subsumption
using the rules expressing that inclusion follows from identity. In the original theory,
the rule of type conversion displayed above expresses the part played by definitional
identity in the formation of objects of the various types. It is then the formal coun-
terpart of the use of definitions in proofs of theorems. The link between definitional
identity and formation of objects obviously subsists in the extended theory, since the
rule of type conversion is derivable. On the other hand, the mechanisms of formation
of types and objects are in principle generalized by the presence of type inclusion
and the rules of type subsumption. That is: the rules for forming types and objects
of the various types in the original theory are the following. There is first a rule for
each of the various syntactic forms of the theory that states the conditions under
which an expression of the form in question denotes or has a type. To these, we
have to add the rules of substitution in types and objects. And, finally, there is the
rule of type conversion. Exactly the same will be the case for the extended theory,
with the rule of type subsumption taking the part of the rule of type conversion.

As another point, notice that we have not given rules to the effect that identity of
types and of families of types are equivalent to the respective mutual inclusions.
That is, the rules:

(5] E Qo (9 E (65} 61 E 52 : CY—H';ype 62 E 51 : a—>type
1=y type B,=05 : a—type.

Now, consider the first of these rules. For justifying it, we ought to have that the
two premisses together constituted precisely the meaning of the conclusion. That is,
identity of types ought to have been defined as the mutual inclusion of the types in
question. This has, however, not been made explicit in our explanations. Defining
type identity as mutual inclusion can be defended on the grounds that type inclusion
should be understood as intensional, i.e. as having to follow generically from the
explanations of what an object is and what identical objects are of the types in
question. Then the mutual inclusion of two types « and as would be nothing other
than the identity of meaning of a : a; and a : as as well as of the corresponding
judgements of identity of objects. That is, it would just coincide with the identity
of the two types.

So we have two alternatives here. The corresponding formal systems will differ
w.r.t. the presence of the rules above and therefore w.r.t. the judgements of the

32 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

forms ay=ay :type and 3,=03, : a—type that are derivable. But they will not differ
w.r.t. the judgements of the forms « : type and a : o that can be derived. This
follows from the observation made above about the rules available for making typing
judgements and the fact that, clearly, exactly the same judgements of type inclusion
can be derived in both systems. We shall consider the theory in which identity of
types is not identified with mutual inclusion, which turns then out to be expressive
enough for representing (informal) theorems in spite of its weakness in connection
with the judgements of identity of types and of families of types that can be proved.

4.2.3. Families of types and function types. Now we give the rules for using and
forming families of types. First come the rules of application, which just express the
definition of the notion of family of types.

B:a—type a:« B :a—type a=b:«
Ba : type Ba=pb :type.
Similarly, the following expresses the meaning of identity and inclusion of type fam-
ilies:

B,=05 : a—type a:« By E Byt a—type a:«
fra=p,a :type pra E Bya.
Families of types can be formed by abstraction, which is defined by the (-rule.
We have a rule of extensionality that is immediately justified from the explanation
of what it is for two families of types to be the same.

oy : type [z:q]

(] : a—type

o : type [z:a] a:a fix=pyx typelr:al
([z]ar)a=ay (z := a) :type B1=0y : a—type.

We now introduce the function types. These are explained in the obvious way. We
give the rules for proving identity and inclusion of two function types.
a : type [: a—type
a—(: type
o=y type [(3,=0, : ap—type as Ty (B, C By as—type
a1 —B,=ae— 3, :type a1 =0 C ag—[,.

By virtue of the first rule we have that a—[z]a/ is a type if o/ is a type depending
on z:a. This type is usually written (z:a) o/. We explain the rule of inclusion of
function types. The explanation reduces eventually to that of the case in which
the judgements involved are categorical. So we consider only this case. The same
will be done for all the rules to be explained in the sequel. Now to see that the
conclusion is valid we have first to see that f : ap—f, for given f : ay—3,. For
this, in turn, we have to see that fa : 3,a for a : ay and that fa=fb : 3,a for any
objects a and b of type « such that a=b: a. We show only the first of these two
parts, the other following in a totally analogous manner. Now if a : ay then a : oy
by virtue of the first premiss. And, since f : ay—(3;, we have that fa : 3,a. But
then, by virtue of the second premiss, fa : S,a. Also in an analogous way one sees

4. THE EXTENSION 33

that f=g : aps— 3, for given f :a;—f3; and g : a;—3; such that f=g: a;—/f;.
Then the rule is correct.

In a way analogous to that of the case of families of types we have the following
rules.

Rules of function application.
Formation of functions by abstraction.
B-rule and rule of extensionality.

4.2.4. Sets. The ground types are the types of sets and of the elements of given
set, as declared by the rules:

A : Set
Set : type A : type.

There are no inclusions between ground types, except for the trivial ones following
from the reflexivity of type inclusion.

4.2.5. Record types and families of record types. We now finally turn to formu-
lating the rules of record types and record objects. The first rules to be given are
those of formation of (primitive) record types. These have to be introduced as types
and further as record types. So the following four rules have to be understood
simultaneously.

p : record-type (3 : p—type (L fresh in p)
() : type (p, L:0) : type

p : record-type (3 : p—type
() : record-type {(p, L:f3) : record-type.

(L fresh in p)

From now on we omit side conditions of rules to the effect that labels are declared
at most once in record types. To justify the rules in the first line above we have
to explain what an object is and what identical objects are of each of the primitive
record types. Let us now make some preliminary remarks that may help to under-
stand the explanations given below. One can interpret the fields that compose a
record type as constraints that the objects of the record type must satisfy. More
precisely, given a record type p, to know r : p requires to know that, for every label
L declared in p, the selection r.L of L out of r is defined as of a type that respects
the declaration of the label.

Based on this observation, one first concludes that then the record type with no
labels () imposes no constraints on its objects, i.e. there are no conditions that have
to be satisfied in order to assert r : () for any expression r. On the other hand, to
assert r : (p, L:3) requires to know first that r : p. Further, the selection r.L must
be defined as of appropriate type. This type depends on the values assigned in r to
the labels declared in p. Formally, this dependence is expressed in the declaration
of L by associating the latter to the family of types § over p. Correspondingly, the
type of r.L is specified as Sr. Thus we arrive at the following explanations:

r: () is vacuously satisfied.
ri=ry : () is vacuously satisfied for r; : () and ry : ().

And, under the premisses of the second rule of record type formation:
r: (p, L:3) means that r : p and that r.L : 3r.

34 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

ri=ry : (p, L:3), where ry : (p, L:5) and ry : (p, L:3), means that r=ry : p
and that r{.L=ry.L : (r.

To complete the justification of the rules above it only remains to define what it
is to substitute objects for variables in a record type formed by those rules. This is
done in the obvious manner, i.e. letting substitution be distributed over the fields
of the record type in question. We omit these definitions here.

Record types can also be obtained by applying families of record types. Here are
the rules governing them.

o : a—record-type a:« p : record-type [z:c/]
oa : record-type [x]p + a—record-type.

Finally, we can also introduce record types by explicit definition. If in an explicit
definition of a type R, the definiens is a record type p, then we are justified in stating
the axiom R : record-type. Also, if in the definition of a family of types F' over a
type « the definiens of Fx is a record type p depending on x:a, we are allowed
to state the axiom F' : a—record-type. We will later refer to the construction of a
record type, meaning the process of its generation by using the rules for forming
primitive record types. The construction of a defined record type is then to be
understood as the construction of its definiens. The same is the case with respect
to the conditions of a field being in a record type and a label being fresh in a record

type.
Identical (primitive) record types are constructed by the following rules:

p1=py ttype [,=0, : py—type
<>:<> :type <P17L3ﬁ1>:<:02;[/362> itype

These rules serve only to express that definitional identity is preserved by substitu-
tion in record types. Recall that we have chosen a system that is weak in proving
definitional identity of types. The expressiveness in typing objects is obtained by
the rules of inclusion of record types. Before displaying these, it is convenient to
consider the following rules:

W G LB Ep

T
7t pstype (L:f in p) ﬁ (L:f in p)

Only the latter two require explanation. We refer to them below as the rules of
fields. They are explained similarly. The condition that L:(3 is in p means that, at
one point during the construction of p, another record type p' was enlarged with the
field L:3. Then it had to be the case that 3 : p'—type. Also, by repeated use of the
rule (1) and transitivity of type inclusion, we conclude p C (p/, L:5) and, further,
p C p'. From the latter and 3 : p'—type we conclude (3 : p—type thereby justifying
the first rule of fields. As to the second, its conclusion follows from r : (o, L:3)
which is in turn a consequence of the premiss r : p and p C (p', L:3).

The second rule of fields serves as a precise direct explanation of the meaning of

4. THE EXTENSION 35

r : p for record type p. The three rules just considered are going to be used for
explaining the rules of inclusion of record types that we now formulate:

p : record-type P Epy B E By py—rtype
pC () p1 & (P, L:B5).

The rules express that p; C p, if p; contains a field for each label declared in
py and the (families of) types of the corresponding declarations are in the inclusion
relation. The order of the fields within each record type is not relevant for deter-
mining whether they are in the inclusion relation. Only the second rule needs to be
explained in detail. Assume then the premisses and the side condition. Notice that
the condition that L is fresh in p, has been omitted. This condition is necessary
to guarantee the well-formedness of (p,, L:(,) and hence that of the conclusion of
the rule. What has to be shown is that every object of type p; is an object of
type (p,, L:(,) and that equal record objects of type p, are equal objects of type
(py, L:5). We will now show the first of these, the other one requiring essentially
the same reasoning. Assume then r : p;. To know that 7 : (p,, L:(,) is to know that
r : py and that r.L : B,r. Now, from the assumption r : p; and the premiss p; C p,
it follows that r : p,. On the other hand, using the rules of fields and the side con-
dition that L:(3, is in p;, we see that 3, : p—type and that r.L : §,r. Finally, from
the latter and the premiss 3, C 3, : py—type, we know r.L : (,r.

(L5 in py)

The next rule is justified in the same manner as the second rule of fields:

r=s:p

r.L=s.L : fBr. (L:3 in p)

Record objects are formed as sequences of assignments of objects of appropriate
types to labels. We call each of these assignments a field of the record object.
Notice that there is no restriction on labels occurring more than once in record
objects. 'This, however, is inessential in the sense that it does not provide any
additional expressivity.

rip a:fr
(:0 (r,L = a) : (p, L:).

The first of these rules requires no justification. The second one will be called of
extension of record objects. We will also refer to the objects generated by these two
rules as record (object) extensions. To justify the second rule, we have to define the
selections from (r, L = a) of all the labels in (p, L:5). For the labels in p, this is
done by defining (r, L = a) to be the same record object of type p as r, which was
given. On the other hand, the selection (r, L = a).L is defined in the obvious way,
i.e. as a. Thus we arrive at the rules below. Notice that the condition that L is
fresh in p has been omitted in the rule of extension of record objects. For the sake
of clarity, we make it explicit now:

rip axfr . rip a:ffr .
l—a)=r:p (L fresh in p) L=a)L=a:pr (L fresh in p)

36 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES

The second of these two definitions implies that the rightmost assignment to a label
in a record object overrides the preceding ones.

Finally, equality of record objects is based on a kind of extensionality principle. That
is, the two rules below can be understood as defining that two objects of a given
record type are equal if the selections of every label of the record type in question
from the objects are equal. Notice that the type in which two record objects are
compared is relevant: suppose namely that r and s are of type p; and that p, C p,.
Then it may well be the case that r=s : p, but not r=s : p;.

ri() s:() r=s:p r.L=s.L:f(r
r=s: () r=s: (p, L:[3).

To understand the second of these rules notice that the premisses that both r and
s are of type (p, L:3) have been omitted.

CHAPTER 3

Type checking: informal explanations and discussion

Type checking in the context of type theory is the task of verifying the for-
mal correctness of a judgement of one of the forms « : type and a : «, in general
depending on declarations of variables and constants.

We will now describe an algorithm of type checking for the extended theory. For
this, it is useful to consider first the problem of type checking in the original theory.
For the sake of conciseness, we confine attention to the checking of judgements of
the form a : a, where we assume that « : type.

The formulation of the explanations in sections 1 and 2 are result of joint work
with Alvaro Tasistro.

1. Type checking in the original theory

Type checking for systems of typed lambda calculus involves type inference. This
is because of applications, whose typing rule (which we show here as it is in type
theory),

fea—=p a:
fa: Ba
is not conservative: information disappears when going from the premisses to the
conclusion. Conversely, in order to check the conclusion we need to infer the type
a—f3 of f.

Now, in the presence of dependent types, it is undecidable whether an unlabeled
abstraction, i.e. an expression of the form [z]e, has a type at all [Dow93|. Therefore
there is no algorithm for type checking beta redexes. So, in general, for type checking
that an expression b has a certain type we have to see to it that b is written in beta
normal form. This restriction is inessential in the sense that still every object that
can be formed in the theory can be expressed in a way so as to be accepted by the
type checking algorithm. For instance, any abstraction [z]e that stands for an object
of type a—[3 can be given a name in type theory, by a definition of the form:

fia—=p
fo=lzle

Using this definition we can then express an object ([x]e)a : Ba as fa, which is not
anymore a redex.

More precisely, we have that if b : « is valid then there is 0’ : a such that b=b' : «
and b’ : « is accepted by the type checking algorithm. In particular, instead of
expressions containing beta redexes one has to write their corresponding beta normal
forms.

37

38 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSION

So we have now that applications must be of the form A e; ...e,, where the e;’s
are expressions in beta normal form and h, called the head of the application, must be
either a constant or a variable. We call these expressions generalized applications,
since they include the constants and the variables as particular cases, i.e. with
m = 0. The expressions accepted by the type checker are formally specified as

follows:
e == [xle]|f

[u= z|c|fe
Here = ranges over the variables and c over the constants. Then, the expressions f are
the generalized applications. According to the observation made at the beginning,
it is for these expressions that type checking links itself with type inference. More
precisely, it can be decided whether a generalized application has type or not, by
the following

ALcoORITHM (Type inference for generalized applications). To infer the type of
a variable z or constant ¢, just look it up among the declarations.

To infer the type of an expression fe, proceed as follows. First infer a type
for the expression f. Supposing the inference is successful, see to it that the type
obtained is defined as one of the form a— (3. Then check whether e : a. If this is in
turn successful, return the type fe.

Notice that there is at most one declaration for each variable or constant. Then
it follows by an inductive argument that a generalized application f has at most one
inferred type. As a consequence, if f has type « then it has inferred type a; and
ay=« :type. Now the algorithm of type checking is as follows:

ALcorITHM (Type checking). To check whether [z]e : v see to it first that «
is defined as a type of the form a;—3,. If this is the case, then check whether
elr := z] : Bz, adding z:a4 to the declarations of variables, for a fresh variable z.

To check whether f : «, infer the type for f. If a type a; is obtained, then check
whether a;=« :type.

The last step embodies the use of the rule of type conversion. Thereby type
checking is linked with checking judgements of definitional identity. In the next two
algorithms, the form of a defined type must be understood to be the form of its
ultimate definiens.

ALGORITHM (Type conversion). Checking type equality proceeds recursively
on the form of the types.

For checking the equality of two functional types, a;—f3, and ay—f3,, oy is
checked to be equal to ap and 3, is checked to be equal to 3,z adding x:c; to the
declarations of variables, for a fresh variable x.

For checking the equality of ground types, check whether they are both the type
Set or whether they are equal objects of type Set.

By virtue of the last step, type checking leads eventually to checking definitional
identity of objects, i.e. of judgements a=b : «.

ALGORITHM (Object conversion). Checking a=b : o proceeds recursively on
the type a.

2. TYPE CHECKING IN THE EXTENDED THEORY 39

In case « is a ground type, take both a and b to head normal form. Notice that
these normal forms cannot be abstractions since they are of ground types. So they
must necessarily be generalized applications as defined above. Observe that if an
object is in head normal form and its head is a constant, this latter must necessarily
be a primitive one. The algorithm proceeds by comparing the heads. In case they
are the same constant or variable, h say, it continues by recursively comparing the
arguments. For checking the identity of each pair of respective arguments, their
(common) type is needed. This is obtained from h, whose type can be recovered
from the list of declarations.

For checking f=g¢g : a—[f, check whether fr=gx : Bz adding x:a to the decla-
rations of variables, for a fresh variable z.

The whole process is guaranteed to terminate if all definitions are well-founded.

The approach used for checking object equality follows the one taken by Mag-
nusson in [Mag95]. The process for checking identity of objects having a functional
type comprises both a- and n-convertibility. Now, the equality of two objects in the
original theory can be checked without using their (common) type, i.e. under the
only assumption that they have some type. Concrete algorithms illustrating this are
given in [Coq91, Coq96|. However, in the presence of record types and subtyping
it is not in general possible to check equality of record objects without considering
type information.

2. Type checking in the extended theory

Two new forms of expression have to be considered, namely record extensions
(r, L = a) and selections r.L.
To begin with, notice that the typing rule for selection
rip .
—— (Lt
r.L: pr (L:6 in p)
is also not conservative. In order to check the conclusion we need to infer the type
p for r. Now, analogously to what is the case for the (unlabeled) abstractions, we
cannot decide in general whether an extension (r, L = e) has or has not a type. This
would in turn require to decide whether the (arbitrary) expression e has a type or
not.
There are in addition other difficulties with record object extensions, which we
now intend to make clear.

2.1. Type checking of record extensions. Record object extensions are of
one of the forms (L; =ey,...,L, =¢,) and (f,L; =e1,...,L, =e,), where [is
not itself a record extension.

Let us consider first the problem of checking whether (L; =eq,..., L, =€,) : p.
We shall refer to the expression to be checked as r. A possible solution is the
following: for checking that r has type p, see to it that every label declared in p is
bound in r to an expression of appropriate type. For this, we can proceed recursively
on the components of r that correspond to the labels in p.

40 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSION

Now, that a record object extension has a certain type p, can be derived in the
calculus presented in chapter 2, starting out from () : (), by an alternated use, in
particular, of the proof rules

ripe:fr rip. piCopy

L fresh in p,

(r,L =¢€):{p, L:0) TP
Notice, then, on the one hand, that there could be labels L; bound to objects in r
that do not occur in p, due to the use of the subsumption rule. On the other hand,
it may also well be the case that some label L occurs bound in r more than once;
the rule of record extension allows overriding. Moreover, the objects assigned to the
different occurrences of L do not need to be of the same type. From now on we
shall call unreachable those labels of the object r that either do not occur in p or
are overridden.

It is clear then that the procedure described above would in general leave com-
ponents of r unchecked, namely those corresponding to the unreachable labels of r.
Since there is no general algorithm for inferring whether an expression has type or
not, we cannot by this method ensure the well-formedness of the record object as
a whole. However, unchecked components cannot be used without being eventually
checked. So, checking only the restrictions imposed by the given type is safe from
this point of view. But, on the other hand, the method will still in general violate
the principle that correctly typed expressions contain only correctly typed parts and,
as a consequence, it would accept expressions that cannot be typed in the theory.

The obvious alternative is just to reject those record objects which contain fields
whose labels are not declared in the intended type. This may seem in principle too
restrictive, since well formed expression can be rejected by this method. Of especial
importance is the case in which we have (L; =eq,...,L, = €,) : p; but intend to
use the record object as of a type p, with p; C p, in the strict sense, i.e. as of a
proper supertype of its original type.

These cases can be recovered, however, using auxiliary definitions.

Suppose, for instance, that we want to use (L; =ej,...,L, =e,) as an object of
type p, and there are labels L unreachable, in the first sense above, in p,. We
can give a name r to (L; =ey,...,L, = e,) and declare it as of a type p; which,

according to the restriction, must contain declarations for all its labels. If this type
p, turns to be a subtype of p,, then we can safely use r as an object of type p,.

Extensions of the form (f, L1 = ey, ..., L, = e,), in addition, allow to express a
restricted form of overriding, namely, the one that we illustrated in chapter 2 with
the definition, for instance, of the function dualPreLatt. Notice that it can well
be the case that f is a constant that abbreviates a record object extension where
some of the labels L; are bound to objects. But then as f has been defined, we can
recover its type and then, as we will show later, we shall not need to inspect the
components of f.

There is, then, in principle, a choice between a permissive and a restrictive
method. The latter seems to allow for enough expressiveness at the cost of having
to introduce additional definitions. This, however, seems not to constitute a problem
in practice, especially in the presence of let expressions.

2. TYPE CHECKING IN THE EXTENDED THEORY 41

For a more detailed discussion of the adequacy of the restrictive method for
natural practice we refer to [Tas97].

2.2. The algorithm of type checking. We have then pointed out two ma-
jor problems concerning record extensions. First, it is not possible to decide in
general if one such object has a type or not. Therefore, selection redexes of the
form (r, L = e).K cannot be accepted as input expressions to the procedure of type
checking. But, in a similar manner as suggested for [(-redexes in section 1, one
can also make use of nominal definitions in order to get rid of redexes as the one
above. However, in constrast to the case of abstractions, we must also introduce a
restriction on the form of record extensions that can be accepted by a type checking
algorithm.

Then, expressions that are not abstractions or record extensions must be of the
form (h ey...ep).LyL,. We call these expressions generalized selections. Here
the e;’s are expressions in - and selection-normal form. The L;’s are labels and the
head h must now be of one the forms z.L;... .L, or c¢.LyL,.

The syntax of the permissible expressions can be more succinctly formulated as
follows:

e [zle | (Li=e€1,..., Lo =en) | (f,Li=¢€1,... , L, =¢e,) | f
f o= x|c|(fe)|fL
The expressions f are the generalized selections. The analysis is now the same

as for the original theory. We have that it can be decided whether it follows from
the declarations of constants and variables that a given generalized selection has

type.

ALGORITHM (Type inference for generalized selections). To infer the type of
an expression of any of the forms z, ¢ or (fe) proceed as for the original theory.

For inferring a type for a selection f.L, infer first a type for the expression f. If
this is successful, see to it that the type obtained is a record type p. Then look up
for a field L:3 in p. If this is found, return the type Gf.

Again, generalized selections have at most one inferred type. And then, if a
generalized selection f has type aw, then it has inferred type oy and oy C ay. This
solves the problem of type checking generalized selections.

We give now an algorithm of type checking based on the restrictive method
discussed above.

AvcoriTHM (Type checking). To check whether [z]e : a proceed as for the
original theory.

To check (L; =ey,...,L, =€) : «, see to it first that « is a type of the
form (L, : f3,,...,Ly, : (,). If this is the case then, for i = 1,... ,n check whether
€; 61<L1 —€1,... ;Li—l = ei_1>.

For checking (f, L1 = e1,...,L, =e,) & a, see to it first that « is defined as a
type of the form (p, L, : 3,,...,L,:3,). If this is the case then check whether
fp.

In case of a positive answer proceed by checking e; : 3,(f, L1 =e1,... ,Li 1 =¢€; 1),
fori=1,...,n.

42 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSION

We now refer to (f, Ly =ey,..., L, =e,) as r and call the components L; = e; the
plain fields of the extension. Note, first, that for checking that f : p we do not need
to inspect the components of f. The only condition that we need to require from f
is that a type can be inferred for it. In addition, as (p, Ly : f#;,..., L, : (,) has been
checked to be a valid record type, none of the labels L; may occur in the record type
p. Therefore, the selection r.L; will result in the object bound to L; in the plain
fields of r, which, as it should be, has the type e; : B(f, L1 =e1,... ,Li_1 = €;_1).

Finally, to check whether f : « infer the type of f. If a type « is obtained, then
check that o C a.

Due to the use of the type subsumption rule, this last step now links type checking
with checking judgements of type inclusion.

ALGORITHM (Type inclusion). The checking of type inclusion proceeds recur-
sively on the form of the types.

For checking that a record type (Kj :vy,..., K, :7,) is included in the record
type (L1 : By,...,Lm : (3,,) proceed as follows: for i =1,... m, first look up for
a declaration Kj:y; such that K; = L;. If this turns out to be successful then,
for a fresh variable = taken as of type (K :7y,...,K;_1:7;_1), check that v,z is
included in 3;z.

To check whether a functional type a;— (3, is included in as—[3,, check that ao
is included in a4, and 3, is included in S,z for a fresh variable x taken as of type
Q9.

For checking the inclusion of two ground types, check whether they are both the
type Set or whether they are equal objects of type Set.

We end up with

ALGORITHM (Object conversion in the extended theory). For checking that r
and s are equal objects of type (L : 3,,..., L, : 3,,), check whether r.L;=s.L; : 3;r
fori=1,...,n.

In the remaining cases proceed as for the original theory.

3. Towards an implementation of the algorithm

The design of the algorithms informally described in the previous sections, in
particular the one for the original theory, closely follows the approach taken by
Magnusson in the implementation of the type checking algorithm which is the log-
ical heart of the proof-editor ALF. In addition to the new form of objects, record
extensions and selection, the procedure in section 2 for checking that an object has a
type also considers the relation of subtyping. This latter modification can be grasped
as the replacement of the module for checking type conversion by one which imple-
ments the checking of type inclusion. There are, however, some differences in the
understanding on how to check whether the type conversion (resp. type inclusion)
rule has been applied in the derivation of a judgement a : a.

On the other hand, the final implementation of the algorithm, which we present
in chapter 5, drastically departs from Magnusson’s. We have left unattended some
problematic questions in the explanation given for performing the checking that

3. TOWARDS AN IMPLEMENTATION OF THE ALGORITHM 43

an abstraction has a type. We will adapt ideas by Coquand [Coq91] and Pollack
[Pol94a] to provide a solution to those problems, which we now proceed to discuss.

3.1. Type checking abstractions. In the formulation of the calculus pre-
sented in section 4 of chapter 2 the judgements involved in most of the rules are in
categorical form, the exception being those rules that introduce binding operators.
In these cases, judgements that constitute some of the premisses are made under the
assumption that one variable has a certain type. The procedures that constitute the
algorithms, however, are formulated as to be performed in the presence of a (valid)
list of variable declarations. In other words, what we have in mind is the formal
verification of the generalized forms of the judgements of the theory, usually called
hypothetical or relative judgements. What we intend to describe, in particular, with
the algorithm for checking that a certain expression a has a type « is how to check
the formal correctness of a judgement of the form I' - @ : «, which says that a is an
object of type a under the (valid) context I'. This observation also applies to the
remaining form of judgements involved in the various rules of the calculus.

The way of making sense of the proof rules presented in that same work follows
what Martin-Lof has called the syntactico-semantical method. The justification of
each individual rule is done by showing that the meaning of the conclusion is con-
tained in the meaning of the premisses. For this, in turn, the semantical explanation
of each form of judgement has to be laid down. Let us take for instance the form of
judgement above: Let I' be a context and « a type under I'. Then I' - @ : @ means

that for any permissible values of the variables in I' the assignment of these values
to the variables in a gives an object of the type obtained from the assignment of
those values to the variables in a.

Observe that in this explanation we are assuming that we have already explained
what it means to know that I' is a context, that « is a type under that context, and
moreover, what are permissible values of the variables declared in the context I'.
It is precisely the formal treatment of these notions, especially the last one, that
differentiates, for instance, the formulation of Martin-Lof’s logical framework as
presented in [NPS89] from the presentation known as the calculus of explicit sub-
stitution [Mar92, Tas97], from now on referred to as CES. In the former work, the
notions of context and thereby the explanation of what are permissible values for
the variables in the context remain at an informal level. The assignment of values
to variables on the expressions of the language is understood as a (meta) operation
to be defined over those expressions. On the other hand, one could say that the
principal motivation for formulating CES is to make sense of these three notions
in a completely formal manner. New forms of judgement are introduced to express
when a list of variable declarations is a context and what is a construction of a valid
assignment of values to the variables of a context. Substitutions then are made ex-
plicit in the syntax of the language and the operation of performing a substitution
on an expression becomes itself an expression (which is denoted by ey and read as
the expression e with the substitution). It is for a modified version of CES that
Magnusson designs and implements the type checking algorithm on top of which
ALF’s proof-engine is built up.

44 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSION

In both formulations of the framework referred to above a particular system of

types is introduced, namely: the function types, the type of sets and for each set,
the type of its elements.
The traditional formulation of the rule for the formation of a function type, for
instance as presented in [NPS89], says that if we know that « is a type and that 3
is a type family under the assumption that a variable x is of type o then we can form
the function type (z :)3, where all occurrences of x in become bound. Thus, as
a new way of forming types is introduced in the calculus, the understanding of the
judgement (z : @) : type requires the explanation of what it means to be an object
of this type as well as when two such objects are the same: f : (x : @) means that
fa : Blx := a] for any arbitrary object a of type a, and, moreover, fa=fb: B[z := a]
whenever a and b are equal objects of type a. That f and g are equal objects of type
(: a) means that fa and ga are equal objects of type [z := a] provided that a
is an object of type a. In particular, abstraction is introduced as an operation of
object formation (of functional types). The corresponding rule

rakb:f
Flz]b: (x:a)p

is justified by making the following (real) definition: if z:a b : 8 then [z]b is the
object of type (z : «)f such that if a is an object of type « then ([z]b)a is stipu-
lated to be equal to b[x := a] as object of type [z := a]. This latter stipulation is
meaningful because the meaning of the relative form of judgement x:a 0 : 3 has
previously been explained, namely, to know this judgement means to know that
bz := a] : B[z := a] for any object a of type «.

Now, the justification of the generalized formulation of the rule of abstraction

[e:abFb: [
CE[z]b: (x:a)p
can be done in analogous manner as above once we have explained the meaning of
the form of judgement I' - a : «, and therefore what is the knowledge that we have
in the presence of the premiss I', z:ae = b : 3. Now, as already said, in particular we
should know that I', z:« is a context.

The stipulation for the formation of a context I', z:cv in CES, for instance, requires
that ' is a context, « is a type under the context I' and, further, that the variable
x has not already been declared in I'. This last restriction is proper of systems of
proof rules where an assumption, z:« say, may be introduced such that the type «
depends on previous assumptions. Therefore, for the premiss of the latter rule of
abstraction to be correct it must be the case, in the first place, that x is not already
declared in the context I'.

In [Pol94b] Pollack discusses some consequences of having the restriction above
for context formation in the implementation of type checkers for languages with
binding operators, and more specifically, with systems of dependent types. The
system of proof rules on which the discussion is centered is what has elsewhere
been called Pure Type Systems (PTS), as originally presented in [Bar92]. What

3. TOWARDS AN IMPLEMENTATION OF THE ALGORITHM 45

is shown by Pollack is the impossibility of deriving, using the rules of PTS, the
judgement [z][z]z : (x : A)(y : Pz)Px under the assumption that A is a type (an
object of %) and P has kind A—x*. In [Mag95] Magnusson rephrases this example
and also shows that the same situation arises in CES. If one wants to understand
the checking of the correctness of instances of the judgement I' - [z]b: (z: @) as
the upward reading of the rule of abstraction one should proceeds as follows: for
checking that [z][z]z : (x : A)(y : Px)Px check that x:AF [z]z : (y : Px)Pxz. For
this, in turn, we should check that x : Pz after extending the context x:A with the
declaration z:Px, but we are restrained from doing this by the criterion for context
formation above. There is no problem, however, in deriving, and also checking, that
[z]lyly : (x: A)(y : Px)Px. This latter shows that the proof system is not closed
with respect to a-conversion.

The decision taken by Magnusson in order to be able to perform the checking
that an abstraction has a certain type in the way described above is to restrict
the bound variables of the abstraction to be mutually distinct and different from
the variables occurring in the context under which the checking is taking place.
Therefore, terms like [z][x]z are rejected by the type checking algorithm.

Now, according to the explanation of what it means to be an object of a func-
tional type one could argue that it makes sense to say that [x][z]z is an object of type
(x: A)(y : Px)Px: let a and p be objects of type A and Pa respectively. Assume
now that the substitution of an expression a for a variable z is defined as to have
no effect when performed on an expression of the form [z]b. Then, the application
of [z]|[z]x to the objects a and p would result in the object p of type Pa. Observe
that the restriction imposed on the operation of substitution is respected by both
the usual definition of substitution in A-calculus and the one given for the objects of
CES. On the other hand, it is clear that in the stipulation of making an assumption,
or more precisely, how a context [' may be extended by a declaration z:a to form
the context I', x:«, the variable x must be required not to already occur in [, or as
commonly said, it has to be fresh for T'.

Relatively recent works on the construction of proof-checkers for type theories
with dependent types have addressed (in a direct manner or not) the problems
presented above.

In [Coq91] Coquand investigates the question of checking the formal correctness
of judgements of type and object equality in a formulation of Martin-Lof’s set theory
with generalized cartesian product and one universe.

The notion of context in this theory is that of a list of assumptions of the form
p:a, where p is a parameter and « a type (possibly depending on other parameters).
In the formulation of the language of the theory, parameters are understood to play
the role of the free variables occurring in the expressions. Consequently, they are
used in the system to stand for generic objects of the various types. However, they
are defined to be syntactic constructions distinct from the bound variables of the
language. We believe that this was the first formulation of a calculus in which
parameters are used for expressing (relative) judgements about types and objects
of certain types. Parameters are chiefly exploited by Coquand in the definition of

46 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSION

the algorithm for checking type and object conversion: For checking, for instance,
that two abstractions, [z]e and [y|d say, are convertible, first a parameter, p say, is
substituted for the variable x (resp. y) in e (resp. d). Then the algorithm proceeds
recursively by checking the convertibility of e[x := p] and d[y := p|. The distinction
between parameters and bound variables allows to define a simplified operation of
substitution on expressions where no mechanism of renaming has to be considered
in order to avoid capture. Further, there is no need for an a priori identification
of a-convertible terms for the algorithm to be defined. This latter is, we think,
quite a relevant point if one wants to describe an actual implementation. Due to
the inextricable relation between type and object formation and type equality, and
therefore object equality, the results of this work have a direct application to the
construction of type checking algorithms for theories with dependent types. The
algorithms we have sketched in the previous sections of this chapter for checking
conversion and inclusion of types as well as conversion of objects are much in the
spirit of Coquand’s algorithm. There is a difference, however, in that the checking
of the conversion of two objects is performed with respect to some (common) type.
We have already pointed out that in the presence of record objects and subtyping
we may have that the equality of two expressions as objects of a certain type may
depend on which is the type being considered.

In [Pol94a] Pollack adopts the use of parameters to implement a type checking
algorithm for a family of PTS’s. In that work, the author starts by presenting
the original formulation of the rules of PTS . Then in the strive for obtaining an
algorithm out of the inference rules the system is successively modified. One of the
motivations for introducing the notion of parameter and consequently make use of
them in the reformulation of the rules of inference of the formal system is to provide
a solution for problems similar to the ones discussed above. The benefit afforded by
the use of parameters can be illustrated as follows: let us consider again the question
of checking the judgement [z][z]z : (x : a)(y : Px)Pxz. We rephrase the argument
given above for the validity of this particular judgement in terms of type checking:

For checking that an expression [x]e has a type (z : @) under a context I' see to
it that e[z := p| has type B[z := p| with [" extended with the declaration p:a with p
a fresh parameter for I'. The operation es[z := €] is defined as textual substitution
but it has no effect when performed on an abstraction whose bound variable equals
the variable x. Thus, according to the explanation above, we proceed by checking
that ([x]z)[x := p| has type ((y : Pz)Px)[z := p] under the context extended with
p:a. Notice that this reduces to checking that [x]z has type (y : Pp)Pp. Now we
should check that z[x := ¢| (which is ¢) has type Pply :=¢] (which is Pp) after
extending the context with ¢:Pp, which is easily seen to be correct.

It could be argued that this procedure could still be carried out, as we have
done, using variables: just choose a fresh variable for the context and then proceed
as described above. But this would not be enough, because this variable might at
the same time occur as a bound variable in the expression on which the substitution
is performed. Therefore, a mechanism of renaming has also to be considered in the
definition of the operation of substitution in order to avoid variable capture. This is

3. TOWARDS AN IMPLEMENTATION OF THE ALGORITHM 47

not needed in the language we are considering because parameters are not subjected
to bindings.

The formulation of the rule of abstraction formation presented in [Pol94a] is, in
spirit, as follows:

I pat bz :==p]:aqly :== p]
CE[z]b: (y:a)a

The restriction for this rule is now that the parameter p must not occur neither
in I', b nor a;;. Observe that the proceedure described above for checking that an
abstraction has a certain type conforms with the upward reading of this latter rule.
It should also be noticed that the bound variables of the object and the type are
not required to be the same. This is a further modification to the original rule of
abstraction of PTS’s —and also to the corresponding rule in both formulations of
Martin-Lof’s logical framework— where the two bound variables are required to be
the same. The motivation provided by Pollack for this latter change is also influenced
by the intended understanding of the type system as closed by a-conversion. We
now rephrase the example and the arguments given, which can also be applied to
the formulation of type theory in [NPS89|:

Let us take, for instance, the judgement I' F [X][yly : (X : Set)(w : X)X. With
the restriction that the bound variables of the object and type have to be the same,
the only possible way of deriving this judgement, up to applications of the thinning
rule, would be to derive that [y|y has type (y : p)p under the context I', p:Set and
then, provided that (y : p)p and (w : p)p can be proved to be convertible types, apply
the rule of type conversion to get that I', p:Set - [yly : (w : p)p. Notice then that
this application of type conversion is actually a step of a-conversion, and that this
latter can be avoided once the abstraction rule is formulated as above.

In our case, however, there is no need for a formal stipulation of the rule that
makes explicit that the bound variables may be distinct. The rule of abstraction we
have in mind is the following:

U p:a b blx :=p| : [z := p]

['F[z]b: a—[z]ag

In this case the parameter p also must be fresh for I' and not occur in b nor in a;. Now
the question is whether I' - [2]b : a—[y]ay is derivable. We will later show that hav-
ing the rule of abstraction above it is possible to derive that if I', p:a = b[z := p] : Bp
holds then I' - [2]b : a—f using the n-rule for families of types. Observe, then, that
we do not need to make explicit the bound variable of the family 3. Therefore, we
will obtain a formulation of the procedure for checking an abstraction very close
to the one stipulated in the preceding sections, namely: for checking that [x]b has
type «a, first see to it that « is of the form «;— ;. Then proceed by checking that
blz :=p] is of type [Bip after extending the context with the declaration that the
fresh parameter p is of type a;.

48 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSION

Now the question is how one can get convinced of the validity of the above rule
for abstraction formation, and furthermore, of the whole set of the generalized form
of the rules that constitute the calculus. This is what we shall set ourselves to do
in the next chapter.

CHAPTER 4

Formulation of the extended theory with parameters

1. Introduction

We shall now proceed to present a variant of the formulation of the logical
framework extended with record types and subtyping given in chapter 2. A first
difference with this presentation is that we shall consider the rules of inference in
their generalized form. Therefore, the corresponding justifications must now be
given in accordance to the meaning explanation of the relative forms of judgement.
Further, we shall make use of parameters to stand for generic objects of the various
types. Thereby, as the stipulation of an assumption will correspond to declare a
parameter as of a certain type, the explanation of a relative judgement depends on
what are considered to be the permissible assignments of values to the parameters
involved in such judgement. These assignments, in turn, are defined in terms of a
particular notion of substitution which, in contrast to the one usually defined for
the language of type theory, behaves as the textual replacement of a parameter by
an expression.

For the justification of the rules of inference that the calculus embodies, we intend
to follow the method adopted by Per Martin-Lof of making sense of the proof rules
that constitute the systems presented, for instance, in [Mar87, NPS89, Tas97] :
each inference rule is justified (or explained) by showing that the meaning expressed
by the conclusion of the rule is contained in the meaning of the premisses. For that,
all the forms of judgement used in the formulation of the rules have to be made
explicit and given their corresponding explanation.

We are, however, especially concerned with the understanding of the interaction
between parameters and binders. Particular attention is then paid to the justifica-
tion of the rules for introducing abstraction operators. There is no counterpart to
these explanations in the works by Coquand [Coq91] and Pollack [Pol94a].

We are interested in the particular system of types introduced in chapter 2,
namely: the type of sets, for each individual set the type of its elements, dependent
function types and dependent record types. The explanation of what it means to
know a certain type « is independent of the particular syntax chosen to formally
express such a type. This is also the case for the explanation of what it means that
a is an object of a type . When one knows a type or an object of a type one knows
more than the corresponding expression (or syntactic object) used to express it. An
expression « becomes a type when it is explained which is the semantical category
that « denotes. Correspondingly, it is precisely when an expression is sorted into a
semantical category that it becomes an object. Thus, we are allowed to assert that
an expression a is an object of type « only if we already know that « is a type and

49

50 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

besides we can show that the understanding of the meaning of « is that of an object
of type a.

In principle, there should be no knowledge associated to a primitive expression of
the language other than the one that allows to sort it into its category, the syntactical
category. The primitive objects of the various types are introduced by means of a
real definition, that is to say, by a direct meaning explanation. The relation of
synonymy or sameness of meaning between linguistic expressions will be understood
as identity between objects. Thereby two different expressions are synonymous only
if they are equal as objects of a certain type. We will need to stipulate, at some
point, the equality of two objects. As this latter equality can be expressed as an
instance of a form of judgement of the calculus, these (nominal) definitions can then
be formally expressed as rules of the proof system.

Now, for the explanation of the relative forms of judgement of the theory a notion
of substitution has to be introduced. As already said, in CES, the category of expres-
sions is extended to consider expressions with substitutions as part of the language
of the calculus. Due to the introduction of new forms of judgement, whose meaning
explanations are precisely laid down, it is possible to give a complete and detailed
justification of all the rules that constitute the system of proof rules. Furthermore,
there is no need, in general, for the definition of how substitutions are performed
on expressions to justify many of the rules involving expressions with substitutions.
On the other hand, when a definition is required, it can still be formally expressed
as a rule of the calculus. A general and very precise formulation of the system is
then obtained. The solution we have in mind for the problems discussed in section 3
of chapter 3 connected with the binding operators, however, strongly relies on the
definition of two different operation of substitutions, one for parameters and the
other for variables. These two operations will be defined on the elements of the syn-
tactical category, thereby we shall need to give a precise definition of this category.
We then will lose some of the generality accomplished in the various formulations
of the logical framework we have been making reference to in the sense that we
are defining a priori which are the valid expressions of the language of the calculus.
Nevertheless, we see this as a natural consequence of the task we have undertaken:
the implementation of the mechanical verification of the formal correctness of the
forms of judgements and inference rules of a particular formulation of the theory. On
the other hand, and this we think may be a more serious drawback of this proposal,
the (syntactical) identification of different linguistic expressions introduced by the
operations of substitution will render the justification of some of the rules to depend
on (meta-) properties proper to the category of expressions. As these properties
can not be expressed in terms of the judgements of the theory we are also losing
formality in the formulation and justification of some of the rules. In this respect,
we think that a formulation of the calculus of explicit substitution which considers
the distinction between parameters and variables would remedy this latter situation.
This formulation, however, has still to be further investigated.

We now then proceed to introduce the category of expressions and give the
corresponding definition of the operations of substitution.

2. THE CATEGORY OF EXPRESSIONS 51

2. The category of expressions

The expressions of the language are given by the grammar in Figure 4.1

e == x| pl|cl| [zle| erea| ()| (e1, L =e2)| e.L
61—)€2| (61,L2€2>

FIGURE 4.1. Syntax of expressions

The symbol x ranges over a denumerable set V, the set of bound variables. Below
we use y as an element of this set too. We also assume there exists a denumerable
set P of parameters. The symbol p (and ¢ below) ranges over the set P. The symbol
¢ ranges over a countable set C of constants, which is defined to be disjoint with
V. The sort Set is a distinguished element of C. Finally, the symbol L ranges over
a denumerable set L of labels. This set is defined to be disjoint with the sets P, V
and C.

The expressions [z]e are abstractions, and therefore the occurrences of z are
bound in [z]e.

We assume that P, V, C'and L are equipped with a decidable equivalence relation.
Under this assumption we can also define one for expressions. We denote it by =,
and make an overloaded use of it.

From now on we use Greek letters a, aq, ... for expressions intended to denote
types and [, (; for families of types. We sometimes will use the more familiar
notation (x : a)ay instead of a—[z]ay.

2.1. Instantiation and Substitution. We need two kinds of substitution,
substitution of an expression for a parameter, that we will call instantiation and
denote by ey[e;/p], and substitution of an expression for a variable, that we will call
substitution and denote by es|r :=e;]. The first one is just textual substitution.
The latter also behaves as textual substitution but has no effect when performed
on an abstraction whose bound variable equals the variable z. It does not prevent
capture either. The corresponding definitions are given in Figure 4.2 and Figure 4.3
respectively.

We will introduce a notion of well-formedness for expressions. The intuition is
that we will consider to be well-formed those expressions where only bound occur-
rences of variables are allowed. The predicate wf on the expressions is inductively
defined as shown in Figure 4.4.

What we here define to be well-formed is what in [Pol94a] are defined to be closed
expressions. In [Coq91] they are defined as elements of the set EXP. The intuition
is exactly the same, in a well-formed expression there are no occurrences of free vari-
ables. This is particularly made explicit by the rule wf-Lda (z is the only variable
that may occur free in e) and the fact that variables are not well-formed (no intro-
duction rule for this case). We shall now enunciate propositions that characterize
to some extent the interplay of substitution with well-formed expressions.

52

4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

le1/p) =def &
qler/p] =def €1 ifp=gq
=def 4 ifp#q
cler/p] =def C
([x]e2)[e1/p] =des [z]eale1/p]
fealer/p] =aer (fler/p])(ezler/p])
(a=PB)ler/p] =aer (aler/p])—Ble1/p]
()e1/p] =des ()
(e, L =e)er/p] =aer (eler/p], L = €'ler/p])
e.Lle1 /p] =des (eler/p])-L
(e, L:e")e1/p] =aer (eler/p], Le'ler/p])
FIGURE 4.2. Instantiation
Y[z = €] =def €1 ife=y
—def Y if x 7é Y
plr = e =def P
clx = eq] =gef C
([ylea)[w = eq] =des [yle2 if v =y
=def [yles[z = eq] ifzx#y
feolz := e =y (flz = el])(esfz == e1])
(a—pf)[x := €] =gef (az = e1]) =0z = €]
(z = ei] =des ()
(e, L=€)[r:=e1] =gy (elr:=e1],L=¢[r:=¢])
e.Llx := eq] =ger (e[r:=¢€1]).L
(e, L:e')[x := €] =ger (elr:= €], L€'z :=€1])
FIGURE 4.3. Substitution
(wi-Par): o s (w-Con): — i
wf e[z = p] wf [wfe
(wf-Lda): f [.I']@ (wf-App): U)f fe
wf e wf e wf e
(wf-ERec): wf <> (wf-RecO): m (wf-Sel): m
PN M ey, LE W€
T wf a8 T wf (e, Lee')

FIGURE 4.4. Well-formed expressions

2. THE CATEGORY OF EXPRESSIONS 53

lgth p =def 1

lgth T =def 1

lgth C =def 1

lgth fe =def lgth f + lgth e

lgth [z]e =4ef 1+ lgthe

lgth a—(=g4ef lgth o + lgth 3
lgth <> —def 1

lgth {e1, L = e3) =qef lgth ex + lgth ey
lgth e.L =dey 1+ lgthe

lgth (e1, L:es) =des lgth e; + lgth ey

FIGURE 4.5. Length of an expression

2.2. Properties of well-formed expressions. Some of the properties below
are proved by complete induction on the length of the expressions. This function,
in turn, is defined in Figure 4.5. We shall here enunciate the propositions that we
consider relevant for the understanding of the work that follows. Their proofs, as
well as those of some auxiliary lemmas, can be found in Appendix A.

PROPOSITION 4.1. Given expressions ey and es, such that wf ey, and any vari-
able x and parameter p, then

1) eg[x := €] = es.
2) if wf (ei[x := p]) then wf (e1]r = eq)).

The intuition behind the first proposition is that well-formed expressions are not
affected by substitution. The second one says that if the result of substituting in an
expression a parameter for a variable is a well-formed expression, this will also be
the case if the variable is replaced by any well-formed expression.

2.3. Closed expressions. In the following we will talk of closed expressions.
As anticipated, the valid open expressions that participate in a relative judgement
will depend on parameters not on variables. Therefore, we shall need a notion of
closed expression that says more than the one traditionally used in languages with
binding operators. For doing that, we first introduce the notion of independence
of an expression e of a parameter p. The inductive definition of this predicate on
expressions is given in Figure 4.6.

2.3.1. Independence, substitution and instantiation. Now we enunciate a propo-
sition about the interaction of these three notions.

PROPOSITION 4.2. Let e; and ey be expressions and p be a parameter such that
e1 indep p, then

1) eilea/p] = ;.

2) for any variable x, e[z := p|les/p] = e1[x = es).

54

4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

(indep-Par): q 7& p (indep-Var): T
7qmdepp x indep p
indep-Con): —————
(indep-Con) cindep p
' e indep p ' findep p eindepp
(indep-Lda): [.Z']@ anep D (indep-App): f@ anep D
. . e indep p € indep p
(indep-ERec): W (indep-RecO): <€, I — €,> anep D
. e indep p
(indep-Sel): e L, anep D
a indep p B indep p e indep p € indep p
(indep-Fun): (indep-RecT):

a—[3 indep p (e, L:€') indep p

FIGURE 4.6. Independence

Thus, the instantiation of a parameter that does not occur in an expression does
not affect that expression.

Finally, a closed expression is then defined as follows:

DEFINITION (Closed expression). An expression e is closed if and only if e is
well-formed and for all parameters p the expression e is also independent of p .

2.4. Properties of closed expressions. To begin with, we enunciate the
proposition that says that closed expressions are affected neither by substitution
nor instantiation.

PROPOSITION 4.3. Given expressions e; and ey wvariable x and parameter p. If
e1 1s a closed expression then ei[r := e3] = e and eq[es/p] = e;.

We end up this section with some very useful properties relating closed expres-
sions, substitution and instantiation.

PROPOSITION 4.4. Let ey, es and a be expressions, and x any variable. Further,
let a; and p, p;, with i = 1..n, be n closed expressions and n + 1 mutually distinct
parameters, respectively.

Then

1) erla/pllar/p1,-- -, an/pn] = e1]ar/p1, - ..
2) e1]x = esl[ar/pr, . ..
3) e1]x = pllar/p1, - - -

7an/pn][a'[a'1/p1; s ;a'n/pn]/p]-
s Gn/pa] = e1lar/py, ... an/pal[r = exlar/py, ... an/pn).
7an/pn] - el[al/pla s 7an/pn][x = p]

3. FORMS OF JUDGEMENT 55

We now turn to introduce the various forms of judgement and give the corre-
sponding meaning explanations

3. Forms of judgement

The categorical forms of judgement of the calculus are the following:

« : type, to be read “« is a type”

a=/f :type, to be read “a and [are equal types”

a : «, to be read “a is an object of type a”

a=b : a, to be read “a and b are equal objects of type a”

B+ a—type, to be read “3 is a family of types over a”

B,1=0, : a—type, to be read “f3; and [, are the same family of types over o
p : record-type, to be read “p is a record type”

o : a—record-type, to be read “o is a family of record types over a”

a C (3, to be read “« is a subtype of 37

B, C By : a—type, to be read “3, is a subfamily of 3,”

The meaning of each of these forms of judgement has already been explained in
chapter 2.

3.1. The relative forms of judgement. The basic forms of judgements above
are generalized in order to express also hypothetical judgements, i.e. judgements
which are made under assumptions. From now on we will refer to them as relative
judgements. Making an assumption is formally reflected by the introduction of a
parameter, and the stipulation of how parameters may be introduced gives rise to
the notion of a context. It is possible, then, to make judgements involving open
expressions, namely, expressions which depend on the parameters of a context.

We start then by the notion of a context and that of being a type under a
given context. These two concepts have to be simultaneously explained because
contexts are extended by assumptions of the form p:a, where o has to be a type
under a shorter context. The empty context (denoted by []) is the context with no
assumptions. Let I' be a context, if o is a type under I' and p is a parameter not
occurring in I' then I', p:av is the non-empty context which results from extending I’
with the assumption that p is a generic object of type a.

Assume now that I' is a context, the relative judgement I' - « : type says that
a is a type under the context I'. The meaning of this form of judgement when I'
is the empty context is the same as the one given for the corresponding categorical
one. When T is of the form [pi:cv, ..., ppiay], with n > 0, a judgement of the form

[pr:aa, ... piag] Fac type

means that ofa;/p1, ... ,a,/p,) is a type whenever a; is a closed object of type ay,
a2 of type a2[a1/p1]7' -y Qp of type an[al/pla s 7an71/pn71] and a[al/pla s 7an/pn]
and alb,/p1, ... ,b,/pn] are equal types whenever a; and b; are equal closed objects

of type ay, ..., a, and b, of type ay,[a1/p1,... ,6n 1/Dn1]-

56 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

In general, then, a context will be of the form

[priavy, ..., Dricu]
where
- aq 1s a type,
- aplay /p1] is a type for any object a; of type ay, and asla;/p1] and as[by /pi]
are equal types whenever a; and b, are equal objects of type «y,

- aplar/p1, ... an_1/pn_1] is a type for arbitrary objects a; of type «, as of
type aslai/p1l,..., an_1 of type ay,_1]la1/p1,... ,an o/Pn2]. Moreover, it is
also the case that a,la1/p1,... a0 1/Pn1] and ay[by/p1,... by 1/pn_1] are
equal types for equal objects a; and by of type a1, ..., a,_1 and b,_; of type
anfl[al/pla cee 7an72/pn72]

Notice that any initial segment of a context is itself a context.

The expression afa;/p1, ... ,a,/p,] denotes the result of performing the instan-
tiation of a, for p, in the expression ala;/pi,... 6y 1/pn1], for n > 1. Observe,
however, that the objects aq,as ... ,a, are respectively closed expressions of type
ay, azlar/prl, ..., anlar/pi,y ... yan_1/pn-1] . Therefore, as all the parameters are
mutually distinct, the order in which the instantiation of the parameter p; by the
expression a; is performed is not relevant.

We shall now introduce a notational device : if [py:ay, ..., ppiay] is a con-
text, and a1, as. .. ,a, are respectively closed expressions of type ay, aslay /p1], ...,
aplai/p1y ... @y 1/pn_1] we shall say that 7 is an assignment for the variables in
the context I' and denote by ey the expression e[a;/p1,. .. ,a,/py]. Thus, 7 is not
itself a construction of the language, it only makes sense when occurring in an ex-
pression of the form above. We principally want with this to alleviate the meta
notation to be used in the rest of the work. On the other hand, we would like
to think of v as an environment for the context [p;:aq, ... ,pn:y], and then to use
this intuition when presenting the explanation of the remaining forms of judgements
as well as when providing the justification of the rules we shall present below. In

addition to this, if a; and b; are equal objects of type aq, ..., a,_1 and b,_; of
type ayla;/p1, ... 0, 1/pn_1] we shall say that v and ¢ are the equal assignments
[a1/p1, - s an—1/pn1] and [by/p1, ..., by_1/pn_1] respectively.

We reformulate now the explanation of the form of judgement I' - a : o which
says that a is an object of type a under the context I'. Assume I' - «: : type. Then,
the meaning of a judgement I' - a : o when I' is the empty context is the same
as the one given for the corresponding categorical one. When I is of the form
[pr:a, ... Poia], with n > 0, a judgement of the form

[pr:aq, ..., ppiap] Fa:

means that a7y : ay and that ay and ad are equal objects of type ay whenever y
and 0 are equal assignments for the context I'.

The meaning of the remaining forms of relative judgement can now be explained
in analogous manner as done for the form of judgements above.

4. RULES OF INFERENCE 57

4. Rules of inference

We shall now build up a system of rules that assembles the concepts we have pre-
viously explained. The various forms of judgement of the calculus are the following:

[' context

' a: type

['F o =ay: type
'Fa:«a

'Fa=b:«

I'F G : a—type

' By = By : a—type
[' F p: record-type

[' - o : a—record-type
'+ Qaq E (0%)

't 8y C B, a—stype

The rules of the calculus are classified as follows: general rules, instantiation
rules and the rules for families of types and types. We shall principally concentrate
on the presentation and justification of this latter group of rules, which introduce the
particular system of types we want to consider. The general rules correspond to a
great extent to the ones presented in the formulation of CES in [Tas97]. In addition,
there are the generalized form of the rules presented in chapter 2 concerning the new
form of judgements introduced by the extension of the theory with subtyping. The
instantiation rules express in a formal manner the meaning of the relative forms of
judgement.

We do not intend to make a comprehensive presentation of the rules of the cal-
culus in this section, the formulation of the whole system can be found in Appendix
B.

4.1. General rules.
context formation:

[context T «: type
] context [, p:a context

p fresh in I

Let I' and A be contexts. If every parameter declaration in I' is also a parameter
declaration in A then we will say that I' is a subcontext of A. This relation is
written I' < A. Following the terminology in [Tas97] we shall also say that A is an
extension of I'. There are rules then expressing that if we know a relative judgement
under a given context we also know it under any extension of the context. Instead
of presenting the complete set of rules we just formulate the rule schema:

thinning:

58 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

where J stands for any of the categorical forms of judgement introduced in the
section above.

From the semantical explanations of A being a context, an expression being
an object of a type under a context and the definition of the relation I' < A the
following rules of object and type formation are obtained:

assumption:
p:ainl — p:ainT

'Fp:a ['Fa: type

4.1.1. Equality rules. These are the general rules for the equality relation of
types, objects of a type and families of types. Their justification is done as in
previous formulations of type theory. We have then reflexivity, symmetry and tran-
sitivity rules for identity of types, objects of types and families of types under a
given context.

4.1.2. Rules of inclusion. We have also rules for expressing that the inclusion
of two types and two families of types follows from their identity, as well as the
reflexivity and transitivity of inclusion of types. The following rules are immediately
justified from the meaning explanation of the judgement of inclusion:

subsumption:

F'Fa:ay ThHayC oy F'Fa=b:ay ThFayC oy
'Fa:o I'Fa=b:o

4.2. Rules of instantiation. The rules of instantiations are given in Fig-
ure 4.7. They can all be justified in a similar manner. Let us take for instance
the first rule of instantiation of types:

IipakFay:type T'Fa:a

I'Faqla/p]: type

For justifying this rule what has to be shown is that if v is an assignment for the
context ' then aj]a/p]y is a type and that if 7 and ¢ are equal assignment for the
context I' then «a;[a/p|y and «a;[a/p]d are equal types. We will show only the first
of these conditions, the second follows by a similar reasoning. Now, assume the
premisses of the rule. That a is an object of type a under ' gives that avy : asy.
Then v[ay/p| is an assignment for the context I', p:cv. The first premiss of the rule
then gives that «;7y[ay/p] : type. From this same premiss we get that p does not
belong to I', thus it is different from all the parameters of +v.We can apply then
Proposition 4.4 to get that «y[a/p|y is equal to the expression «;v[ay/p], hence
aila/ply = type.
All the remaining rules can be explained analogously.

4.3. Rules for families of types and types. We shall now give the rules for
using and forming families of types.

The rules of application and those expressing the meaning of identity and inclu-
sion of type families are the generalized form of the ones presented in chapter 2.

4. RULES OF INFERENCE 59

instantiation of types:

Ipab oy itype Tha:o Iypaka=ay:type I'Fa=b:a«
I'Faqla/p]: type I'F aqla/p] = aslb/p] : type

'paFai Cay I'Fa=b:«
I't aafa/p] C aofb/p]

instantiation of objects:

Uipabbray Thaza Ipabb =by:ay 'Fa=c:a
[bla/p] = aula/p] ' bifa/p] = bale/p] : ena/p]

instantiation of families of types:

Iipabf:ag—=type T'hHa:a Dipat B, =0,:a0—type 'Fa=0:«
I'F Bla/p] : eala/pl—=type ['F B1la/p] = Ba[b/p] : cala/pl—type

Cipatk B, EBy:ay—type T'Fa=b:«
I'F B1la/p] E Bolb/p] : anla/p]—type

instantiation of record types and record families:

[,p:al=p:record-type I'Fa:a I',pato:a;—record-type I'Fa:«
['F pla/p] : record-type ['Fola/p] : aq]a/p]l—record-type

FIGURE 4.7. Rules of instantiation

The formal treatment we make in this work of families of types was first presented
in the formulation of CES. In particular the abstraction operator is introduced as a
type family former. As discussed in section 3, we shall make use of the distinction
between parameters and bound variables to provide a solution to the problems con-
nected with the binding operators. The rule for family formation then is formulated
as:

[p:a b aqlx = p|: type

a1 indep p

['F [z]ay @ a—type
The intuition is the same: for [z]a; to be a family with index « then «; has to be a
type for any possible value of type . The difference is that the notion of a generic
object of certain type, the parameter p of type «, is not identified with the notion
of variable of that type.

We need to differentiate the cases of I' being empty and non-empty for the
justification of this rule. In the first case we have to show that [z]a; : a—type.
This in turn requires that for any object a of type «, ([z]ai)a is a type. From
the premiss we know then that ay[x := p|[a/p] is a type, and by Proposition 4.2,
as « indep p we obtain that a;[z := a] is a type. We can then make the following

60 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

(meaningful) definition: If p:a b aq [z := p| : type and «; indep p then [z]a; is a type
family over « such that ([z]aq)a is equal to a;[z := a] as type if a : «.

Now, if I' is non-empty what has to be shown is that if v is an assignment for
the context I' then ([z]ay)y : ay—type. For this, in turn, we have to show that if
a : ary then (([z]ay)y)a is a type. Notice first that by definition of instantiation the
expression ([x]ay)y is equal to [x]a;y. Observe now that if v is an assignment for I’
then by the meaning explanation of the relative form of judgement I' - « : type it
follows from the premiss that p:ay F aq[z := p]y : type . Then, by Proposition 4.4
as p is fresh for I" we get that ay[z := p|7y is equal to ayvy[z := p]. Observe that if
ay indep p the expression «qy is also independent of p. Therefore, we can use the
definition above to get that [z]ay7y is a type family over ay and, moreover, that if a
is an object of type ay then ([z]a;v)a is the type agy[x = al.

For the justification of the S3-rule:

Iypab oz :=pl:type Tha:«

aq indep p

['F ([z]ag)a = aq|x == a] : type

we must, in addition to the constructions above, use Proposition 4.4 to show that
o[z = a]y is equal to ayy[z = av].

From the explanation of what it is for two families of types to be identical the
following rule of extensionality can also be justified:

L', p:a- Bip = Bop : type
['F By = [y : a—type

Its explanation is analogous to the one given below for the rule of extensionality of
objects of a function type.

B1, B2 indep p

Using the two latter rules it is possible to derive the following formulation of the
n-rule for families of types:

' G : a—type ‘s
I'F B =[z]fz : a—type

That the family /3 is required to be well-formed is equivalent to ask for the variable
x not to occur free in 3. We show now a tree-like derivation of the rule:

' G : a—type

o, pak (Bz)z:=p]: type T,qatq:«
I, ¢ = ([z]Bx)g = Bq : type
['F[z]fz = B : a—type

From the premiss I' - 3 : a—type we can infer by thinning and the first rule of
application that I', g:a, p:ae = Bp : type. Now, observe that by definition of substitu-
tion and the side condition we know, using Proposition 4.1, that the expression p
is equal to the expression (fx)[z := p]. A similar reasoning is applied when the ex-
pressions involve the parameter ¢ instead of p. The two final steps are applications

4. RULES OF INFERENCE 61

of the (-rule and the rule of extensionality for objects of functional type respec-
tively. The conclusion of the n-rule then is obtained by the rule of symmetry for
the identity of families of types. Actually, we could drop the side condition on the
well-formedness of the expression f3, it is possible to show that if [' - 3 : a—type
then both # and « are well-formed. For the application of the -rule we need the
expression (Sx to be independent of the parameter p. This also holds because of the
premiss ' - 3 : a—type and I', ¢:a, p:a being a context.

4.4. Sets and elements of sets. We introduce the type of (inductively de-
fined) sets, the rule that expresses that each set gives rise to the type of its elements
as well as the one stating that equal sets give rise to equal types without further
comment:

LEA:Set [FA=B:Set
= Set : type ' A: type I'FA=B:type

We remark that the inclusion between ground types A and B is the trivial one
following from their identity.

4.5. Function types. Function types now are introduced and explained in the
following way: If o is a type and [is a family of types indexed by « we can then
form the type of functions that when applied to an object a of type a results in an
object of type fa. This function type is denoted by a— /(3. In addition, for f : a— [,
fa and fb have to be equal objects of type fa if a and b are equal objects of type
«. Observe, then, that in contrast to the explanation given in chapter 3 for function
types of the form (z :)3, this explanation of what it means for f to be an object
of type a— 3 needs no explicit mentioning the index of the family.

These are the rules for forming function types and the associated equality and
inclusion rules:

formation of a—(:

'Fa:type T'FfF:a—type

['Fa—p: type

equality and inclusion of a—[3:

'Fa =ay:type T'F [y = [ay—type
'+ a1—>ﬂ1 = Oég-)ﬂg : type

'Fas Cap IT'EG E By ag—type
I'Fa—=6 C ay—f

The justification of these rules reduces to the case in which the judgements
involved are categorical. These explanations, in turn, have already been given in
chapter 2.

We proceed now to give the rules of application, object formation and the asso-
ciated identity rules:

62 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

application:

Ffra=f Tha:a '-f=g:a—pf I'ta=b:«
' fa: pBa ' fa=gb: fa
It suffices to remember the meaning of the first premiss to get convinced of the

validity of these two rules.
We now introduce the rule for abstraction:

abstraction:

[, p:a b bz = pl| : o[z :=p]

b,y indep p
['F[z]b: a—[z]oy

The justification of this rule follows a similar reasoning as the one used for the
formation of a family of types. We will only look at the case of I" being empty.
What has to be shown, then, is that [z]b is an object of type a—[z]a;. So, let a be
an object of type «, thus we have to show that ([x]b)a is of type ([z]a;)a. Observe
that from the premiss we get that [z]a; is a family over . Thus we know that
([z]e)a=ay [z = a] :type and also that blx := p|[a/p| : aq]z := p|la/p]. Therefore,
as both b and «a; are independent of p, we can apply Proposition 4.2 to get that
blz :=plla/p] (resp. aqlx = plla/p]) is equal to blx :=a] (resp. ay[z :=a]), and
then we have that b[z := a] : o[z := a]. So we make the following definition:

if p:a b= bz := p] : aq]z := p] then the expression [z]b is an object of type a—[z]ay,
and moreover, if a is an object of type a we stipulate that ([z]b)a is equal to b[z := a]
as objects of type a;[x = a.

The former constructions are expressed by the following formulation of the -rule

[B-conversion:

Copabblr:=pl:afz:=p] Tha:a«
['F ([z]b)a =

The following rule of extensionality can also be justified:

bz :=a]: a1y := d]

extensionality:

I',p:at fp=gp: Bp
'Ff=g:a—p0

Observe that the premisses to the effect that f and ¢ are objects of type a—(
under I' have been omitted. To see that the conclusion is valid we must convince
ourselves that fv and gv are equal objects of type a— v if v is an assignment for
['. This type, in turn, is by definition of instantiation equal to ay—(3v. We have,
then, to show that if a is an arbitrary object of type ay then (fv)a and (gv)a are
equal objects of type (fB7v)a. Notice that v[a/p] is an assignment for the context
[, p:a then the premiss gives that (fp)y[a/p] and (gp)y[a/p] are equal objects of
type (8p)y[a/p]. By definition of instantiation, the application (fp)y[a/p| is equal

to (fy[a/p])(pla/p]) and similarly with (gp)y[a/p] and (Bp)yla/p]. Finally, as f, g
and [are independent of the parameter p and the assignment v does not affect p,

we get that (fy)a=(g7)a : (87)a.

f,9,B indep p

4. RULES OF INFERENCE 63

Using the two rules above is then possible to show that the following formulations
of the n and &-rule are derivable:

n and &-rules:
Phbiamf FpaFf[= 1)
FI—[a:]bxzb:a—)ﬁw = [z]f =

f:9, a1 indep p

= g[w =pl oz = p
[z]g - a—[z]on

4.6. Record Types. The formulation of the rules for record types and record
objects remains almost identical to the one presented in chapter 2. In most of
the cases, the only difference is that now the judgements involved in the rules are
generalized to their relative form. For each of these rules its justification reduces to
the one given in that chapter for the corresponding categorical formulation. This is
in accordance with the fact that no binding operators are introduced in the formation
of record types and record objects. The exception are the rules concerned with the
formation and use of families of record types, but their explanation are analogous
to the already given above for families of types.

We then start by giving the formation rules of (primitive) record types:

formation of record-types:

' p:record-type T['F 3 : p—type
['F () : record-type '+ (p, L:3) : record-type

L fresh in p

type formation:

[' = p: record-type

['Fp: type

A remark is in place concerning the three rules above. In chapter 2 for the for-
mation of record types four rules are introduced which have to be simultaneously
understood. In these rules it is expressed that every (primitive) record type has to
be introduced as a type and further as a record type. The motivation for doing that
was to give a uniform explanation for nominal definitions of types. For the sake
of conciseness we here obviate those considerations. However, there must still be a
rule that says that every record type gives rise to a type, because, for instance, in
the right premiss of the second formation rule above p has to be a type in order for
that judgement to be correct.
The rules for constructing identical (primitive) record types are as follows:

record types equality:

U'py=p,:type U'F =0y p—type
= =0 type I (o1, Lifr) = (pa, L:f2) = type
Their justification is routine.

In order to justify the rules of inclusion of record types the following three rules
are needed:

'Er:p
L:Binp —— L:fBinp

I'E{(p,L:5) C p ' B : p—type C'Er.L:pBr

64 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

We now proceed to formulate and explain the rules of inclusion of record types:
[' = p : record-type I'Ep, Ep, I'EpB,C By p,—type
FEpC () ['Epy B (py, L:y)

We will justify only the second rule, the first one can easily be seen to be valid.
Now for the conclusion of the second rule to be valid we have to show that if -y is
an assignment for the context I' then p;v is a subtype of (p,, L:3,)7y. For this, in
turn, it has to be shown that if r is an object of type p,7 then it is also an object
of type (py, L:(35)7, and if r and s are equal objects of type p,7v then they are also
equal objects of type (p,, L:35)7y. Now, by definition of instantiation on expressions
of the form (p, L:5) we have that (p,, L:3,)7 is equal to (p,7y, L:B27y). Moreover the
first premiss gives that p;v C py7y and the second that 8,y C 3,7 : p;y—type. The
justification proceeds now as the one given for the categorical formulation of the
rule in chapter 2. The second condition is explained in a similar manner.

L: (3, in py

Finally we introduce the various rules of record object formation and the asso-
ciated equality rules:
record object extension:

CEr:p Thke:pr

- L fresh in p
CE():() L' {(r,L=¢): (p,L:3)
CEr:p Tke:pr L tresn in CkFr:p T'ke:pr L fresh in
F'F(r,L=ey=r:p I'F(r,L=e).L=e:fr
equality rules:

F'kr:() Tks:() I'Fr=s:p I'kr.L=s.L:fr
F'Fr=s:() C'Er=s:{p L:3)
'Fr=s:p

L:Binp

I'Fr.L=s.L:pgr

5. Weak head reduction

No notion of reduction for the expressions of the calculus has been introduced so
far. The meaning explanations of the forms of judgement of the framework do not
depend on any such notion. However, in order to define an algorithm for checking the
formal correctness of judgements of the theory we shall introduce one such notion.
Its use will render the checking process more efficient, but on the other hand, a proof
of subject reduction for the forms of judgement I' -« : type and I' - a : « shall be
required when proving the correctness of the algorithm.

Following [Coq91], we introduce a weak head reduction relation, which is induc-
tively defined as shown in Figure 4.8. A remark is in place concerning the notion of
reduction we have introduced. In next section, when we say that e; = ey, we shall
know that e; has already been proved to be a type family, a type or an object of a
type. Therefore, in the first place, by Proposition 4.8 in next section, we know that

5. WEAK HEAD REDUCTION 65

e1 is a well-formed expression. Furthermore, by Proposition 4.5 below we shall also
know that ey is well-formed.

p=0p
Set = Set

a—f3 = a—f

(=0
(p, L:B) = (p, L:)
[z]e = [z]e
(nL=c)= (rL=0c)

f=lz]le elxr:=a]=v
fa=wv

f =N

—— f1 £ [z]e
fa = fia !

r=(r,Li=e¢ e=v
r.L =wv

’I“:><7"1,L1:€> ’I“l.L:>'U
r.L = v

L#1I,

r=T7T

— (L=
r.L = r.L e

FIGURE 4.8. Weak head reduction

We shall say that e; has weak head normal form e, iff e; = es.
It is clear from the definition of = that an expression can have at most one weak
head normal form.

PROPOSITION 4.5. The relation = preserves well-formedness, i.e. if wf ey and
e1 = ey then wf e,.

Proor. This proposition can easily been proved by nested structural induction,
first on e; = e, and then on wf e;.

The interesting case is when e; is of the form fa, f = [z]e and e[z := a] = v.
That wf fa gives that both, wf f and wf a. Then, by induction hypothesis we
obtain, first, that wf ([x]e). Thus, by definition of well-formedness we can assume

66 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

that wf (e[z := p]), for any parameter p. Therefore, as wf a, we can finally apply
Proposition 4.1 to obtain that wf e[z := a]. Induction finally gives that wf v. O

6. Basic meta-properties of the calculus

PROPOSITION 4.6. Let I' be a valid context and I' = J. If a parameter p occurs
in J then there exists a declaration p:a in I'.

PROPOSITION 4.7. Let I' be a wvalid context and p be a fresh parameter for I’
thy o If I' =« : type then « indep p.
thy o If I' = 3 : a—type then (indep p.
ths o If ' = a: « then a indep p.

PrROOF. The proof proceeds by simultaneous induction on the derivation of
I'Fa:type and T' = 3 : a—type for the cases th; and thy, and induction on the
derivation of I' - a : « in case ths. O

PROPOSITION 4.8. Let I' be a valid context,
thy o If I' =« : type then wf a.
thy © If ' 3 : a—type then wf .
ths o If ' a: a then wf a.

PROOF. These are also proved by induction on the derivations of the judgements
I'Fa:type, '3 : a—type and I' F a : « respectively. O

PROPOSITION 4.9. Let I' be a valid context.
Then,

thy o IfI'F «: type and o = oy
then I' - «y : type and I' = o = «ay : type.

thy o IfT'F B : a—type and = [
then I' = By : a—type and ' = 3 = 31 : a—type.

ths o IfT'F p: record-type and p = p,
then I' = p, : record-type and I' = p = p, : type.

thy o IfT'F o : a—record-type and o = o,
then I' - oy : a—record-type and I' = 0 = o1 : a—type.

ProoF. We simultaneously prove the proposition by induction on the definition
of the relation =. The cases when « is the type Set or a function type, and p is a
primitive record type, are trivial, because no reduction is performed, by definition
of =. Then, reflexivity of type equality is used to prove the second part of the
proposition. For families the proof is also straigthforward because there are only
two possible ways of deriving a judgement of that form: either (o) is introduced
as an abstraction of the form [z]a;, and thereby no reduction is performed, or by

6. BASIC META-PROPERTIES OF THE CALCULUS 67

an application of subtyping, and in this case induction allows to prove the desired
conclusion. The interesting cases are when the type(record) a(p) is the application
of a type family 3 to an object of the appropriate type. The reasoning used to prove
the proposition, however, is analogous to the one for applications when proving
subject reduction for objects of a type, which is Proposition 4.10 below.

O

PROPOSITION 4.10. Let I' be a valid context, I' =« : type and I' - a : a.
Ifa = a, thenTFa:aandTFa=a;: .

PROOF. The proof proceeds by structural induction on the derivation of a = a4.
If a is either a parameter p, a record object or an abstraction the proof is trivial,
because in this cases ¢ = a. Then hypothesis and reflexivity of object equality give
the desired result. As function types and record types cannot be objects of any type
they are not considered. The interesting cases are when a is either an abstraction
or a selection.

a = fb > We have to consider two cases

1) ap = v, with f = [z]f, and folz = b] = v.

2) a1 = f1b, with f = f; and f; is not an abstraction.
Now, we have that if ' = fb : a then

) IFfra—p

ii) CFb:a, and

i) T'F 6b C
Let us now consider the first case above.
Induction gives that I' - [x]|fs : «;—(and that T'F f = [z]fs : cy—(3. The
former, in turn, gives that for any fresh parameter p, I', p:ay = folz := p] : Op.
Thus, we get by instantiation rule that I' - fo[x := p][b/p] : Bp[b/p]. Further,
by Proposition 4.7 we also know that f, and § are independent of p. Therefore,
by Proposition 4.2 we get then that fy[x := p|[b/p] = fo[z := b] and, moreover,
by definition of instantiation Sp[b/p] = [b.
Then T' = fo[z :=b] : 5.

We can now apply induction using that fo[x :=b] = vtoget I' - v : 3band
I'E folz:=0b] =v:pb. From 'k f=[z]fy: acy—Fand ' - b : «q, we obtain,
by application rule, that I' = fb = ([z]f2)b : 8b. The rule of 3-conversion and
transitivity of equal objects then give that I' = fo = v : fb. The application
of the corresponding rules of subsumption lead to the desired conclusions.

As to the second case, by induction we get that I' - f; : a;—/. Therefore,
we directly get the proof of the property by using the rules of application.

a = r.L > There are three possible values for a;

1) ey =v, withr=(r,L;=¢),e=vand L=1,

68 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

2) ay =v, withr=(r,L=¢),r.L=wvand L# L,
3) a; =ri.L, with r = r; and r is not a record object

IfI'Fr.L: «then

i)y Tkr:p

ii) L:finp
i) 'k pr C «

Let us take the first case. We know by induction that

iv) '+ (r;,L=¢) : p, and

v) TFr={(r,L=¢):p.

By iv) and Proposition 4.11 below we get [' - e : 5(r1, L = e) and
that I'+ (r;, L =e¢).L = e: §{r;,L = ¢€). So, induction gives that
['Fw:B{r;, L =e), and then it is also of type #r . On the other
hand, we can apply the second rule of selection to v) to get that
I'Fr.L=(r,L=e).L:[Br. Finally, then, using transitivity we
get that ' =r.L =v: fr.

As to the second case, we now know by induction that
vi) I'F (r1, Ly =€) : p, and
vii) T'F (r, Ly =€) =1 p.

An analogous reasoning proves, but now using Proposition 4.12
below, that I' - r.L : fr and that I' - r.L = v : (Br.

Finally, the third case follows by induction and applying the rules
of selection.

PROPOSITION 4.11. IfT'F(r,L=¢):p and L: (3 in p then
thy o T'ke: B{r,L =e)
thy o T'F(r,L=¢).L=e:((r,L =¢)

PROOF. The proof proceeds by induction on the derivation of I' = (r, L =€) : p.
There are then two cases to be considered.

1) T (r,L=¢€):{p,L:5)
We are allowed to assume that
) TEr:p
ii) 'k 3 : p,—type, and
iii) C'Fe: pr.

6. BASIC META-PROPERTIES OF THE CALCULUS

We can use i) and iii) to get by rule of record object equality
that

iv) TE(r,L=¢)=r:p,.

Then I' Fe: 3(r, L = e). Now, observe that the label L must nec-
essarily be fresh in p,. Thus, we show the following derivation that
gives the proof of thy:

ii) iv)
CEr:p, Tke:pfr . ['FpBr=p(r,L =¢): type
C'E(r,L=e).L=c¢:fr " U'EprCB(r,L=e)
F'F(r,L=e).L=e:f((r,L=c¢)
2) TH(r,L=¢€):pyand T+ p, Cp
Then, there exists a field L:3; in p; and I' = 3 C 3 : py—type. The
induction hypothesis gives that
i) Tke:Bi(r,L =¢)
ii) TE(r,L=e).L=ce: [(r,L=c¢€).
Using the rules of subsumption we get the following derivations of th;
and ths:

i) I'EBi{r,L=¢) C ((r,L =¢)
C'ke:B(r,L=c¢)

ii) I'EBi(r,L=c¢)C B{r,L =¢)

ProposITION 4.12. IfT'F(r,Ly=¢€):p, L: (3 in p and L, # L then
thy o T'Fr.L:B(r,Ly =e)
thy o T'F(r,Ly =€).L =r.L: ((r,L; =€)

69

PROOF. The proof proceeds by induction on the derivation of I' F (r, L; =€) : p.

There are, then, two cases to be considered:

1) DF(r, Li =€) : {py, L1:5)
We are allowed to assume that
) TEr:p
ii) CFe: fyr.
We can use i) and ii) to get, by record extension, that
iii) T (r, Ly =e)=1:p,.

Now, observe that if L: [in p and L # L;, then we have that
L : 3 in p,. Therefore, by the rule of fields we get that I' = 3 : p,—type.

70 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS

Thus, we can get the proofs of th; and th, by application of the rules
of selection and subsumption as follows:

1) L:3in p;

CErL:pr I'FpBrCB(r,L =e)
C'ErL:p(r,Ly =€)

iii)
L' (r,Ly=¢).L=r.L:p(r,L =€)

L:3in p;

2) TH(r,Li=¢€):p,and T F p, C p

The proof is complete analogy to the one given for 2) in Proposi-
tion 4.11.

CHAPTER 5

The proof checker

1. Introduction

In this chapter we shall present an implementation of the algorithms for check-
ing the formal correctness of judgements of the calculus presented in the previous
chapter. Here we shall concentrate on the implementation of that basic framework,
we do not consider neither inductively defined sets nor the let and use expressions
described in chapter 2.

In order to provide a complete description of the implemented system we ex-
plain again the input expressions and forms of declaration that it accepts. Then
the algorithms are presented and motivated. We enunciate and informally prove the
soundness of the algorithms under very strong assumptions, namely, that the reduc-
tion of a (well-typed, in a general sense) expression is normalising. The decidability
of the algorithm, therefore, also depends on this assumption. We have not proved
this property of normalization, but we are convinced that it could be done adapting
the proof by Coquand for the system presented in [Coq91] or the one presented by
Goguen in [Gog94|.

2. The system

A script for the type checker looks very much like one for a functional pro-
gramming language. The syntax of input expressions is given by the grammar in
Figure 5.1.

e u= x| c| [zle] erea] ()| (e1,L=e3) | eL
e1—ey | (er, Lies)

FIGURE 5.1. Syntax of input expressions

Observe then that parameters are not valid objects of the category of input expres-
sions.

The type checker reads (non recursive) declarations of the following form:

T : type=«
F(z:a):type =
c(xytaq,. ..., oyt) x=e
with 7', F' and c constant names, z,ry,...,x, variables and e, a and ay,... ,qa,

belonging to the language of expressions above.

71

72 5. THE PROOF CHECKER

The first one is called a type declaration. It allows to give an explicit definition
for the type a.

The second form of declaration is called a type family declaration. It expresses
the definition of the constant F as the type family [z]a; over the type a. The index
type has to be made explicit in order for the declaration to be type checked.

The third form of declaration allows the explicit definition, with name ¢, of an
expression [z][z2] ... [z,]e of type ay—[z1](ae— ... (ap—[x,]) ...), with n > 0.

The two first are the counterpart in the system to the nominal definitions of
types and families of types introduced in chapter 2. The latter form of declaration
is not present in the proof-assistant ALF.

The third form of declaration corresponds to the so-called explicit definition of
a constant in ALF. We are considering neither definitions of inductive (families of)
sets nor the implicit definition of constants, these latter usually defined using a
pattern-matching mechanism.

Any declaration is checked under a current environment. Once the declaration
D is checked to be correct, the environment is extended with it. Thereby, the
definiendum of D may occur in any declaration introduced after it.

2.1. Valid declarations. In the following we will make explicit that declara-
tions are checked in a given environment. We use for this a form of judgement
€ F D, where £ is a checking environment and D is one of the forms of declaration
introduced above.

DEFINITION 5.1 (Checking environment).

A checking environment (£) is defined as a pair formed by a typed environment
(X) and a context (I'). A typed environment ¥ is a dictionary of pairs of expressions
indexed by names of constants. A context ' is a dictionary of expressions indexed
by parameters.

The environment part of a checking environment shall be denoted by £y, and
the context part by .

We introduce now some operations for a checking environment £.

DEFINITION 5.2.

— the function Dom returns all definienda from Ey-.
— &, p:a is defined to be the updating of £ with index p and expression
.
~ & +d: 7 =eis the updating of £y with index d and the pair (e, 7).
The verification of the formal correctness of a declaration £ - D is defined by
cases in D as follows:

A form of declaration £ =T : type=« is valid if
- T does not occur in « nor belongs to Dom £.!
- checkType & « succeeds.

We say that £ F F(x :) : type = a4 is a valid declaration if

! Actually, as « is checked to be a type in &€ it suffices with controling the second condition to
hold.

3. THE TYPE CHECKING ALGORITHM 73

- F' does not belong to Dom £.
- checkType £ « and checkTypeFam & [z]a; « succeed.

For a declaration € - ¢(zy : oy, ..., 2, : ay): @ = e to be valid it must hold
that
- The constant ¢ does not belong to Dom £.
- checkType & aj—[z1|(ag— ... (ap—[z,])a) ...) succeeds.
- checkExp & [z1][z2] ... [zn]e ar—[z1](ae— ... (= [2n])...)
succeeds.
The procedures check Type, check TypeFam and checkExp above perform the checking,
in the environment £, that a is a type, [z]ay is a type family over a and the
expression a is an object of type a respectively. They are defined in section 3. After
a declaration D is checked, the updating of the checking environment &, if D is valid,
is respectively defined to be
-E+ T : type = «,
- &+ F : a—[z]type = [z]ay, and
-E+ e a—=r)(ae— . (ap—=xn]a)) = [x][xs] . [Ts]e
These we call valid updatings of Ex-.

3. The type checking algorithm

We now intend to give a precise formulation of the informal explanations in
chapter 3 for checking the correctness of the judgement a : . Recall that in those
explanations we were assuming that o was already known to be a type. Thus, we
shall also formulate the algorithm for checking judgements of the form « : type and
thereby also for judgements of the form 3 : a—type.

In contrast to the input expressions accepted by the proof checker, the arguments
to the programs we shall define may contain parameters. As anticipated, for checking
that an abstraction [z]a; is a type family over «, for instance, a fresh parameter,
p say, is introduced in the context part of the enviroment in which the checking
is taking place and then we shall proceed by checking that ay[z :=p] is a type.
The language of expressions is then the one defined in chapter 4 with the following
extension: we shall use s to range over the set S whose elements are, for the time
being, the distinguished constants Set and type, from now on called sorts. Both are
considered well-formed expressions, but only the first may occur in a valid input
expression.

Now we proceed to introduce a function for computing the weak-head normal
form of a well-formed expression. It could be grasped as the function implementing
the relation = presented in chapter 4. In addition, it shall, when needed, also unfold
constants which have been introduced in the environment £. We make extensive
use of this function in the algorithms we present below.

3.1. Weak-head normalization. The definition of the function |} is given in
Figure 5.2. Due to the presence of constants in expressions, it also takes as argument
the typed environment ¥ of a checking environment £. We use e || ¥ to denote its
application to expression e and environment Y.

74 5. THE PROOF CHECKER

plX =def P
s{ X =def S
cl X =def TedsCcX
[z]e || ¥ =qf |T]e
a—=pB LY =45 a—=f
fel X =def redﬁ feX
where
reds ¢ X =def € X ifec:e=ain ¥
redﬁfeE =gy let ff=f1%
in if f'=[x]f"
then f"[x :=¢] | X
else f'e

FIGURE 5.2. Weak-head normalization

DEFINITION 5.3.

- An expression is in weak head normal form if it is either of the form [z]e,
a—f or (hay ...a,), with n > 0 and h a parameter or a sort.

- A top-level redes? is an expression of the form (fa; ...a,) where f is either
an abstraction [x]e and n > 1 or a constant ¢ (of arity n) and n > 0.

The intuition is that if the value of e || ¥ is the expression €', then €’ is the re-
sult of performing contractions of top-level redexes (if any) starting from e until a
weak-head normal form is reached. Observe that due to the fact that we are going
to apply the function | to well-typed (in a wide sense) expressions we refine the
characterization of weak head normal to the effect that A can only be a parameter
or a sort.

Notice that the order of evaluation is normal and no reduction is performed
under binders.

3.2. Type checking in the original theory. We will now present algorithms
for checking that an expression « is a type (checkType £ «) and that an expres-
sion a is an object of type a (checkExp £ a «). As explained in chapter 3, the
construction of these algorithms is intertwined with that of the algorithms for in-
ferring the type of an expression(inferExp £ f > «), checking conversion of types
(typeConv £ « «p) and conversion of objects (objConv £ a b «).

Each program below is presented by a set of rules of the form & = Pn where

the premisses and the conclusion are either of the form P or P > v. The form P
should be read as “the program P succeeds” and the form P > v as “P succeeds
with value v”. The general explanation of a rule is as follows: to compute the
program @, compute the premisses Py... P, from left to right. For the computation
of conclusion @ to succeed the computation of all the premisses must succeed. This

2We borrowed this terminology from [Pey87].

3. THE TYPE CHECKING ALGORITHM 75

approach for presenting the semantics of a program follows the one taken by B.
Nordstrém in [Nor].

Some of the rules will also have a side condition, which can either be p fresh in &,
p:ain&, c:e=ain & or s € S. The three first should be read as “there is no
entry for the parameter p in the context £p”, “the lookup of p in & yields o” and
“the lookup of ¢ in - yields (e,)”.

The success of the conclusion naturally also depends on the success of the side
condition.

To begin with, we shall now introduce the mutually defined programs checkType
and checkTypeFam. We recall that they check whether the expression « is a type
and whether the expression 3 is a family of types over «, respectively.

PROGRAM (checkType & «). This program is recursively defined by cases on
the form of the expression a.

checkType &£ Set

checkType £ a checkTypeFam &£ (3 «
checkType & a—pf

inferExp €& f > s
checkType & f

Observe that in the last rule, f can only be a generalized application (the sort
s is inferred) for the program to succeed. The checking of an object of type Set
using (sort) inference is a modification of Magnusson’s algorithm that works for sets
defined a la ALF as well. What really makes a difference is that the same procedure
also allows to check the correctness of type expressions formed out of constants
introduced by type and type family declarations.

PROGRAM (checkTypeFam &€ [«). This program is defined by cases on the
expression 3. There exists only two possible forms of expression for a type family:
it is either an abstraction or a constant introduced by a type family declaration. It
is assumed that £ is a valid environment and that « has already been checked to be
a type in this environment.

checkType &, p:a aqfz := p]

p fresh in €

checkTypeFam & [z]a; «
We are assuming that the set P of parameters is infinite; as expressions and contexts
are finite we can always choose a fresh one. Moreover, since parameters are not
allowed in the input expressions, the expression a; is independent of the parameter p.

typeConv € a1 «
checkTypeFam £ F «

This rule expresses that once we know that an expression is a type family over a
certain type « it is also the case that it is a family over any type « if oy and « are
convertible types.

F:e=oa1—[z]sin&,s€ S

76 5. THE PROOF CHECKER

PROGRAM (checkExp € e a). This program is recursively defined by cases on
the expression e. It is assumed that £ is valid and checkType &£ « succeeded.

all¥ > a—f3 checkExp &,p:ay e[z :=p| [p
checkExp & [z]e «

p fresh in £

inferExp & f > a; typeConv £ a; «
checkExp &€ f «

As explained in the informal presentation of the algorithm, for checking that a
generalized application has type «, we infer its type, oy say, and then check whether
a1 and « are convertible types. The side condition prevents unnecessary conversion
checkings. This control will become more clear after we present the definition of the
function inferExp.

a1 # type, a1 # az—[z]|type

PROGRAM (inferExp £ [> «). We recall the reading of this form of program:
(the computation of the function) inferExp when applied to inputs £ and f (if suc-
ceeds) yields the expression . This function is defined by cases on the expression f.

p:ain &

inferExp € p > «

For inferring the type of a parameter a lookup operation on the dictionary £ is
performed.

inferExp € ¢ > « cresoine
For constants the lookup is performed on €y,. Notice that the sort type and expres-
sions of the form a—[z]type are possible results.

inferExp £ f >a all¥X > a;—0F checkExp £ e oy
inferExp £ fe > (e

In this rule there is a subtle point, already present in some rules above, that we
consider worth remarking. The type inferred for fe is fe. As (3 is a family of types,
its ultimate definiens will be of the form [r]ay. Then, when the weak-head normal
form of the expression e is computed , the substitution as[z := €] will be performed.
Now, recall that the substitution we are using does not prevent capture of variables.
One may wonder then whether it is safe to use this operation in the programs we
are presenting . Actually, it is possible to prove that for expressions « and e if
checkType £ « then «a is a well-formed expression, and further, if checkExp £ e «,
the expressions e is also well-formed. Thus, no variable can be captured.

PROGRAM (typeConv € «; «3). This program is simultaneously defined with
the program whTypeConv.

A remark is in place before we provide the rules defining the program typeConv.
Observe first that the computation of typeConv £ «; «ay is triggered, for instance,
by the rule that checks whether a generalized application f has a type as. At that
point it is already known that « is a type, since this is a precondition for the program
checkExp. However, since the expression «; is obtained as output of the function

3. THE TYPE CHECKING ALGORITHM 7

inferExp, it could also be the sort type or an expression of the form a—|z|type.
However, the possibility has been ruled out for these forms of expressions to be
arguments of the program typeConv.

Let us now turn back to the definition of the program.

First, it is checked whether the expressions are syntactically equal:

typeConv € o «

If this is not the case, both a; and ay are reduced to their corresponding weak-head
normal forms, which are in turn the input to the program whTypeConv. This latter
is recursively defined by case analysis on the form of its arguments.

a X >a’ ol >a’ whTypeConv £ a;' o
typeConv € a; o

whTypeConv £ Set Set

For checking the convertibility of two function types it must be checked that the
types and type families out of which they are formed are respectively convertible:

typeConv €& a; ay typeConv &, p:ay Bip Byp
whTypeConv & ay1—f3, as—f3,

p fresh in £

Notice that once it is checked that a; and as are convertible types it is correct to
apply the family [, to the parameter p which is declared as a generic object of
type a;.

The following (and last) rule expresses that two ground types different from the
type Set are convertible if they are as objects of type Set.

objConv & a; ay Set
whTypeConv £ a; a»

PrOGRAM (objConv £ a b «). According to the informal formulation of this
algorithm, the checking that two objects of a certain type are convertible is recur-
sively defined by cases on the form of the type. First, then, the weak-head normal
form «; of the type « is computed. Therefore, c; must either be a function type of
the form a—f or a ground type. This expression is, in turn, together with the ob-
jects a and b, the input for the program whObjConv, which is simultaneously defined
with objConv.

allX > a whObjConv £ a b oy
objConv £ a b «

For checking that two objects of type a— /[are convertible, check whether when
applied to a fresh parameter p of type « they are convertible objects of type Gp.
Notice that this checking comprises both a- and 7n-conversion.

objConv &, p:v fp gp Bp
whObjConv € f g a—p3

Objects of a ground type are checked to be convertible as follows

p fresh in £

78 5. THE PROOF CHECKER

allX >a; by X >0b headConv £ a; by > a; typeConv £ oy «
whObjConv € a b «

This rule merits some more discussion. It should be read as: two objects of
ground type « are convertible if their corresponding weak-head normal forms are
head-convertible objects of a type «a;, which in turn has to be convertible to the
type «.

Now, observe that a; and b; are objects of a ground type, therefore they must
necessarily be of the form of a generalized application. Furthermore, as both are
in weak-head normal form, either they are parameters or applications whose heads
are parameters. Thus, for checking the convertibility of a; and b; two cases must be
considered: either they are both the same parameter or in the case they are objects
of the form fas and gbs, respectively, f and g are convertible objects of a function
type as—(and ay and by are convertible objects of type as. We can perform this
latter checking using the object conversion program only if we infer the type of one
of f and ¢g (what we can do because they are generalized applications). We prefer
instead to follow Magnusson’s presentation for checking typed conversion of objects
and define a function headConv which implements the procedure described above.

Before we proceed with the formulation of headConv, we introduce a further rule
for the program objConv. Notice that the definition given so far does not consider,
in principle, the form of the expressions a and b but of their common type «. This
could entail that in the case that a and b are syntactically equal a considerable
amount of computations might be unnecessarily performed. Think, for instance, of
the case when both a and b are the same constant f of type a—(3. In order to
improve the efficiency of the whole procedure of object conversion checking we then
also formulate the rule

objConv £ a a «

which acts as the formal counterpart of the reflexivity rule of the equality of objects
of a certain type. Actually, this case should be the first considered in the definition
of the program objConv.

PROGRAM (headConv &€ a b > «).

p:ain &

headConv £ p p > «

headConv £ f g >a al X > a;—3 objConv € a b o
headConv £ fa gb > [a

REMARK . The whole procedure of conversion checking is efficient in the sense
that in the case that objects are not convertible there is no need, in general, for
their complete normalization. On the other hand, it will accept as convertible those
objects whose (full) normal forms are identical, up to a- and n-convertibility.

3. THE TYPE CHECKING ALGORITHM 79

The definition of this latter program ends the formulation of the type checking
algorithm for the original theory.

3.3. Type checking in the extended theory. We shall now present the for-
mulation of the type checking algorithm for the extended theory. In correspondence
to the explanations in section 2 of chapter 3 we will focus on the changes to be made
for considering those extensions in the definition of the programs.

3.3.1. Valid Declarations. The only modification to be introduced concerns the
updating of a checking environment £ after a declaration D of one of the forms
EFT:type=a and £+ F(x : «) : type = oy has been checked to be valid. In the
case that the ultimate definiens of «v (in the first declaration) and a4 is a type of the
form (p, L:/3) the (valid) extensions are defined to be €& + T : record-type = and
€ + F : a—[z|record-type = [x]a; respectively.

The set S is now extended with the sort record-type.

3.3.2. Weak-head normalization. The notions of weak-head normal form and
top-level redex are now defined as follows:

DEFINITION 5.4.
- An expression is in weak-head normal form if it is either of the form [x]e,
a—d, (), (p,L:f), (e,L=¢") or (h.Ly...Lyay...ay).K;...K, with [, m
and n > 0 and h a parameter or a sort.
- A top-level redez is an expression of the form (fa; .. .a,) where f is either an

abstraction [z]e and n > 1, a constant ¢ (of arity n) and n > 0 or a selection
<€, L1 = €,>.L2.

The reformulation of the function |} is given in Figure 5.3.

Two new forms of side condition are now involved in the rules: L fresh in p and
L: (3 in p. They should be read as “the label L does not occur in the fields of p”
and “there exists a field declaration L:(in the record type p” respectively.

For the sake of comprehensiveness we repeat (for each program) the rules pre-
sented in section 3.2, making, in most of the cases, no further comment.

PROGRAM (checkType & «).

checkType &£ Set

checkType £ a checkTypeFam &£ (3 «
checkType & a—pf

inferExp € f > s
checkType &£ f
Due to the new form of valid extensions introduced above and considering that
the set S was extended with the sort record-type, if the ultimate definiens of a

generalized application f is a record form then it is a valid type expression. As to
record types we now introduce the following rules:

checkType &€ ()

sES

80 5. THE PROOF CHECKER
plX =def P
sy X =def S
cl X =def TedscCX
[z]e || ¥ =4er |T]e
(U =des ()
(e,L=e) X =45 (e,L=¢)
a—>ﬁ U h) =def O[—>ﬁ
(P LAY =awr (p,L:F)
fel X =def redﬂfez
r.Lqa | X =def redg 1T L1 X
where
reds ¢ X =def €2 ifc:e=ain X
redﬂfeE =gy let ff=f1%
in if f'=[z]f"
then f"[z:=¢] | X
else f'e
redgr L1 ¥ =gp letr' =7 X
in ifr' = (" Ly =e)
then if Ll = L2
then e |
else redy " L1 ¥
else r'.L;

FIGURE 5.3. Weak-head normalization revisited

As previously explained in section 4 of chapter 2, it is in the nature of a record type
for its formation to be explained both as a type and as a record formation. For
(p, L:3) to be a record type it has to be checked that p is also a record type, not
just a type. Now, in the presence of type and type family declarations p may also
either be a defined constant R or the result of applying a record family to an object
of the index type of this family. The preceding considerations then give rise to the

checkRecType & (p, L:3)

checkType &€ (p, L:3)

following formulation of the procedure checkRecType:

PROGRAM (checkRecType £ p). This program is recursively defined on the

form of p and it is assumed that £ is valid.

checkRecType & ()

checkRecType £ p checkTypeFam &£ 3 p

L fresh in p

checkRecType & (p, L:3)

3. THE TYPE CHECKING ALGORITHM 81

inferExp £ p > record-type
checkRecType & p

PROGRAM (checkTypeFam & (3 «).
checkType &, p:a aqfz := p]

p fresh in £

checkTypeFam & [z]a; «

typelncl &€ a oy
checkTypeFam & F' «

F:e=oa1—[z]sin&,s€ S

Notice that now, because of the extension of the set &, this rule subsumes the case
of record families. Besides, it is checked whether « is a subtype of «; instead of
checking for their convertibility.

PROGRAM (checkExp £ a «).

all¥ > a—f3 checkExp &,p:ay e[z :=p| [p
checkExp & [z]e «

p X >
checkExp £ () p

p fresh in €

We make an overloaded use of () to denote both the empty record object and record
type.
pd X > (p,L:f) checkExp & r p, checkExp & e fr
checkExp & (r,L =¢) p
According to the explanations in section 2, for checking that a generalized selection

has type «, we first infer its type, a; say, and then check whether it is a subtype
of a.

inferExp €& f > a; typelncl €& a1 «
checkExp &€ f «

a1 # t, a1 # as—[x]t, t € {type, record-type}

We explain now why this definition of checkExp corresponds to the restrictive
method formulated in section 2 of chapter 3. Observe first, that the rule above
for checking record object extensions rejects undeclared labels. It requires that the
labels of the plain fields of an object are declared in the intended type. As this
latter, in turn, has previously been checked to be a record type, there is no risk for
multiple declarations of the same label in it. On the other hand, notice that checking
whether an extension of the form (f, L; =ej,..., L, =e,) has a certain type p is
implemented by n applications of that same rule and then the rule for checking
generalized selections (the last one) is applied. The whole procedure for checking
record extensions can, naturally, be implemented in a much more efficient way. For
the sake of clarity, however, we prefer this presentation which, in addition, will allow
to simplify the proofs when reasoning about the correctness of the algorithm.

82 5. THE PROOF CHECKER

PROGRAM (inferExp £ a > «).

p:ain &

inferExp £ p > «

cie=ain &

inferExp € ¢ > «

inferExp € f >a al X > a;—3 checkExp & e oy
inferExp £ fe > (e

This function is extended with the following rule in order to consider selections

inferExp £ r >p
inferExp &€ r.L > Br

L:Binp

PROGRAM (typelncl & « /). The program typeConv is now replaced by the
program typelncl, which is simultaneously defined with whTypelncl.

typelncl £ a «

a X >a X >a’ whlypelncd £ o o)
typelncl € oy s

The explanation of these rules is analogous to the one given for the two first
rules in the definition of typeConv

whTypelncl £ Set Set

The rule for checking the inclusion of two function types is also similar to the one
for checking whether they are convertible. However, it must also take into account
that the type former — is contravariant on the index type.

typelncl € oy ay typelncl &, p:ay Bip Byp
whTypelncl €& a1—f(; as—0,

p fresh in &£

The following two rules directly implement the explanation for two record forms
to be in the inclusion relation:

whTypelncl € p ()

typelncl € p, p, typelncl &, p:p; Bip Byp
whTypelncl € p; {(py, L:35)

Finally, for two ground types different from the type Set it is checked whether
they are convertible objects of this latter type

L:p;inpy

objConv & a; ay Set
whTypelncl € a7 a»

It is clear from the former rule that two ground types are accepted to be in the
inclusion relation only if they are definitionally equal. We have not explored a more
sophisticated treatment for this case. Yet, it seems quite reasonable to expect that a
mechanism of subtyping for ground types could, in a modular way, be incorporated
to typelncl by just modifying the premiss of the last rule above.

3. THE TYPE CHECKING ALGORITHM 83

The whole definition of the program typelncl follows exactly the informal explana-
tions for checking that two types are in the inclusion relation. It is not difficult to
see that type conversion is subsumed by type inclusion. Moreover, it can be proved
that checking for type inclusion instead of type conversion is conservative in the
sense that if a3 and ay belong to the language of expressions defined in section 3.2
and typelncl £ «; ay succeeds then so does typeConv £ a; «s.

PROGRAM (objConv & a b «).

objConv £ a a «

allX >a whObjConv £ a b oy
objConv £ a b «

objConv &, p:a fp gp fFp
whObjConv € f g a—p3

The rules below for checking that two objects of a record type are convertible
are, also, a direct implementation of the informal procedure described in chapter 3
for checking the equality of two objects of a given record type: for checking that
two objects of a record type are convertible, check whether the selections of every
label of the record type in question from the objects are convertible.

p fresh in &£

whObjConv &€ 7 s ()

objConv & r s p objConv & r.L s.L fr
whObjConv & r s (p, L:3)

allX >a; by X >0by headConv &£ a; by > a; typelnc & a1 «
whObjConv € a b «

For checking that two generalized selections a; and b; in weak-head normal form
are convertible objects of a ground type , we must now consider that they can also
be of the form r.L; and s.Ls respectively. What must be checked then is whether
L, = L, and that r and s are head-convertible objects of some type p. Observe also
that « is checked to be a subtype of a.

PROGRAM (headConv &€ a b > «).

p:ain &

headConv £ p p > «

headConv £ f g >a al X > a;—8 objConv £ a b o
headConv & fa gb > fa

Finally, we extend the program headConv with the rule

headConv £ r s > p
headConv & r.L s.L > fr

L:Binp

84 5. THE PROOF CHECKER

4. Correctness of the algorithm

We now proceed to give an informal proof of the soundness of the algorithm with
respect to the calculus presented in chapter 4. The programs and functions that the
whole algorithm embodies are defined to work on a checking environment. However,
the forms of judgement of the calculus are not defined as to explicitly consider that
judgements can be made under a set of constant declarations, or more formally, in
the presence of nominal definition of constants. This is the approach taken by Severi
in [Sev96] where a formulation of PTS with definitions is presented. Magnusson, on
the other hand, for the correctness proofs of the algorithms presented in [Mag95]
just assume that such a set of declarations has a formal counterpart in CES, the
calculus whose forms of judgement are mechanically verified by those algorithms.

We preferred to follow the tradition of presenting the calculus without explicitly
introducing the notion of a set of nominal definitions. However, we do not want
to leave unattended the role played by the typed environment when reasoning on
the correctness of the procedures we have defined to check the formal correctness
of judgements of the calculus in question. Thus, we shall prove, for instance that if
checkType (X,T") « succeeded then it holds that I'5, - af : type. The function [—]%
performs the unfolding of the constants declared in ¥ which occur in its argument
(in the case of a context I', recursively unfolds the (type) expressions associated to
the parameters declared in it).

We now first turn to define this latter function. A few propositions, in addition,
are also enunciated and some of them proved.

4.1. Unfolding and basic properties. The definition of the function , which
we show in Figure 5.4, is much in the spirit of the projection mapping introduced in
chapter 11 of Severi’s thesis [Sev96].
It is possible to prove that the unfolding function on expressions terminates. For
this it is crucial the fact that no recursive declarations of constants are allowed in the
typed environment ¥. A measure yielding a natural number can be defined, C(X,)
say, which decreases when the function is used. This measure computes the number
of constants replaced in the expression e when the unfolding of this expression is
performed with environment .

We now introduce the following

DEFINITION 5.5.

- a typed environment is valid if it is either {} or the result of performing a
valid updating on a valid environment 3.
- a context is valid w.r.t. a typed environment X if it is either [| or the result
of updating a valid context I" w.r.t. ¥ with index p and expressions «, p is a
fresh parameter for I' and 5, - of, : type.
- A checking environment £ is valid if £y, is valid and £ is valid w.r.t. Ey.

By being fresh we mean that there is no entry corresponding to the index p in I'.

REMARK . When the system starts, its checking environment & is initialized
to be the pair ({},[]). By construction then £ is valid. When the checking of a

4. CORRECTNESS OF THE ALGORITHM 85

unfolding of contexts:

s, =der [] (I, pra)yy =aep IS, pravs;

unfolding of expressions:

.’E*Z :def T

jzs =def P

SE :def S

Cs =def €%, with ¥ =Y;¢c: a=¢€; X9
=def C otherwise

(@le)e =as loled

o =des ()

(e1,L =e9)5, =aey (1%, L =ea})

(a—=B)3, =def 050

<p,L:ﬁ>; —def <p*Z=L:ﬁ§)>

(fe)s, =def [

(TL)*Z =def TEL

FiGURrE 5.4. Unfolding

declaration begins £ is always [|. We shall see that in the algorithms presented
in the previous section, all the extensions we have made of the context preserve its
validity, as above defined.

PROPOSITION 5.1. Let T be S — {Set} and X be a valid typed environment.
If d is a constant such that X = X;d : 7 = e; Xy then either

1) 7 €T and checkType (X4,[]) e succeeded,

2) T = a—|z]t, t € T, checkType (3,[]) « and
checkTypeFam (X1,[]) e « succeeded, or

3) checkType (Xi,[]) 7 and checkExp (X1,[]) e 7 succeeded.
Proor. This follows by definition of valid typed environment O

PROPOSITION 5.2. Let Y be a valid typed environment, e; and ey two expressions
and x any variable.
Then (e1]x = e3))% = e1%[x 1= ex})].

PRrROOF. The proof is done by structural induction on the expression e;. We
show here the cases when it is either a constant, a variable or an abstraction.

e1 =y >. We now proceed by cases on y = .

y = x > Both expressions reduce to ess,.
y # = > Both expressions reduce to y.

e; = ¢ > We first consider the case when ¢ is declared in the environment
E. By definition of substitution we have first that (c[z := e3])% is equal to

86 5. THE PROOF CHECKER

c5,. Thus, by definition of unfolding, this expression in turn reduces to e3,, if
¢c=-e:ain £ On the other hand, ¢z := eq] is equal to e}[z := es]. Now,
by Proposition 5.1 and definition of the checking programs we know that e
is well-formed, therefore e, is also well-formed. Thus, by Proposition 4.1,
the substitution e[z := e3] can not have effect. Therefore, e},[z := es] is also
equal to e3,.

The case in that ¢ does not belong to £ is trivial.

e; = [y]f > The proof proceed by cases on y = z.

y = x > By definition of substitution we first have that (([z]f)[z := e3])%
is equal to ([z]f)%, which in turn is equal to [x]fs. On the other hand,
it is not difficult to see that the expression ([z]fg)[x := ex%] also reduces

to [2]/3.

y # x > By definition of substitution and unfolding we have that the
expression (([y]f)[z := ez])% reduces to [y](f[r := es])s. On the other
hand, ([y]f)%[z := eo%] reduces to [y](fsi[x := e2}]). Then, we can apply
induction to get that both abstractions are equal.

O

We now digress to discuss the issue of the termination of the algorithm of type
checking presented in the previous section.

In contrast to the usual presentation of this kind of algorithms, we have used a
recursively defined function to compute the weak head normal form of well-typed
expressions. Actually, the definition given in Figure 4.8 of section 3.3 is a slightly
modified version of its corresponding definition in Haskell [Pet96]. In accordance
with this, then, when defining the semantics of our programs we explicitly introduced
the termination requirement for the whole checking procedure to succeed.

There is, in principle, no need for proving that the function |} is normalizing
on types and objects of certain types, for being able to give a proof of soundness
of the algorithm. This is not the case if we want to establish its decidability. We
have already pointed out in chapter 3, and it is also clear from the definition of
the programs, that the whole process of type checking is ultimately reduced to the
checking of object conversion, which in turn, for being succesful, needs to completely
normalize its arguments.

We could have, on the other hand, defined an inductive reduction relation, which
we show in Figure 5.5, which extends the relation = introduced in chapter 4 to
consider the unfolding of constants present in the typed environment. Therefore,

any premiss of the form e; > ey would be replaced by one of the form e; X €.
But then, we would place ourselves in the situation that what we are defining, when
introducing checkExp &£ e for instance, is closer to an inductively defined predicate
on expressions than a program. This latter approach is particularly useful if one
wants to carry out proofs as the one we shall present in the next section, because
then we can apply the natural induction principles that can be obtained from the
definition of the relations in question.

4. CORRECTNESS OF THE ALGORITHM 87

We shall need, in particular, to characterize the interplay of the function |} with
the relation =. More precisely, we need the following

CrAM 1. Given a well-formed expression e, and a valid typed environment ¥,
Ife, | ¥ > ey then e X €s.

It is quite easy to prove, on the other hand, by induction on the derivation

of ey X €9, that if e; 220 e; then e3, = eo5,. Therefore, we will understand, in the
proofs that follows, that an assumption of the form e; |} ¥ > e; amounts to one of
the form e;5, = eal..

4.2. Soundness.

PROPOSITION 5.3. Let € be the valid checking environment (X,1"). Then it holds
that TS, context.

PRrOOF. By induction on the definition of valid typed environment.
=[] > Trivial

[' =T'y, p:a > By definition of valid checking environment we know that (3,I;)

is also valid, that p is fresh for the latter context and that I'15;, F of, : type.
Then, by induction, I'i5, context and we also have that p is also fresh for it
by definition of unfolding. Thus, by rule of context formation we get that
[y, p:ag, is a context.

U
PROPOSITION 5.4. Let £ be the valid checking environment (X,T),
thy ¢ if checkType £ « then I'j, F of : type
thy ¢ if checkRecType & p then IS, = p§ @ record-type

ths o if checkType £ « and checkTypeFam & [«
then I'S, F (5, = a5 —type.

thy o if I'S, F of @ type and checkExp € a «
then I'S, F af @ af.
ths o if inferExp € f > « then either
i) TS F o type and Ty F £ 0 ok,
i) o €T and TG f3:aor
i) o =g —>xlt, t €T and I F f: and—[x]t

PRrROOF. The proof is done by simultaneous induction on the definitions of the
programs involved in the proposition.

thl >
a = Set > Assume checkType £ Set.

5. THE PROOF CHECKER

b
pP=D
Setz% Set

a— 224 a—

r = (ri,Ly =¢€) ri.L =y

>
r.L = v

5
r=T
———————— r1 #(rz, La=¢)

r.L = r.L

FIGURE 5.5. Weak head reduction relation in a typed environment

Then, as '}, context we have that ', = Set : type by type formation and
thinning.

a = a;—f > Assume checkType & a;—0.
Then we know that

thg >

th3 >

4. CORRECTNESS OF THE ALGORITHM 89

i) checkType & «
ii) checkTypeFam & (o4

We can apply induction to get both that ['5, F i, : type and also that
IS F 55 : af,—type. Then by function type formation we can derive
that ['S, F a15—05 : type.

a = f > Assume checkType & f.
We know then that inferExp € f > s and s € S. Thus, in the case
that s is the sort Set, by ths; we know that ['5; = f5 : Set. Therefore,
by type formation we obtain that ['5, = f3 : type. Otherwise, s is either
the sort type or record-type. Thus, ths gives either I'5, - £ : type or
I'S, F f& : record-type respectively.

a = () > Analogous to the case Set.

a = (p, L:3) > Assume checkType &€ (p, L:3).

Then we know that checkRecType & (p, L:#). By thy we know that
I'5 F{(p%, L:f5,) : record-type. Thus, from type formation for record
types follows the desired conclusion.

p= () > Trivial.

p = (p,L:3) > Assume that checkRecType &£ (p, L:3).

Then we know that checkRecType £ p and checkTypeFam & (3 p, and
moreover, L fresh in p. .

Induction gives that 'y, F p¥ @ record-type and, furthermore, thy gives

that [, F 55, ¢ pS,—type. The second rule of record type formation can
then be applied because L is also fresh for p5, by definition of unfolding.

p = f > Assume checkRecType & f.
We know then that inferExp £ f > record-type. By thg we get that
IS F £ record-type.

B = [z]ay > Assume checkType £ « and checkTypeFam & [z]a; a.

We know then that checkType &,p:a ay[z :=p]. In the first place, as
p is a fresh parameter and checkType £ « by hypothesis we have that
E,p:a is a valid environment. Observe that this latter checking envi-
ronment is equal to (X,I', p:). Thus, by Proposition 5.3 , definition of

*

unfolding for contexts and th; we get that I'y,, p:ad, F aq[z := ply; : type.
We can use Proposition 5.2 to get that the latter type is equal to
aiylr :=p]. Finally, the rule for type family formation can then be

applied to get that I', F [z]an§ + af—type.

5. THE PROOF CHECKER

0 = F > Assume that checkTypeFam & F «.

We know then typelncl £ «; « and further, that F' : a;—[z]s = e is
a declaration in £. Thus, by Proposition 5.1 we have that for a typed
environment ¥, included in ¥. checkTypeFam (Xy,][]) e a;, On the
other hand by Proposition 5.5 we also know that I'j, F aq3 C of,. We

can then apply induction to get, first, that I'S, e, : oy §—type. Finally,
the rule of subtyping for families gives that I'j; F e, : a5 —type

th,4 >

a = [x]e > Assume that checkExp £ [z]e
Then we know that

) al &E=y—p
ii) checkExp &,p:y e[z :=p| [p, with p a fresh parameter.

By claim in the previous section we have that o}, = 75—035,. Now,

by Proposition 4.9 we have that IS, - ~v5—035, @ type, and moreover,
that 'S, F af = 95—/05 @ type From the former, in turn, we get that

IS F 9%« type and also that 'y, - 45 ¢ v5—type. We can then use in-
duction hypothesis to get that 'y - e[z := pl, : Ops,. We show below
the derivation that I'j, F [z]e} @ v —05.

5 Py el = pl < Ops
ISps b egle i=pl: fzle :=p] b yr—(a]fhe = 5065 type
s F [zles s v5 =[] B IS F5—[e]fse © 15—05

[5F [zles, : v5—05%

In the uppermost step of derivation in the left branch we have used
Proposition 5.2 for obtaining the object and that (is independent of
p and Proposition 4.2 for obtaining the type. The leaf judgement of
the right branch was shown to hold chapter 4. Finally, then, we can
use subsumption, due to the equality of o and §— /5, to obtain that

[[x]ey @ ok
a = () > Trivial.

a=(r,L =e) > Assume that checkExp £ (r,L =e¢e) . Then we have
that

i) o €= (p, L:5)
ii) checkExp & r p
iii) checkExp & e fr

We can use the claim again to get that af, = (p%, L:45;). By a similar
reasoning as above we get that I's, - p, : type and I'5, - (5, @ pS,—type.

th5 >

4. CORRECTNESS OF THE ALGORITHM 91

Induction then gives that 'S, - 7% : p% and therefore 'S, F G575 : type.

Thus, we can again use induction to get 'y, F ef : f5rs. Finally, we can
apply the rule of record object extension to get the desired conclusion.

a = f > With the expresion f we mean here a generalized selection.
Assume then that checkExp & f a.
Therefore we can assume that

i) inferExp € f > oy
ii) typelncl € a1 «
iii) a1 ¢ Sand oy # as—|x]t

Then thg says that it must be the case that I's, - a4% : type, and more-

over, that I'y F f3 : aq3. Then, as Proposition 5.5 below gives that
['5 F a$ C af, we finally can apply the rule of subsumption to get that

'S FfEas.

f =p > Assume that inferExp €& p > a.

We have the side condition p : a in I". On the one hand, then, we have
by Proposition 5.3 that 'S, context. It is easy to see, by definition of un-
folding, that p : o in ['5;. Thus, by general rule and rule of assumption

we obtain that ['5, - ai, : type and I'S, F p: of.

f =c > Assume that inferExp £ p > a. We know then that ¥ =
Y1;¢: 7 =e;%;. By definition of valid environment we know that X; is
also valid, then we can use Proposition 5.1 and induction.

f = ge > Assume inferExp £ ge > fe.
We know then that

i) inferExp £ ge > a
i) al X=a1—>p
iii) checkExp & e oy

We will assume that 'y, - ai% @ type in order to apply ths using iii)
and have at hand that I'j, F a, : ;5. We shall make sure that this
assumption is valid. We then first apply induction with i), and now
proceed by case analysis

1) We have that IS, F o3, : type and I'§, F f3 0 of.
By claim then we get that of = a;5—035,, and further, by
Proposition 4.9 T'§, - a15— 05, : type. From the latter we also
know that 'y - ai3, : type and T5 F 55+ ags—type. Thus,
by application rules we finally get that I'5, - 5,a%, : type and

IS F fias : BLa.

92 5. THE PROOF CHECKER

2) This is an impossible case. It cannot be both that oo € 7 and
al ¥ =a—p.

3) We have that a = ay—[z|t and T5 F f& : api—type. From
this we know that I'i, F an}, : type. By ii) and definition of |
we get then that a; = ay and that § = [z]¢t. From the former

we also get then that '\, F ;3 : type. Thus, fa =t, and
thereby it belongs to 7. Finally, application rule for families

gives that ['5; - fSaf @ type.
f=r.L > Assume inferExp & r.L > (r.
We then know that
i) inferExp & r > p
ii) L:finp
Induction on i) gives only one possible case, namely, that [}, - p% : type

and ', F 73 @ pl,. This is because we know that for ii) to hold, p must
be a record form, and so must p5,, by definition of unfolding. Moreover
we also know that L : 35, in p% (unfolding preserves the structure of the

expressions). Then by rule of fields we have that I'5, - 35, : pE—type,
we can then apply the rule of selection to achieve that 'y, F7%.L : 513,

O

PROPOSITION 5.5. Let £ be the valid environment (X,1") and let us assume

- IS Fog s type and 'S, F o @ type for the cases thy and ths.
TS Faog s type, I's, Fal s of and TS, F 0% = af, for the cases thy and thy.
thy o Iftypelncl € ay s then I's F gy C any
thy o If whTypelncl € ay g then I'S, F aqs C anl,
thy o IfobjConv & a b « then I'y, Fal =103 : of
thy o If whObjConv &€ a b « then 'y Fay =105 : of
ths ¢ If headConv € a b > 1
then I's, = 735 type and I'S, F af, = b5, @ 75
ProoOF. This proof is by simultaneous induction on the definition of the pro-
grams and functions above.
thy >
> Assume typelncl £ a a.
Then I'§, - of, T o3, by reflexivity.
> Assume typelncl € a; as. We know then that
) g €=ay
i) as | &€ =y’

thg >

iii)

iv)

v)

vi)

i)

ii)

4. CORRECTNESS OF THE ALGORITHM

whTypelncl €& a7’ ay’

By the claim we have then that oy = (ay’)% and also that
a9}, = ()5 Thus by Proposition 4.9 we have that

L E(aq")s s typeand T Fog = ()%« type

5 F(a")s : type and T F an = ()%« type

and induction gives that

IS F (an)5 E (a2)y

From iv) we get that I's F ay¥ C (oy')y. This latter and
vi) give that T'S F a5 C (ao')y by transitivity. From v),
we have, first, that I', F (a0”)% = aok : type, by symmetry of
type equality, and thus I'{; F (a0')% T aok.

Finally, then, again using transitivity of type inclusion, we get
that I'S, F g3 C ot

> Assume whTypelncl € a3 —06; ay—[s.
We are allowed to assume then that

typelncl £ ay oy

typelncl &, p:as [Bip [Bop, with p a fresh parameter.

We know by hypothesis that 'S, - a15—015, @ type and also
that I', F asy— a5, @ type. Then, in particular we know that
5 F s type, T's Faot : type, IS F (15t ap5,—type and
IS F 5o ¢ aos—type. Therefore, in the first place, the envi-

ronment &, p:a is valid, and further, 5,5,p and [o5,p are types
under I'5,. Thus we can apply induction to get that

i) T%F ool T anl

iv)

Actually, that (5.p is a type can be derived after
ing for families. As done for equality of families of types, it is pos-
sible to justify a rule of “extensionality” for the inclusion of family
of types. Thereby, from iv) we get that [y, F 615 T fo5, @ ans—type.
Then, we can apply the rule of function type inclusion to get that
IS Ea—=0is5 E asy =g,

I'S, pragt F Bisp T Basp.

> Assume whTypelncl € p ().
Then we apply the first rule of record types inclusion.

> Assume whTypelncl € p; (py, L:35).
We know then that

i) typelncl € p; py

93

iii) and subtyp-

94 5. THE PROOF CHECKER

ii) typelncl &,p:p, Fip Beop, with p fresh and L : 3, in p,

The rest of the proof is completely analogous to the one for function
types but using as the last step of derivation the second rule of record
types inclusion.

> Assume whTypelncl € a; as.

We know then that objConv £ «; ay Set.

Induction ? then gives that ', F % = agk : Set. We can then construct
the following derivation:

I'S Fony = ool Set

IS F oy = ask : type

F*E - 051% E Oég%
th,g >

> Assume objConv € a a «.
Then I'§, Faf, = af, @ of by reflexivity.

> Assume objConv £ a b a. We know then that
)al&=o
ii) whObjConv € a b oy

By i), claim and Proposition 4.9 we know that ['y; F of = aq3; : type.
Thus, by symmetry of type equality and inclusion from identity we have
that IS, F a1 C of. Induction on ii) gives that I'5 F af = 0% @ aqi.
Finally, the second rule of subsumption gives that I'5, F af, = b3 : of..
th4 >

> Assume whObjConv £ f ¢ a—f.

We can, then, in turn, assume that objConv &, p:a fp gp , with p a
fresh parameter. As I'j F of— 05 @ type, we know that 5, is a type

family over the type of.. Therefore we have that I, p:af - G5p : type.
Moreover, we also have that 'S, F fip : fspand I'S, F g&p @ G5,p. We can

then use induction to obtain that I'y;, p:ag F fip = ¢g&p : f5p. Thereby,
the rule of extensionality for function objects can be applied to finally

get that I', F f5 = 65+ o, =05

> Assume whObjConv & r s ().
The first rule of record objects equality gives directly I, - 75 = s§ @ ()

> Assume whObjConv € r s (p, L:3). We have that
i) objConv £ 7 s p

3In order to apply induction we need to know that both are objects of type Set! Observe
that both a; and ay are in weak head normal form and we know that their respective unfoldings
are types different from a record and a function type, thus necessarily they have to be objects of
type Set.

th5 >

4. CORRECTNESS OF THE ALGORITHM 95

ii) objConv & r.L s.L fr

As we know that [, F (p§, L:3%,) : record-type we are allowed to assume
that 'S, F p% @ record-type and 5, F 35 ¢ pi,—type. Then, in particu-
lar we know that I'5, = G575 @ type. By hypothesis and rule of selection
we also know that both 7%.L and s%.L are objects of type (51 un-
der I'5,. Now, by induction then we get that I'j, Fry = st : p§ and
IS EriL=s5.L:fyrs.

These latter are the premisses needed to apply the second rule of record
object equality to derive that I'§, -7y = s3 1 (p§, L:f5).

> Assume whObjConv £ a b «.
We then know that

al &=a

b€ =10

headConv &€ a; b, > oy

1
i

111

)
)
)
iv) typelncl € a; «
We now use the claim and Proposition 4.10 to get that
v) I F s cad and T F ad = ag§ 0 of

vi) I F b5 af and TS F 05 =015 0 af

From iii) and induction we get that

vil) TS F aqdy s type and TS F agd = by - ands

As both of and a4% are types under 'y, we get also by and
iv) and thy that

viii) TS F ai§ C af
We can then use the second rule of subsumption with premisses vii)
and viii) to get as result that ', F a1% = b15, @ of. Finally then, by

symmetry and transitivity of object equality, v) and vi) we get that
IS Fal =08 af.

> Assume headConv € p p > a. Then we have that p : o in I'. A sim-
ilar argument as in ths in Proposition 5.4 gives that I'5, - o3, : type and
[, F p:of. From the latter, in turn, we obtain that I'S, Fp=p: af.
> Assume headConv £ fa gb > [a. Then we know that
i) headConv & [g > «
i) al & =a1—p
iii) objConv &€ a b oy

96 5. THE PROOF CHECKER

By i) and induction we obtain that
iv) T F g : type
v) ISk fo =95 a4

Now, ii) and Proposition 4.9 give that

vi) IS F andk—0% : type and IS, F af = an§— 05« type
Therefore, we are allowed to assume that I'y, F o5 @ type and
[F G5 2 agy,—type. Moreover, from v), vi) and subsump-
tion we obtain that

vii) I'y F fo = g5 1 a1—f

Induction hypothesis and iii) give that I5, - af = b% : a;%. Thus, by
the rule of application , I's F faf = g5b% : f5as. We also have that

IS F B5as : type.
> Assume headConv &£ r.L s.L > (r. Then we know that
i) headConv € r s >p

ii) L:finp

Induction hypothesis gives that IS, - p§ @ type and I5, F 7§ = s§ 1 p%.
As L : B in p, the type p, must necessarily be a record type. Moreover,
by the rule of fields, we get that I'j, - 55 ¢ ps—type. Then 5% is a
type under ['5..

Finally rule of selection gives that I'y, - r§.L = s5.L 1 fyrs.

5. Implementation of the proof checker

The proof checker described in previous sections has been implemented on ma-
chine. The programming language used is Haskell 1.3, and the code has been com-
piled using Chalmers Haskell-B, the compiler implemented by L. Augustsson at
Chalmers University of Technology [Aug97].

The general design and implementation of the system follows the approach taken
in the recent years by the implementation group of the Programming Logic group at
the Department of Computing Science at the same university. That is to say, there
is a basic kernel constituted by the type checking algorithm, and on top of that an
interactive system is built up that helps the user in the process of proof construction.
In our case the help amounts to very simple commands mostly oriented to obtain
information from the proof environment and to the checking of declarations. It is
also possible to type check files of declaration in a batch fashion. Furthermore, we
have also adopted the methodology of developing a completely pure functional code.
In particular, the state of the system is implemented as a simple monad, in the sense
of [Wad92], which has associated a basic set of combinators that allow to access
and update the state components. The type checking monad, is just a combination

5. IMPLEMENTATION OF THE PROOF CHECKER 97

of a state and error monad, which also interacts with a parsing monad, this latter
implemented along the lines of [Bur75, Hut92, R6j95|. Our code greatly benefited
from the one developed for an early implementation of Half, a successor of ALF, by
Thierry Coquand and Bjorn von Sydow, and also from an experimental type checker
for the framework extended with dependent pairs implemented in collaboration with
Daniel Fridlender.

In what follows we shall give a flavour of the implemented code, (partially)
describing the monads referred to above to finally end up showing the part of the
type checking function, checkExp, concerned with the checking of abstractions.

data E a = Error String | Val a

instance Monad E where

(Val x) >=k =k x
(Error s8) >>= _ = Error s
return = Val

FIGURE 5.6. Error monad

data STE s a = STE (s -> E (a,s))
fun0fSTE (STE f) = £
instance Monad (STE s) where

(STE f) >>= g = STE (\s > f s >>= \(a,s’) -> funOfSTE (g a) s?)
return \a -> STE (\s -> return (a,s))

getSTE :: STE s s
getSTE = STE (\s -> return (s,s))

putSTE :: s -> STE s ()
putSTE s = STE (_ -> return ((),s))

updateSTE :: (s -> s) -> STE s ()
updateSTE f = getSTE >>= (putSTE . f)

FIGURE 5.7. State-error monad

98 5. THE PROOF CHECKER

type CheckState = (Ctxt,Env,Par,...)
getCtxtParamChSt (c,_,i,_,_.) = (c,1i)
putParamChSt i (c,e,_,...) = (c,e,i,...)
putCtxtChSt ¢ (_,e,i,...) = (c,e,i,...)

FI1GURE 5.8. Checking state

type ChM a = STE CheckState a

selectChM :: (CheckState —> a) -> ChM a
selectChM acc =
do
chst <- getSTE
return (acc chst)

getCtxtParamChM =
do
(c,i) <- selectChM getCtxtParamChSt
putParamChM (i+1)
return (c,i)

updateChM :: (a -> CheckState -> CheckState) -> a -> ChM ()
updateChM f = updateSTE . £

putCtxtChM = updateChM putCtxChSt

FI1GURE 5.9. Checking monad

In Figure 5.6 we show the definition of the monad E, which is used for handling
and raising errors. First a parameterized data type with two constructors is defined.
It is almost the same as the primitive type Maybe, with the difference that in case
of errors a string for providing a message is also considered. Then, this data type is
declared as an instance of the primitive class Monad, by providing the implementa-
tion for the two basic combinators >>= and return , which are respectively called
bind and unit in [Wad92].

In Figure 5.7 the definition of the state-error monad is given. The combinators
getSTE, putSTE and updateSTE allow to recover the state, to initialize it (the ar-
gument s), and to update it using a given function, respectively. The operator . is
function composition.

5. IMPLEMENTATION OF THE PROOF CHECKER 99

Then, the definition of the checking state, which is partially presented in Fig-
ure 5.8, is introduced as a tuple type, where the components Ctxt, Env and Par
are the types of contexts, typed environments and the source of the “gensym” func-
tion, in this case an integer, respectively. The combinators getCtxtParamChSt,
putParamChSt and putParamChSt allow to access and update the context and “fresh”
parameter of the checking state, respectively.

The monad ChM is just a partial refinement of the monad STE where the state
is instantiated to be the checking state CheckState. Its definition is given in Fig-
ure 5.9.

We illustrate the use of do expressions, as provided by Haskell, which allow to
express monadic programming by means of a more readable syntax. The semantics
of the combinator selectChM, which takes as argument a (selection) function on
the checking state and returns the computation of that selection, is understood
as follows: first compute getSTE, whose result, the state component, is bound to
the pattern chst, and then return the computation resulting from applying the
argument function acc to it. The combinator getCtxtParamChM selects the context
and the counter of the state and also increments, as a “side-effect”, the value of
the latter. The behaviour of the rest of the combinators in the same figure is quite
direct to grasp.

Finally, we show in Figure 5.10, the code of the function checkExp in the case
that the expression to be checked is an abstraction. We also include the correspond-
ing rule of computation as presented in section 3.2. The abstract syntax for the
expressions [z|e and «—(3 is EAbs x e and EPi alfa beta respectively.

As already explained, the program is defined by case analysis on the object
expression, which in this case is an abstraction. Thus, first the weak head normal
form of the type expressions is computed by the function whnf, which is a direct
implementation of the one in Figure 5.3. If it is a function type, then the context
and the available parameter are recovered from the state. For the sake of readability,
we use a let expression to abbreviate the expression obtained from substituting the
fresh parameter for the variable x in the expression e, the body of the abstraction,
and for building up the application of the type family 3 to the same parameter.
Further, we also abbreviate by c’ the new context obtained by extending ¢ with
the declaration of the parameter p as of type alfa. The effect of mkParam is to
generate a parameter (which, as additional information, carries over the name of
the bound variable being substituted) out of an integer value. Finally, then, the
program is recursively performed on the expressions e’ and beta’ in the updated
checking state.

A very simple XEmacs interface has also been incorporated to the system. The
basic kernel was implemented by Guillermo Calderén, a researcher at the Depart-
ment of Computing Science (InCo) at Montevideo, Uruguay. We then extended it to
consider all the commands that were already present in the checking engine. Even
though it is still in a very primitive stage, we have found its use to be of considerable
help to the task of proof construction using the system.

100 5. THE PROOF CHECKER

all¥ > a—f3 checkExp &,p:ay elx :=p| B
checkExp & [z]e «

p fresh in €

checkExp :: Exp -> Exp -> ChM ()
checkExp obj alfa =

case obj of
Lo

EAbs x e ->
do
whalfa <- whnf alfa
case whalfa of
EPi alfal beta —>

do
(c,i) <- getCtxtParamChM
let p = mkParam i x
e’ = substVar p x e
beta’ = EApp beta p
c’ = addCtxt (i,alfal) c

putCtxtChM c’
checkExp e’ beta’
_ —> errorChM "checkExp, Function type expected"

FIGURE 5.10. Type checking abstractions

CHAPTER 6

Applications: Integral domains and Cayley’s theorem

1. Introduction

In this chapter we shall comment on some experiments we have done concern-
ing the formalization of abstract algebra using the proof checker described in the
previous chapter.

In chapter 2 we gave a brief discussion on the process that led our work to
considering the use of dependent record types as an appropriate mechanism for the
representation of abstract constructions. The starting point was the work described
in [Bet93], where we present a formalization of the notion of integral domain and
the representation of the properties that can be derived from the postulates of
such system of algebras. In addition, we also illustrate the possibility of formally
establishing that a particular construction conforms a concrete algebra satisfying
those postulates. All this was achieved using the notions of context and substitution
and making use of the language of the logical framework which ALF implements.
The incremental definition of systems of algebras, like “a group is a monoid with an
inverse operation such that...”, was naturally reflected by the extension of a context
Monoid with new assumptions corresponding to the operation and the properties
that such operation must satisfy. Thus, a proof of a derived property for monoids,
formally a proof developed under the context Monoid, would naturally remain valid
under the above extension of the context.

It was also remarked in chapter 2 that the “context approach” for the repre-
sentation of algebraic constructions, however, soon revealed itself to have many
drawbacks. Already when trying to represent simple higher order algebraic con-
structions, like the notion of morphism between algebras for instance, the formal
counterpart to these notions in terms of contexts has many shortcomings.

We will show in section 2 the reformulation of the representation of the system
integral domain in terms of record types. The incremental definitions now are di-
rectly accomplished by using record extension. We also provide a simple application
of subtyping, namely, the reutilization of proofs developed groups and commutative
rings when reasoning about integral domains. In section 3 we highlight the con-
structions we needed to develop for the formal representation of Cayley’s theorem
for group theory, which says that any abstract group is isomorphic to a group of
permutations. The formal proof of this theorem per se is not a significant contri-
bution. Nevertheless, it allows to illustrate the adequacy of the extended theory for
building up a little more involved algebraic constructions, like isomorphims between
groups, the construction of groups of transformation and permutations over a given
space, and morphisms between (these) groups.

101

102 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY’S THEOREM

The complete code of the case studies presented here can be found at
http://www.cs.chalmers.se/~gustun/algebra/[IntDom,Cayleyl], respectively.

2. Integral domains

We shall reuse many of the definitions introduced in chapter 2. In principle the
methodology that we shall follow to achieve the formal definition of the system of
algebras Integral domain is the same as the one for Boolean algebras in that same
chapter, namely, we start from the notion of Setoid and then successively enrich this
structure with new components and axioms. This is also the approach followed in
the formalization using contexts. However, using record types we shall be able of
explicitly consider an algebraic system as formed out of an algebraic part, the carrier
set, the equivalence relation, and the operation symbols and, on the other hand, the
axioms that any such algebra must satisfy. Furthermore, we shall naturally maintain
this structure when we perform the consecutive extensions.

In Figure 6.1 we show the definition of Monoid

RelOpElem : type
RelOpElem = (RelOp, ey : A)

isUnitLeft : RelOpElem—type
isUnitLeft Roe = use Roe : RelOpElem in (v :A) = (ce; x) x

isUnitRight : RelOpElem—type
isUnitRight Roe = use Roe : RelOpElem in (x:A)~ (czey) x

PreMonoid : type
PreMonoid = (Setoid, + : binOp S, 0 : S)

AxsOfMonoid : RelOpElem—type

AxsOfMonoid Roe = (cong : isCong Roe,
assoc : isAssoc Roe,
unitL : isUnitLeft Roe,
unitR : isUnitRight Roe

Monoid : type

Monoid =
(PreMonoid,
props : AxsOfMonoid (A =S,R==,0 = +,e; = 0)
)

FIGURE 6.1. Monoid

2. INTEGRAL DOMAINS 103

The system Monoid, then, is defined as a record type, which is the result of
extending the record type PreMonoid with a new field corresponding to the axioms
that any monoid must satisfy. The type associated to the label props is obtained by
applying the family of record types AxsOfMonoid, whose definition is parameterized
by a set, a binary relation, a binary operation on the set and a distinguished element,
to the appropriate record object.

We proceed by introducing in Figure 6.2 the definition of the system Group.

RelOpEIUn : type
RelOpElUn = (RelOpEIL — : A—A)

isInvLeft : RelOpEIUn— type
islnvLeft Roeu = use Roeu : RelOpElUn in (z:A) =~ (o (—x) x) e

isInvRight : RelOpElUn—type
islnvRight Roeu = use Roeu : RelOpElUn in (v:A) =~ (ox (—x)) e

AxsOfGroup : RelOpElUn—type

AxsOfGroup Roeu = (AxsOfMonoid Roeu,
invL : isInvLeft Roeu,
invR : isInvRight Roeu

)
PreGroup : type
PreGroup = (PreMonoid, ~ : S—S)

Group : type
Group =
(PreGroup,
props : AxsOfGroup (A=S,R=~,0=4,e; =0,— = ~)

)

FIGURE 6.2. Group

Observe that the axioms of Group are defined as a family of record types which
is obtained by extending the axioms of Monoid with two new fields corresponding to
the axioms of the inverse operation of the group. The family AxsOfGroup is further
parameterized with a unary operation. The application of the family AxsOfMonoid
to the variable Roeu is correct because of the subtyping induced for families of types.
Thus, we can understand the definition of Group as the respective extension of the
algebraic and axiomatic part of the previously defined system Monoid.

We will not show here the whole sequence of definitions we made to obtain the
one corresponding to the system integral domain. Instead we shall illustrate some
features of the record approach that we consider interesting. After introducing

104 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY’S THEOREM

the definitions of the systems AbGroup (for Abelian group) and Ring (with the
multiplicative binary operation Xand its identity 1), we can then define the record
type CommRing as shown in Figure 6.3

RelOpsElUns : type
RelOpsElUns = (RelOpEIlUn, * : binOp A, ez : A)

AxsOfCRing : RelOpsElUns—type
AxsOfCRing Roeus =
use Roeus : RelOpsElUns
in (AxsOfAbGroup Roeus,
multmon : AxsOfCommMonoid (A = A,R = R,0 = x,e; = e3),
diffunits : Not (R ejes),
distift : (z,y,2:A) = (xz (+y2) (+(xxy) (xz2)))

PreRing : type
PreRing = (PreGroup, X : binOp S, e5 : S)

CommRing : type
CommRing =
(PreRing,
props : AxsOfCRing (A=S,R=~,0=+4,e1=0,— =~,%x = X, €3 = 1)

)

FI1GURE 6.3. Commutative ring

Thus, a PreRing forms a commutative ring if it is formed out of an additive
Abelian group and a multiplicative commutative monoid such that the identities of
both operations are different, and multiplication is distributive (to the left) with
respect to the addition operator. Observe that if we had available an operation
that allowed the concatenation of two record types to form a new one it might not
be necessary to stratify the axioms for multiplication. We have been experimenting
with these kind of record operations (both for types and objects) but no satisfactory
formulation of them has yet been obtained. However, even if such a concatenation
operation were available, notice that in this particular case we should still have to
deal with duplicated labels.

Another example in the spirit of the function dualPreLatt presented in chapter 2
is the definition of the function extractMonoid, that extracts the multiplicative
monoid out of a commutative ring. We show its definition in Figure 6.4

Observe, in the first place, that the variable C'r is used in the definiendum both
as of type CommRing and as of type PreMonoid. The first requirement is clear from
the form of the use expression. On the other hand, for the record object that is the
result of the function to be an object of type Monoid, C'r must have type PreMonoid.
This requires an application of subtyping. Moreover, that C'r is, as a component of

2. INTEGRAL DOMAINS 105

extractMonoid : CommRing— Monoid

extractMonoid Cr = wuse Cr : CommRing
in (C'r, props = props.multmon)

FIGURE 6.4. Extraction of the multiplicative monoid of a commuta-
tive ring

the record being constructed, considered as an object of the latter type will prevent
access to the information proper of a commutative ring. One more application of
subtyping is illustrated by the fact that the object props.multmon is accepted as a
proof of the axioms of a monoid when it actually is one of a commutative monoid.

Finally, the definition of IntDom is given in Figure 6.5.

AxsOfIntDom : RelOpsElIUns— type

AxsOfIntDom Roeus =
use Roeus : RelOpsElUns
in (AxsOfCRing Roeus
mcancel : (z,y,2: A) R (X zx) (Xzy) > Not (Rze1) > Rzxy

)

IntDom : type

IntDom =
(PreRing,
props : AxsOflntDom (A =S,R==,0=4,e; =0,— =n~, % = X,e3 =1)

)

FIGURE 6.5. Integral domain

2.1. Derived properties. We now show the proofs of three simple properties,
namely, that the operation of a group is left cancellative, that the identity of the
additive operation of a commutative ring is absorbent with respect to multiplication,
and finally, that in an integral domain no element divides the identity of the additive
operation. We intend to illustrate with these examples, on the one hand, the kind
of expressions that are obtained. They do not look much different from programs
expressed in a functional language like, say, Haskell. On the other hand, we shall
see the reutilization we can make of proofs due to the use of subtyping.

To begin with, we show in Figure 6.6 a (skeleton of the) proof of the first of the
properties above.

There is not much to say about this proof. The constant eqtoeq allows the re-
placement of equivalents objects in an equality proof. The use of G makes available
all of its fields. The proof of lemma is trivial.

106 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY’S THEOREM

cancellL : (G : Group) (z,y,z: G.S)
use G : Group in ~ (+zz) (+zy) = (R xy)

cancelL =

G zy z hl

use GG : Group

in

let
lemma : (z,y:5) = (+ (~) (+2y))y

eqtoeq G (+ (~ 2) (+z2)) (+(~2) (+z2y) zy
E;;)rops cong)(2) (+zx) (~2) (+2zy) (refl (~ 2)) h)
(lemma z y)

FIGURE 6.6. Cancellation on the left

In Figure 6.7 we show the skeleton of the proof of the property on commutative
rings mentioned above.

multAddUnit : (Cr: CommRing) (x : Cr.S)
use Cr: CommRing in ~ (X x e]) e;

multAddUnit =
Cr z]
use Cr : CommRing
in
let

cancelprop : = (+ (X x z) (X z e1)) (+ (X z x) e1)

in
cancellL Cr (X x e1) e; (X x x) cancelprop;

FIGURE 6.7. Multiplication by identity of addition

Observe that we apply cancelL to the variable C'r of type CommRing.

We end up this section showing in Figure 6.8 the proof of the property of “non
zero divisors”, as it is usually called in the literature, for integral domains. The
proof multaddUnit is used as one of integral domains.

3. Transformations and Cayley’s theorem

In this section we will review the implementation we have done of the proof of
Cayley’s theorem presented in [MB67]. Actually, the original aim was to formalize

3. TRANSFORMATIONS AND CAYLEY’S THEOREM 107

nonZeroDiv : (Id: IntDom) (x,y : I1d.S)
use Cr : IntDom in =~ (X xy)e; — Not (Rzre) > ~xe
nonZeroDiv =
[{d z y hy ho]
use Id : IntDom
in
mcancel y e; x
(trans (X z y) e; (X x e)
hy
(symm (X z €1) e; (multAddUnit Id z)))
ho

FIGURE 6.8. Non zero divisors

in type theory the whole chapter on basic group theory included in the book by the
same authors [BM53]. This is one of the reasons why we use the term transfor-
mation, the old fashioned terminology used in this latter book to mean functions.
The first reference above is a revised edition of this book, which uses the language
of category theory to introduce most of the basic notions and provides new insights
to modern algebra.

We managed to give a formal representation to the contents of sections 1 to 5 in
the mentioned chapter, which ends up with a (very informal and succinct) proof of
Cayley’s theorem. In [MBG67], however, this theorem is given a more detailed and
clear proof, even though there are still constructions that remain informally treated.
The idea there outlined is the one that we followed to build up the formal proof.
We shall further comment on this in section 3.3.

Just for the sake of completeness we include here the definitions (as given in either
of the books above) of some of the notions involved in the whole development. At
the same time we shall also provide insights on how they were grasped and codified
in the language of the type theory with which we are concerned.

3.1. Transformations.

DEFINITION (Transformation). A transformation ¢ : S—T from a (non-empty)
set S into a set T is a rule which assigns to each element p € S a unique image
element ¢(p).

The notion of a transformation of S into T'is thus the same as that of a function
defined on the elements of S, with values in T, and as that of a many-one correspon-
dence of the elements of S to those of T. The set S is called the domain of ¢, and
T its codomain.

3.1.1. Algebra of transformations. Two transformations ¢ : S—T and ¢’ : S—T
are called equal if they have the same effect upon every point of S; that is,

¢ = ¢' means that ¢(p) = ¢'(p) for every p € S (1)

108 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY’S THEOREM

The product ¢ of two transformations is defined as the result of performing
them in succession.

The identity transformation I on the set S can be defined as that transformation
I : S—S which leaves every point of S fixed.

PROPOSITION 6.1 (Associative law). Whenever the products involved are defined
multiplication of transformations conforms to the law (p)8 = ¢(h).

PRrOOF. Follows straightforwardly by equality of transformations and definition
of product of transformations. O

PropPOSITION 6.2 (Identity law). I¢p = ¢I = ¢ for all ¢.

PRrOOF. Follows by definition of I and definition of product of transformations.
O

THEOREM 6.1. A transformation ¢ : S—S is one-one if and only if it has a
right-inverse; it is onto if and only if it has a left-inverse.

DEFINITION (Group of transformations). By a group of transformations on a
“space” S is meant any set G of one-one transformations ¢ of S onto S such that

i) the identity transformation of Sisin G
ii) if ¢ is in G, so is its inverse
iii) if ¢ and ¢ are in G, so is their product ¢

THEOREM 6.2. The set G of all one-one transformations of any space S onto
itself is a group of transformations

3.1.2. Formalization. We introduce the notions of a non-empty setoid (instead
of sets we work with setoids) and equality of transformations on non-empty setoids
as shown in Figure 6.9.

NESetoid : type
NESetoid = (Setoid, el : S)

eqTS : (T,U : NESetoid)
(phi,zi: (z : T.S) U.S) Set
eqTST U phixi = (x : T.S) U (phi x) (xi x)

FIGURE 6.9. Non empty setoids and equality of transformations

Then it is proved that eqTS is an equivalence relation on transformations.

The proof of Theorem 6.1 provided in the references makes use of the axiom
of choice. This is needed for the construction of the right inverse of ¢. In order
to construct the proof of Theorem 6.2 we shall first define the notion of injective
transformation of a space onto any other space. Then, we define the family of sets
Perms as the set of bijections of a space into itself. This is shown in Figure 6.10.

3. TRANSFORMATIONS AND CAYLEY’S THEOREM 109

Bijec : (X, Y : Setoid) Set
Bijec XY = Zfun € (z: X.S)—Y.S.
Ymap € (z,y : X.S)—=X.x& v y—=Y.x (funz) (funy).
(z,y : X.9)=Y.= (funz) (funy)»X.~xy) X
((y: Y.S)—=Xx € XSY.= (funz)y)

Perms : (X : Setoid) Set
Perms X = Bijec X X

FIGURE 6.10. Permutations on a setoid

Thus, Perms X is the set of all bijective functions with domain and codomain
the carrier set of X. We use sigma sets to define this family because they are
intended to constitute the carrier of the group of permutations, which, by definition
of NESetoid, has to be an object of type Set.

Then, if the product (prodP) of objects of the set Perms X is defined as compo-
sition of functions, it is quite straightforward to prove that it satisfies the properties
of the operation of a group, with identity permld. It is also quite direct to define
a function permlnv, that given any permutation p returns its inverse. Therefore,
we can define the function permGroup over non empty setoids which is shown in
Figure 6.11.

permGroup : (X : NESetoid) Group

permGroup X =

(setoidPerm X

+ = prodP X

0 = permld X

~ = permInv X

props = (cong = congprodP X
assoc = assocprodP X
unitL = permIdunitL. X
unitR = permIdunitR X
invL = permInvinvL X
invR = permlInvinvR X

)
)

FIGURE 6.11. Group of permutations on a setoid

3.2. Isomorphisms.

DEFINITION . By an isomorphism between two groups G1 and G2 is meant a
one-one correspondence a <+ a’ between their elements which preserves group mul-
tiplication — i.e., which is such that if a <+ @’ and b <> I/, then ab <> a'b'.

110 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY’S THEOREM

The notion of isomorphism between any two groups is represented by a (record)
type family indexed by two groups. This family has two fields, a bijection defined
on the carrier of the groups (bijec), and the one expressing the morphism property
to be satisfied by the function that constitutes the bijection (morphprop). This is
shown in Figure 6.12

isoGroup : (Gl : Group, G2 : Group)—type
isoGroup gs =
use gs : (Gl : Group, G2 : Group)
in (bijec : Bijec G1 G2
morphprop : (z,y : G1.S) G2.= (fst bijec (G1.4 z y))
(G1.4 (fst bijec x) (fst bijec y))

FIGURE 6.12. Isomorphism of groups

The two following theorems were also proved.

THEOREM 6.3. The relation “G1 is isomorphic to G27 is an equivalence relation
between groups.

Remark. It is worth observing that Theorem 6.3 and its proof hold equally
for isomorphisms between integral domains, and indeed for isomorphisms between
algebraic systems which are extension of the system Group.

THEOREM 6.4. Under an isomorphism between two groups, the identity elements
correspond and the inverses of corresponding elements correspond.

3.3. Cayley’s theorem. We now proceed to discuss the formal proof carried
out for the following result by Cayley

THEOREM 6.5. Any abstract group G s isomorphic with a group of permuta-
tions.

The final presentation of this proof benefited from discussions with Gilles Barthe
and Daniel Fridlender.

In [BM53] the theorem is enunciated and some ideas of the proof are laid down.
There, it is suggested and justified what should be the morphism ¢ between the
elements of a given group G and the elements of a group of transformations T:
“define ¢ as a function that given an element a of the carrier set of G yields a function
¢,, such that ¢,(x) = ax for each x € G”. Thus, the function ¢ is a mapping from
G to a transformation that operates on elements of GG to return elements of G.

Therefore, in the first place, we have to construct the group T out of G, so we
must define a sort of functor that for any given group yields the intended group of
transformations, such that ¢ is an isomorphism between the carrier sets of G and T.
Thus, the first question was to define what should be the carrier set of the group T.
We chose to define it as the sigma set Ya € G.Xf € GG .Vr € G.f(x) = ax. The
definition of ¢ is given in Figure 6.13

3. TRANSFORMATIONS AND CAYLEY’S THEOREM 111

Phi : (Group) Set

PhiG = ¥aecG.S.
Yphi € G—=G.
(x: G.S)—G.~ (phix) (G.+ z a)

FIGURE 6.13. Definition of the family ¢

With this set at hand, thus, it is possible to define, in the first place, an equiv-
alence relation over its elements in terms of the equality eqT’S introduced in sec-
tion 3.1.

The product of two transformations ¢ and & prodTG, can also be easily defined
in terms of the product of transformations. It remains then to define the identity
element of the set Phi G' and the inverse of any element of this set, which is done as
shown in Figure 6.14.

phild : (G : Group) Phi G
phild G = {G.0, [z]G.4+ x G.0, [z]|G.ref (G.+ x G.0) }

philnv : (G : Group) (phi : Phi G) Phi G
philnv G phi =
{G.~ (fst phi), [z]G.+ x (G.~ (fst phi)), [z]G.ref (G.4+ z (G.~ (fst phi))) }

FIGURE 6.14. Identity and inverse of Phi G

The proofs corresponding to the postulates that say that given any group G,
(Phi G, prodTG, phild, philnv) form a group are quite direct. Thus, we define a
functor transfGroup in Figure 6.15, that given any group G returns the correspond-
ing group of transformations described above.

In order to complete the proof, then, it has to be shown that given any group G-

i) transfGroup G is a group of permutations,
ii) it is possible to define an isomorphism between G and transfGroup G

This was done as follows: first we proved that it is possible to construct a
monomorphism of groups between transfGroup G and permsGroup G. This is equiv-
alent to say that the first is a subgroup (and therefore a group) of the latter. Then,
we constructed the isomorphism between G and transfGroup G. The skeleton of the
latter is shown in Figure 6.16.

Thus, for any group G, fst (Cayley G.bijec) is the isomorphism that can be con-
structed between GG and its corresponding group of permutations.

112 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY’S THEOREM

transtGroup : (G : Group) Group

transtGroup G =
(setoidPhi G

+ = prodTG G
0 = phild G
~ = philnv G

props = (cong = congprodTG G
assoc = assocprodTG G
unitL = phildunitL. G
unitR = phildunitR G
invL = philnvinvL G
invR = philnvinvR G
)

)

FI1GURE 6.15. The group of transformations out of G

Cayley : (G : Group) isoGroup G (transfGroup G)
Cayley G =
use GG : Group
in
let
transf : S—Phi G = [al{a, [z]+ x a, [z|ref (+ xz a)}

ismaptransf : (x,y: S)—~ x y—eqTG G (transf x) (transf y) = ...
oneonetransf : (x,y: S)—eqTG G (transf x) (transf y)—~zxy=...
ontotransf : (f : Phi G)—Xx € S.eqTG G (transf z) f=...

isMorphtransf : (a,b:S) eqTG G (transf (+ a b))
(prodTG G (transf a) (transf b))

in
(bijec = {transf, ismaptransf, {oneonetransf, ontotransf}},
morphprop = isMorphtransf)

FIGURE 6.16. Any group G is isomorphic to transfGroup G

CHAPTER 7

Related Work and Conclusions

Related work

Formal algebra in type theory. The formalization of abstract algebra in type
theory (in a wide sense) has lately received an increasing amount of attention.

In [Acz94, Acz95|, Aczel presents a notion of class and overloaded definitions
for predicative type theories. The motivations behind this proposal are mainly con-
cerned with the development of mathematical abstractions for the formalization of
algebra in type theory. The key notion that there arises is that of a system of alge-
bras. A crucial condition required from these systems is that they should determine
the type of algebras of the system. In accordance to this, thus, algebras should be
first class objects of the formal language. Furthermore, in order to naturally re-
flect the usual presentation of these notions in the informal language, it should be
feasible, on the one hand, for the systems to be defined in an incremental manner.
On the other hand, it is also desirable to be able to reuse notation introduced for
a given system S when it comes to consider a system T which has been defined as
an extension of it. In other words, T should inherit the proof constructions, for
instance, developed for S. In this work, the notion of system of algebra is identified
with that of a class for which methods can be defined that in turn may be reused
(overloaded) on elements of subclasses of the one for which they have been originally
defined.

In [Bar95], the ideas above are extended to consider in uniform way the notion
that two types are somewhat related in such a way that one can be considered a
subtype of the other. This relation is formally reflected by introducing a coercion
function that indicates how to get an object of the supertype out of one of the
subtype. But a mechanism, which is formulated for pure type systems, is introduced
that allows to leave the coercions implicit. Applications are then shown using the
extended calculus of constructions [Luo94], where the representation of systems of
algebras is formulated in terms of X types. The relation between types of algebraic
structures that we achieve in terms of record inclusion is partially achieved in terms
of (the transitive closure of) coercions.

Direct successors of this work are the mechanisms implemented by Bailey [Bai97|
and Saibi [Sa197] for defining coercions between types or classes of types developed
for the proof-assistants LEGO [Pol94a| and Coq [Bar97]|, respectively. They have
also formalized corresponding large-scale case studies on Galois theory and Category
theory.

In [Jac95] algebraic structures are formalized in Nuprl’s version of type theory
[Con86| using sets of unlabeled dependent pairs and subsets. Since these are set

113

114 7. RELATED WORK AND CONCLUSIONS

formers and the theory is predicative, one has that sets that are components of
structures have to be restricted to be elements of a universe set, as indicated in
chapter 2. No general solution is given in this work to the problem of representing
the inclusion of types of structures that we have been considering.

In [Luo96], a calculus in the spirit of Martin-Lof’s theory of types is presented,
where forms of judgement are introduced, among others, that express the concept of
a kind K being a principal kind of an object k and that of (proper) kind inclusion.
The meaning explanation of the relation of subkinding is given in terms of coercions.
This makes it possible to justify the various coercive rules of the calculus which are
expressed as judgemental equalities. As a particular example the author illustrates
the use of coercions in the formalization of algebraic constructions.

The mechanism of subtyping obtained in all these works is, on the one hand, more
limited than the one we have illustrated in chapters 2 and 6, since the inclusions that
can be verified to hold are only those induced from the explicitly declared coercions.
On the other hand, they all achieve forms of subtyping not coming from record
subtyping.

Abstraction and modularization. The explanation of the notions of abstract
data type and module in terms of type-theoretic constructions has been extensively
explored since the beginning of the last decade.

In [MP85] the authors present a functional language (SOL) which incorporates
existential types of the form 3¢.0(t), where ¢ is a type variable which may occur
free in the type expression o(t). Values of such types are also introduced and
are intended to model abstract data types. They are called data algebras. The
intuitionistic explanation of the existential quantifier and what it means to be a
proof of an existential proposition together with the Curry-Howard correspondence
of propositions with types provide the conceptual basis for this understanding of
abstract data types.

In [Mac86] MacQueen proposes the use of dependent function types and X-types
to described the notion of structures, functors and signatures as provided by the
language SML [MTH90, MTHS87]. A language (DL) with a ramified type system
in the spirit of the language of Martin-Lo6f’s type theory is presented and examples
concerned with the definition and use of modules are discussed. In [Luo88] Luo
presents a higher order calculus (XCC'). The language includes a ¥-type constructor
together with the corresponding projection operations. In these two latter works
the adequacy of X-types as a basic mechanism to express abstract structures is
analysed and put forward as a safe methodology to deal with the manipulation of
independently developed theories. Our understanding of systems of algebras (and
abstract data types in general) as types of tuples has to a great extent been inspired
by these two works.

The formulation of module mechanisms that, as a formal counterpart, make
use either of existential types or X-types have been presented (and some of them
implemented) in, among others, [HMM90, Luo94, HL94, Ler94].

RELATED WORK 115

On the other hand, closer to the proposal we make in this work of regarding
modules as record types are the works by [Apo93| and [Jon96]. In the former, the
author proposes an extension to the ML-records to express modules, but functors
are only first order. The language analysed in the second of these works supports
higher order functors, but no notion of subtyping is introduced. It is, nevertheless,
acknowledged that it could be useful to have available one such notion.

In the context of variants of type theory, Coquand [Coq96] gives a type-theoretic
formulation of the notion of theory, as provided by the PV system. The combination
of (parameterized) theories and X-types, both mechanisms implemented in Alfa,
provides a powerful tool for the task of abstract and modular development of proofs.
Coquand’s ideas were adopted by Pollack and included, with some modifications,
into the system LEGO [Pol97].

A module calculus for pure type systems is investigated in [Cou97]. Meta-
theoretic results are discussed, but, as far as we know, no implementation of this
calculus has been carried out.

Records and subtyping. The study of record types and subtyping have found
a natural setting in object oriented programming. Starting with the pioneering work
of Dahl and the team behind the language Simula [DN] these two notions have
principally been exploited for providing foundations to the mentioned programming
paradigm. Our work, however, is not intended to provide new insights and mech-
anisms for the theory of object oriented languages. It is primarily concerned with
the use of dependent types for expressing specifications of abstract data types and
modules in a general way. In principle we do not reject the idea of applying the
formalism presented in this work to the study of objects, but it should be clear at
this point that not even the ground notions of the paradigm, like that of self for
instance, can be given a natural formulation in it.

Several extensions of the Hindley-Milner type system have been proposed to deal
with records. A seminal work by Wand is [Wan87]. This work has been corrected
and extended in [Rem89], [Wan89] and others. In these systems the only notion
of polymorphism is generic polymorphism. But record types schemes are used that
can be assigned to any record object in which certain labels are bound to objects of
appropriate types, no matter whether or not other labels are present in the record
object in question. This allows to express some of the (inclusion) polymorphism
that we introduce using subtyping.

A variant of Girard’s system F' [Gir72] with record types and subtyping is
given in [CM91]| which extends earlier proposals in [CW85, Car88]. This system,
which in the literature is referred to as Fx, also includes impredicative bounded
quantification. One of the motivation for the latter is to assign a type to functions
that update records in such a way that fields that are not mentioned in the function
are preserved from input type to output type. This formalism has been shown by
Pierce [Pie94] to have undecidable type checking.

In the language we have presented, record objects are extensible and thus update
functions can be written. Extension is actually overriding, as in [Wan87], i.e. a
record object may contain multiple occurrences of a label, the latest overriding the

116 7. RELATED WORK AND CONCLUSIONS

previous ones. An overriding operator is shown to be derivable from the basic record
operations introduced in [CM91], which do not include this latter mechanism as a
primitive one.

The type systems considered in the works cited above (most of them included
as a chapter in [GM94]) do not embody types depending on individuals. As a
consequence their record types are non dependent as opposed to the ones in our
work.

Dependent record types have been implemented in PVS [OSR], which is a theo-
rem proving system based on classical higher order logic. The subtyping that record
types induce is, however, not a part of the implementation.

Type checking dependent types. The type checking algorithm we have pre-
sented in chapter 5 is much influenced by the one presented in [Mag95] for complete
terms. This latter algorithm, in turn, makes use of ideas presented by Th. Coquand
in [Coq91]. As already discussed in chapter 3, however, in addition to the fact
that we also define the type checker to deal with record types and subtyping, our
algorithm implements the formal verification of the judgement of a calculus that, to
some extent, deviates from Martin-Lof’s calculus of explicit substitutions. The cal-
culus that we consider, instead, is a modified version of the one originally proposed
by Tasistro and presented in [Tas97, BT97] which incorporates the notion of pa-
rameters to represent the notion of “free names”. In that respect, we have situated
ourselves closer to the spirit of the calculus presented by Coquand in the work we
reference above. The work by McKinna and Pollack, presented in [MP93, Pol94a],
concerning the type checking of PTS has also been quite influential in the develop-
ment of our work.

In another direction, Coquand [Coq96] has recently proposed an algorithm for
type checking dependent types that, to some extent, conceptually departs from the
spirit of the ones above mentioned. The notion of the closure of an expression with
the environment under which it has been introduced plays a principal role in the
procedure that describes the checking of the typing judgements of a system of proof
rules there introduced. Regarding this latter observation, the algorithm shares some
of the principles used by Magnusson in the definition of her algorithm. However,
a notion of generic value is introduced by Coquand that allows to cope with the
checking of abstraction operators without the restrictions that have to be imposed
for Magnusson’s algorithm to work. The methodology used by Coquand, that relies
on a model theoretic understanding of the type system, is shown in that same work to
smoothly accommodate to provide explanation for extensions of the original system,
like let expressions and the theory mechanisms mentioned in the previous section.

The problems posed by the type checking of languages with dependent types
which incorporate mechanisms of subtyping have been studied in [Car87] and
[AC96]. The latter work presents an extension to AP, an abstract version of the
Edinburgh Logical Framework LF'. A type checking algorithm for the extended sys-
tem is there proposed and some meta-theoretic properties are shown to hold both
for the calculus and the algorithm in question. The notion of subtyping introduced,

CONCLUSIONS AND FURTHER WORK 117

however, applies only to (dependent) function types and constant type constructors.
A more recent work is the one presented in [JLS97]. The study of a type checking
algorithm for Luo’s logical framework with coercive subtyping above mentioned is
carried out in that work.

Conclusions and further work

We have presented investigations concerned with the understanding, implemen-
tation and use of an extension of Martin-Lof’s logical framework with dependent
record types and subtyping.

We have motivated the use of this system of proof rules for the formalization of
algebraic constructions. Dependent record types have been illustrated to constitute
an appropriate mechanism for the representation of types of algebraic structures.
In addition, the inclusion relation induced by record types allows to represent in a
direct manner incremental definition of types of structures. Moreover, the subtyping
mechanism made it possible to give a formal account of the fact that a system that
conforms to an extension of one previously introduced inherits the constructions
associated to the latter.

Our main concern, however, was to design and implement an algorithm for the
formal verification of the forms of judgement of the extended theory. We then had
to face the problems inherent in the formal language when considering the process of
type checking. There is no general algorithm for inferring the type of the (unlabeled)
abstractions of the original framework. This restriction is transferred to the objects
of the extension. Further, there arises an analogous situation with the type checking
of record objects. The decision was taken then of restricting the forms of expression
that constitute a valid input to the algorithm. We have shown, however, that the
shortcomings resulting from that restriction seem to be harmless for the natural
practice.

When considering the formal verification of the relative forms of judgement of the
calculus there also appeared the well known problems posed by the manipulation
of free names in the presence of dependent types. We adopted the technique of
using parameters to stand for the notion of free variables of the various types. This
decision led to a reformulation of the proof system. To have available this particular
formulation of the calculus facilitated the task of reasoning about the correctness of
the implemented algorithm.

The experiments reported in this work were all mechanically verified using the
proof checker. This provided us with interesting feedbacks concerning the new mech-
anisms introduced. In particular, the incorporation of use expressions pursues, in
the first place, to alleviate notation. We think, however, that the latter expression
former combined with subtyping might provide a uniform mechanism for hiding
implementations of abstract data types. This we consider merits to be further in-
vestigated.

Besides the case studies presented here, the system has been used to verify an
abstract version of sorting by insertion [Tas97], which uses record types to express
specifications of abstract data types. As a continuation of this latter work, the

118 7. RELATED WORK AND CONCLUSIONS

formal derivation of different implementations of insertion sort using the system has
been reported in [Gas98].

No mechanism for the definition of inductive sets has been discussed in this work.
We would like to formulate one that extends the relation of subtyping to consider
inclusion between sets.

[AC96)
[Acz94]
[Acz95]
[Apo93]
[Aug97]
[Bai97]

[Bar92]

[Bar95)
[Bar97]

[Bet93]

[Bet97]

[BM53]
[BS81]

[BT97]

[Bur75]

[Car87]

[Car88]
[CH8S|

[CM91]

Bibliography

D. Aspinall and A. Compagnoni. Subtyping dependent types. In Proceedings of the
11th. IEEE Symposium on Logic in Computer Science, 1996.

P. Aczel. A Notion of Class for Theory Development in Algebra (in a Predicative type
theory), 1994. Presented at Workshop of Types for Proofs and Programs, Bastad,
Sweden.

P. Aczel. Simple Overloading for Type Theories, 1995. Privately circulated notes.

M. V. Aponte. Extending record typing to type parametric modules with sharing. In
Twentieth Annual ACM Symp. on Principles of Prog. Languages, pages 465-478. ACM
Press, 1993.

L. Augustsson. HBC - The Chalmers Haskell Compiler. Documentation report, avail-
able at http://www.cs.chalmers.se/ augustss/hbc.html, 1997.

A. Bailey. Lego with implicit coercions, 1997. Documentation report, available at
ftp.cs.man.ac.uk/pub/baileya/Coercions.

H. Barendregt. Lambda Calculi with Types. In T. S. E. Maibaum D. M. Gabbay,
S. Abramsky, editor, Handbook of Logic in Computer Science, pages 117-309. Oxford
University Press, 1992.

G. Barthe. Implicit coercions in type systems. In Selected Papers from the International
Workshop TYPES 95, Torino, Italy, LNCS 1158., 1995.

B. Barras et al. The Coq Proof Assistant Reference Manual — Version V6.1. Technical
Report 0203, INRIA, 1997.

G. Betarte. A case-study in machine assisted proofs: The Integers form an Integral
Domain, 1993. Licenciate thesis, Dpt. of Computer Sciences, Chalmers University of
Technology and University of Goteborg.

G. Betarte. Dependent record types, subtyping and proof reutilization. In online Proc.
of the working group TYPES workshop Inheritance, subtyping and modular develop-
ment of proofs, Durham, England, September 1997.

G. Birkhoff and S. MacLane. A Survey of Modern Algebra. Macmillan, 1953.

S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Graduate Texts in
Mathematics, Springer-Verlag, 1981.

G. Betarte and A. Tasistro. Extension of Martin-Lof’s Type Theory with Record Types
and Subtyping. To appear in 25 Years of Constructive Type Theory, Oxford University
Press, 1997.

W. H. Burge. Recursive Programming Techniques. Addison-Wesley Publishing Com-
pany, 1975.

L. Cardelli. Typechecking dependent types and subtypes. In L.C. Aiello M. Boscarol
and G. Levi, editors, Proc. of the Workshop on Foundations of Logic and Functional
programmaing, number 306 in Lectures Notes in Computer Science. Springer, 1987.

L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76,
1988.

Th. Coquand and G. Huet. The calculus of constructions. Information and Computa-
tion, 76((2/3)), 1988.

L. Cardelli and J. Mitchell. Operations on records. Mathematical Structures in Com-
puter Science, 1, 1991.

119

120

BIBLIOGRAPHY

[CNSvS94] Th. Coquand, B. Nordstrém, J.M. Smith, and B. von Sydow. Type theory and pro-

[Con86)
[Coq91]
[Coq96]
[Coud7]
[CW85]
[DN]

[Dow93]

[Gas98]

[Gir72]
[GM94]
[Gog94]
[Gri71]

[HL94]

[HMMO90]
[Hut92]
[Jac95]

[JLS97]

[Jon96]
[Ler94]
[Luo88]

[Luo94]

[Luo96]

[Mac86]

gramming. In EATCS 52, 1994.

R. Constable et al. Implementing mathematics with the Nuprl development sys tem.
Prentice-Hall, 1986.

Th. Coquand. An algorithm for testing conversion in type theory. In Logical Frame-
works, Huet G., Plotkin G. (eds.), pages 71-92. Cambridge University Press, 1991.
Th. Coquand. An algorithm for type-checking dependent types. In Science of Computer
Programming 26, pages 167-177, 1996.

J. Courant. A module calculus for pure type systems. In Typed Lambda Calculi and
Applications 97, LNCS. Springer, 1997.

L. Cardelli and P. Wegner. On understanding types, data abstraction and polymor-
phism. Computing Surveys, 17(4), 1985.

O. Dahl and K. Nygaard. Simula, an algol-based simulation language. Comm. ACM 9,
671-678, 1966.

G. Dowek. The undecidability of typability in the lambda-pi-calculus. In TLCA, LNCS
664, Bezem M., Groote J.F. (eds.), 1993.

V. Gaspes. Deriving instances of Abstract Insertion Sort in an implementation of
Martin-Lo6f’s type theory extended with dependent record types and subtyping. Talk
given at The Winter Meeting 1998, Dept. of Computing Science, Chalmers University
of Technology., 1998.

J.-Y. Girard. Interprétation fonctionelle et €limination des coupures de ldrithmétique
dordre superiéur. PhD thesis, Université Paris VII, 1972.

C.A. Gunter and J.C. Mitchell, editors. Theoretical Aspects of Object Oriented Pro-
gramming. MIT, 1994.

H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University
of Edinburgh, 1994.

G. Grétzer. Lattice Theory. First concepts and Distributive Lattices. W. H. Freeman
and Company, 1971.

R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In Twenty First Annual Symp. on Principles on Prog. Languages. ACM Press,
1994.

R. Harper, J. Mitchell, and E. Moggi. Higher-order modules and the phase distinction.
In Seventeenth Annual Symp. on Principles on Prog. Languages. ACM Press, 1990.
G. Hutton. Higher-order functions for parsing. Functional Programming, 2:323-343,
1992.

P. Jackson. Enhancing the Nuprl Proof Development System and Applying it to Com-
putational Abstract Algebra. PhD thesis, Cornell University, 1995.

A. Jones, Z. Luo, and S. Soloviev. Some algorithmic and proof-theoreticsl aspects
of coercive subtyping. In E. Giménez and C. Paulin-Mohring, editors, Proceedings of
TYPES ’96, LNCS, 1997. To appear.

M. Jones. Using parameterized signatures to express modular structures. In Twenty
Third Annual Symp. on Principles on Prog. Languages. ACM Press, 1996.

X. Leroy. Manifest types, modules, and separate compilation. In Twenty First Annual
Symp. on Principles on Prog. Languages. ACM Press, 1994.

Z. Luo. A Higher-order Calculus and Theory of Abstractions. Technical report, LFCS,
Department of Computer Science, University of Edinbu rgh, 1988.

Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Number 11
in International Series of Monographs on Computer Science. Oxford University Press,
1994.

Z. Luo. Coercive subtyping in type theory. In CSL’96, the 1996 Annual Conference of
the European Association for Computer Science Logic, Utrech, 1996.

D. MacQueen. Using Dependent Types to Express Modular Structures. In Proceedings
of the 13th POPL, 1986.

[Mag95]

[Mar84]
[Mar87]

[Mar92]
[MB67]
[MP85]

[MP93]

[MTHS?7]
[MTHO0]
ﬁ%résg]
[OSR]
[Pet96]
[Pey87]
[Pie94]
[Pol94al

[Pol94b)

[Pol97]

[Rem89)

[R6j95]

[Sai97]
[SevI6]
[Tas93a]

[Tas93b]

BIBLIOGRAPHY 121

L. Magnusson. The Implementation of ALF - a Proof Editor based on Martin-Lo6f’s
Monomorphic Type Theory with Explicit Substitution, 1995. Ph.D. thesis. Program-
ming Methodology Group, Dept. of Computing Science, University of Goéteborg and
Chalmers University of Technology.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

P. Martin-L&f. Philosophical Implications of Type Theory., 1987. Lectures given at the
Facolta de Lettere e Filosofia, Universita degli Studi di Firenze, Florence, March 15th.
- May 15th. Privately circulated notes.

P. Martin-Lof. Substitution calculus., 1992. Talks given in Goéteborg.

S. MacLane and G. Birkhoff. Algebra. MacMillan, 1967.

John Mitchell and Gordon Plotkin. Abstract types have existential type. In Proc. of
the 12th ACM Symposium on Principles of Programming Languages, pages 37-51, New
York, 1985.

J. McKinna and R. Pollack. Pure type systems formalized. In M. Bezem and
J.F.Groote, editors, Proc. of the International Conference on Typed Lambda Calculi
ans Applications, number 664 in LNCS. Springer-Verlag, 1993.

R. Milner, M. Tofte, and R. Harper. A type discipline for program modules. In TAP-
SOFT 87, volume 250 of LNCS. Springer, 1987.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.
B. Nordstrom. The typechecking algorithm. Document in preparation.

B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-Ldf’s Type
Theory.An Introduction. Oxford University Press, 1989.

S. Owre, N. Shankar, and J. M. Rushby. User guide for the PVS specification and
verification system (Beta release). Comp. Sc. Laboratory, SRI International, 1993.

J. Peterson et al. Report on the Programming Language HASKELL. A Non-strict,
Purely Functional Language, May 1996.

S. Peyton Jones. The Implementation of Functional Programming Languages. Prentice
Hall, 1987.

B. Pierce. Bounded quantification is undecidable. Information and Computation,
112(1), 1994.

R. Pollack. The Theory of LEGO: a proof checker for the Extended Calculus of Con-
structions. PhD thesis, University of Edinburgh, 1994.

R. Pollak. Closure under alpha-conversion. In Types for Proofs and Pro-
grams:International Workshop TYPES’93, Nijmegen, May 1993, Selected Papers, vol-
ume 806 of LNCS, 1994.

R. Pollack. Theories in type theory. In Online Proc. of the TYPES working group
workshop Subtyping, inheritance and modular development of proofs, Durham, Eng-
land, Sep. 1997.

D. Remy. Typechecking records and variants in a natural extension of ml. In Conf.
Rec. of the 16th. Ann. ACM. Symp. on Principles of Programming Languages, 1989.
N. Rgjemo. Garbage collection, and memory efficiency, in lazy functional languages.
PhD thesis, Dept. of Computing Science, University of Goteborg and Chalmers Uni-
versity of Technologyf, 1995.

A. Saibi. Typing algorithm in type theory with inheritance. In 2/th. Annual SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 1997.

P. Severi. Normalisation in Lambda Calculus and its relation to type inference. PhD
thesis, Eindhoven University of Technology, 1996.

A. Tasistro. Extension of Martin-Lo6f’s Theory of Types with Record Types and Sub-
typing, 1993. Privately circulated notes.

A. Tasistro. Formulation of Martin-Lof’s theory of types with explicit substitution,
1993. Licenciate thesis.Programming Methodology Group, Dept. of Computer Science,
University of Goteborg and Chalmers University of Technology.

122 BIBLIOGRAPHY

[Tas97] A. Tasistro. Substitution, record types and subtyping in type theory, with applica-
tions to the theory of programming, 1997. Ph.D. thesis. Programming Methodology
Group, Dept. of Computing Science, University of Géteborg and Chalmers University
of Technology.

[Wad92] P. Wadler. The essence of functional programming. In 1992 Symposium on principles
of Programming Languages, pages 1-14, 1992.

[Wan87] M. Wand. Complete type inference for simple objects. In 2nd. Symposium on Logic in
Computer Science, 1987.

[Wan89] M. Wand. Type inference for record concatenation and multiple inheritance. In 4th.
Symposium on Logic in Computer Science, 1989.

Appendices

A - CATEGORY OF EXPRESSIONS, SUBSTITUTIONS AND PROPERTIES 125

A - Category of expressions, substitutions and properties

The category of expressions. The expressions of the language are given by
the grammar in Figure A.1

e u= x| p| c| [zle| erea] ()| (e1,L=re2)| e.L
e1—ey | (e1, Liey)

FIGUuRE A.1. Syntax of expressions

Instantiation and Substitution. We show in Figure A.3 and Figure A.2 the def-
inition of the functions that perform the substitution of a expression for a variable
and the instantiation of a parameter by an expression respectively.

zle1/p] =def

qle1/p] =def €1 if p=ygq
=def ¢ if p#q

cle1/p] =def C

([36]62)[61/13] =def [95162[@1/13]

fea [61/]9] —def

flei/p))(e2le1/p))
ale1/pl)—Blei/p]

ler/p], L = €'[e1/p)
ele1/p]).L
ele1/pl, L:€'[e1/p])

(
(a—03)[e1/p] =des
()e1/p] =def ()
(e, L =¢"er/p] =aes (e
e.Lley /p] =def (
(e, L:e')er/p] =dqer

FIiGURE A.2. Instantiation

ylz == el =def €1 ifoz=y
=def Y if © 7£ Yy

plz = e =def D

clx = eq] =def C

([wlez)[z := e1] =def [y]ea ifr=y
=def [Ylealr := €] ifo#y

fealr :=ei] =der (flz = e])(e2[r := e1])

(a—p)[z = ei] =ger (a[z = e1]) =0z = €]

Oz :=el] =def ()

(e, L=¢")r:=e1] =g (elr:=ei],L =¢[v:=e])

e.L[x := e] =qes (e[r:=¢€1]).L

(e, Lie)w:=e1] =qef (e[z:=e1], L:e'[z :=¢])

FIGURE A.3. Substitution

126

wi-Par): —— wf-Con): ———
() wf p () wf ¢
. wf e[z = p] - wf [wfe
(wf-Lda): ’LUf [.Z']e (wf-App): wf fe
wf e wf € wf e
wf-ERec): ———— wf-RecO): — .~ -+ 1\ wif-Sel):
() wf () (" wf (e, L =¢) VESeD: uf e L
wf o wf B wf e wf €
(wf-Fun): ’I,Uf O[—>ﬁ (wf-RecT): ’I,Uf <€7 L:€I>

FIGURE A.4. Well-formed expressions

lgth p =1

lgth x =1

lgth ¢ =1

lgth fe = lgth f + lgth e

lgth [z]e = 1+ lgthe

lgth a—(= lgth o + lgth 3

lgth () =1

lgth {e1, L = e3) = lgth e; + lgth es
lgth e.L = 1+ Ilgthe

lgth (e1, L:ey) = lgth ey + lgth ey

FiGURE A.5. Length of an expression

Properties of well-formed expressions. The notion of being a well-formed expres-
sion is inductively defined as shown in Figure A.4. Some of the properties below are
proved by complete induction on the length of expressions. This function, in turn,
is defined in Figure A.5.

PROPOSITION A.1. Given expressions e and ey, a parameter p, variables x and
y, if © # y and e[y := pllx 1= e1] = e[y := p]| then e[z := ;] = e.

Proor. This proposition can be proved by complete induction on the length
of e. The interesting case is when e is an abstraction.
O

PROPOSITION A.2. Given expressions ey and ey, such that wf es, and any vari-
able z, then ey[x == €| = ey.

Proor. This proposition is also proved by complete induction, in this case on
the length of the expression ey. The interesting case is when e, is an abstraction.

A - CATEGORY OF EXPRESSIONS, SUBSTITUTIONS AND PROPERTIES 127

lgth e =1 > If ey is either a parameter, a constant or a sort the proof is
direct by def. of substitution. As to a variable y, notice that to assume that
wf y leads to contradiction.

e2 = [yle >
Assume that for all expression €', such that lgth ' < lgth [y]e, if wf ¢’
then €[z :=e] =€/, and also that wf [yle. We have to prove that
([yle)[x :=e1] = [y]le. We now proceed by cases on the equality of x
and y:

x =y > By definition the substitution has no effect on [yle, thereby the
equality holds.

x #y > The goal becomes now to prove [yle[x :=ei] = [y]e. Notice
that the assumption that [yle is well-formed allows ourselves to assume
that wf e[y := p| for any parameter p. Furthermore, the substitution
of p for y does not change the length of e, which is less that the one
of [yle. Thus, we can apply induction with e[y := p| to obtain that
ely :==p|[z :=e1] = e[y :=p]. Now, by Proposition A.1, we get that
elr :=e;] = e, and then so are [y|e[z := e;] and [y]e.

The rest of the cases follow by definition of substitution and induction.
O

REMARK . The intuition behind this proposition is that well-formed expressions
are not affected by substitution.

Using the proposition above is then quite direct to prove the following

PROPOSITION A.3. Given expressions e,e; and e, variables x and vy, if x # vy,
wf e; and wf ey then ely := ex][r 1= e1] = e[z 1= e;1][y := ey

PROOF. Surprisingly enough, at least to us, the proof can be done by structural
induction on the expression e. We show the cases where e is either a variable or an
abstraction.

e = z b First we perform case analysis on z = y:

z=y b yly:=es][r:=e1] = ex]x :=e1] and y[x := 1]y := es] = es.
Now, as e5 is a well-formed expression, we can apply Proposition A.2 to
get that ey := e1] = ey. Transitivity and symmetry of the equality on
expressions do the rest.

z #y > Now we make case analisys on z = x:

z = x > We repeat the former argument but now we use that e; is
well-formed in order to apply Proposition A.2.

2z # x > Both expressions reduce to z.

e = [z]f > First we perform case analysis on z =y

z =y > Both expressions reduce to [y]f[z := €]

128

y # z > Now we make case analysis on x = z

x = z > Both expressions reduce to [z]f[y := es]

xr# 2z > By definition of substitution the expressions
([2] /)y := es][x := e1] and ([z]f)[x := e1][y := e2] are equal to the
expressions [z|f[y := es][z := e1] and [z]f[z := e1][y := es] respec-
tively. Thus it suffices to prove that f[y:= es][x :=e;] and
flz :=e1][y := e3] are equal expressions, which we get from the
induction hypothesis on f.

O

PROPOSITION A.4. Given an expression e, a parameter p and variable x, then
for all parameter q if wf (e[x := p|) it also holds that wf (e[z := ¢]).

PRrROOF. The proof of this proposition is by complete induction on the length of
the expression e. O

Now we can prove a very useful property

PROPOSITION A.5. Given expressions e; and ez, a variable x and parameter p
if wf (e1]x = p|) and wf ey then wf (er]x = e3]).

PRrROOF. The proof proceeds by complete induction on the length of the expres-
sion e;. Thus we will have to prove that for all expression e, if for all expres-
sion €' such that lgth €' < lgth e, wf €'[x := p] and wf ey implies wf €[z := e5] then
wf e[z := p] and wf ey implies wf e[z := e;]. We show the proof for the cases p, x,
fé', [yle', the cases when e is a constant or a sort are identical to p, the rest to the
application case.

e = p > Follows directly by definition of substitution and well-formedness.

e =y > We proceed by case analysis on y = x

y =x > By def. of substitution =[x := ey] = ey, then the goal follows
by the assumption that wf ey

x # y > Notice that y[x := p] = y, then to assume that it is wf y[z := p|
leads to contradiction, due to definition of well-formedness.

e = fe/ > Assume that it is wf fe/[z := p] and wf e;. By definition of sub-
stitution and wf fe', we are allowed to assume that both wf f[z := p|] and
wf €'[x := p|. Clearly lgth f < lgth fe' and lgth ' < lgth fe'. We can now use
the ind. hyp. to obtain that wf flx := ey] and wf e'[x := ey]. Applying rule
(wf-App) in Figure A.4 we get wf flx = es)e/[z := ey].

e = [y|f > Assume that it is wf (([y]f)[x := p]) and wf es. Now we proceed
by cases on y = x

y = x >. The goal is to prove that the expression ([y]f)[x := es] is well-
formed. Now, by definition of substitution this latter expression is equal

A - CATEGORY OF EXPRESSIONS, SUBSTITUTIONS AND PROPERTIES 129

to [y]f. The first assumption gives that wf [y]f (the substitution has
no effect).

x #y > The first assumption gives, by def. of well-formedness, that
wf flx :=p|[ly := ¢] for any parameter q. Now, the goal to prove in
this case is wf [y]f[r := ey] (after performing the substitution). Thus,
it suffices to prove that wf f[x := es|[y := r| for any parameter r, and
then apply rule (wf-Lda) in Figure A.4. If we now assume r we get

—wf flx = pl|ly := r], instantiating the parameter ¢ in the propo-
sition above with r

—wf fly :=r]lz := p|, by Proposition A.3, wf r and wf p

and we have that lgth fly :=r| < lgth [y]f. Thus, by induction we get
that wf fly := r][x := ey]. Finally, as e, is also well-formed , we can use
again Proposition A.3 to get wf flz := e[y :=r].

O

Closed expressions. In the following we will talk of closed expressions. As an-
ticipated, the valid open expressions that participate in a relative judgement will
depend on parameters not on variables. Therefore, we shall need a notion of closed
expression that says more than the one traditionally used in languages with binding
operators. For doing that, we first introduce the notion of independence of an ex-
pression e of a parameter p. The inductive definition of this predicate on expressions
is given in Figure A.6.

We can now formulate an important property of expressions:

PROPOSITION A.6. Given expressions ey and e, let p be a parameter such that
ey indep p, then ejles/p| = e;.

PROOF. The proof of this lemma is by structural induction on the proof of
e1 indep p. We show only the cases where e; is either a parameter or an abstraction.

q indep p > Thus, p # ¢ and then by definition of instantiation ¢les/p] = ¢.

[z]e indep p > By definition of substitution we have ([z]e)[ex/p] = [z]eles/p].
We know that e indep p, thus by induction hypothesis we get eles/p| = e.
Then [x]e[es/p] = [x]e.

O

PROPOSITION A.7. Given expressions e, e; and ey, a parameter p and a vari-
able x, if e indep p then e|x = ei][ea/p] = elea/pl[x := e1]ea/p]].

PROOF. The proof of this lemma is by structural induction on the expression e
and nested structural induction on e indep p. O

As a corollary of the two propositions above we obtain the following:

130

(indep-Par): q 7& p (indep-Var): T
¢ indep p x indep p
indep-Con): ————
(indep-Con) ¢ indep p
' e indep p ' findep p eindepp
(indep-Lda): [.Z']@ anep D (indep-App): f@ anep D

e indep p € indep p

(indep-ERec): (indep-RecO):

() indep p (e, L =¢') indep p
' e indep p
(indep-Sel): e L, anep D
. aindepp [indepp e indep p € indep p
(indep-Fun): O[—>ﬁ anep D (indep-RecT): <6, L:€I> anep D

FIGURE A.6. Independence

PROPOSITION A.8. Given expressions ey and ez, a parameter p and a variable x,
if 1 indep p then e [z := plles/p] = e1[x = es).

PROOF. By Proposition A.7 we know e;[x := p|[ea/p] = e1]ea/p][x = ples/p]]-
Now, as ey indep p Proposition A.6 says that ej[es/p] = e;. Finally, the expression
plea/p| is equal to e;.

U

DEFINITION 1.1. [Closed expression]| An expression e is closed if and only if e is

well-formed and for all parameter p the expression e is also independent of p .

PROPOSITION A.9. Given expressions ey and es variable x and parameter p. If
e1 1s a closed expression then ei[x := e3] = e and eq[es/p] = e;.

PRrROOF. This proposition is a corollary of both Proposition A.2 and Proposi-
tion A.6. By definition e; is both well-formed and independent of p.
O

PrRoOPOSITION A.10. Let e; and ey be any two expressions and p and p; be two
parameters such that p # p;.
If ay is closed then ey[ey/pl[a1/pi] = ei[a1/pi][ea]ar/p1]/p]-

PRrROOF. This can easily be proved by structural induction on expression e;. We
show here the cases that e; is either a parameter or an abstraction.

e1 = q > We perform case analysis on the equality of ¢ and p:

A - CATEGORY OF EXPRESSIONS, SUBSTITUTIONS AND PROPERTIES 131

g = p > Both expressions reduce to es[a;/p]

q # p > We perform case analysis on the equality of ¢ and p;:

q = p1 > The first expression reduces directly to the expression a,
by definition of instantiation. The right-hand side expressions, on
the other hand, reduces to aq[es[a; /p1]/p]. However, by hypothesis
we know that a; is closed, then the latter instantiation has no effect
on ai.

q # p1 > Both expressions are equal to the parameter q.

e; = [z]e > By definition of instantiation we have that the lhs expression
reduces to [z]e[ea/p]la1/p1]. Moreover, we also know that the rhs expression
is equal to [z]e[a; /p1][e2a1/p1]/p]. We can then apply induction to show that
these expressions are equal.

O

The above proposition can be generalized as follows

PROPOSITION A.11. Given expressions e and a, and closed expressions a; with

1= 1.n, let p,p1,...,ps be n+ 1 mutually distinct parameters.
Then e[a/p][al/pla HE 7an/pn] - e[al/pla HE 7an/pn][a[al/pla R 7an/pn]/p]
PRrROOF. By induction on n and using Proposition A.10. O

PROPOSITION A.12. Given expressions eq,es, a variable x and a parameter py.
If ay is a closed expression then ei[x := es]lay/p1] = e1ar/p1][x := esfai/p1]]

PRrROOF. By structural induction on expression e;. We here show the proof for
the cases where e; is either a variable, a parameter or an abstraction.

e1 =y > We make case analysis on the equality of x and y:

y =z > Both the rhs and the lhs are equal to the expression es[a;/pi].
y # x > Both the rhs and the lhs are equal to the variable y.

e1 = q > We make case analysis on the equality of parameters ¢ and py:

q = p1 > The lhs is equal to a; by definition of substitution and instanti-
ation. By definition of instantiation the rhs is equal to ai[z := ez[ai/p1]].
Now, as the expression a; is closed by hypothesis, this latter substitution
has no effect.

e; = [yle > We make case analysis on the equality of z and y:
y = x > Both the lhs and the rhs are equal to the expression [z]e]a; /p1].
y # x > The lhs reduces to [yle[z := e3][a;/p1] and the rhs to the ex-

pression [ylela/p1][x := ez]ai1/p1]]. We can then apply the induction
hypothesis to show that these two expressions are equal.

132

The above proposition can be generalized as follows

PROPOSITION A.13. Given expressions ey,es, a variable x, closed expressions a;

and mutually distinct parameters p;, with ¢+ = 1..n. Then, the expressions
e1]x = eg][ar/p1, ... ,an/pn) and ei]ar/p1, ... an/pul[T = e2]ar/p1, ..., an/pnl] are
equal.

PRrROOF. By induction on n and using Proposition A.12.

As a corollary of the former proposition we can obtain the following:

PROPOSITION A.14. Given expression ey a variable x, closed expressions a; and
parameters p;with i = 1..n. If p is a parameter distinct from p; for 1 = 1..n then

61[1‘ = p][al/ph Tt 7an/pn] = el[al/pla S 7an/pn][x = p]
PROOF. By Proposition A.13 we get that e;[z := es][a1/p1, ... , an/pn] is equal

to erfar/p1, ..., an/pu]lx = plar/p1, - - . ,an/pn]]- Now, as p is different from all the
parameters p; the instantiations p[ai/p1, ... , a,/ps] have no effect on p. a

B - THE CALCULUS 133

B - The calculus

General rules. In Figure B.1 we present the rules for formation of contexts,
the (schematic) rule of thinning and the rules of assumption and type formation.

context formation, thinning and assumption.:

[' context T'F a: type

W 1'\7p:a Conteajt p fresh in T’
r=J
A
AFJ -
—— p:ainT —— p:ainl
[hEp:a I'Foa:type

Ficure B.1. Context formation, thinning and assumption

Equality rules. These are the general rules for the equality relation of types,
objects of a type and families of types. Their justification is done as in previous
formulations of type theory. We have then refiexivity, symmetry and transitivity
rules for identity of types, objects of types and families of types under a given
context.

incluston from identity:

' o =ay: type ' Gy =By a—type
'Fa C ay I'F By C By a—type
subsumption:
'Fatay TP o I'Fa=b:a9 TTFay, T oy
'Fa:ao 'Fa=b:m

'Far Cay ['EG:ay—type

['FfB:a;—type

'Far Cay T'F G =0 az—type 'Far Cay I'EG E Gy ag—type
' By = Bt an—type ['F B E B ar—type

FicGURE B.2. Rules of subsumption and inclusion of families of types

134

Rules of inclusion. We have also rules for expressing that the inclusion of two
types and two families of types follows from their identity, as well as the reflexivity
and transitivity of inclusion of types. The rules in Figure B.2 are immediately
justified from the meaning explanation of the judgement of inclusion.

Rules of instantiation. The various rules of instantiation are presented in
Figure B.3

instantiation of types:

Ipala:type Tha:a IpakFay=ay:type 'Fa=b:«a
I'Faqla/p]: type I'F aqla/p] = aslb/p] : type

[paFai Cay 'Fa=b:a«
I'F aifa/p] T az[b/p]

instantiation of objects:

Ipabb:iag T'ha:a I'paFb=b:a; T'Fa=c:a
['t=bla/p] : au[a/p] I t=bi[a/p] = ba[c/p] : au[a/p]

instantiation of families of types:

Dypabf:a—type I'Fa:a Cipat B, =0y :a0—type 'Fa=0b:«
I'F Bla/p] = au[a/pl—type I+ Byla/p] = B,[b/p] : enla/pl—type
Dipat B, CBy:ag—type I'Fa=b:a
['F B1la/p] E Bolb/p] : anla/p]—type

instantiation of record types and record families:

I',p:atp:record-type I'a:a I',pialo:ay—record-type I'Fa:«
['F pla/p] : record-type ['Fola/p] : ayla/p]—record-type

FIGURE B.3. Rules of instantiation

Rules for families of types and types. The rules of application for families
of types and the associated equality and inclusion rules are shown in Figure B.4.

Then, in Figure B.5 we show the rule for formation of families, the corresponding
(B-rule and the various rules of equality.

Sets and elements of sets. The rules in Figure B.6 introduce the type of
(inductively) defined set, the rule saying that any set gives rise to a type and the
associated equality rule.

B - THE CALCULUS 135

application:
[-f:antype Tha:a F'FB:a—stype ThFa=b:«
['F Ba: type ['F Ba = pb: type
equality and inclusion:
I'EB=p6:a—type I'Fa:« I'FpBCEpBy:a—type I'Fa:«
' F Bia = Baea : type I'F Bia C Bea

FIGURE B.4. Family application, equality and inclusion

abstraction and (3:

I pak aifz:=p]: type p ipabagz:=pl:type T'Fa:a«
ay indep p ai indep p
['F [z]a; @ a—type ['F ([z]ay)a = aq|x == a] : type
extensionality and n-rule:
[, p:a bt Bip = [op : type o inden » ['Ff(: a—type
I'F B =03 a—type ' (3= [z]fz: a—type

FiGUure B.5. Family formation, 3-conversion and equality rules

LEA:Set [+A=DB:Set
F Set : type ' A: type I'FA=B:type

FiGURE B.6. The type of sets

Function types. The rule of formation of function types and the corresponding
equality and inclusion rules are shown in Figure B.7

Then it comes the rules of (function) object application (in Figure B.8) and in
Figure B.9 the formation of opbjects of funtional types together with the various
equality rules.

Record Types. We then turn to present the rules of record types and record
objects. In Figure B.10 there are the rules for record type formation and record
type equality.

Formation and application of families of record types are given in Figure B.11

The so-called rule of fields and a rule of record inclusion are shown in Figure B.12.

Then, in Figure B.13 we show the rules saying when any two record types are in
the inclusion relation.

136

formation of a—(:

'Fa:type T'FfF:a—type

['Fa—p: type

equality and inclusion of a—[3:
'Fa =ay:type T'F [y = [ay—type
' 051—>51 = Oég-)ﬁg : type

'Fas Cap IT'EG E By ag—type
I'Fa—=06 C ay—f

FiGURE B.7. Function types formation, equality and inclusion

application:
Ffia=f Tha:a '-f=g:a—pf I'ta=b:«
' fa: fBa I'F fa=gb: fa
FiGure B.8. Application of function objects
abstraction:

[, p:a b bz = p| : [z :=p]
[F[z]b: a—[z]on

b, a1 indep p

[B-conversion and extensionality:

Cipabbz:=pl:afz:=p] TFa:a D,p:ab fp=gp: fp
L' ([z]b)a =blx == a] : ay[z = q] I'Ff=g:a—p

f.9,8 indep p

n and &-rules:

CEb:a—p o I,pat fle:=p] =gz :=p|]: o[z :=p]
['F[z]br =b:a—p [E[z]f = [z]g : a—[z]q

f,9,a1 indep p

FiGure B.9. Function object formation and equality rules

We end up showing in Figure B.14, first, the rules of record object extension.
Then, the rule governing the selection of a label from a record object and the one
which says that if two record objects are equal then the result of selectings the same

B - THE CALCULUS 137

formation of record-types:

' p:record-type T['F 3 : p—type
['F () : record-type ['F (p, L:3) : record-type

L fresh in p

type formation:

['F p: record-type

['Fp: type
record types equality:

U'py=py:type T'F B =0y p—type
= =10 :type T F (py, L:B) = (py, L:a) : type

FiGUrE B.10. Record types formation and equality rules

't o : a—record-type I'Fa: « I',p:a b= plz := p| : record-type

a1 inde
['F oa : record-type ['F [z]p : a—record-type "
FiGURE B.11. Record types families
L:Binp
L' (p,L:B) C p I8 : p—type
Ficure B.12. Rules of fields
'+ p: record-type L'Ep, Epy, I'EBE By p—type i

: By in py

F'EpC () ' oy C (po, LiBy)

Ficure B.13. Inclusion of record types

label from them must be equal objects. Finally there are the equality rules for record
objects.

138

record object extension:

FEQ:0

'Fr:p I'ke:pr

L fresh in p
FE(r,L=e)y=1:p
selection:
F'kr:
TP s,
I'Er.L:pBr

equality rules:

F'kr:() TkFs:()
F'Fr=s:()

L'kr:p T'ke:pr

L fresh in p

C'E(r,L=c¢):{p, L)

'Fr:p T'ke:pr
I'F(r,L=e).L=e:fr

L fresh in p

'Fr=s:p

L:Binp

'-r.L=s.L:pr

'Fr=s:p I'tr.L=s.L:pr

I'Fr=s:{p L:3)

Ficure B.14. Record object extension, selection and equality rules

