
Dependent Record Types andFormal Abstract Reasoning:Theory and practiceGustavo BetarteDepartment of Computing ScienceChalmers University of Technology andUniversity of G�oteborgS-412 96 G�oteborg, Sweden.

A Dissertation for the Ph.D. Degree in Computing Scienceat the University of G�oteborg.Department of Computing ScienceS-412 96 G�oteborg, Sweden.ISBN 91-7197-601-9G�oteborg, 1998.

ABSTRACT iiiAbstractThis work contains investigations on the formal correctness and use of an exten-sion of Martin-L�of's type theory with dependent record types and subtyping. Weput forward the adequacy of dependent record types as a natural type theoretic set-ting for expressing the notion of abstract data type | in particular we explore theformal representation of systems of algebras | and for the modular development ofproofs. By virtue of the mechanism of subtyping available, in addition, it is possibleto reutilize code that has been developed for a certain system when reasoning aboutany other system that conforms to an specialization, or extension, of it. We studythe problem of the mechanical veri�cation of the forms of judgement of the extendedtheory and the outcome is a proof checker that provides assistance in the use of thelanguage of the calculus for the formal development of proofs. The algorithm oftype checking, which constitutes the logical heart of the implemented system, is de-veloped for a particular reformulation of the extension. This latter calculus, whichis also presented and analysed in this work, incorporates the notion of parameterto stand for that of a free variable of a certain type. We present some experimentson the formalization of algebraic constructions that have been carried out using theproof checker

iv

ACKNOWLEDGEMENTS vAcknowledgementsI am deeply indebted to Bj�orn von Sydow, my supervisor. He has always beenthere for me, enlightening, supportive and patient. I have a profound respect forhim and I admire his capacity as a computing scientist. The conception, elaborationand �nal writing of this thesis immensely bene�ted from Bj�orn. I have been veryfortunate to have him as my advisor, he has also been a caring friend and a goodcomrade.I am most grateful to Bengt Nordstr�om, who opened the doors of the Pro-gramming Logic group to me. It has been a privilege to partake in the researchenvironment he has greatly contributed to create and develop.The inuence of Alvaro Tasistro, Tato, in my research education has been per-manent. He motivated my interest in type theory and taught me to understand it,he also created the subject on which this thesis concentrates. To work with himhas been an extremely enriching experience. Besides, Tato together with Ana Bove,Daniel Fridlender, Ver�onica Gaspes and Nora Szasz are dear friends with whomI shared many enjoyable moments during all these years we have been living inG�oteborg.I want to thank the members of my supervision committee, Thierry Coquandand Jan Smith, for their comments and advice regarding this work.Many people have contributed to this thesis through fruitful discussions or byreading and commenting previous versions of it. Special thanks to Peter Dybjer,Daniel Fridlender, Ver�onica Gaspes, Christine Paulin-Mohring, Henrik Persson andAlvaro Tasistro.To work at this Department has de�nitely been a very challenging and pleasantexperience. The academic environment is thought-provoking, based on solid scien-ti�c criteria and friendly. This is complemented with the work of many people whotake care of us with great e�ciency and a nice disposition. I specially want to thankMarie Larsson, who is also a very good friend, Christer Carlsson and Hans \Hasse"Hellstr�om, for all their help. Among the people that work at the Department I havefound very nice persons that also become good friends. Thanks to all of them formaking my stay here even more comfortable.During all these years in G�oteborg I have never stopped feeling a member ofInCo, the Department of Computing Science at Universidad de la Rep�ublica inMontevideo. I am certainly indebted to Juan Jos�e Cabezas, his academic visionsparked and stimulated the attitude that eventually led many of us to come todi�erent places to pursue our research education. I want to express my gratitude toall my friends from InCo, who have helped me in so many occasions. Special thanksto Cristina Cornes and Juan Jos�e Prada, for being so cheerful and supportive. I hadthe opportunity of visiting InCo many times in these last years, and some of these

vivisits were �nancially supported by the Uruguayan councils of scienti�c research,PEDECIBA and CONICYT, to which I am grateful.Finally, I want to acknowledge the constant support and loving care that I havereceived from my family and friends in Uruguay.

ContentsChapter 1. Introduction 1Chapter 2. Doing abstract algebra in type theory extended withdependent record types and subtyping 71. Introduction 72. Representation of systems of algebras in type theory 83. Boolean Algebras and DeMorgan's laws formalized 154. The extension 27Chapter 3. Type checking: informal explanations and discussion 371. Type checking in the original theory 372. Type checking in the extended theory 393. Towards an implementation of the algorithm 42Chapter 4. Formulation of the extended theory with parameters 491. Introduction 492. The category of expressions 513. Forms of judgement 554. Rules of inference 575. Weak head reduction 646. Basic meta-properties of the calculus 66Chapter 5. The proof checker 711. Introduction 712. The system 713. The type checking algorithm 734. Correctness of the algorithm 845. Implementation of the proof checker 96Chapter 6. Applications: Integral domains and Cayley's theorem 1011. Introduction 1012. Integral domains 1023. Transformations and Cayley's theorem 106Chapter 7. Related Work and Conclusions 113Related work 113Conclusions and further work 117Bibliography 119vii

viii CONTENTSAppendices 123A - Category of expressions, substitutions and properties 125B - The calculus 133

CHAPTER 1IntroductionThe work we present in this monograph was originally motivated by a devel-opment of the formal representation of the arithmetic of integers using the proof-assistant ALF [Mag95]. There we study, in the �rst place, an inductive formulationof the mentioned set, which we denote by Z, and provide the formal proofs that itconstitutes an integral domain. A natural next step was to investigate the possibil-ity of giving a formal account inside type theory of the algebraic theory of integraldomains, write down proofs of properties that can be derived from its postulates andtransfer those results to our implementation of the concrete integral domain Z. This,in turn, was accomplished by making use of the notion of context and substitutionas implemented in the mentioned system:Let ID be a context where assumptions have been introduced to the e�ect that acertain set and binary operations on that set form an integral domain. To formallyreect that a property, which is formally expressed by the type �, is valid for allintegral domains, we then construct a proof object � of type � under the contextID. On the other hand, once a system of algebras has been given a representation interms of a particular context �, for stating that a particular construction conformsa concrete instance of that system we introduce a substitution, also as implementedin ALF, for �. Thus, if we have constructed a proof like the one described above,formally represented by the judgement � : �[ID], and Z is a substitution for thecontext ID, we can obtain that �Z : �Z . In words, if we have a proof that � isa property valid for all integral domains, and we know one such structure, then wealso have a proof of the property for the latter, namely, it is the object �Z.This work has been reported in [Bet93] and is considered to be a complementarypart of the one we shall introduce here.We, however, found the use of contexts for the formal representation of systemsof algebras a quite limited practice. When we started developing a little more in-volved algebraic constructions than the ones needed for the work described above,like de�ning the notion of an isomorphism between groups for instance, some dis-advantages of this approach emerged rendering the formalization task, and the re-sults, quite unsatisfactory. This led our investigation to considering alternative typetheoretic mechanisms better suited for the representation of abstract theories andmodular development of proofs. We �rst investigated an extension of Martin-L�of'slogical framework [Mar87, NPS89] with dependent pairs (also called � types inthe literature). A type checking algorithm was implemented for this extension andsome case studies were developed using it. Most of the di�culties present in the\context approach" were overcome by using pairs. There remained, however, somedrawbacks concerning, in particular, the possibility of making incremental de�nition1

2 1. INTRODUCTIONof theories and the reutilization of proofs. We then turned our attention to the studyof an extension of Martin-L�of's logical framework with dependent record types andsubtyping. This extension has been proposed by A. Tasistro and is described in[Tas97, BT97]. Hereafter, we shall refer to it as the extended theory or sometimesplainly as the extension.We now proceed to describe how records and subtyping can act as the formalcounterpart to algebraic constructions consistently used in the informal practice.Let us consider the problem of formalizing in type theory the notion of a setand an equivalence relation on it. The name Setoid has elsewhere been used for thisnotion. Just for the sake of presentation we shall consider setoids as constructedfrom a still simpler notion, namely that of a set with a binary relation on it. Sowe start by introducing just binary relations on sets and will obtain the formalde�nition of setoid by enriching the previous notion with further structure, namely,the components that establish that the relation is reexive, symmetric and transitive.The system of types of the original formulation of the theory is constituted, inthe �rst place, by the type Set, the type of inductively de�ned sets. Then, anyindividual set A, gives rise to the type of its elements. Type families are expressionsof the language that when applied to individuals of the appropriate type give riseto a type. Moreover, it is possible to introduce arbitrary families of types in theformal language. One such family can be constructed by an operation of abstraction,denoted as [x]�, which binds the occurrences of the variable x in the type �. Finally,there exists a mechanism for the formation of (dependent) function types: if � is atype, and � is a family of types indexed by objects of type � then �!� is also atype. The application of an object f of this latter type yields an object fa of type�a, if a is an object of type �.The understanding of propositions as inductively de�ned by their introductionrules, as explained and justi�ed in [Mar87], allows us to grasp propositions as sets,and thereby, their proofs as elements of those sets. There is, in principle, no formaldistinction in the language of the theory between the type of sets and the typeof propositions. Further, in the presence of families of types, this interpretationof propositions can be transfered to propositions about generic individuals. Forinstance, given a set A, A![x](A![y]Set) is the type of binary relations on A.Then, if R is such a relation, for each element x of A we have a set Rxx. Since eachset determines a type, we can form here a family of types over A, namely [x]Rxx.Then A![x]Rxx is the type of proofs that R is reexive. This function type isusually written as (x : A)Rxx, that can be read: \for any x in A, Rxx".As another example, consider the type (x; y : A)Rxy!Ryx. A function of thistype will produce a proof of Ryx given any two elements x, y of A and a proof ofRxy. In virtue of the given explanations, this is the same as proving that if Rxyholds then so does Ryx, for arbitrary x, y in A, i.e. the symmetry of R.So now let us turn our attention to sets with binary relations on them. We shallcall this notion just binary relation and de�ne it to be a pair (S;�) where S is a set

1. INTRODUCTION 3and � a binary relation on S. Thus, were we to de�ne the type of binary relations,it should be introduced as a type of tuples.Now, regarding the mechanisms of type formation we have described above theonly way to get tuple types in type theory is to introduce sets of tuples. But considernow binary relations as de�ned above. If S can be any set, then the type of binaryrelations cannot itself be a set or it would be allowed to form a part of some ofits own elements. Circular constructions of the latter kind are not allowed in thepredicative language of type theory.Another possibility would be to restrict S in the pair (S;�) to be an elementof a previously constructed set of sets that we call a universe. Then the type ofsetoids could be introduced as a set, obviously then not belonging to the universe.But now the universe encloses a �xed number of set constructors. And we still wantto be able to introduce new set constructors, i.e. new sets that could be carriers ofsetoids. For this, what we need is types of structures of which arbitrary sets may bespeci�ed as components.Dependent record types are just sequences of �elds in which labels are declared asof certain types: hL1 : �1; :::; Ln : �ni. The type �i+1 may depend on the precedinglabels L1,...,Li. We could then introduce the type of binary relations on a set as:BinRel : typeBinRel = hS : Set;� : S!S!SetiLabels may participate in the formation of types in the same way as ordinaryvariables or constants do. In order to avoid ambiguities they are syntactically dis-tinguished from the latter. Here we use the font label. A type declaration like theone just introduced is nothing but the explicit de�nition of a type.Now we turn to consider the de�nition of setoid. In the extended theory the pos-sibility of incremental de�nition is given directly by the rules of formation of recordtypes. This is formally stipulated as the iteration of the operation of extending arecord type with one more �eld, starting from the record type with no �elds. Thus:Setoid : typeSetoid = hBinRel,ref : (x : S) � x x,symm : (x; y : S) � x y ! � y x,trans : (x; y; z : S) � x y ! � y z ! � x z iThis example shows how systems of algebras can be represented as record types:in informal language algebraic structures are de�ned as tuples of elements satisfy-ing certain properties. As was already illustrated, in type theory these propertiesbecome in general function types. Therefore, to each property required by the def-inition of a system of algebras there corresponds a �eld in the record type thatrepresents the system. Since proofs are objects, we can express this requirementby making proofs actual components of the structures being de�ned. Formally,then, the distinction between elements of a structure and proofs of the demandedproperties disappears.

4 1. INTRODUCTIONWe have now seen one example of incremental de�nition of systems. Informally,it would be stated thus: \A setoid is a set with a binary relation in which the latteris an equivalence relation". Still informally it is then natural to use directly thatevery setoid is a set with a binary relation. In the formal language, this means thatan object of type Setoid has also the type BinRel, i.e. a form of polymorphism. Now,both Setoid and BinRel are record types and it is naturally given in the de�nitionof record types that this form of polymorphism should be allowed.As systems of algebras are represented by record types, the representation of aconcrete algebra corresponds to a record object of the type representing the system.Record objects, as usual, are constructed as sequences of �elds that are bindings ofobjects of appropriate types to labels.An interesting point is that once a derived property has been proved for a system,any concrete algebra for that system should also have this property. In our case,proofs are represented as (functional) objects. Thus, a natural way of obtaininginstantiation of properties is by application of the proof object to the representationof the concrete algebra. Let us illustrate this with a simple example.Suppose that we have introduced the type Group as a record type that repre-sents this system of algebras and in addition we have available an object cancelLof type (G : Group) (x; y; z : G:S) G:� (G:� z x) (G:� z y)! G:� x y . Thus, inwords, cancelL proves that the operation of the group G is left cancellative.Suppose, now, that we have de�ned the set Z of integers and the propositionalequality =Z on it, as usually done in type theory. Furthermore, we also intro-duced the binary operation +Z the unary operation �Z and the distinguishedelement 0Z . Suppose then that we have proved all the properties characterising(Z;=Z;+Z ;�Z ; 0Z) as a group (a formalization of these proofs in type theory ispresented in [Bet93]). Thus, we could de�ne the algebra GroupZ to be:GroupZ : GroupGroupZ = hS = Z,� = =Z, � � � ,� = +Z ,� � � ,e1 = 0Z , � � � ,� = �Z iThe labels �, e1 and� correspond to the operation, the unit and the inverse functionof the group, respectively. So, now we could apply the function cancelL to the recordobject GroupZ to obtain the proof that +Z is cancellative as followscancelL+Z : (x; y; z : Z) =Z (+Z z x) (+Z z y)! =Z x ycancelL+Z = cancelL GroupZWe can discern in what we have described di�erent facets of the research con-nected to type theory. Firstly, its use, as a formal language, to carry out construc-tive mathematics. There is also the activity of understanding the theory itself, andmoreover, its possible extensions. There exists, in addition, one more aspect to berecognized. Type theory is a formal logic, therefore the assertions about mathe-matical objects that can be expressed in terms of the forms of judgement of thetheory can mechanically be veri�ed to hold. This has given rise to a whole area ofresearch concerned with the study, design and implementation of systems that pro-vide assistance in the use of the language. In this direction, we have implemented a

1. INTRODUCTION 5proof checker that veri�es the formal correctness of the judgements of the extendedtheory. The outcomes in connection with this latter subject form what we considerthe main contribution of this work.The structure of this monographThe next chapter summarises to a great extent the mainstream of the investi-gations that constitute this monograph. We start by giving a concise descriptionof type theory and its use for carrying out constructive mathematics. In particu-lar we focus on the formalization of abstract algebra. We concentrate on a simplecase-study, namely, a little portion of the theory of Boolean algebras. Then, wegive a succinct description of the proof checker that has been implemented and alsoof the form of expressions and declarations that it reads. Thereafter, we present(portions of) the formal code, which was checked using the system, representing thealgebraic constructions in question. The intension is there to illustrate the featureswe consider relevant in connection with records and subtyping. This �rst part of thechapter has almost literally been taken from [Bet97]. Finally, we give a detailedaccount of the extended theory, as originally presented in [Tas97, BT97].In chapter 3 we give an informal discussion concerning the design of the typechecking algorithm for the extended theory. As it can be regarded as a quite directextension of the one for the original theory, we then start by describing this latteralgorithm. In addition, this will bring into attention the problems posed by thechecking of unlabeled abstractions. This is important because those problems arecarried over to the procedures for checking the typing judgements of the extendedtheory. In another direction, even though still in connection with the checking ofabstraction operators, we then con�ne attention to the treatment of free names. Wethen motivate the use of parameters, in the sense of [Coq91, Pol94a], to stand forthe generic values (or free variables) of the various types. As a consequence of thischoice, thus, as we are interested in obtaining a �nal formulation of the type checkingalgorithm such that it can be easily proven to be correct, we set ourselves to give aformulation of the extended calculus that incorporates the notion of parameters.The resulting calculus is then presented in chapter 4. The complete formalizationof the proof rules that it embodies is presented following the syntactico-semanticalmethod used by P. Martin-L�of in [Mar84], and thenceforth consistently exploited in[Mar87, Mar92, Tas97]. In principle, there is no need for introducing a notion ofreduction for understanding the computational meaning of the calculus, it naturallyemerges from the use of de�nitional equality, which �nds its formal counterpart injudgemental equality. Nevertheless, regarding implementation issues, it is convenientto make explicit a procedure that performs the computation of an expression to somenormal form. This latter, in turn, can be grasped to be the value of the expression.Thus, we introduce the concept of weak head normal form and de�ne a weak headreduction relation over the expressions of the calculus. Then we prove some meta-theoretic results concerning the interplaying of this relation and the judgements ofthe calculus. Particularly relevant concerning the correctness of the type checkingalgorithm is the result establishing a sort of subject reduction property.

6 1. INTRODUCTIONWe then in chapter 5 concentrate in the design, �nal speci�cation, implemen-tation and correctness of a proof checker, whose logical heart is a type checkingalgorithm for the forms of judgement of the calculus presented in the previous chap-ter. In doing this, we maintain the spirit of the informal presentation given inchapter 3. After explaining the procedures that verify the correctness of the variousforms of declaration, the input to the system, we then �rst present the algorithmsfor the judgements of the original theory and then we show how they are modi�ed tocope with the judgements of the calculus extended with record types and subtyping.We then give an informal proof of the soundness of the algorithm with respect to thecalculus in question. In order for this chapter to be an all-embracing presentation ofthe system we end it up giving a avour of its implementation, which was developedusing the language Haskell [Pet96].In chapter 6 we present some of the experiments we have done concerning theformalization of abstract algebra using the proof checker described in the previouschapter. We show �rst (parts of) the reformulation of the results on integral domainswe presented in [Bet93]. The representation of the system integral domain is nowgiven in terms of record types. The incremental de�nitions of systems of algebrasare directly accomplished by using record extension. We also illustrate a simpleapplication of subtyping, namely, the reutilization of proofs developed for groupsand commutative rings when reasoning about integral domains. Then we highlightthe constructions we needed to develop for the formal representation of Cayley'stheorem for group theory, that is to say, that any abstract group is isomorphic to agroup of permutations. The formal proof of this theorem per se is not a signi�cantcontribution. Nevertheless, it allows to illustrate the adequacy of the extended the-ory for building up a little more involved algebraic constructions, like isomorphismsbetween groups, the construction of groups of transformation and permutations overa given space, and morphisms between (these) groups. The corresponding represen-tation of most of these notions using contexts was either inadequate or, in somecases, impossible to achieve.Finally, in chapter 7 we comment on the connections with related works, givesome �nal conclusions and consider possible further work.

CHAPTER 2Doing abstract algebra in type theory extended withdependent record types and subtyping1. IntroductionWe shall use an extension of Martin-L�of's theory of logical types [Mar87] withdependent record types and subtyping as the formal language in which constructionsconcerning systems of algebras are going to be represented.The original formulation of Martin-L�of's theory of types, from now on referred toas the logical framework, has been presented in [NPS89, Tas93b, CNSvS94]. Thesystem of types that this calculus embodies are the type Set (the type of inductivelyde�ned sets), dependent function types and for each set A, the type of the elementsof A.The extension of the logical framework with dependent record types and sub-typing is presented in [BT97, Tas97]. Dependent record types are just sequencesof �elds in which labels are declared as of certain types. These types, in turn, maynot only depend on objects but also on labels. How this dependency is obtained isformally introduced in the rules for record types formation that we present in sec-tion 2.3. Record objects, as in programming languages, are sequences of assignmentsof objects of appropriate types to labels. Each of these objects can be accessed byselecting the corresponding label of the record object. The mechanism of subtypingor type inclusion introduced is, in the �rst place, the one naturally induced by recordtypes. However, once record inclusion is formally stipulated it is also required thatrules of subtyping have to be given for the rest of the type formers.In [BT97] is illustrated the use of record types and subtyping for the formaliza-tion of systems of algebras by developing a formal de�nition of group as a recordtype. A very simple application of subtyping is there provided as well. In this chap-ter, we also focus on a simple example: We start out from binary relations, and bysuccessively enriching previously de�ned notions with further structure, we �nallyde�ne a Boolean algebra as a distributive lattice with additional structure. Then, wedevelop a little piece of the theory of Boolean algebras concerned with the proof ofDeMorgan's laws. This example will allow us to illustrate what we consider to bethe relevant features of the extended theory.The rest of the chapter proceeds as follows: in the next section we give a briefreview of type theory and how it can be used to formally represent mathematicalconstructions. Then we discuss the di�erent alternatives that emerged when tryingto represent algebraic constructions in type theory. In particular, we focus on thenotions of contexts, �-sets and dependent pairs, intending at the same time, to7

8 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESmotivate the use of dependent record types as an appropriate mechanism for theformulation of types of tuples. In section 2.3 we summarize the features introducedby the extension of the framework with record types and subtyping. This will allowfor better understanding of the formalization of the case study we present.In section 3.1 we present the informal formulation of the algebraic notions withwhich we are concerned. These are literally taken from text books on lattice theoryand universal algebra. In section 3.2 we go over the syntax of the input expressionsand forms of declaration that the implemented proof checker reads. We proceed then,in section 3.3, presenting the formal constructions developed in order to formalize thecase study at hand. We do not provide the whole code involved in the formalizationbut rather concentrate on the fragments that we consider most interesting, that is tosay, those that illustrate how algebraic constructions commonly used in the informalpractice are reected in the formal language.Finally, in section 4 we present a detailed account of the extension of Martin-L�of's logical framework with dependent record types and subtyping. This extensionwas �rst presented by A. Tasistro in the TYPES workshop held at Nijmegen in 1993and also reported in a draft paper [Tas93a]. This formulation of the calculus wassubjected to some modi�cations and its �nal version is included in Tasistro's thesis[Tas97] and in the reference [BT97]. The content of section 4 is almost literallytaken from the latter, except for some remarks we have introduced in order to helpthe understanding of the work that follows this chapter.2. Representation of systems of algebras in type theoryWe start this section by giving a brief description of type theory as formulatedusing the theory of types as logical framework. For a more comprehensive presen-tation we refer to [NPS89, CNSvS94, Tas93b].2.1. The logical framework. The system of types of the original formulationof the theory is constituted, in the �rst place, by the type Set, the type of inductivelyde�ned sets. Then, any individual set A, gives rise to the type of its elements. Thislatter type is denoted in [NPS89] as El(A), where El is a (primitive) family oftypes over the type Set. Type families are expressions of the language that whenapplied to individuals of the appropriate type give rise to a type. Moreover, it ispossible to introduce arbitrary families of types in the formal language. One suchfamily can be constructed by an operation of abstraction, denoted as [x]�, whichbinds the occurrences of the variable x in the type �. In what follows, we shall omitthe family El in the notation and write just A for both the object of type set andthe type that it determines. Finally, there exists a mechanism for the formation of(dependent) function types: if � is a type, and � is a family of types over the type� then �!� is also a type. The application of an object f of this latter type yieldsan object fa of type �a, if a is an object of type �.The understanding of propositions as inductively de�ned by their introductionrules, explained and justi�ed in [Mar87], allows to grasp propositions as sets, andthereby, their proofs as elements of those sets. There is no formal distinction inthe language of the theory between the type of sets and the type of propositions.

2. REPRESENTATION OF SYSTEMS OF ALGEBRAS IN TYPE THEORY 9Further, in the presence of families of types, this interpretation of propositions canbe transfered to propositions about generic individuals. For instance, given a set A,A![x](A![y]Set) is the type of binary relations on A. Then, if R is such a relation,for each element x of A we have a set Rxx. Since each set determines a type, we canform here a family of types over A, namely [x]Rxx. Then A![x]Rxx is the type ofproofs that R is reexive. This function type is usually written as (x : A)Rxx, thatcan be read: \for all x in A, Rxx".As another example, consider the type (x; y : A)Rxy!Ryx. A function of thistype will produce a proof of Ryx given any two elements x, y of A and a proof ofRxy. In virtue of the given explanations, this is the same as proving that if Rxyholds then so does Ryx, for arbitrary x, y in A, i.e. the symmetry of R.2.2. Formal abstract algebra. In [Bet93] is presented a formalization of thearithmetic of integer in Martin-L�of's type theory. The result of the whole work,which was carried out using the proof assistant ALF [Mag95], amounts to theformalization of (an inductive de�nition of) Z, the set of integers, the arithmeticaloperations + and � and the proofs of the properties establishing that the algebraformed by that particular representation of Z, + and � is an integral domain.In addition, some of those proofs were also developed for a formalization of Zas a quotient set. As expected, due to the di�erent nature of the respective repre-sentations of the set and therefore the corresponding formulation of the mentionedoperators, proofs of properties like associativity of the operation + followed quite adi�erent pattern of reasoning in each case. This provided us with interesting insightsabout the task of formalizing mathematics in type theory. Furthermore, having inmind the properties that can be derived from the postulates of an integral domain,it also motivated the formulation of an abstract notion of algebraic system whichcould be used to reason about the properties satis�ed by the algebra of integersindependently of the chosen representation.To formalize the notion of what an algebraic structure is, whose components aresets and n-ary operations on those sets which satisfy speci�ed axioms, we chose thenotion of context as implemented in ALF: let ID be a context where assumptionshave been introduced to the e�ect that a certain set and binary operations on thatset form an integral domain. To formally reect that a property, which is formallyexpressed by the type �, is valid for all integral domains, we then construct a proofobject � of type � under the context ID.On the other hand, once a system of algebras has been given a representation interms of a particular context �, for stating that a particular construction conformsa concrete instance of that system we introduce a substitution, also as implementedin ALF, for �.Thus, if we have constructed a proof like the one described above, formallyrepresented by the judgement � : �[ID], and Z is a substitution for the contextID, we can obtain that �Z : �Z . In words, if we have a proof that � is a propertyvalid for all integral domains, and we know one such structure, then we also have aproof of the property for the latter, namely, it is the object �Z .

10 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESUsing these mechanisms we managed to reect some of the abstract reasoningusually carried out when doing algebra, and moreover, to transfer those results tothe (representation of) concrete algebras.However, this use of contexts and substitutions as the support for developingformal algebra, could not be further exploited. As soon as one wants to reasonabout constructions like morphisms between algebraic structures, for instance, thelimitations imposed by the very nature of contexts render the process of formal-ization quite a cumbersome task. Furthermore, notions like that of a functor thatwhen applied to a group returns its underlying monoid, when both systems are rep-resented as contexts, cannot be expressed as an object in the formal language ofALF. This is in accordance, however, with the fact that contexts are not types. Werefer to [Bet93] for a more detailed discussion on this.We turned then to investigate alternatives which, most importantly, would allowus to express systems of algebras as types, and therefore, concrete algebras as objectsof a certain type. In particular, thus, the de�nition of a functor as the one mentionedabove would conform as to the one of a function between the corresponding types.We found an adequate starting point in the pioneering work by MacQueen[Mac86] on the explanation of the notion of module in terms of a rami�ed sys-tem of dependent types with �-types. These types, in turn, are there understood aspresented by Martin-L�of in, for instance, [Mar84]. One such type, usually writtendown as �x 2 A:B(x), corresponds to the disjoint union of the family of types B(x)with x ranging over the type A. The elements of this type are pairs of the form(a; b) such that a is an object of type A and b has type B(a). Thus, the type ofthe second component may depend on the �rst component of the pair. This sameunderstanding of modules, or more precisely of abstract data type in this case, asformally represented by �-types is also proposed in [Luo88] where an extensionof the Calculus of Constructions [CH88] with �-types (�CC) is presented. As amotivating example Luo illustrates the adequacy of this latter calculus to expressalgebraic constructions.In the context of Martin-L�of's set theory, a particular methodology for the rep-resentation of the above understanding of the notion of module or abstract datatypes is proposed in [NPS89].A module is in that work grasped as a tuple hA1; A2; : : : ; Ani, where some Aiare sets and some are elements and functions de�ned on these sets. An example ofthe application of these notions to formalize algebra could be the de�nition of groupas the tuple: hG; �; u; inv; Pass; Punit; Pinviwhere G is a set, � 2 G � G ! G, u 2 G, inv 2 G ! G and Pass, Punit and Pinvexpress the postulates of groups. To be a group can then be understood as to be anelement of the following set:(� G 2 U)(� � 2 G�G! G)(� u 2 G)(� inv 2 G! G)

2. REPRESENTATION OF SYSTEMS OF ALGEBRAS IN TYPE THEORY 11(�x; y; z 2 G)[�(x; �(y; z)) =G �(�(x; y); z)] �[�(x; u) =G x] �[�(x; inv(x)) =G u]where U is the name for the set of the small sets, as de�ned in [NPS89]. Noticethat it is assumed that the set G is equipped with a (propositional) equality.The need for introducing the set U corresponds, in the �rst place, to the factthat type theory is a predicative theory, no quanti�cation is allowed over a collectionof elements (in this case Set) when de�ning a particular element of that collection.However, we have to formally express the intention that the �rst component of (thetuple that represents) a concrete group is indeed a set.This way of formalizing algebraic structures, however, has in our opinion somedrawbacks. In the �rst place, once a set S is de�ned, in order to be able to expressthat this set is the carrier of a particular group it has in addition to be an element ofthe set U . In other words, we must provide the code, and de�ne the correspondingdecodi�cation, that allow us to grasp S both as a set and as an element of the set U .Now, sets in type theory have to be inductively de�ned, so the previous procedureamounts to say that when it comes to de�ne the notion of group as is done abovethe set of carriers of groups is already closed. This is clearly a more restrictedunderstanding than the one that asks for carriers of groups just to be sets, wherethis remains an open notion.In order to achieve a formal representation of systems of algebras as (tuple)types, and therefore classifying a collection of objects that is in principle open, weconsidered an extension of Martin-L�of's logical framework with a mechanism forforming types of dependent pairs.One possible way of accomplishing this could be extending the calculus with thefollowing rules:� type � : �!type(�; �) type � type � : �!type a : � b : �a(a; b) : (�; �)p : (�; �)�1p : � p : (�; �)�2p : �(�1p)The �rst two rules say what has to be known in order to introduce a type of de-pendent pairs and how objects of one such type are constructed, respectively. Thelast two rules, usually called of projection, express (part of) the meaning of beingan object p of type (�; �); that its �rst projection is an object of type � and thesecond one an object of the type that results from applying � to the �rst projectionof p. There must also be rules of equality that conform to the justi�cation of therule of object construction above.Observe that now the type of groups de�ned above can be reformulated to requirefrom a carrier of a group only to be an object of type Set, which as already mentioned,is the (open) type of inductively de�ned sets. And the formulation of the notion ofgroup is still a predicative one.

12 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESA type checking algorithm for the logical framework extended with dependentpairs was implemented and some small-size case studies were developed using it.In particular, we focused on transferring the results on integral domains obtainedusing contexts into a formulation using dependent pairs. Now, in some of the proofsdeveloped using the context approach, we could formally express the following rea-soning: once we succeed in proving a property of monoids we can directly use thatproof as one of groups. This was naturally reected in the formal language by thesimple reason that the context Group was de�ned as to be an extension of the con-text Monoid. Thus, \by thinning", any proof developed under the latter contextis also valid under the �rst one. However, this is not the case once the systems ofalgebras are represented as dependent pairs. In order to be able to reuse the proofobtained for monoids, that now are objects, one must �rst apply a function thatgiven an object of type Group yields the object that forms the underlying monoid.Actually, this function can be grasped as a coercion from groups to monoids. Thereis, in principle, no possible way to obtain in a direct manner, in the formal language, that any object of type Group can also be considered as an object of typeMonoid.The combination of �-types and mechanisms for introducing coercions betweentypes, which once they are declared can be left implicit, has received an increasingamount of attention in recent years. From an original proposal put forward byAczel [Acz94], where a notion of class and method for predicative type theories isproposed, type theoretical explanations and formulations of the notion of coercion[Bar95, Luo96] have been laid down. The implementation of coercion mechanismsand their use for the formalization of algebraic constructions has been reported in[Bai97].Close enough to this approach is the work presented in [Sa��97], which is also anadaptation of the ideas proposed by Aczel, where algebraic systems are representedin terms of class constructors. We shall more extensively comment on this in thechapter on related work.What we in the following sections intend to do, instead, is to motivate theuse of dependent record types as the formal counterpart to the notion of a systemof algebras, and more in general, Martin-L�of's logical framework extended withdependent record types and subtyping as the formal language to carry out algebraicconstructions.2.3. Record types. In order to achieve a formal de�nition of Boolean algebrawe will start by introducing the notion of a set with an equivalence relation on it.The reason to have this as the most basic kind of structure is that in formalizingsystems of algebras it appears natural to require the relation informally denoted bythe equality symbol � to be given explicitly as a component of the system beingde�ned. We have already introduced this basic structure, which we called Setoid.Then we will proceed by successively enriching the type of setoids with furtherstructure, obtaining de�nitions for lattice and distributive lattice, until we get theformalization corresponding to Boolean algebras.

2. REPRESENTATION OF SYSTEMS OF ALGEBRAS IN TYPE THEORY 13Dependent record types are just sequences of �elds in which labels are declaredas of certain types: hL1 : �1; :::; Ln : �ni:In dependent record types, the type �i+1 may depend on the preceding labelsL1,: : : ,Li. More precisely, �i+1 has to be a family of types over the record typehL1 : �1; :::; Li : �ii. This is formally expressed by the following two rules of recordtype formation:hi : record-type � : record-type � : �!typeh�; L:�i : record-type L fresh in �We make use of the judgement � : �!type, which should be read \� is a family oftypes over the type �", to formally reect that families of types are associated tolabels in the formation of record types.In the case of record types generated by the second clause, L:� is a �eld andL a label, which we say to be declared in the �eld in question. Labels are justidenti�ers, i.e. names. In the formal notation that we are introducing there willactually arise no situation in which labels can be confused with either constants orvariables. Notice that labels may occur at most once in each record type. That alabel L is not declared in a record type � is referred to as L fresh in �. Finally, thatthese are dependent record types is expressed in the second clause, in the followingway. The \type" declared to the new label is in fact a family � on �, i.e. it is allowedto use the labels already present in �. In fact, what � is allowed to use is a genericobject (i.e. a variable) r of type �. Then the labels in � will appear in � as takingpart in selections from r. Here below we show how the type of binary relations ona given set is formally written.hhhi; S : [r]Seti;� : [r](x; y : r:S)Seti:For the sake of readability, however, in the notation that we are going to use in whatfollows labels are allowed to participate in the formation of types in the same way asordinary variables or constants do. Then, they have to be syntactically distinguishedfrom the latter, in order to avoid ambiguities. We do this by writing labels ina distinguished font. This is harmless, since it is possible to give a mechanicalprocedure to translate from the informal notation, where labels are singled out bymeans of a particular notation, to the corresponding formal representation involvingfamilies of types.We can now write the type of binary relations on a set as:hS : Set;� : S!S!Seti:We have called this type BinRel.Record objects are constructed as sequences of �elds that are assignments ofobjects of appropriate types to labels:hi : hi r : � e : �rhr; L = ei : h�; L:�i L fresh in �

14 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESFor instance, if N is the set of natural numbers and IdN the usual propositionalequality on N , then the following is an object of type BinRel:hS = N;� = IdNi:That two objects r and s of type hL1 : �1; :::; Ln : �ni are the same means that theselection of the labels Li's from r and s result in equal objects of the correspondingtypes.Subtyping. The formalization of the example that we shall study introducesseveral types of algebraic structures by the procedure of extending previously de�nedtypes with further components and axioms. Eventually, we formulate the de�nitionof Boolean algebra as that of a distributive lattice together with a unary operation�,two nullary operations 0 and 1 and the corresponding axioms for universal boundsand complementation.We will obtain a formal de�nition of the system that sustains in a natural waythe usual informal reasoning associated to these latter concepts. For example, onemakes use in the informal language of the fact that any Boolean algebra is alsoa distributive lattice; a property � valid for all lattices is directly used as one ofBoolean algebras when reasoning about properties of this latter system. In theformal language this is obtained by the (inclusion) polymorphism induced by recordtypes : given a record type �1, it may be possible to drop and permute �elds of�1 and still get a record type �2. If that is the case, any object of type �1 alsosatis�es the requirements imposed by the type �2. That is, given r : �1, we arejusti�ed in asserting also r : �2. This is so because what is required to make thelatter judgement is that the selections of the labels declared in �2 from r are de�nedas objects of the appropriate types. And we have this, since every label declared in�2 is also declared in �1 and with the same type.In the formal language this idea is accomplished by introducing two new forms ofjudgement, namely, �1 v �2 for types �1 and �2 and �1 v �2 : �!type for families�1 and �2 indexed by the type �. The reading of these forms of judgement is asfollows: �1 is a subtype of �2, also referred sometimes as of type inclusion, and �1 isa subfamily of �2.In the case of record types, the condition for �1 v �2 is in words as follows: foreach �eld L : �2 in �2 there must be a �eld L : �1 in �1 with �1 v �2 : �1!type.We will show in section 4 that if L : �1 is a �eld of a record type �1 then by thesubtyping induced on families of types �1 can be considered to be a family over �1and thereby the previous (informal) explanation makes sense.The formal stipulation of this latter rule requires that rules of subtyping aregiven for all the type formers of the language: Set is a subtype only of itself, and ifA and B are sets they are in the inclusion relation only if they are convertible. Therule of subtyping for function types departs from the one usually presented in theliterature in that it also takes care of the dependencies.We give a detailed presentation of the extended theory, with the correspondingmeaning explanations and justi�cation of the rules of inference, in section 4.

3. BOOLEAN ALGEBRAS AND DEMORGAN'S LAWS FORMALIZED 153. Boolean Algebras and DeMorgan's laws formalizedWe now consider the formalization of a piece of the theory of Boolean algebras intype theory extended with record types and subtyping. The de�nitions introducedin the next section as well as the enunciation of some of the propositions are takenfrom [BS81] and [Gr�a71].3.1. Informal presentation. There are two standard ways of de�ning lattices:one is to grasp them as an algebraic system and the other is based on the notion oforder. Here, we shall follow the �rst approach.Definition 2.1. A nonempty set L, with an equivalence relation � de�ned onit, together with two binary operations _ and ^ (read join and meet respectively)on L is called a lattice if it satis�es the following identities:L1 : (_) x _ y � y _ x(^) x ^ y � y ^ x (commutative laws)L2 : (_) x _ (y _ z) � (x _ y) _ z(^) x ^ (y ^ z) � (x ^ y) ^ z (associative laws)L3 : (_) x _ x � x(^) x ^ x � x (idempotent laws)L4 : (_) x � x _ (x ^ y)(^) x � x ^ (x _ y) (absorption laws)As is well known, it is in the very nature of the above de�nition that any property� valid for all lattices is also valid if all occurrences of the operators _ and ^ inthe formulation of the property are interchanged. The resulting property is calledthe dual of �. This observation can usually be found in text books enunciated asfollowsDuality Principle. If a statement � is true in all lattices, then its dual is alsotrue in all lattices.There is nothing profound in this principle, however it gives rise to one of themost used methods of proof reutilization. Moreover, and particularly more conve-nient for the task we have in mind, the above principle can be equivalently graspedin terms of dual structures. That is to say, once we succeed in constructing a proof� for a certain property � of any lattice L it can also be read, if carried out on thedual lattice of L, as a proof of the property dual to �.There are many properties that can be proved to be derivable from the postulates(L1)-(L4). Here, however, we shall only enunciate the one that will manifest itselfto be important in the development below.Proposition 2.1. A lattice L satis�es the following propertyIf x � x _ y and x � x ^ y then x � y.

16 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESFrom now on, an algebraic system S, whose carrier is the set S and whose(�nite) set of operations (or operation symbols) is ff1; : : : ; fkg shall be denoted byhS; f1; : : : ; fki. We shall also use jSj to stand for the carrier set of the algebra S.We now introduce the followingDefinition 2.2. A distributive lattice is a lattice which satis�es the following(distributive) laws,D1 : x ^ (y _ z) � (x ^ y) _ (x ^ z)D2 : x _ (y ^ z) � (x _ y) ^ (x _ z)The theorem below makes explicit that it su�ces to require one of the laws aboveto be satis�ed by a lattice L in order for it to be distributive.Theorem 2.1. A lattice L satis�es D1 i� it satis�es D2Definition 2.3. A Boolean algebra is an algebra hB;_;^;�; 0; 1i with two bi-nary operations, one unary operation (called complementation), and two nullaryoperations which satis�es:B1 : hB;_;^i is a distributive latticeB2 : (_) x _ 1 � 1(^) x ^ 0 � 0B3 : (_) x _ �x � 1(^) x ^ �x � 03.1.1. DeMorgan's laws. To begin with we enunciate some propositions that anyBoolean algebra satis�es. In what follows B is used to stand for a Boolean algebraand x and y are arbitrary elements of the carrier jBj of that algebra.Proposition 2.2.i) if x ^ y � 0 then �x � �x _ yii) if x _ y � 1 then �x � �x ^ yObserve that they are dual propositions.The following proposition can easily be proved using Proposition 2.2 and Propo-sition 2.1.Proposition 2.3. If x ^ y � 0 and x _ y � 1 then �x � yProof. We can use that x ^ y � 0 and the �rst property in Proposition 2.2 toobtain that �x � �x _ y. In a similar manner, from x _ y � 1 and applying thesecond part of that same lemma we get �x � �x ^ y. Thus, as B is a lattice, wecan �nally use Proposition 2.1 to get the desired conclusion.It can readily be veri�ed that using this latter proposition and the postulatesB3, any Boolean algebra B satis�es that �(�x) � x, for all elements x of jBj.

3. BOOLEAN ALGEBRAS AND DEMORGAN'S LAWS FORMALIZED 17One more proposition is introduced before we turn to the laws with which weare concerned in this sectionProposition 2.4.i) (x _ y) ^ (�x ^ �y) � 0ii) (x _ y) _ (�x ^ �y) � 1Finally, then, we are ready to formulate and prove DeMorgan's laws for BooleanalgebrasTheorem (DeMorgan). Let B be a Boolean algebra, then for all elements xand y of jBj,i) �(x _ y) � �x ^ �yii) �(x ^ y) � �x _ �yProof. We show the proof of the �rst law. The second follows by duality.Notice that we know, by Proposition 2.4, thatB satis�es the following two propo-sitions: (x _ y) ^ (�x ^ �y) � 0 and (x _ y) _ (�x ^ �y) � 1. Therefore, Proposi-tion 2.3 can directly be applied to get that �(x _ y) � �x ^ �y.3.2. The proof checker. A script for the proof checker looks very much likeone for a functional programming language. The syntax of input expressions is givenby the grammar in Figure 2.1.e ::= x j c j [x]e j e1e2 j hi j he1; L = e2i j e:Llet x : e1 = e2 in e j use e1 : e2 in ee1!e2 j he1; L:e2iFigure 2.1. Syntax of input expressionsThe proof checker reads (non recursive) declarations of the following form:T : type=�F (x : �) : type = �1c(x1 : �1; : : : ; xn : �n): � = ewith T , F and c constant names, x a variable and e, � and �1,: : : ,�n belonging tothe language of expressions above.The �rst one is called a type declaration. It allows to give an explicit de�nitionfor the type �.The second form of declaration is called a type family declaration. It expressesthe de�nition of the constant F as the type family [x]�1 over the type �. The indextype has to be made explicit in order for the declaration to be type checked.The third form of declaration allows the explicit de�nition, with name c, of anexpression [x1][x2] : : : [xn]e of type �1![x1](�2! : : : (�n![xn]�) : : :), with n � 0.

18 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESThe two �rst are the counterpart in the system to the nominal de�nitions oftypes and families of types introduced in [BT97]. The latter form of declaration isnot present in the proof-assistant ALF.The third form of declaration corresponds to the so-called explicit de�nition ofa constant in ALF. We are considering neither de�nitions of inductive (families of)sets nor the implicit de�nition of constants, these latter usually de�ned using apattern-matching mechanism provided by the proof-assistant.Any declaration is checked under a current environment. Once the declarationD is checked to be correct, the environment is extended with it. Thereby, thede�niendum of D may occur in any declaration introduced after it.3.2.1. Let and Use expressions. The motivation for using let expressions as ameans to introduce local declarations of proofs shares the motivation for using theseexpression formers in functional languages like ML or Haskell.The possibility of abbreviating a proof object by a name, which in turn mayoccur in what is de�ned as its valid scope, not only alleviates notation, but mayalso render the process of proof checking more e�cient. The way let expressions arechecked in our system is heavily inuenced by a proposal by Coquand in [Coq96].Namely, in order to check that an expression let x : �1 = e1 in e has a certain type� in a environment E proceed as follows: check �rst that x : �1 = e1 is a validdeclaration in E. If this succeeds check then that e is an object of type � in theenvironment E locally extended with x : �1 = e1. The checking of the expression e,in addition to consider that x has type �1, may also make use of the fact that x isde�nitionally equal to the expression e1. This latter is not needed for performingthe type checking of a let expression in ML or Haskell.Actually, it is possible to de�ne let expressions involving a list of local decla-rations to the expression e. These, however, can not be mutually de�ned as theyare in the programming languages mentioned above or in the proof-assistant Alfacurrently being implemented at the Department of Computing Science at ChalmersUniversity.On the other hand, we have lately been experimenting with use expressions. Thee�ect of \using" an expression r of type � in an expression e is almost analogousto the one achieved by the Pascal command with, that is to say, all the �elds thatconstitute the object r are made directly available in the scope of use. Therefore,in the �rst place, it does not su�ce for � to be a type, it has to be a record type.Then, if L is an identi�er syntactically equal to a label associated to a type family� in the �elds of � it is, both for type checking and computation, considered tobe de�nitionally equal to the object r:L of type �r. This is correct if it has previ-ously been checked that r : �. We can, then, informally explain how the expressionuse r : � in e is checked to have type � in an environment E : check �rst that � is arecord type in the environment E. If this is the case, check whether r is an objectof type � in that same environment. Now, as � is a record type, it has necessarilyto be either of the form hi or hL1 : �1; :::; Ln : �ni, with n � 1. In the �rst case justproceed by checking that e is an object of type � in E. Otherwise, locally extend

3. BOOLEAN ALGEBRAS AND DEMORGAN'S LAWS FORMALIZED 19the environment E with declarations Li : �ir = r:Li, for i = 1::n, and proceed bychecking that e has type � in this latter environment.We shall illustrate in next section how use expressions allow to overcome thenotational burden introduced by selections. Further, we think that the combinationof use expressions and subtyping might provide a mechanism to prevent accessing�elds of a record object, in other words, the type � associated to the object r in ause expression may act as a sort of interface to the object. This latter, however,needs to be further investigated.3.3. Formalization. We shall now proceed to give a formal account of theconcepts in section 3.1. Thus, in the �rst place, we will have that the formulationof a property � is represented by a type T. Correspondingly, a particular proof �of �, then, is introduced as an object of type T. Systems of algebras are formallyintroduced as record types. The use of type de�nitions and record types extensionallows to naturally reect the incremental de�nition of the various systems withwhich we were concerned in section 3.1.We do not intend to give a complete presentation of the formalization but ratherto illustrate the use of the extended type theory in the representation of algebraicconstructions. More accurately, what we here mean by type theory is a particularimplementation of the system described in section 3.2.T : typeT = � F : �!typeF x = �1 c : �c = eFigure 2.2. Forms of declaration3.3.1. Preliminary de�nitions. For the sake of readability we shall deviate alittle from the syntax presented in section 3.2 for the forms of declaration and inputexpressions that the type checker reads. In Figure 2.2 we show how we denote inthis section the de�nition of a type, a family of types and the abbreviation of anobject of a certain type. At some points, when there is no interest in showing thecode that a constant abbreviates, we make use of declarations of the form c : �.We consider now, in Figure 2.3, the de�nition of some useful types and familiesof types intending, at the same time, to clarify the syntax of type expressions used inwhat follows. To begin with, the constant binOp is a type family over the type Set,whose intended meaning is that when applied to a certain set A it yields the typeof the binary operations on that set. Observe that we are using that every set A isalso a type. As propositions are identi�ed with sets, the constant Rel, also a familyindexed by Set, results in the type of binary relations over the set A if applied tothis latter set. The de�nitions of SetRel and RelOp illustrate the two possible waysof de�ning a record type. Labels of records are written using the font label. Notice,particularly in the de�nition of RelOp, that when extending a given record type itis possible to make reference to any of its labels in the �elds that constitute theextension proper. The de�nition of isTrans shows the use of (functional) dependenttypes to express propositions. The type isTrans B can be read as follows: for all

20 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESbinOp : Set!typebinOp A = A! A! ARel : Set!typeRel A = A! A! SetSetRel : typeSetRel = hA : Set;R : Rel AiRelOp : typeRelOp = hSetRel;� : binOp AiisTrans : SetRel!typeisTrans B = (x; y; z : B:A) B:R x y ! B:R y z ! B:R x zisCong : RelOp!typeisCong Rop = use Rop : RelOpin (x; y; z; w : A) R x z ! R y w! R (� x y) (� z w)Figure 2.3. Types and families of typeselements x, y and z of A, if R relates x and y, and y and z, then it also relates xand z. Finally, we show how a type can be de�ned by means of a use expression.isComm : RelOp!typeisComm Rop = use Rop : RelOp in (x; y : A) R (� x y) (� y x)isAssoc : RelOp!typeisAssoc Rop = use Rop : RelOp in (x; y; z : A) R (� x (� y z)) (� (� x y) z)isIdemp : RelOp!typeisIdemp Rop = use Rop : RelOp in (x : A) R (� x x) xRelOps : typeRelOps = hRelOp;� : binOp AiisAbsorb : RelOps!typeisAbsorb Rops = use Rops : RelOps in (x; y : A) R x (� x (� x y))Figure 2.4. Axioms of lattices3.3.2. Lattices. We now turn to introduce the constructions corresponding tothe ones presented in section 3.1. Thus, we start by de�ning the type of lattices.

3. BOOLEAN ALGEBRAS AND DEMORGAN'S LAWS FORMALIZED 21For the representation of this latter notion, and the other systems of algebras thereintroduced, we adopt the following methodology: we de�ne, �rst, a record type thatacts as the counterpart of the algebra { as de�ned in section 3.1 { that the systemembodies. Then, this latter record type is extended with �elds that conform to theaxioms of the system in question. In the case of lattices, in particular, there aretwo (dual) formulations of each law involved in the axiomatic part of the system.In Figure 2.4 we give a de�nition of various families of types indexed by the typesRelOp and RelOps. They express respectively the di�erent laws for lattices as typesparameterized by a set, a binary relation de�ned on it and, in the three �rst cases,a binary operation over that same set. The last family is further parameterized bya second binary operation.Now we carry on commenting the de�nition of lattices we present in Figure 2.5.
PreLatt : typePreLatt = hSetoid;_ : binOp S;^ : binOp SidualPreLatt : PreLatt!PreLattdualPreLatt P l = hP l;_ = P l:^;^ = P l:_iopOfLatt : RelOps!typeopOfLatt Rops = h cong : isCong Rops,L1 : isComm Rops,L2 : isAssoc Rops,L3 : isIdemp Rops,L4 : isAbsorb RopsiLatt : typeLatt =hPreLatt,_Props : opOfLatt hA = S;R = �;� = _;� = ^i,^Props : opOfLatt hA = S;R = �;� = ^;� = _iidualLatt : Latt!LattdualLatt L = hdualPreLatt L,_Props = L:^Props,^Props = L:_Propsi Figure 2.5. Lattice

22 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESAs already anticipated, we �rst de�ne a record type PreLatt as the formal coun-terpart of the algebra hB;_;^i. Notice that instead of asking just for a set tostand for the carrier of the algebra we consider the structure Setoid, which is a setS together with a binary equivalence relation � de�ned on that set. The labelscorresponding to the properties of � are re, symm and trans respectively.Then, we de�ne a function on PreLatt, whose intended meaning is to constructthe dual out of an object of this latter type. This de�nition illustrates, on theone hand, how to obtain a record object by extending a given one. Moreover, andmost signi�cantly, notice that P l is already an object of type PreLatt, however itsextension is still considered to be an object of that type. This is correct because, inthe �rst place, as P l is an object of type PreLatt it is also an object of type Setoid,by record inclusion. Furthermore, the objects P l:^ and P l:_ are both objects ofthe appropriate type, namely, binOp S. On the other hand, by �eld overriding, theselection of the label _ (resp. ^) from the object resulting from the application ofdualPreLatt to any object P l of type PreLatt yields the object P l:^ (resp. P l:_)as intended.We then introduce a family of record types opOfLatt over the type RelOps. Thisfamily expresses, principally, the properties that any two binary operations mustsatisfy in order to constitute, together with a given set, a particular lattice. Observethat the families in the �eld declarations are all applied to the same variable Rops oftype RelOps. However, only isAbsorb was de�ned as a family over this latter type,the rest being indexed by RelOp. Their application to Rops is correct neverthelessdue to the subtyping induced by record inclusion on families of types.According to the observation made at the beginning of this section, the type oflattices is de�ned as the record type obtained by extending PreLatt with two more�elds corresponding to the laws to be satis�ed by the operators _ and ^ respectively.Thus, for instance, if L is an object of type Latt, the object L:_Props:L1 is the proofthat L:_ is commutative.As to the de�nition of the function dualLatt, besides having with dualPreLattin common the behaviour commented above, it also illustrates the use of subtypingbut now for function objects, namely, the application of dualPreLatt to the variableL of type Latt.From now on, we make use of %� comment �% to informally express theproperty being proved.The de�nitions of congR_ and congL^ in Figure 2.6 illustrate the abbreviation ofproof objects and the use of nested selection to access components of record objects.The expression [L x y z h]e should be read as the abstraction of the variablesL; x; y; z and h in the expression e. The variable h corresponds to the hypothesesL:� y z and L:� x y respectively.In Figure 2.7 is the (almost complete) code of the proof that Proposition 2.1 isvalid for any lattice L. The notation : : : h : : : is used to stress the dependency onthe hypothesis hi.

3. BOOLEAN ALGEBRAS AND DEMORGAN'S LAWS FORMALIZED 23%� 8B:8x; y; z 2 jBj:y � z � x _ y � x _ z �%congR_ : (L : Latt) (x; y; z : L:S) L:� y z ! L:� (L:_ x y) (L:_ x z)congR_ = [L x y z h]L:_Props:cong x y z (L:re x) h%� 8B:8x; y; z 2 jBj:x � y � x ^ z � y ^ z �%congL^ : (L : Latt) (x; y; z : L:S) L:� x y ! L:� (L:^ x z) (L:^ y z)congL^ = [L x y z h]L:^Props:cong x y z h (L:re z)Figure 2.6. Congruences%� 8B:8x; y 2 jBj:(x � x ^ y) � (x � x _ y) � x � y �%antisymmL : (L : Latt) (x; y : L:S)L:� x (L:^ x y)! L:� x (L:_ x y)! L:� x yantisymmL =[L x y h1 h2]let lemm1 : L:� x (L:_ y (L:^ x y)) = : : : h1 : : :lemm2 : L:� (L:_ y (L:^ x y)) y = : : : h2 : : :in L:trans x (L:_ y (L:^ x y)) y lemm1 lemm2Figure 2.7. Antisymmetric property of latticesDistrLatt : typeDistrLatt = hLatt,D1 : � (_ x (^ y z)) (^ (_ x y) (_ x z)),D2 : � (^ x (_ y z)) (_ (^ x y) (^ x z)) idualDistrLatt : DistrLatt!DistrLattFigure 2.8. Distributive latticeThe type of distributive lattices is shown in Figure 2.8. We declare as well thefunction dualDistrLatt, which behaves as expected.3.3.3. Boolean Algebra. The representation of the system of boolean algebras,the type BoolAlg in Figure 2.9, is built up in a similar manner as done for lattices.In order to make the code more legible, however, we chose not to group the ax-ioms corresponding to the operators _ and ^. We illustrate use expressions in thede�nition of the function dualBoolAlg.

24 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESPreBoolAlg : typePreBoolAlg = hDistrLatt,� : S! S,0 : S,1 : S idualPreBoolAlg : PreBoolAlg!PreBoolAlgdualPreBoolAlg Pba = hdualDistrLatt Pba,� = Pba:�,0 = Pba:1,1 = Pba:0 iBoolAlg : typeBoolAlg = hPreBoolAlg,compCong : (x; y : S) � x y ! � �x �y,B1 : (x : S) � (_ x 1) 1,B2 : (x : S) � (^ x 0) 0,B3 : (x : S) � (_ x �x) 1,B4 : (x : S) � (^ x �x) 0 idualBoolAlg : BoolAlg!BoolAlgdualBoolAlg Ba = use Ba : BoolAlgin hdualPreBoolAlg Ba,compCong = compCong,B1 = B2,B2 = B1,B3 = B4,B4 = B3 iFigure 2.9. Boolean algebra3.3.4. Proof of propositions 2.2-2.4 and DeMorgan laws. We consider now thepresentation of the proofs that were sketched in section 3.1 .In Figure 2.10 we give the code of the proof of the �rst part of Proposition 2.2.Notice how use expressions improve the readability of the code, there is no need forexplicit construction of selections. Moreover, observe that in the type of prop2.2(i)the variable Ba is used as an object of type PreLatt. The objects trans2, lemm1and lemm2, which are locally declared by means of the let constructor, are typicalexamples of local lemmas. Note that the constants congR_ and congL^ de�ned inFigure 2.6 for lattices are applied to the variable Ba of type BoolAlg.The constants 0identR_, 1identL^ and commArgsB3 abbreviate the proofs ofthree properties which can easily be proved to be derivable from the postulatesB1-B4. They are declared in Figure 2.11.

3. BOOLEAN ALGEBRAS AND DEMORGAN'S LAWS FORMALIZED 25%� 8B:8x; y 2 jBj:x ^ y � 0 � �x � �x _ y �%prop2.2(i) : (Ba : BoolAlg) (x; y : Ba:S)use Ba : PreLatt in � (^ x y) 0! � (� x) (_ (� x) y)prop2.2(i) =[Ba x y h]use Ba : BoolAlginlet trans2 : (x; y; z; w : S) � x y ! � y z ! � z w! � x z= [x y z w h1 h2 h3] trans x z w (trans x y z h1 h2) h3lemm1 : � �x (^ (_ �x x) (_ �x y))= trans2 �x (_ �x 0) (_ �x (^ x y)) (^ (_ �x x) (_ �x y))(0identR_ Ba �x)(congR_ Ba �x 0 (^ x y) (symm (^ x y) 0 h))(D1 �x x y)lemm2 : � (^ (_ �x x) (_ �x y)) (_ �x y)= trans (^ (_ �x x) (_ �x y)) (^ 1 (_ �x y)) (_ �x y)(congL^ Ba (_ �x x) 1 (_ �x y) (commArgsB3 Ba x))(1identL^ Ba (_ �x y))in trans �x (^ (_ �x x) (_ �x y)) (_ �x y) lemm1 lemm2Figure 2.10. Proposition 2.2(i)%� 8B:8x 2 jBj: x � x _ 0 �%0identR_ : (Ba : BoolAlg) (x : Ba:S) � x (Ba:_ x 0)%� 8B:8x 2 jBj: 1 ^ x � x �%1identL^ : (Ba : BoolAlg) (x : Ba:S) � (Ba:^ 1 x) x%� 8B:8x 2 jBj: �x _ x � 1 �%commArgsB3 : (Ba : BoolAlg) (x : Ba:S) � (Ba:_ �x x) 1Figure 2.11. Simple derived properties of Boolean algebrasLet us now consider the second part of Proposition 2.2. We made, on page 12of section 3.1, the remark on the duality of the properties enunciated in this latter

26 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES%� 8B:8x; y 2 jBj:x _ y � 1 � �x � �x ^ y �%prop2.2(ii) : (Ba : BoolAlg) (x; y : Ba:S)use Ba : PreBoolAlg in � (_ x y) 1! � (� x) (^ (� x) y)prop2.2(ii) = [Ba] prop2.2(i) (dualBoolAlg Ba)%� 8B:8x; y 2 jBj:x ^ y � 0 � x _ y � 1 � �x � y �%prop2.3 : (Ba : BoolAlg) (x; y : Ba:S)use Ba : PreBoolAlg in � (^ x y) 0! � (_ x y) 1! � (� x) yprop2.3 =[Ba x y h1 h2]antisymmL Ba (Ba:� x) y (prop2.2(i) Ba x y h1) (prop2.2(ii) Ba x y h2)Figure 2.12. Propositions 2.2(ii) - 2.3%� 8B:8x; y 2 jBj:(x _ y) ^ (�x ^ �y) � 0 �%prop2.4(i) : (Ba : BoolAlg) (x; y : Ba:S)use Ba : PreBoolAlg in � (^ (_ x y) (^ (� x) (� y))) 0%� 8B:8x; y 2 jBj:(x _ y) ^ (�x _ �y) � 1 �%prop2.4(ii) : (Ba : BoolAlg) (x; y : Ba:S)use Ba : PreBoolAlg in � (^ (_ x y) (_ (� x) (� y))) 1Figure 2.13. Proposition 2.4proposition, and our intention of obtaining the proof of the dual of a given property� on a certain structure S in terms of a proof � of �. Accordingly, then, the proofof the part ii) of the above proposition is constructed by applying |and with thiswe mean function application| the object prop2.2(i) to the dual structure of Ba,i.e. dualBoolAlg Ba. This construction is shown in Figure 2.12.The informal argument given for the validity of Proposition 2.3 is straightfor-wardly codi�ed, as presented in that same �gure. Note the application of antisymmLto the variable Ba of type BoolAlg.In Figure 2.13 we declare the constants prop2.4(i) and prop2.4(ii) to stand forthe proofs of the two properties of Proposition 2.4. The construction of those proofsis routine.

4. THE EXTENSION 27%� 8B:8x; y 2 jBj:�(x _ y) � (�x ^ �y) �%DeMorgan(i) : (Ba : BoolAlg) (x; y : Ba:S)use Ba : PreBoolAlg in � (� (_ x y)) (^ (� x) (� y))DeMorgan(i) =[B x y]use B : BoolAlgin prop2.3 B (_ x y) (^ (� x) (� y))(prop2.4(i) B x y) (prop2.4(ii) B x y)%� 8B:8x; y 2 jBj:�(x ^ y) � (�x _ �y) �%DeMorgan(ii) : (Ba : BoolAlg) (x; y : Ba:S)use Ba : PreBoolAlg in � (� (^ x y)) (_ (� x) (� y))DeMorgan(ii) = [Ba]DeMorgan(i) (dualBoolAlg Ba)Figure 2.14. DeMorgan lawsWe end up presenting in Figure 2.14 the proof objects corresponding to DeMor-gan's laws. Again, the object abbreviated by DeMorgan(i) is a direct formaliza-tion of the argument given in section 3.1 for showing the validity of this property.As expected, the proof DeMorgan(ii) of the second law is obtained by applyingDeMorgan(i) to the object dualBoolAlg Ba.4. The extension4.1. Formulation of the extension. We now proceed to give the formal stip-ulation of the extension of type theory with record types and subtyping. We willfollow the syntactico-semantical method exposed in [Mar84] and used in every for-mal presentation of Martin-L�of's type theory to which we refer in this work. There-fore the �rst step is to introduce the various forms of judgement of the extendedtheory. This is done by exhibiting their syntax and at the same time explainingthem semantically, i.e. stating what it is that has to be known in order to assert ajudgement of each of the forms in question. In the extended theory, three new formsof judgement are added to those of the original theory. After having introducedthem, we set up a system of formal rules of inference. Each individual rule is to bejusti�ed by showing that the meaning of the conclusion follows from those of thepremisses.The forms of judgement.4.1.1. The original forms of judgement. Let us recall the forms of categoricaljudgement of type theory:

28 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPES� : type �1=�2 :type� : �!type �1=�2 : �!typea : � a=b : �:To know that � : type is to know what it means to be an object of type � aswell as what it means for two objects of type � to be the same. That a is an objectof type � is written a : �. Given a : � and b : �, that they are the same object oftype � is written a=b : �.That two types �1, �2 are the same | in symbols �1=�2 :type | means that to bean object of type �1 is the same as to be an object of type �2 and to be the sameobject of type �1 is the same as to be the same object of type �2.That � is a family of types over the type � means that for any a : �, �a is a typeand that for any two objects a, b of type � such that a=b : �, �a and �b are thesame type. Given type �, that � is a family of types over � is written � : �!type.That two families of types �1 and �2 over a type � are the same | in symbols�1=�2 : �!type | means that �1a=�2a :type for any a : �.The present notion of a family of types was introduced in the formulation of thecalculus of substitutions for type theory [Mar92, Tas97]. It makes it possible tohave abstraction as a uniform mechanism of variable binding in the language.The forms of judgements above are generalized to forms of relative judgements, i.e.of judgements depending on variables x1:�1; : : : ; xn:�n. For the sake of brevity, herewe consider this as done in the way it was usual in the formulations of type theoryprior to the calculus of substitutions, i.e. in for instance [Mar84, Mar87, NPS89].It may be useful to remark that we make (nominal) de�nitions of types andof families of types in addition to those of objects of the various types which areordinary in type theory. An (explicit) de�nition of a type is as follows. Let � bea type and A a name not previously given any meaning. Then we de�ne A as thetype � by stating the two axioms:A : typeA=� :type.Then as a consequence of the second axiom, a : A and a=b : A have identical mean-ing as a : � and a=b : �, respectively. We say that A is the de�niendum and � thede�niens of the de�nition. We shall also say that A has � as its de�niens.De�nitions of families of types are explained similarly. Let F be a name not yetgiven any meaning, � a type and �1 a type depending on a variable x of type �.Then we de�ne F as a family of types over � by means of the following two axioms:F : �!typeFx=�1 :type [x:�].Then by virtue of the second axiom, Fa turns out to be the type obtained bysubstituting a for the occurrences of x in �1 for a : �1.1In de�nitions of the present form, the dependence of �1 on x must be uniform. That is tosay, families of types cannot be de�ned by case analysis of the argument.

4. THE EXTENSION 294.1.2. Judgements of inclusion. We have now to introduce some new forms ofjudgement. We consider �rst those for expressing inclusion of types and of familiesof types on a given type:�1 v �2 �1 v �2 : �!type:Given types �1 and �2, that �1 is a subtype of �2 |in symbols �1 v �2| meansthat every object of type �1 is also an object of type �2 and equal objects of type�1 are equal objects of type �2.Given a type � and families �1 and �2 over �, that �1 is a subfamily of �2 |insymbols �1 v �2 : �!type| means that �1a v �2a for every object a of type �.4.1.3. Record types and families of record types. We intend to introduce a newtype former, namely that of record types. In principle, all that we would have todo for that is to formulate a number of rules. But in the present case somethingelse has to be considered �rst. Record types are constructed as lists of �elds. Weformalize this as it is usual with lists, i.e. from the record type with no �elds, bymeans of an operation of extension of a record type with a further �eld. And then,as has just been said, the operation of extension must require that what is to beextended is indeed a record type. We will express this condition by means of afurther form of judgement. This, in turn, is most simply explained as being abouttypes. That is, for type � we will have the judgement that � is a record type |insymbols, � : record-type. Similarly, we need to distinguish families of record typeson a type � since they give rise to record types when applied to appropriate objects.Therefore we will have also the form of judgement � : �!record-type for � a familyof types over �. These two new forms of judgement are now to be explained.For explaining what it is for a type to be a record type we have to distinguishbetween de�ned and primitive types. A de�ned type is a record type if its de�niensis a record type. A primitive type is a record type if it is generated by the rulesreferred to above, namely:hi is a record type.If � is a record type and � a family of types over �, then h�; L:�i is a recordtype, provided L is not already declared in �.We will later justify rules to the e�ect that there are indeed types generated bythe clauses above. In the case of record types generated by the second clause, L:�is a �eld and L a label, which we say to be declared in the �eld in question. Labelsare just identi�ers, i.e. names. In the formal notation that we are introducing therewill actually arise no situation in which labels can be confused with either constantsor variables. Notice that labels may occur at most once in each record type. Thata label L is not declared in a record type � will be later referred to as L fresh in �.Finally, that these are dependent record types is expressed in the second clause, inthe following way. The \type" declared to the new label is in fact a family � on �,i.e. it is allowed to use the labels already present in �. In fact, what � is allowedto use is a generic object (i.e. a variable) r of type �. Then the labels in � willappear in � as taking part in selections from r. Here below we show how the typeof binary relations on a given set is formally written. Families of types are formed

30 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESby abstraction, which we write using square brackets.hhhi; S : [r]Seti; R : [r](r:S)(r:S)Seti:There is a direct way of translating the notation used in the previous section intothe present formal notation.We conclude by explaining what a family of record types is. Given a type � and� : �!type, that � : �!record-type means that �a is a record type for arbitrarya : �.The forms of judgements introduced are all categorical. From now on we considertheir generalizations to forms of relative judgements as given in the way indicatedat the beginning of this section.4.2. Inference Rules. We will now formulate a system of inference rules in-volving the preceding forms of relative judgement. The rules will be written as ofnatural deduction, i.e. only the discharged variables will be mentioned. In princi-ple, the rules ought to have enough premisses for them to be completely formal andthereby make it possible to justify each rule individually using only the explanationsof the various forms of judgement. We will, for conciseness, often omit premisses.A general principle allowing to recover the omitted premisses of a rule is that theyare just those strictly necessary for guaranteeing that every (explicit) premiss andthe conclusion of the rule are well formed as instances of the respective forms ofjudgement. Also, we allow ourselves to mention side conditions to rules. These areof two simple forms, each of them of a purely syntactic nature. We give detailedexplanations of rules in the cases in which we think it could be relevant. The entiresystem corresponding to the extended theory that we are presenting is obtained byadding to the rules below the rule of assumption and the various substitution rules,which are just the same as those of the original theory [Mar92, Tas97].4.2.1. General rules of equality and inclusion. To begin with, we have that thevarious equality judgements give rise to equivalence relations. That is, we have rulesof:Reexivity, symmetry and transitivity of identity of types, identity of objects of agiven type and identity of families of types over a given type.Next we have rules expressing that inclusion follows from identity:�1=�2 :type�1 v �2 �1=�2 : �!type�1 v �2 : �!type:The �rst of these rules will be seen later to connect type checking to checking identityof types and thereby identity of objects. Using these two rules it is possible to derivethose of reexivity of type inclusion and of inclusion of type families. We also have:Transitivity of type inclusion and of inclusion of type families.The following are the rules of type subsumption. They are justi�ed immediately invirtue of the explanations of the judgements of inclusion.a : �2 �2 v �1a : �1 a=b : �2 �2 v �1a=b : �1

4. THE EXTENSION 31�1 v �2 � : �2!type� : �1!type�1 v �2 �1=�2 : �2!type�1=�2 : �1!type �1 v �2 �1 v �2 : �2!type�1 v �2 : �1!type:4.2.2. Informal remarks. A number of comments about the preceding rules arenow in place. Let us �rst consider the rules of type subsumption. They replacethose called type conversion in the original theory, i.e. for instance the rule:a : �2 �2=�1 :typea : �1:The rules of type conversion can actually be derived from those of type subsumptionusing the rules expressing that inclusion follows from identity. In the original theory,the rule of type conversion displayed above expresses the part played by de�nitionalidentity in the formation of objects of the various types. It is then the formal coun-terpart of the use of de�nitions in proofs of theorems. The link between de�nitionalidentity and formation of objects obviously subsists in the extended theory, since therule of type conversion is derivable. On the other hand, the mechanisms of formationof types and objects are in principle generalized by the presence of type inclusionand the rules of type subsumption. That is: the rules for forming types and objectsof the various types in the original theory are the following. There is �rst a rule foreach of the various syntactic forms of the theory that states the conditions underwhich an expression of the form in question denotes or has a type. To these, wehave to add the rules of substitution in types and objects. And, �nally, there is therule of type conversion. Exactly the same will be the case for the extended theory,with the rule of type subsumption taking the part of the rule of type conversion.As another point, notice that we have not given rules to the e�ect that identity oftypes and of families of types are equivalent to the respective mutual inclusions.That is, the rules:�1 v �2 �2 v �1�1=�2 :type �1 v �2 : �!type �2 v �1 : �!type�1=�2 : �!type:Now, consider the �rst of these rules. For justifying it, we ought to have that thetwo premisses together constituted precisely the meaning of the conclusion. That is,identity of types ought to have been de�ned as the mutual inclusion of the types inquestion. This has, however, not been made explicit in our explanations. De�ningtype identity as mutual inclusion can be defended on the grounds that type inclusionshould be understood as intensional, i.e. as having to follow generically from theexplanations of what an object is and what identical objects are of the types inquestion. Then the mutual inclusion of two types �1 and �2 would be nothing otherthan the identity of meaning of a : �1 and a : �2 as well as of the correspondingjudgements of identity of objects. That is, it would just coincide with the identityof the two types.So we have two alternatives here. The corresponding formal systems will di�erw.r.t. the presence of the rules above and therefore w.r.t. the judgements of the

32 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESforms �1=�2 :type and �1=�2 : �!type that are derivable. But they will not di�erw.r.t. the judgements of the forms � : type and a : � that can be derived. Thisfollows from the observation made above about the rules available for making typingjudgements and the fact that, clearly, exactly the same judgements of type inclusioncan be derived in both systems. We shall consider the theory in which identity oftypes is not identi�ed with mutual inclusion, which turns then out to be expressiveenough for representing (informal) theorems in spite of its weakness in connectionwith the judgements of identity of types and of families of types that can be proved.4.2.3. Families of types and function types. Now we give the rules for using andforming families of types. First come the rules of application, which just express thede�nition of the notion of family of types.� : �!type a : ��a : type � : �!type a=b : ��a=�b :type:Similarly, the following expresses the meaning of identity and inclusion of type fam-ilies: �1=�2 : �!type a : ��1a=�2a :type �1 v �2 : �!type a : ��1a v �2a:Families of types can be formed by abstraction, which is de�ned by the �-rule.We have a rule of extensionality that is immediately justi�ed from the explanationof what it is for two families of types to be the same.�1 : type [x:�][x]�1 : �!type�1 : type [x:�] a : �([x]�1)a=�1(x := a) :type �1x=�2x :type[x:�]�1=�2 : �!type:We now introduce the function types. These are explained in the obvious way. Wegive the rules for proving identity and inclusion of two function types.� : type � : �!type�!� : type�1=�2 :type �1=�2 : �1!type�1!�1=�2!�2 :type �2 v �1 �1 v �2 : �2!type�1!�1 v �2!�2:By virtue of the �rst rule we have that �![x]�0 is a type if �0 is a type dependingon x:�. This type is usually written (x:�) �0. We explain the rule of inclusion offunction types. The explanation reduces eventually to that of the case in whichthe judgements involved are categorical. So we consider only this case. The samewill be done for all the rules to be explained in the sequel. Now to see that theconclusion is valid we have �rst to see that f : �2!�2 for given f : �1!�1. Forthis, in turn, we have to see that fa : �2a for a : �2 and that fa=fb : �2a for anyobjects a and b of type � such that a=b : �. We show only the �rst of these twoparts, the other following in a totally analogous manner. Now if a : �2 then a : �1by virtue of the �rst premiss. And, since f : �1!�1, we have that fa : �1a. Butthen, by virtue of the second premiss, fa : �2a. Also in an analogous way one sees

4. THE EXTENSION 33that f=g : �2!�2 for given f : �1!�1 and g : �1!�1 such that f=g : �1!�1.Then the rule is correct.In a way analogous to that of the case of families of types we have the followingrules. Rules of function application.Formation of functions by abstraction.�-rule and rule of extensionality.4.2.4. Sets. The ground types are the types of sets and of the elements of givenset, as declared by the rules:Set : type A : SetA : type:There are no inclusions between ground types, except for the trivial ones followingfrom the reexivity of type inclusion.4.2.5. Record types and families of record types. We now �nally turn to formu-lating the rules of record types and record objects. The �rst rules to be given arethose of formation of (primitive) record types. These have to be introduced as typesand further as record types. So the following four rules have to be understoodsimultaneously.hi : type � : record-type � : �!typeh�; L:�i : type (L fresh in �)hi : record-type � : record-type � : �!typeh�; L:�i : record-type: (L fresh in �)From now on we omit side conditions of rules to the e�ect that labels are declaredat most once in record types. To justify the rules in the �rst line above we haveto explain what an object is and what identical objects are of each of the primitiverecord types. Let us now make some preliminary remarks that may help to under-stand the explanations given below. One can interpret the �elds that compose arecord type as constraints that the objects of the record type must satisfy. Moreprecisely, given a record type �, to know r : � requires to know that, for every labelL declared in �, the selection r:L of L out of r is de�ned as of a type that respectsthe declaration of the label.Based on this observation, one �rst concludes that then the record type with nolabels hi imposes no constraints on its objects, i.e. there are no conditions that haveto be satis�ed in order to assert r : hi for any expression r. On the other hand, toassert r : h�; L:�i requires to know �rst that r : �. Further, the selection r:L mustbe de�ned as of appropriate type. This type depends on the values assigned in r tothe labels declared in �. Formally, this dependence is expressed in the declarationof L by associating the latter to the family of types � over �. Correspondingly, thetype of r:L is speci�ed as �r. Thus we arrive at the following explanations:r : hi is vacuously satis�ed.r1=r2 : hi is vacuously satis�ed for r1 : hi and r2 : hi.And, under the premisses of the second rule of record type formation:r : h�; L:�i means that r : � and that r:L : �r.

34 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESr1=r2 : h�; L:�i, where r1 : h�; L:�i and r2 : h�; L:�i, means that r1=r2 : �and that r1:L=r2:L : �r.To complete the justi�cation of the rules above it only remains to de�ne what itis to substitute objects for variables in a record type formed by those rules. This isdone in the obvious manner, i.e. letting substitution be distributed over the �eldsof the record type in question. We omit these de�nitions here.Record types can also be obtained by applying families of record types. Here arethe rules governing them.� : �!record-type a : ��a : record-type � : record-type [x:�][x]� : �!record-type:Finally, we can also introduce record types by explicit de�nition. If in an explicitde�nition of a type R, the de�niens is a record type �, then we are justi�ed in statingthe axiom R : record-type. Also, if in the de�nition of a family of types F over atype � the de�niens of Fx is a record type � depending on x:�, we are allowedto state the axiom F : �!record-type. We will later refer to the construction of arecord type, meaning the process of its generation by using the rules for formingprimitive record types. The construction of a de�ned record type is then to beunderstood as the construction of its de�niens. The same is the case with respectto the conditions of a �eld being in a record type and a label being fresh in a recordtype.Identical (primitive) record types are constructed by the following rules:hi=hi :type �1=�2 :type �1=�2 : �1!typeh�1; L:�1i=h�2; L:�2i :typeThese rules serve only to express that de�nitional identity is preserved by substitu-tion in record types. Recall that we have chosen a system that is weak in provingde�nitional identity of types. The expressiveness in typing objects is obtained bythe rules of inclusion of record types. Before displaying these, it is convenient toconsider the following rules: (1) h�; L:�i v �� : �!type (L:� in �) r : �r:L : �r: (L:� in �)Only the latter two require explanation. We refer to them below as the rules of�elds. They are explained similarly. The condition that L:� is in � means that, atone point during the construction of �, another record type �0 was enlarged with the�eld L:�. Then it had to be the case that � : �0!type. Also, by repeated use of therule (1) and transitivity of type inclusion, we conclude � v h�0; L:�i and, further,� v �0. From the latter and � : �0!type we conclude � : �!type thereby justifyingthe �rst rule of �elds. As to the second, its conclusion follows from r : h�0; L:�iwhich is in turn a consequence of the premiss r : � and � v h�0; L:�i.The second rule of �elds serves as a precise direct explanation of the meaning of

4. THE EXTENSION 35r : � for record type �. The three rules just considered are going to be used forexplaining the rules of inclusion of record types that we now formulate:� : record-type� v hi �1 v �2 �1 v �2 : �1!type�1 v h�2; L:�2i: (L:�1 in �1)The rules express that �1 v �2 if �1 contains a �eld for each label declared in�2 and the (families of) types of the corresponding declarations are in the inclusionrelation. The order of the �elds within each record type is not relevant for deter-mining whether they are in the inclusion relation. Only the second rule needs to beexplained in detail. Assume then the premisses and the side condition. Notice thatthe condition that L is fresh in �2 has been omitted. This condition is necessaryto guarantee the well-formedness of h�2; L:�2i and hence that of the conclusion ofthe rule. What has to be shown is that every object of type �1 is an object oftype h�2; L:�2i and that equal record objects of type �1 are equal objects of typeh�2; L:�2i. We will now show the �rst of these, the other one requiring essentiallythe same reasoning. Assume then r : �1. To know that r : h�2; L:�2i is to know thatr : �2 and that r:L : �2r. Now, from the assumption r : �1 and the premiss �1 v �2it follows that r : �2. On the other hand, using the rules of �elds and the side con-dition that L:�1 is in �1, we see that �1 : �1!type and that r:L : �1r. Finally, fromthe latter and the premiss �1 v �2 : �1!type, we know r:L : �2r.The next rule is justi�ed in the same manner as the second rule of �elds:r=s : �r:L=s:L : �r: (L:� in �)Record objects are formed as sequences of assignments of objects of appropriatetypes to labels. We call each of these assignments a �eld of the record object.Notice that there is no restriction on labels occurring more than once in recordobjects. This, however, is inessential in the sense that it does not provide anyadditional expressivity.hi : hi r:� a:�rhr; L = ai : h�; L:�i:The �rst of these rules requires no justi�cation. The second one will be called ofextension of record objects. We will also refer to the objects generated by these tworules as record (object) extensions. To justify the second rule, we have to de�ne theselections from hr; L = ai of all the labels in h�; L:�i. For the labels in �, this isdone by de�ning hr; L = ai to be the same record object of type � as r, which wasgiven. On the other hand, the selection hr; L = ai:L is de�ned in the obvious way,i.e. as a. Thus we arrive at the rules below. Notice that the condition that L isfresh in � has been omitted in the rule of extension of record objects. For the sakeof clarity, we make it explicit now:r:� a:�rhr; L = ai = r : � (L fresh in �) r:� a:�rhr; L = ai:L = a : �r: (L fresh in �)

36 2. ALGEBRA IN TYPE THEORY WITH RECORD TYPESThe second of these two de�nitions implies that the rightmost assignment to a labelin a record object overrides the preceding ones.Finally, equality of record objects is based on a kind of extensionality principle. Thatis, the two rules below can be understood as de�ning that two objects of a givenrecord type are equal if the selections of every label of the record type in questionfrom the objects are equal. Notice that the type in which two record objects arecompared is relevant: suppose namely that r and s are of type �1 and that �1 v �2.Then it may well be the case that r=s : �2 but not r=s : �1.r:hi s:hir=s : hi r=s : � r:L=s:L : �rr=s : h�; L:�i:To understand the second of these rules notice that the premisses that both r ands are of type h�; L:�i have been omitted.

CHAPTER 3Type checking: informal explanations and discussionType checking in the context of type theory is the task of verifying the for-mal correctness of a judgement of one of the forms � : type and a : �, in generaldepending on declarations of variables and constants.We will now describe an algorithm of type checking for the extended theory. Forthis, it is useful to consider �rst the problem of type checking in the original theory.For the sake of conciseness, we con�ne attention to the checking of judgements ofthe form a : �, where we assume that � : type.The formulation of the explanations in sections 1 and 2 are result of joint workwith Alvaro Tasistro.1. Type checking in the original theoryType checking for systems of typed lambda calculus involves type inference. Thisis because of applications, whose typing rule (which we show here as it is in typetheory), f : �!� a : �fa : �ais not conservative: information disappears when going from the premisses to theconclusion. Conversely, in order to check the conclusion we need to infer the type�!� of f .Now, in the presence of dependent types, it is undecidable whether an unlabeledabstraction, i.e. an expression of the form [x]e, has a type at all [Dow93]. Thereforethere is no algorithm for type checking beta redexes. So, in general, for type checkingthat an expression b has a certain type we have to see to it that b is written in betanormal form. This restriction is inessential in the sense that still every object thatcan be formed in the theory can be expressed in a way so as to be accepted by thetype checking algorithm. For instance, any abstraction [x]e that stands for an objectof type �!� can be given a name in type theory, by a de�nition of the form:f : �!�f = [x]eUsing this de�nition we can then express an object ([x]e)a : �a as fa, which is notanymore a redex.More precisely, we have that if b : � is valid then there is b0 : � such that b=b0 : �and b0 : � is accepted by the type checking algorithm. In particular, instead ofexpressions containing beta redexes one has to write their corresponding beta normalforms. 37

38 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSIONSo we have now that applications must be of the form h e1 : : : em where the ei'sare expressions in beta normal form and h, called the head of the application, must beeither a constant or a variable. We call these expressions generalized applications,since they include the constants and the variables as particular cases, i.e. withm = 0. The expressions accepted by the type checker are formally speci�ed asfollows: e ::= [x]e j ff ::= x j c j feHere x ranges over the variables and c over the constants. Then, the expressions f arethe generalized applications. According to the observation made at the beginning,it is for these expressions that type checking links itself with type inference. Moreprecisely, it can be decided whether a generalized application has type or not, bythe followingAlgorithm (Type inference for generalized applications). To infer the type ofa variable x or constant c, just look it up among the declarations.To infer the type of an expression fe, proceed as follows. First infer a typefor the expression f . Supposing the inference is successful, see to it that the typeobtained is de�ned as one of the form �!�. Then check whether e : �. If this is inturn successful, return the type �e.Notice that there is at most one declaration for each variable or constant. Thenit follows by an inductive argument that a generalized application f has at most oneinferred type. As a consequence, if f has type � then it has inferred type �1 and�1=� :type. Now the algorithm of type checking is as follows:Algorithm (Type checking). To check whether [x]e : � see to it �rst that �is de�ned as a type of the form �1!�1. If this is the case, then check whethere[x := z] : �1z, adding z:�1 to the declarations of variables, for a fresh variable z.To check whether f : �, infer the type for f . If a type �1 is obtained, then checkwhether �1=� :type.The last step embodies the use of the rule of type conversion. Thereby typechecking is linked with checking judgements of de�nitional identity. In the next twoalgorithms, the form of a de�ned type must be understood to be the form of itsultimate de�niens.Algorithm (Type conversion). Checking type equality proceeds recursivelyon the form of the types.For checking the equality of two functional types, �1!�1 and �2!�2, �1 ischecked to be equal to �2 and �1x is checked to be equal to �2x adding x:�1 to thedeclarations of variables, for a fresh variable x.For checking the equality of ground types, check whether they are both the typeSet or whether they are equal objects of type Set.By virtue of the last step, type checking leads eventually to checking de�nitionalidentity of objects, i.e. of judgements a=b : �.Algorithm (Object conversion). Checking a=b : � proceeds recursively onthe type �.

2. TYPE CHECKING IN THE EXTENDED THEORY 39In case � is a ground type, take both a and b to head normal form. Notice thatthese normal forms cannot be abstractions since they are of ground types. So theymust necessarily be generalized applications as de�ned above. Observe that if anobject is in head normal form and its head is a constant, this latter must necessarilybe a primitive one. The algorithm proceeds by comparing the heads. In case theyare the same constant or variable, h say, it continues by recursively comparing thearguments. For checking the identity of each pair of respective arguments, their(common) type is needed. This is obtained from h, whose type can be recoveredfrom the list of declarations.For checking f=g : �!�, check whether fx=gx : �x adding x:� to the decla-rations of variables, for a fresh variable x.The whole process is guaranteed to terminate if all de�nitions are well-founded.The approach used for checking object equality follows the one taken by Mag-nusson in [Mag95]. The process for checking identity of objects having a functionaltype comprises both �- and �-convertibility. Now, the equality of two objects in theoriginal theory can be checked without using their (common) type, i.e. under theonly assumption that they have some type. Concrete algorithms illustrating this aregiven in [Coq91, Coq96]. However, in the presence of record types and subtypingit is not in general possible to check equality of record objects without consideringtype information. 2. Type checking in the extended theoryTwo new forms of expression have to be considered, namely record extensionshr; L = ai and selections r:L.To begin with, notice that the typing rule for selectionr : �r:L : �r (L:� in �)is also not conservative. In order to check the conclusion we need to infer the type� for r. Now, analogously to what is the case for the (unlabeled) abstractions, wecannot decide in general whether an extension hr; L = ei has or has not a type. Thiswould in turn require to decide whether the (arbitrary) expression e has a type ornot.There are in addition other di�culties with record object extensions, which wenow intend to make clear.2.1. Type checking of record extensions. Record object extensions are ofone of the forms hL1 = e1; : : : ; Ln = eni and hf; L1 = e1; : : : ; Ln = eni, where f isnot itself a record extension.Let us consider �rst the problem of checking whether hL1 = e1; : : : ; Ln = eni : �.We shall refer to the expression to be checked as r. A possible solution is thefollowing: for checking that r has type �, see to it that every label declared in � isbound in r to an expression of appropriate type. For this, we can proceed recursivelyon the components of r that correspond to the labels in �.

40 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSIONNow, that a record object extension has a certain type �, can be derived in thecalculus presented in chapter 2, starting out from hi : hi, by an alternated use, inparticular, of the proof rulesr : �1 e : �rhr; L = ei : h�1; L:�i L fresh in �1 r : �1 �1 v �2r : �2Notice, then, on the one hand, that there could be labels Li bound to objects in rthat do not occur in �, due to the use of the subsumption rule. On the other hand,it may also well be the case that some label L occurs bound in r more than once;the rule of record extension allows overriding. Moreover, the objects assigned to thedi�erent occurrences of L do not need to be of the same type. From now on weshall call unreachable those labels of the object r that either do not occur in � orare overridden.It is clear then that the procedure described above would in general leave com-ponents of r unchecked, namely those corresponding to the unreachable labels of r.Since there is no general algorithm for inferring whether an expression has type ornot, we cannot by this method ensure the well-formedness of the record object asa whole. However, unchecked components cannot be used without being eventuallychecked. So, checking only the restrictions imposed by the given type is safe fromthis point of view. But, on the other hand, the method will still in general violatethe principle that correctly typed expressions contain only correctly typed parts and,as a consequence, it would accept expressions that cannot be typed in the theory.The obvious alternative is just to reject those record objects which contain �eldswhose labels are not declared in the intended type. This may seem in principle toorestrictive, since well formed expression can be rejected by this method. Of especialimportance is the case in which we have hL1 = e1; : : : ; Ln = eni : �1 but intend touse the record object as of a type �2 with �1 v �2 in the strict sense, i.e. as of aproper supertype of its original type.These cases can be recovered, however, using auxiliary de�nitions.Suppose, for instance, that we want to use hL1 = e1; : : : ; Ln = eni as an object oftype �2 and there are labels L unreachable, in the �rst sense above, in �2. Wecan give a name r to hL1 = e1; : : : ; Ln = eni and declare it as of a type �1 which,according to the restriction, must contain declarations for all its labels. If this type�1 turns to be a subtype of �2, then we can safely use r as an object of type �2.Extensions of the form hf; L1 = e1; : : : ; Ln = eni, in addition, allow to express arestricted form of overriding, namely, the one that we illustrated in chapter 2 withthe de�nition, for instance, of the function dualPreLatt. Notice that it can wellbe the case that f is a constant that abbreviates a record object extension wheresome of the labels Li are bound to objects. But then as f has been de�ned, we canrecover its type and then, as we will show later, we shall not need to inspect thecomponents of f .There is, then, in principle, a choice between a permissive and a restrictivemethod. The latter seems to allow for enough expressiveness at the cost of havingto introduce additional de�nitions. This, however, seems not to constitute a problemin practice, especially in the presence of let expressions.

2. TYPE CHECKING IN THE EXTENDED THEORY 41For a more detailed discussion of the adequacy of the restrictive method fornatural practice we refer to [Tas97].2.2. The algorithm of type checking. We have then pointed out two ma-jor problems concerning record extensions. First, it is not possible to decide ingeneral if one such object has a type or not. Therefore, selection redexes of theform hr; L = ei:K cannot be accepted as input expressions to the procedure of typechecking. But, in a similar manner as suggested for �-redexes in section 1, onecan also make use of nominal de�nitions in order to get rid of redexes as the oneabove. However, in constrast to the case of abstractions, we must also introduce arestriction on the form of record extensions that can be accepted by a type checkingalgorithm.Then, expressions that are not abstractions or record extensions must be of theform (h e1 : : : em):L1 : : : :Ln. We call these expressions generalized selections. Herethe ei's are expressions in �- and selection-normal form. The Lj's are labels and thehead h must now be of one the forms x:L1 : : : :Ln or c:L1 : : : :Ln.The syntax of the permissible expressions can be more succinctly formulated asfollows: e ::= [x]e j hL1 = e1; : : : ; Ln = eni j hf; L1 = e1; : : : ; Ln = eni j ff ::= x j c j (f e) j f:LThe expressions f are the generalized selections. The analysis is now the sameas for the original theory. We have that it can be decided whether it follows fromthe declarations of constants and variables that a given generalized selection hastype.Algorithm (Type inference for generalized selections). To infer the type ofan expression of any of the forms x, c or (fe) proceed as for the original theory.For inferring a type for a selection f:L, infer �rst a type for the expression f . Ifthis is successful, see to it that the type obtained is a record type �. Then look upfor a �eld L:� in �. If this is found, return the type �f .Again, generalized selections have at most one inferred type. And then, if ageneralized selection f has type �2, then it has inferred type �1 and �1 v �2. Thissolves the problem of type checking generalized selections.We give now an algorithm of type checking based on the restrictive methoddiscussed above.Algorithm (Type checking). To check whether [x]e : � proceed as for theoriginal theory.To check hL1 = e1; : : : ; Ln = eni : �, see to it �rst that � is a type of theform hL1 : �1; : : : ; Ln : �ni. If this is the case then, for i = 1; : : : ; n check whetherei : �ihL1 = e1; : : : ; Li�1 = ei�1i.For checking hf; L1 = e1; : : : ; Ln = eni : �, see to it �rst that � is de�ned as atype of the form h�; L1 : �1; : : : ; Ln : �ni. If this is the case then check whetherf : �.In case of a positive answer proceed by checking ei : �ihf; L1 = e1; : : : ; Li�1 = ei�1i,for i = 1; : : : ; n.

42 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSIONWe now refer to hf; L1 = e1; : : : ; Ln = eni as r and call the components Li = ei theplain �elds of the extension. Note, �rst, that for checking that f : � we do not needto inspect the components of f . The only condition that we need to require from fis that a type can be inferred for it. In addition, as h�; L1 : �1; : : : ; Ln : �ni has beenchecked to be a valid record type, none of the labels Li may occur in the record type�. Therefore, the selection r:Li will result in the object bound to Li in the plain�elds of r, which, as it should be, has the type ei : �hf; L1 = e1; : : : ; Li�1 = ei�1i.Finally, to check whether f : � infer the type of f . If a type �1 is obtained, thencheck that �1 v �.Due to the use of the type subsumption rule, this last step now links type checkingwith checking judgements of type inclusion.Algorithm (Type inclusion). The checking of type inclusion proceeds recur-sively on the form of the types.For checking that a record type hK1 : 1; : : : ; Kn : ni is included in the recordtype hL1 : �1; : : : ; Lm : �mi proceed as follows: for i = 1; : : : ; m, �rst look up fora declaration Kj:j such that Kj � Li. If this turns out to be successful then,for a fresh variable x taken as of type hK1 : 1; : : : ; Kj�1 : j�1i, check that jx isincluded in �ix.To check whether a functional type �1!�1 is included in �2!�2, check that �2is included in �1, and �1x is included in �2x for a fresh variable x taken as of type�2. For checking the inclusion of two ground types, check whether they are both thetype Set or whether they are equal objects of type Set.We end up withAlgorithm (Object conversion in the extended theory). For checking that rand s are equal objects of type hL1 : �1; : : : ; Ln : �ni, check whether r:Li=s:Li : �irfor i = 1; : : : ; n.In the remaining cases proceed as for the original theory.3. Towards an implementation of the algorithmThe design of the algorithms informally described in the previous sections, inparticular the one for the original theory, closely follows the approach taken byMagnusson in the implementation of the type checking algorithm which is the log-ical heart of the proof-editor ALF. In addition to the new form of objects, recordextensions and selection, the procedure in section 2 for checking that an object has atype also considers the relation of subtyping. This latter modi�cation can be graspedas the replacement of the module for checking type conversion by one which imple-ments the checking of type inclusion. There are, however, some di�erences in theunderstanding on how to check whether the type conversion (resp. type inclusion)rule has been applied in the derivation of a judgement a : �.On the other hand, the �nal implementation of the algorithm, which we presentin chapter 5, drastically departs from Magnusson's. We have left unattended someproblematic questions in the explanation given for performing the checking that

3. TOWARDS AN IMPLEMENTATION OF THE ALGORITHM 43an abstraction has a type. We will adapt ideas by Coquand [Coq91] and Pollack[Pol94a] to provide a solution to those problems, which we now proceed to discuss.3.1. Type checking abstractions. In the formulation of the calculus pre-sented in section 4 of chapter 2 the judgements involved in most of the rules are incategorical form, the exception being those rules that introduce binding operators.In these cases, judgements that constitute some of the premisses are made under theassumption that one variable has a certain type. The procedures that constitute thealgorithms, however, are formulated as to be performed in the presence of a (valid)list of variable declarations. In other words, what we have in mind is the formalveri�cation of the generalized forms of the judgements of the theory, usually calledhypothetical or relative judgements. What we intend to describe, in particular, withthe algorithm for checking that a certain expression a has a type � is how to checkthe formal correctness of a judgement of the form � ` a : �, which says that a is anobject of type � under the (valid) context �. This observation also applies to theremaining form of judgements involved in the various rules of the calculus.The way of making sense of the proof rules presented in that same work followswhat Martin-L�of has called the syntactico-semantical method. The justi�cation ofeach individual rule is done by showing that the meaning of the conclusion is con-tained in the meaning of the premisses. For this, in turn, the semantical explanationof each form of judgement has to be laid down. Let us take for instance the form ofjudgement above: Let � be a context and � a type under �. Then � ` a : � meansthat for any permissible values of the variables in � the assignment of these valuesto the variables in a gives an object of the type obtained from the assignment ofthose values to the variables in �.Observe that in this explanation we are assuming that we have already explainedwhat it means to know that � is a context, that � is a type under that context, andmoreover, what are permissible values of the variables declared in the context �.It is precisely the formal treatment of these notions, especially the last one, thatdi�erentiates, for instance, the formulation of Martin-L�of's logical framework aspresented in [NPS89] from the presentation known as the calculus of explicit sub-stitution [Mar92, Tas97], from now on referred to as CES. In the former work, thenotions of context and thereby the explanation of what are permissible values forthe variables in the context remain at an informal level. The assignment of valuesto variables on the expressions of the language is understood as a (meta) operationto be de�ned over those expressions. On the other hand, one could say that theprincipal motivation for formulating CES is to make sense of these three notionsin a completely formal manner. New forms of judgement are introduced to expresswhen a list of variable declarations is a context and what is a construction of a validassignment of values to the variables of a context. Substitutions then are made ex-plicit in the syntax of the language and the operation of performing a substitutionon an expression becomes itself an expression (which is denoted by e and read asthe expression e with the substitution). It is for a modi�ed version of CES thatMagnusson designs and implements the type checking algorithm on top of whichALF's proof-engine is built up.

44 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSIONIn both formulations of the framework referred to above a particular system oftypes is introduced, namely: the function types, the type of sets and for each set,the type of its elements.The traditional formulation of the rule for the formation of a function type, forinstance as presented in [NPS89], says that if we know that � is a type and that �is a type family under the assumption that a variable x is of type � then we can formthe function type (x : �)�, where all occurrences of x in � become bound. Thus, asa new way of forming types is introduced in the calculus, the understanding of thejudgement (x : �)� : type requires the explanation of what it means to be an objectof this type as well as when two such objects are the same: f : (x : �)� means thatfa : �[x := a] for any arbitrary object a of type �, and, moreover, fa=fb : �[x := a]whenever a and b are equal objects of type �. That f and g are equal objects of type(x : �)� means that fa and ga are equal objects of type �[x := a] provided that ais an object of type �. In particular, abstraction is introduced as an operation ofobject formation (of functional types). The corresponding rulex:� ` b : �` [x]b : (x : �)�is justi�ed by making the following (real) de�nition: if x:� ` b : � then [x]b is theobject of type (x : �)� such that if a is an object of type � then ([x]b)a is stipu-lated to be equal to b[x := a] as object of type �[x := a]. This latter stipulation ismeaningful because the meaning of the relative form of judgement x:� ` b : � haspreviously been explained, namely, to know this judgement means to know thatb[x := a] : �[x := a] for any object a of type �.Now, the justi�cation of the generalized formulation of the rule of abstraction�; x:� ` b : �� ` [x]b : (x : �)�can be done in analogous manner as above once we have explained the meaning ofthe form of judgement � ` a : �, and therefore what is the knowledge that we havein the presence of the premiss �; x:� ` b : �. Now, as already said, in particular weshould know that �; x:� is a context.The stipulation for the formation of a context �; x:� in CES, for instance, requiresthat � is a context, � is a type under the context � and, further, that the variablex has not already been declared in �. This last restriction is proper of systems ofproof rules where an assumption, x:� say, may be introduced such that the type �depends on previous assumptions. Therefore, for the premiss of the latter rule ofabstraction to be correct it must be the case, in the �rst place, that x is not alreadydeclared in the context �.In [Pol94b] Pollack discusses some consequences of having the restriction abovefor context formation in the implementation of type checkers for languages withbinding operators, and more speci�cally, with systems of dependent types. Thesystem of proof rules on which the discussion is centered is what has elsewherebeen called Pure Type Systems (PTS), as originally presented in [Bar92]. What

3. TOWARDS AN IMPLEMENTATION OF THE ALGORITHM 45is shown by Pollack is the impossibility of deriving, using the rules of PTS, thejudgement [x][x]x : (x : A)(y : Px)Px under the assumption that A is a type (anobject of �) and P has kind A!�. In [Mag95] Magnusson rephrases this exampleand also shows that the same situation arises in CES. If one wants to understandthe checking of the correctness of instances of the judgement � ` [x]b : (x : �)� asthe upward reading of the rule of abstraction one should proceeds as follows: forchecking that [x][x]x : (x : A)(y : Px)Px check that x:A ` [x]x : (y : Px)Px. Forthis, in turn, we should check that x : Px after extending the context x:A with thedeclaration x:Px, but we are restrained from doing this by the criterion for contextformation above. There is no problem, however, in deriving, and also checking, that[x][y]y : (x : A)(y : Px)Px. This latter shows that the proof system is not closedwith respect to �-conversion.The decision taken by Magnusson in order to be able to perform the checkingthat an abstraction has a certain type in the way described above is to restrictthe bound variables of the abstraction to be mutually distinct and di�erent fromthe variables occurring in the context under which the checking is taking place.Therefore, terms like [x][x]x are rejected by the type checking algorithm.Now, according to the explanation of what it means to be an object of a func-tional type one could argue that it makes sense to say that [x][x]x is an object of type(x : A)(y : Px)Px: let a and p be objects of type A and Pa respectively. Assumenow that the substitution of an expression a for a variable x is de�ned as to haveno e�ect when performed on an expression of the form [x]b. Then, the applicationof [x][x]x to the objects a and p would result in the object p of type Pa. Observethat the restriction imposed on the operation of substitution is respected by boththe usual de�nition of substitution in �-calculus and the one given for the objects ofCES. On the other hand, it is clear that in the stipulation of making an assumption,or more precisely, how a context � may be extended by a declaration x:� to formthe context �; x:�, the variable x must be required not to already occur in �, or ascommonly said, it has to be fresh for �.Relatively recent works on the construction of proof-checkers for type theorieswith dependent types have addressed (in a direct manner or not) the problemspresented above.In [Coq91] Coquand investigates the question of checking the formal correctnessof judgements of type and object equality in a formulation of Martin-L�of's set theorywith generalized cartesian product and one universe.The notion of context in this theory is that of a list of assumptions of the formp:�, where p is a parameter and � a type (possibly depending on other parameters).In the formulation of the language of the theory, parameters are understood to playthe role of the free variables occurring in the expressions. Consequently, they areused in the system to stand for generic objects of the various types. However, theyare de�ned to be syntactic constructions distinct from the bound variables of thelanguage. We believe that this was the �rst formulation of a calculus in whichparameters are used for expressing (relative) judgements about types and objectsof certain types. Parameters are chiey exploited by Coquand in the de�nition of

46 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSIONthe algorithm for checking type and object conversion: For checking, for instance,that two abstractions, [x]e and [y]d say, are convertible, �rst a parameter, p say, issubstituted for the variable x (resp. y) in e (resp. d). Then the algorithm proceedsrecursively by checking the convertibility of e[x := p] and d[y := p]. The distinctionbetween parameters and bound variables allows to de�ne a simpli�ed operation ofsubstitution on expressions where no mechanism of renaming has to be consideredin order to avoid capture. Further, there is no need for an a priori identi�cationof �-convertible terms for the algorithm to be de�ned. This latter is, we think,quite a relevant point if one wants to describe an actual implementation. Due tothe inextricable relation between type and object formation and type equality, andtherefore object equality, the results of this work have a direct application to theconstruction of type checking algorithms for theories with dependent types. Thealgorithms we have sketched in the previous sections of this chapter for checkingconversion and inclusion of types as well as conversion of objects are much in thespirit of Coquand's algorithm. There is a di�erence, however, in that the checkingof the conversion of two objects is performed with respect to some (common) type.We have already pointed out that in the presence of record objects and subtypingwe may have that the equality of two expressions as objects of a certain type maydepend on which is the type being considered.In [Pol94a] Pollack adopts the use of parameters to implement a type checkingalgorithm for a family of PTS's. In that work, the author starts by presentingthe original formulation of the rules of PTS . Then in the strive for obtaining analgorithm out of the inference rules the system is successively modi�ed. One of themotivations for introducing the notion of parameter and consequently make use ofthem in the reformulation of the rules of inference of the formal system is to providea solution for problems similar to the ones discussed above. The bene�t a�orded bythe use of parameters can be illustrated as follows: let us consider again the questionof checking the judgement [x][x]x : (x : �)(y : Px)Px. We rephrase the argumentgiven above for the validity of this particular judgement in terms of type checking:For checking that an expression [x]e has a type (x : �)� under a context � see toit that e[x := p] has type �[x := p] with � extended with the declaration p:� with pa fresh parameter for �. The operation e2[x := e1] is de�ned as textual substitutionbut it has no e�ect when performed on an abstraction whose bound variable equalsthe variable x. Thus, according to the explanation above, we proceed by checkingthat ([x]x)[x := p] has type ((y : Px)Px)[x := p] under the context extended withp:�. Notice that this reduces to checking that [x]x has type (y : Pp)Pp. Now weshould check that x[x := q] (which is q) has type Pp[y := q] (which is Pp) afterextending the context with q:Pp, which is easily seen to be correct.It could be argued that this procedure could still be carried out, as we havedone, using variables: just choose a fresh variable for the context and then proceedas described above. But this would not be enough, because this variable might atthe same time occur as a bound variable in the expression on which the substitutionis performed. Therefore, a mechanism of renaming has also to be considered in thede�nition of the operation of substitution in order to avoid variable capture. This is

3. TOWARDS AN IMPLEMENTATION OF THE ALGORITHM 47not needed in the language we are considering because parameters are not subjectedto bindings.The formulation of the rule of abstraction formation presented in [Pol94a] is, inspirit, as follows: �; p:� ` b[x := p] : �1[y := p]� ` [x]b : (y : �)�1The restriction for this rule is now that the parameter p must not occur neitherin �, b nor �1. Observe that the proceedure described above for checking that anabstraction has a certain type conforms with the upward reading of this latter rule.It should also be noticed that the bound variables of the object and the type arenot required to be the same. This is a further modi�cation to the original rule ofabstraction of PTS's {and also to the corresponding rule in both formulations ofMartin-L�of's logical framework{ where the two bound variables are required to bethe same. The motivation provided by Pollack for this latter change is also inuencedby the intended understanding of the type system as closed by �-conversion. Wenow rephrase the example and the arguments given, which can also be applied tothe formulation of type theory in [NPS89]:Let us take, for instance, the judgement � ` [X][y]y : (X : Set)(w : X)X. Withthe restriction that the bound variables of the object and type have to be the same,the only possible way of deriving this judgement, up to applications of the thinningrule, would be to derive that [y]y has type (y : p)p under the context �; p:Set andthen, provided that (y : p)p and (w : p)p can be proved to be convertible types, applythe rule of type conversion to get that �; p:Set ` [y]y : (w : p)p. Notice then thatthis application of type conversion is actually a step of �-conversion, and that thislatter can be avoided once the abstraction rule is formulated as above.In our case, however, there is no need for a formal stipulation of the rule thatmakes explicit that the bound variables may be distinct. The rule of abstraction wehave in mind is the following:�; p:� ` b[x := p] : �1[x := p]� ` [x]b : �![x]�1In this case the parameter p also must be fresh for � and not occur in b nor in �1. Nowthe question is whether � ` [x]b : �![y]�1 is derivable. We will later show that hav-ing the rule of abstraction above it is possible to derive that if �; p:� ` b[x := p] : �pholds then � ` [x]b : �!� using the �-rule for families of types. Observe, then, thatwe do not need to make explicit the bound variable of the family �. Therefore, wewill obtain a formulation of the procedure for checking an abstraction very closeto the one stipulated in the preceding sections, namely: for checking that [x]b hastype �, �rst see to it that � is of the form �1!�1. Then proceed by checking thatb[x := p] is of type �1p after extending the context with the declaration that thefresh parameter p is of type �1.

48 3. TYPE CHECKING: INFORMAL EXPLANATIONS AND DISCUSSIONNow the question is how one can get convinced of the validity of the above rulefor abstraction formation, and furthermore, of the whole set of the generalized formof the rules that constitute the calculus. This is what we shall set ourselves to doin the next chapter.

CHAPTER 4Formulation of the extended theory with parameters1. IntroductionWe shall now proceed to present a variant of the formulation of the logicalframework extended with record types and subtyping given in chapter 2. A �rstdi�erence with this presentation is that we shall consider the rules of inference intheir generalized form. Therefore, the corresponding justi�cations must now begiven in accordance to the meaning explanation of the relative forms of judgement.Further, we shall make use of parameters to stand for generic objects of the varioustypes. Thereby, as the stipulation of an assumption will correspond to declare aparameter as of a certain type, the explanation of a relative judgement depends onwhat are considered to be the permissible assignments of values to the parametersinvolved in such judgement. These assignments, in turn, are de�ned in terms of aparticular notion of substitution which, in contrast to the one usually de�ned forthe language of type theory, behaves as the textual replacement of a parameter byan expression.For the justi�cation of the rules of inference that the calculus embodies, we intendto follow the method adopted by Per Martin-L�of of making sense of the proof rulesthat constitute the systems presented, for instance, in [Mar87, NPS89, Tas97] :each inference rule is justi�ed (or explained) by showing that the meaning expressedby the conclusion of the rule is contained in the meaning of the premisses. For that,all the forms of judgement used in the formulation of the rules have to be madeexplicit and given their corresponding explanation.We are, however, especially concerned with the understanding of the interactionbetween parameters and binders. Particular attention is then paid to the justi�ca-tion of the rules for introducing abstraction operators. There is no counterpart tothese explanations in the works by Coquand [Coq91] and Pollack [Pol94a].We are interested in the particular system of types introduced in chapter 2,namely: the type of sets, for each individual set the type of its elements, dependentfunction types and dependent record types. The explanation of what it means toknow a certain type � is independent of the particular syntax chosen to formallyexpress such a type. This is also the case for the explanation of what it means thata is an object of a type �. When one knows a type or an object of a type one knowsmore than the corresponding expression (or syntactic object) used to express it. Anexpression � becomes a type when it is explained which is the semantical categorythat � denotes. Correspondingly, it is precisely when an expression is sorted into asemantical category that it becomes an object. Thus, we are allowed to assert thatan expression a is an object of type � only if we already know that � is a type and49

50 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERSbesides we can show that the understanding of the meaning of a is that of an objectof type �.In principle, there should be no knowledge associated to a primitive expression ofthe language other than the one that allows to sort it into its category, the syntacticalcategory. The primitive objects of the various types are introduced by means of areal de�nition, that is to say, by a direct meaning explanation. The relation ofsynonymy or sameness of meaning between linguistic expressions will be understoodas identity between objects. Thereby two di�erent expressions are synonymous onlyif they are equal as objects of a certain type. We will need to stipulate, at somepoint, the equality of two objects. As this latter equality can be expressed as aninstance of a form of judgement of the calculus, these (nominal) de�nitions can thenbe formally expressed as rules of the proof system.Now, for the explanation of the relative forms of judgement of the theory a notionof substitution has to be introduced. As already said, in CES, the category of expres-sions is extended to consider expressions with substitutions as part of the languageof the calculus. Due to the introduction of new forms of judgement, whose meaningexplanations are precisely laid down, it is possible to give a complete and detailedjusti�cation of all the rules that constitute the system of proof rules. Furthermore,there is no need, in general, for the de�nition of how substitutions are performedon expressions to justify many of the rules involving expressions with substitutions.On the other hand, when a de�nition is required, it can still be formally expressedas a rule of the calculus. A general and very precise formulation of the system isthen obtained. The solution we have in mind for the problems discussed in section 3of chapter 3 connected with the binding operators, however, strongly relies on thede�nition of two di�erent operation of substitutions, one for parameters and theother for variables. These two operations will be de�ned on the elements of the syn-tactical category, thereby we shall need to give a precise de�nition of this category.We then will lose some of the generality accomplished in the various formulationsof the logical framework we have been making reference to in the sense that weare de�ning a priori which are the valid expressions of the language of the calculus.Nevertheless, we see this as a natural consequence of the task we have undertaken:the implementation of the mechanical veri�cation of the formal correctness of theforms of judgements and inference rules of a particular formulation of the theory. Onthe other hand, and this we think may be a more serious drawback of this proposal,the (syntactical) identi�cation of di�erent linguistic expressions introduced by theoperations of substitution will render the justi�cation of some of the rules to dependon (meta-) properties proper to the category of expressions. As these propertiescan not be expressed in terms of the judgements of the theory we are also losingformality in the formulation and justi�cation of some of the rules. In this respect,we think that a formulation of the calculus of explicit substitution which considersthe distinction between parameters and variables would remedy this latter situation.This formulation, however, has still to be further investigated.We now then proceed to introduce the category of expressions and give thecorresponding de�nition of the operations of substitution.

2. THE CATEGORY OF EXPRESSIONS 512. The category of expressionsThe expressions of the language are given by the grammar in Figure 4.1e ::= x j p j c j [x]e j e1e2 j hi j he1; L = e2i j e:Le1!e2 j he1; L:e2iFigure 4.1. Syntax of expressionsThe symbol x ranges over a denumerable set V, the set of bound variables. Belowwe use y as an element of this set too. We also assume there exists a denumerableset P of parameters. The symbol p (and q below) ranges over the set P. The symbolc ranges over a countable set C of constants, which is de�ned to be disjoint withV. The sort Set is a distinguished element of C. Finally, the symbol L ranges overa denumerable set L of labels. This set is de�ned to be disjoint with the sets P, Vand C.The expressions [x]e are abstractions, and therefore the occurrences of x arebound in [x]e.We assume that P, V, C and L are equipped with a decidable equivalence relation.Under this assumption we can also de�ne one for expressions. We denote it by =,and make an overloaded use of it.From now on we use Greek letters �, �1, : : : for expressions intended to denotetypes and �, �1 for families of types. We sometimes will use the more familiarnotation (x : �)�1 instead of �![x]�1.2.1. Instantiation and Substitution. We need two kinds of substitution,substitution of an expression for a parameter, that we will call instantiation anddenote by e2[e1=p], and substitution of an expression for a variable, that we will callsubstitution and denote by e2[x := e1]. The �rst one is just textual substitution.The latter also behaves as textual substitution but has no e�ect when performedon an abstraction whose bound variable equals the variable x. It does not preventcapture either. The corresponding de�nitions are given in Figure 4.2 and Figure 4.3respectively.We will introduce a notion of well-formedness for expressions. The intuition isthat we will consider to be well-formed those expressions where only bound occur-rences of variables are allowed. The predicate wf on the expressions is inductivelyde�ned as shown in Figure 4.4.What we here de�ne to be well-formed is what in [Pol94a] are de�ned to be closedexpressions. In [Coq91] they are de�ned as elements of the set EXP. The intuitionis exactly the same, in a well-formed expression there are no occurrences of free vari-ables. This is particularly made explicit by the rule wf-Lda (x is the only variablethat may occur free in e) and the fact that variables are not well-formed (no intro-duction rule for this case). We shall now enunciate propositions that characterizeto some extent the interplay of substitution with well-formed expressions.

52 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERSx[e1=p] =def xq[e1=p] =def e1 if p = q=def q if p 6= qc[e1=p] =def c([x]e2)[e1=p] =def [x]e2[e1=p]fe2[e1=p] =def (f [e1=p])(e2[e1=p])(�!�)[e1=p] =def (�[e1=p])!�[e1=p]hi[e1=p] =def hihe; L = e0i[e1=p] =def he[e1=p]; L = e0[e1=p]ie:L[e1=p] =def (e[e1=p]):Lhe; L:e0i[e1=p] =def he[e1=p]; L:e0[e1=p]iFigure 4.2. Instantiationy[x := e1] =def e1 if x = y=def y if x 6= yp[x := e1] =def pc[x := e1] =def c([y]e2)[x := e1] =def [y]e2 if x = y=def [y]e2[x := e1] if x 6= yfe2[x := e1] =def (f [x := e1])(e2[x := e1])(�!�)[x := e1] =def (�[x := e1])!�[x := e1]hi[x := e1] =def hihe; L = e0i[x := e1] =def he[x := e1]; L = e0[x := e1]ie:L[x := e1] =def (e[x := e1]):Lhe; L:e0i[x := e1] =def he[x := e1]; L:e0[x := e1]iFigure 4.3. Substitution(wf-Par): wf p (wf-Con): wf c(wf-Lda): wf e[x := p]wf [x]e (wf-App): wf f wf ewf fe(wf-ERec): wf hi (wf-RecO): wf e wf e0wf he; L = e0i (wf-Sel): wf ewf e:L(wf-Fun): wf � wf �wf �!� (wf-RecT): wf e wf e0wf he; L:e0iFigure 4.4. Well-formed expressions

2. THE CATEGORY OF EXPRESSIONS 53lgth p =def 1lgth x =def 1lgth c =def 1lgth fe =def lgth f + lgth elgth [x]e =def 1 + lgth elgth �!� =def lgth � + lgth �lgth hi =def 1lgth he1; L = e2i =def lgth e1 + lgth e2lgth e:L =def 1 + lgth elgth he1; L:e2i =def lgth e1 + lgth e2Figure 4.5. Length of an expression2.2. Properties of well-formed expressions. Some of the properties beloware proved by complete induction on the length of the expressions. This function,in turn, is de�ned in Figure 4.5. We shall here enunciate the propositions that weconsider relevant for the understanding of the work that follows. Their proofs, aswell as those of some auxiliary lemmas, can be found in Appendix A.Proposition 4.1. Given expressions e1 and e2, such that wf e2, and any vari-able x and parameter p, then1) e2[x := e1] = e2.2) if wf (e1[x := p]) then wf (e1[x := e2]).The intuition behind the �rst proposition is that well-formed expressions are nota�ected by substitution. The second one says that if the result of substituting in anexpression a parameter for a variable is a well-formed expression, this will also bethe case if the variable is replaced by any well-formed expression.2.3. Closed expressions. In the following we will talk of closed expressions.As anticipated, the valid open expressions that participate in a relative judgementwill depend on parameters not on variables. Therefore, we shall need a notion ofclosed expression that says more than the one traditionally used in languages withbinding operators. For doing that, we �rst introduce the notion of independenceof an expression e of a parameter p. The inductive de�nition of this predicate onexpressions is given in Figure 4.6.2.3.1. Independence, substitution and instantiation. Now we enunciate a propo-sition about the interaction of these three notions.Proposition 4.2. Let e1 and e2 be expressions and p be a parameter such thate1 indep p, then1) e1[e2=p] = e1.2) for any variable x, e1[x := p][e2=p] = e1[x := e2].

54 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS(indep-Par): q 6= pq indep p (indep-Var): x indep p(indep-Con): c indep p(indep-Lda): e indep p[x]e indep p (indep-App): f indep p e indep pfe indep p(indep-ERec): hi indep p (indep-RecO): e indep p e0 indep phe; L = e0i indep p(indep-Sel): e indep pe:L indep p(indep-Fun): � indep p � indep p�!� indep p (indep-RecT): e indep p e0 indep phe; L:e0i indep pFigure 4.6. IndependenceThus, the instantiation of a parameter that does not occur in an expression doesnot a�ect that expression.Finally, a closed expression is then de�ned as follows:Definition (Closed expression). An expression e is closed if and only if e iswell-formed and for all parameters p the expression e is also independent of p .2.4. Properties of closed expressions. To begin with, we enunciate theproposition that says that closed expressions are a�ected neither by substitutionnor instantiation.Proposition 4.3. Given expressions e1 and e2 variable x and parameter p. Ife1 is a closed expression then e1[x := e2] = e1 and e1[e2=p] = e1.We end up this section with some very useful properties relating closed expres-sions, substitution and instantiation.Proposition 4.4. Let e1, e2 and a be expressions, and x any variable. Further,let ai and p, pi, with i = 1::n, be n closed expressions and n + 1 mutually distinctparameters, respectively.Then1) e1[a=p][a1=p1; : : : ; an=pn] = e1[a1=p1; : : : ; an=pn][a[a1=p1; : : : ; an=pn]=p].2) e1[x := e2][a1=p1; : : : ; an=pn] = e1[a1=p1; : : : ; an=pn][x := e2[a1=p1; : : : ; an=pn]].3) e1[x := p][a1=p1; : : : ; an=pn] = e1[a1=p1; : : : ; an=pn][x := p].

3. FORMS OF JUDGEMENT 55We now turn to introduce the various forms of judgement and give the corre-sponding meaning explanations3. Forms of judgementThe categorical forms of judgement of the calculus are the following:� : type, to be read \� is a type"�=� :type, to be read \� and � are equal types"a : �, to be read \a is an object of type �"a=b : �, to be read \a and b are equal objects of type �"� : �!type, to be read \� is a family of types over �"�1=�2 : �!type, to be read \�1 and �2 are the same family of types over �"� : record-type, to be read \� is a record type"� : �!record-type, to be read \� is a family of record types over �"� v �, to be read \� is a subtype of �"�1 v �2 : �!type, to be read \�1 is a subfamily of �2"The meaning of each of these forms of judgement has already been explained inchapter 2.3.1. The relative forms of judgement. The basic forms of judgements aboveare generalized in order to express also hypothetical judgements, i.e. judgementswhich are made under assumptions. From now on we will refer to them as relativejudgements. Making an assumption is formally reected by the introduction of aparameter, and the stipulation of how parameters may be introduced gives rise tothe notion of a context. It is possible, then, to make judgements involving openexpressions, namely, expressions which depend on the parameters of a context.We start then by the notion of a context and that of being a type under agiven context. These two concepts have to be simultaneously explained becausecontexts are extended by assumptions of the form p:�, where � has to be a typeunder a shorter context. The empty context (denoted by []) is the context with noassumptions. Let � be a context, if � is a type under � and p is a parameter notoccurring in � then �; p:� is the non-empty context which results from extending �with the assumption that p is a generic object of type �.Assume now that � is a context, the relative judgement � ` � : type says that� is a type under the context �. The meaning of this form of judgement when �is the empty context is the same as the one given for the corresponding categoricalone. When � is of the form [p1:�1; : : : ; pn:�n], with n > 0, a judgement of the form[p1:�1; : : : ; pn:�n] ` � : typemeans that �[a1=p1; : : : ; an=pn] is a type whenever a1 is a closed object of type �1,a2 of type �2[a1=p1],: : : , an of type �n[a1=p1; : : : ; an�1=pn�1] and �[a1=p1; : : : ; an=pn]and �[b1=p1; : : : ; bn=pn] are equal types whenever a1 and b1 are equal closed objectsof type �1, : : : , an and bn of type �n[a1=p1; : : : ; an�1=pn�1].

56 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERSIn general, then, a context will be of the form[p1:�1; : : : ; pn:�n]where - �1 is a type,- �2[a1=p1] is a type for any object a1 of type �1, and �2[a1=p1] and �2[b1=p1]are equal types whenever a1 and b1 are equal objects of type �1,: : :- �n[a1=p1; : : : ; an�1=pn�1] is a type for arbitrary objects a1 of type �1, a2 oftype �2[a1=p1],: : : , an�1 of type �n�1[a1=p1; : : : ; an�2=pn�2]. Moreover, it isalso the case that �n[a1=p1; : : : ; an�1=pn�1] and �n[b1=p1; : : : ; bn�1=pn�1] areequal types for equal objects a1 and b1 of type �1, : : : , an�1 and bn�1 of type�n�1[a1=p1; : : : ; an�2=pn�2]Notice that any initial segment of a context is itself a context.The expression �[a1=p1; : : : ; an=pn] denotes the result of performing the instan-tiation of an for pn in the expression �[a1=p1; : : : ; an�1=pn�1], for n � 1. Observe,however, that the objects a1; a2 : : : ; an are respectively closed expressions of type�1; �2[a1=p1]; : : : ; �n[a1=p1; : : : ; an�1=pn�1] . Therefore, as all the parameters aremutually distinct, the order in which the instantiation of the parameter pi by theexpression ai is performed is not relevant.We shall now introduce a notational device : if [p1:�1; : : : ; pn:�n] is a con-text, and a1; a2 : : : ; an are respectively closed expressions of type �1; �2[a1=p1]; : : : ;�n[a1=p1; : : : ; an�1=pn�1] we shall say that is an assignment for the variables inthe context � and denote by e the expression e[a1=p1; : : : ; an=pn]. Thus, is notitself a construction of the language, it only makes sense when occurring in an ex-pression of the form above. We principally want with this to alleviate the metanotation to be used in the rest of the work. On the other hand, we would liketo think of as an environment for the context [p1:�1; : : : ; pn:�n], and then to usethis intuition when presenting the explanation of the remaining forms of judgementsas well as when providing the justi�cation of the rules we shall present below. Inaddition to this, if a1 and b1 are equal objects of type �1, : : : , an�1 and bn�1 oftype �n[a1=p1; : : : ; an�1=pn�1] we shall say that and � are the equal assignments[a1=p1; : : : ; an�1=pn�1] and [b1=p1; : : : ; bn�1=pn�1] respectively.We reformulate now the explanation of the form of judgement � ` a : � whichsays that a is an object of type � under the context �. Assume � ` � : type. Then,the meaning of a judgement � ` a : � when � is the empty context is the sameas the one given for the corresponding categorical one. When � is of the form[p1:�1; : : : ; pn:�n], with n > 0, a judgement of the form[p1:�1; : : : ; pn:�n] ` a : �means that a : � and that a and a� are equal objects of type � whenever and � are equal assignments for the context �.The meaning of the remaining forms of relative judgement can now be explainedin analogous manner as done for the form of judgements above.

4. RULES OF INFERENCE 574. Rules of inferenceWe shall now build up a system of rules that assembles the concepts we have pre-viously explained. The various forms of judgement of the calculus are the following:� context� ` � : type� ` �1 = �2 : type� ` a : �� ` a = b : �� ` � : �!type� ` �1 = �2 : �!type� ` � : record-type� ` � : �!record-type� ` �1 v �2� ` �1 v �2 : �!typeThe rules of the calculus are classi�ed as follows: general rules, instantiationrules and the rules for families of types and types. We shall principally concentrateon the presentation and justi�cation of this latter group of rules, which introduce theparticular system of types we want to consider. The general rules correspond to agreat extent to the ones presented in the formulation of CES in [Tas97]. In addition,there are the generalized form of the rules presented in chapter 2 concerning the newform of judgements introduced by the extension of the theory with subtyping. Theinstantiation rules express in a formal manner the meaning of the relative forms ofjudgement.We do not intend to make a comprehensive presentation of the rules of the cal-culus in this section, the formulation of the whole system can be found in AppendixB. 4.1. General rules.context formation:[] context � context � ` � : type�; p:� context p fresh in �Let � and � be contexts. If every parameter declaration in � is also a parameterdeclaration in � then we will say that � is a subcontext of �. This relation iswritten � � �. Following the terminology in [Tas97] we shall also say that � is anextension of �. There are rules then expressing that if we know a relative judgementunder a given context we also know it under any extension of the context. Insteadof presenting the complete set of rules we just formulate the rule schema:thinning: � ` J� ` J � � �

58 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERSwhere J stands for any of the categorical forms of judgement introduced in thesection above.From the semantical explanations of � being a context, an expression beingan object of a type under a context and the de�nition of the relation � � � thefollowing rules of object and type formation are obtained:assumption: � ` p : � p : � in � � ` � : type p : � in �4.1.1. Equality rules. These are the general rules for the equality relation oftypes, objects of a type and families of types. Their justi�cation is done as inprevious formulations of type theory. We have then reexivity, symmetry and tran-sitivity rules for identity of types, objects of types and families of types under agiven context.4.1.2. Rules of inclusion. We have also rules for expressing that the inclusionof two types and two families of types follows from their identity, as well as thereexivity and transitivity of inclusion of types. The following rules are immediatelyjusti�ed from the meaning explanation of the judgement of inclusion:subsumption:� ` a : �2 � ` �2 v �1� ` a : �1 � ` a = b : �2 � ` �2 v �1� ` a = b : �14.2. Rules of instantiation. The rules of instantiations are given in Fig-ure 4.7. They can all be justi�ed in a similar manner. Let us take for instancethe �rst rule of instantiation of types:�; p:� ` �1 : type � ` a : �� ` �1[a=p] : typeFor justifying this rule what has to be shown is that if is an assignment for thecontext � then �1[a=p] is a type and that if and � are equal assignment for thecontext � then �1[a=p] and �1[a=p]� are equal types. We will show only the �rstof these conditions, the second follows by a similar reasoning. Now, assume thepremisses of the rule. That a is an object of type � under � gives that a : �.Then [a=p] is an assignment for the context �; p:�. The �rst premiss of the rulethen gives that �1[a=p] : type. From this same premiss we get that p does notbelong to �, thus it is di�erent from all the parameters of .We can apply thenProposition 4.4 to get that �1[a=p] is equal to the expression �1[a=p], hence�1[a=p] : type.All the remaining rules can be explained analogously.4.3. Rules for families of types and types. We shall now give the rules forusing and forming families of types.The rules of application and those expressing the meaning of identity and inclu-sion of type families are the generalized form of the ones presented in chapter 2.

4. RULES OF INFERENCE 59instantiation of types:�; p:� ` �1 : type � ` a : �� ` �1[a=p] : type �; p:� ` �1 = �2 : type � ` a = b : �� ` �1[a=p] = �2[b=p] : type�; p:� ` �1 v �2 � ` a = b : �� ` �1[a=p] v �2[b=p]instantiation of objects:�; p:� ` b : �1 � ` a : �� ` b[a=p] : �1[a=p] �; p:� ` b1 = b2 : �1 � ` a = c : �� ` b1[a=p] = b2[c=p] : �1[a=p]instantiation of families of types:�; p:� ` � : �1!type � ` a : �� ` �[a=p] : �1[a=p]!type �; p:� ` �1 = �2 : �1!type � ` a = b : �� ` �1[a=p] = �2[b=p] : �1[a=p]!type�; p:� ` �1 v �2 : �1!type � ` a = b : �� ` �1[a=p] v �2[b=p] : �1[a=p]!typeinstantiation of record types and record families:�; p:� ` � : record-type � ` a : �� ` �[a=p] : record-type �; p:� ` � : �1!record-type � ` a : �� ` �[a=p] : �1[a=p]!record-typeFigure 4.7. Rules of instantiationThe formal treatment we make in this work of families of types was �rst presentedin the formulation of CES. In particular the abstraction operator is introduced as atype family former. As discussed in section 3, we shall make use of the distinctionbetween parameters and bound variables to provide a solution to the problems con-nected with the binding operators. The rule for family formation then is formulatedas: �; p:� ` �1[x := p] : type� ` [x]�1 : �!type �1 indep pThe intuition is the same: for [x]�1 to be a family with index � then �1 has to be atype for any possible value of type �. The di�erence is that the notion of a genericobject of certain type, the parameter p of type �, is not identi�ed with the notionof variable of that type.We need to di�erentiate the cases of � being empty and non-empty for thejusti�cation of this rule. In the �rst case we have to show that [x]�1 : �!type.This in turn requires that for any object a of type �, ([x]�1)a is a type. Fromthe premiss we know then that �1[x := p][a=p] is a type, and by Proposition 4.2,as �1 indep p we obtain that �1[x := a] is a type. We can then make the following

60 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS(meaningful) de�nition: If p:� ` �1[x := p] : type and �1 indep p then [x]�1 is a typefamily over � such that ([x]�1)a is equal to �1[x := a] as type if a : �.Now, if � is non-empty what has to be shown is that if is an assignment forthe context � then ([x]�1) : �!type. For this, in turn, we have to show that ifa : � then (([x]�1))a is a type. Notice �rst that by de�nition of instantiation theexpression ([x]�1) is equal to [x]�1. Observe now that if is an assignment for �then by the meaning explanation of the relative form of judgement � ` � : type itfollows from the premiss that p:� ` �1[x := p] : type . Then, by Proposition 4.4as p is fresh for � we get that �1[x := p] is equal to �1[x := p]. Observe that if�1 indep p the expression �1 is also independent of p. Therefore, we can use thede�nition above to get that [x]�1 is a type family over � and, moreover, that if ais an object of type � then ([x]�1)a is the type �1[x := a].For the justi�cation of the �-rule:�; p:� ` �1[x := p] : type � ` a : �� ` ([x]�1)a = �1[x := a] : type �1 indep pwe must, in addition to the constructions above, use Proposition 4.4 to show that�1[x := a] is equal to �1[x := a].From the explanation of what it is for two families of types to be identical thefollowing rule of extensionality can also be justi�ed:�; p:� ` �1p = �2p : type� ` �1 = �2 : �!type �1; �2 indep pIts explanation is analogous to the one given below for the rule of extensionality ofobjects of a function type.Using the two latter rules it is possible to derive the following formulation of the�-rule for families of types: � ` � : �!type� ` � = [x]�x : �!type wf �That the family � is required to be well-formed is equivalent to ask for the variablex not to occur free in �. We show now a tree-like derivation of the rule:� ` � : �!type�; q:�; p:� ` (�x)[x := p] : type �; q:� ` q : ��; q:� ` ([x]�x)q = �q : type� ` [x]�x = � : �!typeFrom the premiss � ` � : �!type we can infer by thinning and the �rst rule ofapplication that �; q:�; p:� ` �p : type. Now, observe that by de�nition of substitu-tion and the side condition we know, using Proposition 4.1, that the expression �pis equal to the expression (�x)[x := p]. A similar reasoning is applied when the ex-pressions involve the parameter q instead of p. The two �nal steps are applications

4. RULES OF INFERENCE 61of the �-rule and the rule of extensionality for objects of functional type respec-tively. The conclusion of the �-rule then is obtained by the rule of symmetry forthe identity of families of types. Actually, we could drop the side condition on thewell-formedness of the expression �, it is possible to show that if � ` � : �!typethen both � and � are well-formed. For the application of the �-rule we need theexpression �x to be independent of the parameter p. This also holds because of thepremiss � ` � : �!type and �; q:�; p:� being a context.4.4. Sets and elements of sets. We introduce the type of (inductively de-�ned) sets, the rule that expresses that each set gives rise to the type of its elementsas well as the one stating that equal sets give rise to equal types without furthercomment:` Set : type � ` A : Set� ` A : type � ` A = B : Set� ` A = B : typeWe remark that the inclusion between ground types A and B is the trivial onefollowing from their identity.4.5. Function types. Function types now are introduced and explained in thefollowing way: If � is a type and � is a family of types indexed by � we can thenform the type of functions that when applied to an object a of type � results in anobject of type �a. This function type is denoted by �!�. In addition, for f : �!�,fa and fb have to be equal objects of type �a if a and b are equal objects of type�. Observe, then, that in contrast to the explanation given in chapter 3 for functiontypes of the form (x : �)�, this explanation of what it means for f to be an objectof type �!� needs no explicit mentioning the index of the family.These are the rules for forming function types and the associated equality andinclusion rules:formation of �!�: � ` � : type � ` � : �!type� ` �!� : typeequality and inclusion of �!�:� ` �1 = �2 : type � ` �1 = �2 : �1!type� ` �1!�1 = �2!�2 : type� ` �2 v �1 � ` �1 v �2 : �2!type� ` �1!�1 v �2!�2The justi�cation of these rules reduces to the case in which the judgementsinvolved are categorical. These explanations, in turn, have already been given inchapter 2.We proceed now to give the rules of application, object formation and the asso-ciated identity rules:

62 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERSapplication:� ` f : �!� � ` a : �� ` fa : �a � ` f = g : �!� � ` a = b : �� ` fa = gb : �aIt su�ces to remember the meaning of the �rst premiss to get convinced of thevalidity of these two rules.We now introduce the rule for abstraction:abstraction: �; p:� ` b[x := p] : �1[x := p]� ` [x]b : �![x]�1 b; �1 indep pThe justi�cation of this rule follows a similar reasoning as the one used for theformation of a family of types. We will only look at the case of � being empty.What has to be shown, then, is that [x]b is an object of type �![x]�1. So, let a bean object of type �, thus we have to show that ([x]b)a is of type ([x]�1)a. Observethat from the premiss we get that [x]�1 is a family over �. Thus we know that([x]�1)a=�1[x := a] :type and also that b[x := p][a=p] : �1[x := p][a=p]. Therefore,as both b and �1 are independent of p, we can apply Proposition 4.2 to get thatb[x := p][a=p] (resp. �1[x := p][a=p]) is equal to b[x := a] (resp. �1[x := a]), andthen we have that b[x := a] : �1[x := a]. So we make the following de�nition:if p:� ` b[x := p] : �1[x := p] then the expression [x]b is an object of type �![x]�1,and moreover, if a is an object of type � we stipulate that ([x]b)a is equal to b[x := a]as objects of type �1[x := a].The former constructions are expressed by the following formulation of the �-rule�-conversion: �; p:� ` b[x := p] : �1[x := p] � ` a : �� ` ([x]b)a = b[x := a] : �1[y := a]The following rule of extensionality can also be justi�ed:extensionality: �; p:� ` fp = gp : �p� ` f = g : �!� f; g; � indep pObserve that the premisses to the e�ect that f and g are objects of type �!�under � have been omitted. To see that the conclusion is valid we must convinceourselves that f and g are equal objects of type �!� if is an assignment for�. This type, in turn, is by de�nition of instantiation equal to �!�. We have,then, to show that if a is an arbitrary object of type � then (f)a and (g)a areequal objects of type (�)a. Notice that [a=p] is an assignment for the context�; p:� then the premiss gives that (fp)[a=p] and (gp)[a=p] are equal objects oftype (�p)[a=p]. By de�nition of instantiation, the application (fp)[a=p] is equalto (f[a=p])(p[a=p]) and similarly with (gp)[a=p] and (�p)[a=p]. Finally, as f , gand � are independent of the parameter p and the assignment does not a�ect p,we get that (f)a=(g)a : (�)a.

4. RULES OF INFERENCE 63Using the two rules above is then possible to show that the following formulationsof the � and �-rule are derivable:� and �-rules:� ` b : �!�� ` [x]bx = b : �!� wf b �; p:� ` f [x := p] = g[x := p] : �1[x := p]� ` [x]f = [x]g : �![x]�1 f; g; �1 indep p4.6. Record Types. The formulation of the rules for record types and recordobjects remains almost identical to the one presented in chapter 2. In most ofthe cases, the only di�erence is that now the judgements involved in the rules aregeneralized to their relative form. For each of these rules its justi�cation reduces tothe one given in that chapter for the corresponding categorical formulation. This isin accordance with the fact that no binding operators are introduced in the formationof record types and record objects. The exception are the rules concerned with theformation and use of families of record types, but their explanation are analogousto the already given above for families of types.We then start by giving the formation rules of (primitive) record types:formation of record-types:� ` hi : record-type � ` � : record-type � ` � : �!type� ` h�; L:�i : record-type L fresh in �type formation: � ` � : record-type� ` � : typeA remark is in place concerning the three rules above. In chapter 2 for the for-mation of record types four rules are introduced which have to be simultaneouslyunderstood. In these rules it is expressed that every (primitive) record type has tobe introduced as a type and further as a record type. The motivation for doing thatwas to give a uniform explanation for nominal de�nitions of types. For the sakeof conciseness we here obviate those considerations. However, there must still be arule that says that every record type gives rise to a type, because, for instance, inthe right premiss of the second formation rule above � has to be a type in order forthat judgement to be correct.The rules for constructing identical (primitive) record types are as follows:record types equality:` hi = hi : type � ` �1 = �2 : type � ` �1 = �2 : �1!type� ` h�1; L:�1i = h�2; L:�2i : typeTheir justi�cation is routine.In order to justify the rules of inclusion of record types the following three rulesare needed:� ` h�; L:�i v � � ` � : �!type L : � in � � ` r : �� ` r:L : �r L : � in �

64 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERSWe now proceed to formulate and explain the rules of inclusion of record types:� ` � : record-type� ` � v hi � ` �1 v �2 � ` �1 v �2 : �1!type� ` �1 v h�2; L:�2i L : �1 in �1We will justify only the second rule, the �rst one can easily be seen to be valid.Now for the conclusion of the second rule to be valid we have to show that if isan assignment for the context � then �1 is a subtype of h�2; L:�2i. For this, inturn, it has to be shown that if r is an object of type �1 then it is also an objectof type h�2; L:�2i, and if r and s are equal objects of type �1 then they are alsoequal objects of type h�2; L:�2i. Now, by de�nition of instantiation on expressionsof the form h�; L:�i we have that h�2; L:�2i is equal to h�2; L:�2i. Moreover the�rst premiss gives that �1 v �2 and the second that �1 v �2 : �1!type. Thejusti�cation proceeds now as the one given for the categorical formulation of therule in chapter 2. The second condition is explained in a similar manner.Finally we introduce the various rules of record object formation and the asso-ciated equality rules:record object extension:� ` hi : hi � ` r : � � ` e : �r� ` hr; L = ei : h�; L:�i L fresh in �� ` r : � � ` e : �r� ` hr; L = ei = r : � L fresh in � � ` r : � � ` e : �r� ` hr; L = ei:L = e : �r L fresh in �equality rules:� ` r : hi � ` s : hi� ` r = s : hi � ` r = s : � � ` r:L = s:L : �r� ` r = s : h�; L:�i� ` r = s : �� ` r:L = s:L : �r L : � in �5. Weak head reductionNo notion of reduction for the expressions of the calculus has been introduced sofar. The meaning explanations of the forms of judgement of the framework do notdepend on any such notion. However, in order to de�ne an algorithm for checking theformal correctness of judgements of the theory we shall introduce one such notion.Its use will render the checking process more e�cient, but on the other hand, a proofof subject reduction for the forms of judgement � ` � : type and � ` a : � shall berequired when proving the correctness of the algorithm.Following [Coq91], we introduce a weak head reduction relation, which is induc-tively de�ned as shown in Figure 4.8. A remark is in place concerning the notion ofreduction we have introduced. In next section, when we say that e1) e2, we shallknow that e1 has already been proved to be a type family, a type or an object of atype. Therefore, in the �rst place, by Proposition 4.8 in next section, we know that

5. WEAK HEAD REDUCTION 65e1 is a well-formed expression. Furthermore, by Proposition 4.5 below we shall alsoknow that e2 is well-formed. p) pSet) Set�!�) �!�hi) hih�; L:�i) h�; L:�i[x]e) [x]ehr; L = ei) hr; L = eif) [x]e e[x := a]) vfa) vf) f1fa) f1a f1 6= [x]er) hr1; L1 = ei e) vr:L) v L = L1r) hr1; L1 = ei r1:L) vr:L) v L 6= L1r) r1r:L) r1:L r1 6= hr2; L2 = eiFigure 4.8. Weak head reductionWe shall say that e1 has weak head normal form e2 i� e1) e2.It is clear from the de�nition of) that an expression can have at most one weakhead normal form.Proposition 4.5. The relation) preserves well-formedness, i.e. if wf e1 ande1) e2 then wf e2.Proof. This proposition can easily been proved by nested structural induction,�rst on e1) e2 and then on wf e1.The interesting case is when e1 is of the form fa, f) [x]e and e[x := a]) v.That wf fa gives that both, wf f and wf a. Then, by induction hypothesis weobtain, �rst, that wf ([x]e). Thus, by de�nition of well-formedness we can assume

66 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERSthat wf (e[x := p]), for any parameter p. Therefore, as wf a, we can �nally applyProposition 4.1 to obtain that wf e[x := a]. Induction �nally gives that wf v.6. Basic meta-properties of the calculusProposition 4.6. Let � be a valid context and � ` J. If a parameter p occursin J then there exists a declaration p:� in �.Proposition 4.7. Let � be a valid context and p be a fresh parameter for �th1 � If � ` � : type then � indep p.th2 � If � ` � : �!type then � indep p.th3 � If � ` a : � then a indep p.Proof. The proof proceeds by simultaneous induction on the derivation of� ` � : type and � ` � : �!type for the cases th1 and th2, and induction on thederivation of � ` a : � in case th3.Proposition 4.8. Let � be a valid context,th1 � If � ` � : type then wf �.th2 � If � ` � : �!type then wf �.th3 � If � ` a : � then wf a.Proof. These are also proved by induction on the derivations of the judgements� ` � : type, � ` � : �!type and � ` a : � respectively.Proposition 4.9. Let � be a valid context.Then,th1 � If � ` � : type and �) �1then � ` �1 : type and � ` � = �1 : type.th2 � If � ` � : �!type and �) �1then � ` �1 : �!type and � ` � = �1 : �!type.th3 � If � ` � : record-type and �) �1then � ` �1 : record-type and � ` � = �1 : type.th4 � If � ` � : �!record-type and �) �1then � ` �1 : �!record-type and � ` � = �1 : �!type.Proof. We simultaneously prove the proposition by induction on the de�nitionof the relation). The cases when � is the type Set or a function type, and � is aprimitive record type, are trivial, because no reduction is performed, by de�nitionof). Then, reexivity of type equality is used to prove the second part of theproposition. For families the proof is also straigthforward because there are onlytwo possible ways of deriving a judgement of that form: either �(�) is introducedas an abstraction of the form [x]�1, and thereby no reduction is performed, or by

6. BASIC META-PROPERTIES OF THE CALCULUS 67an application of subtyping, and in this case induction allows to prove the desiredconclusion. The interesting cases are when the type(record) �(�) is the applicationof a type family � to an object of the appropriate type. The reasoning used to provethe proposition, however, is analogous to the one for applications when provingsubject reduction for objects of a type, which is Proposition 4.10 below.Proposition 4.10. Let � be a valid context, � ` � : type and � ` a : �.If a) a1 then � ` a1 : � and � ` a = a1 : �.Proof. The proof proceeds by structural induction on the derivation of a) a1.If a is either a parameter p, a record object or an abstraction the proof is trivial,because in this cases a) a. Then hypothesis and reexivity of object equality givethe desired result. As function types and record types cannot be objects of any typethey are not considered. The interesting cases are when a is either an abstractionor a selection.a = fb . We have to consider two cases1) a1 = v, with f) [x]f2 and f2[x := b]) v.2) a1 = f1b, with f) f1 and f1 is not an abstraction.Now, we have that if � ` fb : � theni) � ` f : �1!�ii) � ` b : �1, andiii) � ` �b v �Let us now consider the �rst case above.Induction gives that � ` [x]f2 : �1!� and that � ` f = [x]f2 : �1!�. Theformer, in turn, gives that for any fresh parameter p, �; p:�1 ` f2[x := p] : �p.Thus, we get by instantiation rule that � ` f2[x := p][b=p] : �p[b=p]. Further,by Proposition 4.7 we also know that f2 and � are independent of p. Therefore,by Proposition 4.2 we get then that f2[x := p][b=p] = f2[x := b] and, moreover,by de�nition of instantiation �p[b=p] = �b.Then � ` f2[x := b] : �b.We can now apply induction using that f2[x := b]) v to get � ` v : �b and� ` f2[x := b] = v : �b. From � ` f = [x]f2 : �1!� and � ` b : �1, we obtain,by application rule, that � ` fb = ([x]f2)b : �b. The rule of �-conversion andtransitivity of equal objects then give that � ` fb = v : �b. The applicationof the corresponding rules of subsumption lead to the desired conclusions.As to the second case, by induction we get that � ` f1 : �1!�. Therefore,we directly get the proof of the property by using the rules of application.a = r:L . There are three possible values for a11) a1 = v, with r) hr1; L1 = ei, e) v and L = L1

68 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERS2) a1 = v, with r) hr1; L1 = ei, r1:L) v and L 6= L13) a1 = r1:L, with r) r1 and r is not a record objectIf � ` r:L : � theni) � ` r : �ii) L : � in �iii) � ` �r v �Let us take the �rst case. We know by induction thativ) � ` hr1; L = ei : �, andv) � ` r = hr1; L = ei : �.By iv) and Proposition 4.11 below we get � ` e : �hr1; L = ei andthat � ` hr1; L = ei:L = e : �hr1; L = ei. So, induction gives that� ` v : �hr1; L = ei, and then it is also of type �r . On the otherhand, we can apply the second rule of selection to v) to get that� ` r:L = hr1; L = ei:L : �r. Finally, then, using transitivity weget that � ` r:L = v : �r.As to the second case, we now know by induction thatvi) � ` hr1; L1 = ei : �, andvii) � ` hr1; L1 = ei = r : �.An analogous reasoning proves, but now using Proposition 4.12below, that � ` r1:L : �r and that � ` r:L = v : �r.Finally, the third case follows by induction and applying the rulesof selection.Proposition 4.11. If � ` hr; L = ei : � and L : � in � thenth1 � � ` e : �hr; L = eith2 � � ` hr; L = ei:L = e : �hr; L = eiProof. The proof proceeds by induction on the derivation of � ` hr; L = ei : �.There are then two cases to be considered.1) � ` hr; L = ei : h�1; L:�iWe are allowed to assume thati) � ` r : �1ii) � ` � : �1!type, andiii) � ` e : �r.

6. BASIC META-PROPERTIES OF THE CALCULUS 69We can use i) and iii) to get by rule of record object equalitythativ) � ` hr; L = ei = r : �1.Then � ` e : �hr; L = ei. Now, observe that the label L must nec-essarily be fresh in �1. Thus, we show the following derivation thatgives the proof of th2:� ` r : �1 � ` e : �r� ` hr; L = ei:L = e : �r L fresh in �1 ii) iv)� ` �r = �hr; L = ei : type� ` �r v �hr; L = ei� ` hr; L = ei:L = e : �hr; L = ei2) � ` hr; L = ei : �1 and � ` �1 v �Then, there exists a �eld L:�1 in �1 and � ` �1 v � : �1!type. Theinduction hypothesis gives thati) � ` e : �1hr; L = eiii) � ` hr; L = ei:L = e : �1hr; L = ei.Using the rules of subsumption we get the following derivations of th1and th2: i) � ` �1hr; L = ei v �hr; L = ei� ` e : �hr; L = eiii) � ` �1hr; L = ei v �hr; L = ei� ` hr; L = ei:L = e : �hr; L = eiProposition 4.12. If � ` hr; L1 = ei : �, L : � in � and L1 6= L thenth1 � � ` r:L : �hr; L1 = eith2 � � ` hr; L1 = ei:L = r:L : �hr; L1 = eiProof. The proof proceeds by induction on the derivation of � ` hr; L1 = ei : �.There are, then, two cases to be considered:1) � ` hr; L1 = ei : h�1; L1:�iWe are allowed to assume thati) � ` r : �1ii) � ` e : �1r.We can use i) and ii) to get, by record extension, thatiii) � ` hr; L1 = ei = r : �1.Now, observe that if L : � in � and L 6= L1, then we have thatL : � in �1. Therefore, by the rule of �elds we get that � ` � : �1!type.

70 4. FORMULATION OF THE EXTENDED THEORY WITH PARAMETERSThus, we can get the proofs of th1 and th2 by application of the rulesof selection and subsumption as follows:i)� ` r:L : �r L : � in �1 � ` �r v �hr; L1 = ei� ` r:L : �hr; L1 = eiiii)� ` hr; L1 = ei:L = r:L : �1hr; L1 = ei L : � in �12) � ` hr; L1 = ei : �1 and � ` �1 v �The proof is complete analogy to the one given for 2) in Proposi-tion 4.11.

CHAPTER 5The proof checker1. IntroductionIn this chapter we shall present an implementation of the algorithms for check-ing the formal correctness of judgements of the calculus presented in the previouschapter. Here we shall concentrate on the implementation of that basic framework,we do not consider neither inductively de�ned sets nor the let and use expressionsdescribed in chapter 2.In order to provide a complete description of the implemented system we ex-plain again the input expressions and forms of declaration that it accepts. Thenthe algorithms are presented and motivated. We enunciate and informally prove thesoundness of the algorithms under very strong assumptions, namely, that the reduc-tion of a (well-typed, in a general sense) expression is normalising. The decidabilityof the algorithm, therefore, also depends on this assumption. We have not provedthis property of normalization, but we are convinced that it could be done adaptingthe proof by Coquand for the system presented in [Coq91] or the one presented byGoguen in [Gog94]. 2. The systemA script for the type checker looks very much like one for a functional pro-gramming language. The syntax of input expressions is given by the grammar inFigure 5.1. e ::= x j c j [x]e j e1e2 j hi j he1; L = e2i j e:Le1!e2 j he1; L:e2iFigure 5.1. Syntax of input expressionsObserve then that parameters are not valid objects of the category of input expres-sions.The type checker reads (non recursive) declarations of the following form:T : type=�F (x : �) : type = �1c(x1 : �1; : : : ; xn : �n): � = ewith T , F and c constant names, x,x1; : : : ; xn variables and e, � and �1; : : : ;�nbelonging to the language of expressions above.71

72 5. THE PROOF CHECKERThe �rst one is called a type declaration. It allows to give an explicit de�nitionfor the type �.The second form of declaration is called a type family declaration. It expressesthe de�nition of the constant F as the type family [x]�1 over the type �. The indextype has to be made explicit in order for the declaration to be type checked.The third form of declaration allows the explicit de�nition, with name c, of anexpression [x1][x2] : : : [xn]e of type �1![x1](�2! : : : (�n![xn]�) : : :), with n � 0.The two �rst are the counterpart in the system to the nominal de�nitions oftypes and families of types introduced in chapter 2. The latter form of declarationis not present in the proof-assistant ALF.The third form of declaration corresponds to the so-called explicit de�nition ofa constant in ALF. We are considering neither de�nitions of inductive (families of)sets nor the implicit de�nition of constants, these latter usually de�ned using apattern-matching mechanism.Any declaration is checked under a current environment. Once the declarationD is checked to be correct, the environment is extended with it. Thereby, thede�niendum of D may occur in any declaration introduced after it.2.1. Valid declarations. In the following we will make explicit that declara-tions are checked in a given environment. We use for this a form of judgementE ` D, where E is a checking environment and D is one of the forms of declarationintroduced above.Definition 5.1 (Checking environment).A checking environment (E) is de�ned as a pair formed by a typed environment(�) and a context (�). A typed environment � is a dictionary of pairs of expressionsindexed by names of constants. A context � is a dictionary of expressions indexedby parameters.The environment part of a checking environment shall be denoted by E� andthe context part by E�.We introduce now some operations for a checking environment E .Definition 5.2.{ the function Dom returns all de�nienda from E�.{ E ; p:� is de�ned to be the updating of E� with index p and expression�.{ E + d : � = e is the updating of E� with index d and the pair (e; �).The veri�cation of the formal correctness of a declaration E ` D is de�ned bycases in D as follows:A form of declaration E ` T : type=� is valid if- T does not occur in � nor belongs to Dom E .1- checkType E � succeeds.We say that E ` F (x : �) : type = �1 is a valid declaration if1Actually, as � is checked to be a type in E it su�ces with controling the second condition tohold.

3. THE TYPE CHECKING ALGORITHM 73- F does not belong to Dom E.- checkType E � and checkTypeFam E [x]�1 � succeed.For a declaration E ` c(x1 : �1; : : : ; xn : �n): � = e to be valid it must holdthat - The constant c does not belong to Dom E.- checkType E �1![x1](�2! : : : (�n![xn]�) : : :) succeeds.- checkExp E [x1][x2] : : : [xn]e �1![x1](�2! : : : (�n![xn]�) : : :)succeeds.The procedures checkType, checkTypeFam and checkExp above perform the checking,in the environment E, that � is a type, [x]�1 is a type family over � and theexpression a is an object of type � respectively. They are de�ned in section 3. Aftera declaration D is checked, the updating of the checking environment E , if D is valid,is respectively de�ned to be- E + T : type = �,- E + F : �![x]type = [x]�1, and- E + c : �1![x1](�2! : : : (�n![xn]�) : : :) = [x1][x2] : : : [xn]eThese we call valid updatings of E�.3. The type checking algorithmWe now intend to give a precise formulation of the informal explanations inchapter 3 for checking the correctness of the judgement a : �. Recall that in thoseexplanations we were assuming that � was already known to be a type. Thus, weshall also formulate the algorithm for checking judgements of the form � : type andthereby also for judgements of the form � : �!type.In contrast to the input expressions accepted by the proof checker, the argumentsto the programs we shall de�ne may contain parameters. As anticipated, for checkingthat an abstraction [x]�1 is a type family over �, for instance, a fresh parameter,p say, is introduced in the context part of the enviroment in which the checkingis taking place and then we shall proceed by checking that �1[x := p] is a type.The language of expressions is then the one de�ned in chapter 4 with the followingextension: we shall use s to range over the set S whose elements are, for the timebeing, the distinguished constants Set and type, from now on called sorts. Both areconsidered well-formed expressions, but only the �rst may occur in a valid inputexpression.Now we proceed to introduce a function for computing the weak-head normalform of a well-formed expression. It could be grasped as the function implementingthe relation) presented in chapter 4. In addition, it shall, when needed, also unfoldconstants which have been introduced in the environment E . We make extensiveuse of this function in the algorithms we present below.3.1. Weak-head normalization. The de�nition of the function + is given inFigure 5.2. Due to the presence of constants in expressions, it also takes as argumentthe typed environment � of a checking environment E . We use e + � to denote itsapplication to expression e and environment �.

74 5. THE PROOF CHECKERp + � =def ps + � =def sc + � =def red� c �[x]e + � =def [x]e�!� + � =def �!�fe + � =def red� f e �where red� c � =def e + � if c : e = � in �red� f e � =def let f 0 = f + �in if f 0 = [x]f 00then f 00[x := e] + �else f 0eFigure 5.2. Weak-head normalizationDefinition 5.3.- An expression is in weak head normal form if it is either of the form [x]e,�!� or (ha1 : : : an), with n � 0 and h a parameter or a sort.- A top-level redex2 is an expression of the form (fa1 : : : an) where f is eitheran abstraction [x]e and n � 1 or a constant c (of arity n) and n � 0.The intuition is that if the value of e + � is the expression e0, then e0 is the re-sult of performing contractions of top-level redexes (if any) starting from e until aweak-head normal form is reached. Observe that due to the fact that we are goingto apply the function + to well-typed (in a wide sense) expressions we re�ne thecharacterization of weak head normal to the e�ect that h can only be a parameteror a sort.Notice that the order of evaluation is normal and no reduction is performedunder binders.3.2. Type checking in the original theory. We will now present algorithmsfor checking that an expression � is a type (checkType E �) and that an expres-sion a is an object of type � (checkExp E a �). As explained in chapter 3, theconstruction of these algorithms is intertwined with that of the algorithms for in-ferring the type of an expression(inferExp E f � �), checking conversion of types(typeConv E � �1) and conversion of objects (objConv E a b �).Each program below is presented by a set of rules of the form P1 : : : PnQ , wherethe premisses and the conclusion are either of the form P or P � v. The form Pshould be read as \the program P succeeds" and the form P � v as \P succeedswith value v". The general explanation of a rule is as follows: to compute theprogram Q, compute the premisses P1: : :Pn from left to right. For the computationof conclusion Q to succeed the computation of all the premisses must succeed. This2We borrowed this terminology from [Pey87].

3. THE TYPE CHECKING ALGORITHM 75approach for presenting the semantics of a program follows the one taken by B.Nordstr�om in [Nor].Some of the rules will also have a side condition, which can either be p fresh in E ,p : � in E , c : e = � in E or s 2 S. The three �rst should be read as \there is noentry for the parameter p in the context E�", \the lookup of p in E� yields �" and\the lookup of c in E� yields (e; �)".The success of the conclusion naturally also depends on the success of the sidecondition.To begin with, we shall now introduce the mutually de�ned programs checkTypeand checkTypeFam. We recall that they check whether the expression � is a typeand whether the expression � is a family of types over �, respectively.Program (checkType E �). This program is recursively de�ned by cases onthe form of the expression �. checkType E SetcheckType E � checkTypeFam E � �checkType E �!�inferExp E f � scheckType E f s 2 SObserve that in the last rule, f can only be a generalized application (the sorts is inferred) for the program to succeed. The checking of an object of type Setusing (sort) inference is a modi�cation of Magnusson's algorithm that works for setsde�ned �a la ALF as well. What really makes a di�erence is that the same procedurealso allows to check the correctness of type expressions formed out of constantsintroduced by type and type family declarations.Program (checkTypeFam E � �). This program is de�ned by cases on theexpression �. There exists only two possible forms of expression for a type family:it is either an abstraction or a constant introduced by a type family declaration. Itis assumed that E is a valid environment and that � has already been checked to bea type in this environment.checkType E ; p:� �1[x := p]checkTypeFam E [x]�1 � p fresh in EWe are assuming that the set P of parameters is in�nite; as expressions and contextsare �nite we can always choose a fresh one. Moreover, since parameters are notallowed in the input expressions, the expression �1 is independent of the parameter p.typeConv E �1 �checkTypeFam E F � F : e = �1![x]s in E; s 2 SThis rule expresses that once we know that an expression is a type family over acertain type �1 it is also the case that it is a family over any type � if �1 and � areconvertible types.

76 5. THE PROOF CHECKERProgram (checkExp E e �). This program is recursively de�ned by cases onthe expression e. It is assumed that E is valid and checkType E � succeeded.� + � � �1!� checkExp E ; p:�1 e[x := p] �pcheckExp E [x]e � p fresh in EinferExp E f � �1 typeConv E �1 �checkExp E f � �1 6= type; �1 6= �2![x]typeAs explained in the informal presentation of the algorithm, for checking that ageneralized application has type �, we infer its type, �1 say, and then check whether�1 and � are convertible types. The side condition prevents unnecessary conversioncheckings. This control will become more clear after we present the de�nition of thefunction inferExp.Program (inferExp E f � �). We recall the reading of this form of program:(the computation of the function) inferExp when applied to inputs E and f (if suc-ceeds) yields the expression �. This function is de�ned by cases on the expression f .inferExp E p � � p : � in EFor inferring the type of a parameter a lookup operation on the dictionary E� isperformed. inferExp E c � � c : e = � in EFor constants the lookup is performed on E�. Notice that the sort type and expres-sions of the form �![x]type are possible results.inferExp E f � � � + � � �1!� checkExp E e �1inferExp E fe � �eIn this rule there is a subtle point, already present in some rules above, that weconsider worth remarking. The type inferred for fe is �e. As � is a family of types,its ultimate de�niens will be of the form [x]�2. Then, when the weak-head normalform of the expression �e is computed , the substitution �2[x := e] will be performed.Now, recall that the substitution we are using does not prevent capture of variables.One may wonder then whether it is safe to use this operation in the programs weare presenting . Actually, it is possible to prove that for expressions � and e ifcheckType E � then � is a well-formed expression, and further, if checkExp E e �,the expressions e is also well-formed. Thus, no variable can be captured.Program (typeConv E �1 �2). This program is simultaneously de�ned withthe program whTypeConv.A remark is in place before we provide the rules de�ning the program typeConv.Observe �rst that the computation of typeConv E �1 �2 is triggered, for instance,by the rule that checks whether a generalized application f has a type �2. At thatpoint it is already known that �2 is a type, since this is a precondition for the programcheckExp. However, since the expression �1 is obtained as output of the function

3. THE TYPE CHECKING ALGORITHM 77inferExp, it could also be the sort type or an expression of the form �![x]type.However, the possibility has been ruled out for these forms of expressions to bearguments of the program typeConv.Let us now turn back to the de�nition of the program.First, it is checked whether the expressions are syntactically equal:typeConv E � �If this is not the case, both �1 and �2 are reduced to their corresponding weak-headnormal forms, which are in turn the input to the program whTypeConv. This latteris recursively de�ned by case analysis on the form of its arguments.�1 + � � �10 �2 + � � �20 whTypeConv E �10 �20typeConv E �1 �2whTypeConv E Set SetFor checking the convertibility of two function types it must be checked that thetypes and type families out of which they are formed are respectively convertible:typeConv E �1 �2 typeConv E; p:�1 �1p �2pwhTypeConv E �1!�1 �2!�2 p fresh in ENotice that once it is checked that �1 and �2 are convertible types it is correct toapply the family �2 to the parameter p which is declared as a generic object oftype �1.The following (and last) rule expresses that two ground types di�erent from thetype Set are convertible if they are as objects of type Set.objConv E �1 �2 SetwhTypeConv E �1 �2Program (objConv E a b �). According to the informal formulation of thisalgorithm, the checking that two objects of a certain type are convertible is recur-sively de�ned by cases on the form of the type. First, then, the weak-head normalform �1 of the type � is computed. Therefore, �1 must either be a function type ofthe form �!� or a ground type. This expression is, in turn, together with the ob-jects a and b, the input for the program whObjConv, which is simultaneously de�nedwith objConv. � + � � �1 whObjConv E a b �1objConv E a b �For checking that two objects of type �!� are convertible, check whether whenapplied to a fresh parameter p of type � they are convertible objects of type �p.Notice that this checking comprises both �- and �-conversion.objConv E; p:� fp gp �pwhObjConv E f g �!� p fresh in EObjects of a ground type are checked to be convertible as follows

78 5. THE PROOF CHECKERa + � � a1 b + � � b2 headConv E a1 b2 � �1 typeConv E �1 �whObjConv E a b �This rule merits some more discussion. It should be read as: two objects ofground type � are convertible if their corresponding weak-head normal forms arehead-convertible objects of a type �1, which in turn has to be convertible to thetype �.Now, observe that a1 and b1 are objects of a ground type, therefore they mustnecessarily be of the form of a generalized application. Furthermore, as both arein weak-head normal form, either they are parameters or applications whose headsare parameters. Thus, for checking the convertibility of a1 and b1 two cases must beconsidered: either they are both the same parameter or in the case they are objectsof the form fa2 and gb2, respectively, f and g are convertible objects of a functiontype �2!� and a2 and b2 are convertible objects of type �2. We can perform thislatter checking using the object conversion program only if we infer the type of oneof f and g (what we can do because they are generalized applications). We preferinstead to follow Magnusson's presentation for checking typed conversion of objectsand de�ne a function headConv which implements the procedure described above.Before we proceed with the formulation of headConv, we introduce a further rulefor the program objConv. Notice that the de�nition given so far does not consider,in principle, the form of the expressions a and b but of their common type �. Thiscould entail that in the case that a and b are syntactically equal a considerableamount of computations might be unnecessarily performed. Think, for instance, ofthe case when both a and b are the same constant f of type �!�. In order toimprove the e�ciency of the whole procedure of object conversion checking we thenalso formulate the rule objConv E a a �which acts as the formal counterpart of the reexivity rule of the equality of objectsof a certain type. Actually, this case should be the �rst considered in the de�nitionof the program objConv.Program (headConv E a b � �).headConv E p p � � p : � in EheadConv E f g � � � + � � �1!� objConv E a b �1headConv E fa gb � �aRemark . The whole procedure of conversion checking is e�cient in the sensethat in the case that objects are not convertible there is no need, in general, fortheir complete normalization. On the other hand, it will accept as convertible thoseobjects whose (full) normal forms are identical, up to �- and �-convertibility.

3. THE TYPE CHECKING ALGORITHM 79The de�nition of this latter program ends the formulation of the type checkingalgorithm for the original theory.3.3. Type checking in the extended theory. We shall now present the for-mulation of the type checking algorithm for the extended theory. In correspondenceto the explanations in section 2 of chapter 3 we will focus on the changes to be madefor considering those extensions in the de�nition of the programs.3.3.1. Valid Declarations. The only modi�cation to be introduced concerns theupdating of a checking environment E after a declaration D of one of the formsE ` T : type=� and E ` F (x : �) : type = �1 has been checked to be valid. In thecase that the ultimate de�niens of � (in the �rst declaration) and �1 is a type of theform h�; L:�i the (valid) extensions are de�ned to be E + T : record-type = � andE + F : �![x]record-type = [x]�1 respectively.The set S is now extended with the sort record-type.3.3.2. Weak-head normalization. The notions of weak-head normal form andtop-level redex are now de�ned as follows:Definition 5.4.- An expression is in weak-head normal form if it is either of the form [x]e,�!�0, hi, h�; L:�i, he; L = e0i or (h:L1 : : : Ll a1 : : : am):K1 : : : Kn with l, mand n � 0 and h a parameter or a sort.- A top-level redex is an expression of the form (fa1 : : : an) where f is either anabstraction [x]e and n � 1, a constant c (of arity n) and n � 0 or a selectionhe; L1 = e0i:L2.The reformulation of the function + is given in Figure 5.3.Two new forms of side condition are now involved in the rules: L fresh in � andL : � in �. They should be read as \the label L does not occur in the �elds of �"and \there exists a �eld declaration L:� in the record type �" respectively.For the sake of comprehensiveness we repeat (for each program) the rules pre-sented in section 3.2, making, in most of the cases, no further comment.Program (checkType E �).checkType E SetcheckType E � checkTypeFam E � �checkType E �!�inferExp E f � scheckType E f s 2 SDue to the new form of valid extensions introduced above and considering thatthe set S was extended with the sort record-type, if the ultimate de�niens of ageneralized application f is a record form then it is a valid type expression. As torecord types we now introduce the following rules:checkType E hi

80 5. THE PROOF CHECKERp + � =def ps + � =def sc + � =def red� c �[x]e + � =def [x]ehi + � =def hihe; L = e0i + � =def he; L = e0i�!� + � =def �!�h�; L:�i + � =def h�; L:�ife + � =def red� f e �r:L1 + � =def red� r L1 �where red� c � =def e + � if c : e = � in �red� f e � =def let f 0 = f + �in if f 0 = [x]f 00then f 00[x := e] + �else f 0ered� r L1 � =def let r0 = r + �in if r0 = hr00; L2 = eithen if L1 = L2then e + �else red� r00 L1 �else r0:L1Figure 5.3. Weak-head normalization revisitedcheckRecType E h�; L:�icheckType E h�; L:�iAs previously explained in section 4 of chapter 2, it is in the nature of a record typefor its formation to be explained both as a type and as a record formation. Forh�; L:�i to be a record type it has to be checked that � is also a record type, notjust a type. Now, in the presence of type and type family declarations � may alsoeither be a de�ned constant R or the result of applying a record family to an objectof the index type of this family. The preceding considerations then give rise to thefollowing formulation of the procedure checkRecType:Program (checkRecType E �). This program is recursively de�ned on theform of � and it is assumed that E is valid.checkRecType E hicheckRecType E � checkTypeFam E � �checkRecType E h�; L:�i L fresh in �

3. THE TYPE CHECKING ALGORITHM 81inferExp E � � record-typecheckRecType E �Program (checkTypeFam E � �).checkType E ; p:� �1[x := p]checkTypeFam E [x]�1 � p fresh in EtypeIncl E � �1checkTypeFam E F � F : e = �1![x]s in E; s 2 SNotice that now, because of the extension of the set S, this rule subsumes the caseof record families. Besides, it is checked whether � is a subtype of �1 instead ofchecking for their convertibility.Program (checkExp E a �).� + � � �1!� checkExp E ; p:�1 e[x := p] �pcheckExp E [x]e � p fresh in E� + � � hicheckExp E hi �We make an overloaded use of hi to denote both the empty record object and recordtype. � + � � h�1; L:�i checkExp E r �1 checkExp E e �rcheckExp E hr; L = ei �According to the explanations in section 2, for checking that a generalized selectionhas type �, we �rst infer its type, �1 say, and then check whether it is a subtypeof �. inferExp E f � �1 typeIncl E �1 �checkExp E f � �1 6= t; �1 6= �2![x]t; t 2 ftype; record-typegWe explain now why this de�nition of checkExp corresponds to the restrictivemethod formulated in section 2 of chapter 3. Observe �rst, that the rule abovefor checking record object extensions rejects undeclared labels. It requires that thelabels of the plain �elds of an object are declared in the intended type. As thislatter, in turn, has previously been checked to be a record type, there is no risk formultiple declarations of the same label in it. On the other hand, notice that checkingwhether an extension of the form hf; L1 = e1; : : : ; Ln = eni has a certain type � isimplemented by n applications of that same rule and then the rule for checkinggeneralized selections (the last one) is applied. The whole procedure for checkingrecord extensions can, naturally, be implemented in a much more e�cient way. Forthe sake of clarity, however, we prefer this presentation which, in addition, will allowto simplify the proofs when reasoning about the correctness of the algorithm.

82 5. THE PROOF CHECKERProgram (inferExp E a � �).inferExp E p � � p : � in EinferExp E c � � c : e = � in EinferExp E f � � � + � � �1!� checkExp E e �1inferExp E fe � �eThis function is extended with the following rule in order to consider selectionsinferExp E r � �inferExp E r:L � �r L : � in �Program (typeIncl E � �0). The program typeConv is now replaced by theprogram typeIncl, which is simultaneously de�ned with whTypeIncl.typeIncl E � ��1 + � � �10 �2 + � � �20 whTypeIncl E �10 �20typeIncl E �1 �2The explanation of these rules is analogous to the one given for the two �rstrules in the de�nition of typeConvwhTypeIncl E Set SetThe rule for checking the inclusion of two function types is also similar to the onefor checking whether they are convertible. However, it must also take into accountthat the type former ! is contravariant on the index type.typeIncl E �2 �1 typeIncl E; p:�2 �1p �2pwhTypeIncl E �1!�1 �2!�2 p fresh in EThe following two rules directly implement the explanation for two record formsto be in the inclusion relation: whTypeIncl E � hitypeIncl E �1 �2 typeIncl E; p:�1 �1p �2pwhTypeIncl E �1 h�2; L:�2i L : �1 in �1Finally, for two ground types di�erent from the type Set it is checked whetherthey are convertible objects of this latter typeobjConv E �1 �2 SetwhTypeIncl E �1 �2It is clear from the former rule that two ground types are accepted to be in theinclusion relation only if they are de�nitionally equal. We have not explored a moresophisticated treatment for this case. Yet, it seems quite reasonable to expect that amechanism of subtyping for ground types could, in a modular way, be incorporatedto typeIncl by just modifying the premiss of the last rule above.

3. THE TYPE CHECKING ALGORITHM 83The whole de�nition of the program typeIncl follows exactly the informal explana-tions for checking that two types are in the inclusion relation. It is not di�cult tosee that type conversion is subsumed by type inclusion. Moreover, it can be provedthat checking for type inclusion instead of type conversion is conservative in thesense that if �1 and �2 belong to the language of expressions de�ned in section 3.2and typeIncl E �1 �2 succeeds then so does typeConv E �1 �2.Program (objConv E a b �).objConv E a a �� + � � �1 whObjConv E a b �1objConv E a b �objConv E; p:� fp gp �pwhObjConv E f g �!� p fresh in EThe rules below for checking that two objects of a record type are convertibleare, also, a direct implementation of the informal procedure described in chapter 3for checking the equality of two objects of a given record type: for checking thattwo objects of a record type are convertible, check whether the selections of everylabel of the record type in question from the objects are convertible.whObjConv E r s hiobjConv E r s � objConv E r:L s:L �rwhObjConv E r s h�; L:�ia + � � a1 b + � � b2 headConv E a1 b2 � �1 typeIncl E �1 �whObjConv E a b �For checking that two generalized selections a1 and b1 in weak-head normal formare convertible objects of a ground type , we must now consider that they can alsobe of the form r:L1 and s:L2 respectively. What must be checked then is whetherL1 = L2 and that r and s are head-convertible objects of some type �. Observe alsothat �1 is checked to be a subtype of �.Program (headConv E a b � �).headConv E p p � � p : � in EheadConv E f g � � � + � � �1!� objConv E a b �1headConv E fa gb � �aFinally, we extend the program headConv with the ruleheadConv E r s � �headConv E r:L s:L � �r L : � in �

84 5. THE PROOF CHECKER4. Correctness of the algorithmWe now proceed to give an informal proof of the soundness of the algorithm withrespect to the calculus presented in chapter 4. The programs and functions that thewhole algorithm embodies are de�ned to work on a checking environment. However,the forms of judgement of the calculus are not de�ned as to explicitly consider thatjudgements can be made under a set of constant declarations, or more formally, inthe presence of nominal de�nition of constants. This is the approach taken by Severiin [Sev96] where a formulation of PTS with de�nitions is presented. Magnusson, onthe other hand, for the correctness proofs of the algorithms presented in [Mag95]just assume that such a set of declarations has a formal counterpart in CES, thecalculus whose forms of judgement are mechanically veri�ed by those algorithms.We preferred to follow the tradition of presenting the calculus without explicitlyintroducing the notion of a set of nominal de�nitions. However, we do not wantto leave unattended the role played by the typed environment when reasoning onthe correctness of the procedures we have de�ned to check the formal correctnessof judgements of the calculus in question. Thus, we shall prove, for instance that ifcheckType (�;�) � succeeded then it holds that ��� ` ��� : type. The function [�]��performs the unfolding of the constants declared in � which occur in its argument(in the case of a context �, recursively unfolds the (type) expressions associated tothe parameters declared in it).We now �rst turn to de�ne this latter function. A few propositions, in addition,are also enunciated and some of them proved.4.1. Unfolding and basic properties. The de�nition of the function , whichwe show in Figure 5.4, is much in the spirit of the projection mapping introduced inchapter 11 of Severi's thesis [Sev96].It is possible to prove that the unfolding function on expressions terminates. Forthis it is crucial the fact that no recursive declarations of constants are allowed in thetyped environment �. A measure yielding a natural number can be de�ned, C(�; e)say, which decreases when the function is used. This measure computes the numberof constants replaced in the expression e when the unfolding of this expression isperformed with environment �.We now introduce the followingDefinition 5.5.- a typed environment is valid if it is either fg or the result of performing avalid updating on a valid environment �.- a context is valid w.r.t. a typed environment � if it is either [] or the resultof updating a valid context � w.r.t. � with index p and expressions �, p is afresh parameter for � and ��� ` ��� : type.- A checking environment E is valid if E� is valid and E� is valid w.r.t. E�.By being fresh we mean that there is no entry corresponding to the index p in �.Remark . When the system starts, its checking environment E is initializedto be the pair (fg,[]). By construction then E is valid. When the checking of a

4. CORRECTNESS OF THE ALGORITHM 85unfolding of contexts:[]�� =def [] (�; p:�)�� =def ���; p:���unfolding of expressions:x�� =def xp�� =def ps�� =def sc�� =def e��1 with � = �1; c : � = e; �2=def c otherwise([x]e)�� =def [x]e��hi�� =def hihe1; L = e2i�� =def he1��; L = e2��i(�!�)�� =def ���!���h�; L:�i�� =def h���; L:���i(fe)�� =def f ��e��(r:L)�� =def r��:LFigure 5.4. Unfoldingdeclaration begins E� is always []. We shall see that in the algorithms presentedin the previous section, all the extensions we have made of the context preserve itsvalidity, as above de�ned.Proposition 5.1. Let T be S � fSetg and � be a valid typed environment.If d is a constant such that � = �1; d : � = e; �2 then either1) � 2 T and checkType (�1; []) e succeeded,2) � = �![x]t, t 2 T , checkType (�1; []) � andcheckTypeFam (�1; []) e � succeeded, or3) checkType (�1; []) � and checkExp (�1; []) e � succeeded.Proof. This follows by de�nition of valid typed environmentProposition 5.2. Let � be a valid typed environment, e1 and e2 two expressionsand x any variable.Then (e1[x := e2])�� = e1��[x := e2��].Proof. The proof is done by structural induction on the expression e1. Weshow here the cases when it is either a constant, a variable or an abstraction.e1 = y .. We now proceed by cases on y = x.y = x . Both expressions reduce to e2��.y 6= x . Both expressions reduce to y.e1 = c . We �rst consider the case when c is declared in the environmentE . By de�nition of substitution we have �rst that (c[x := e2])�� is equal to

86 5. THE PROOF CHECKERc��. Thus, by de�nition of unfolding, this expression in turn reduces to e��, ifc = e : � in E . On the other hand, c��[x := e2] is equal to e��[x := e2]. Now,by Proposition 5.1 and de�nition of the checking programs we know that eis well-formed, therefore e�� is also well-formed. Thus, by Proposition 4.1,the substitution e��[x := e2] can not have e�ect. Therefore, e��[x := e2] is alsoequal to e��.The case in that c does not belong to E is trivial.e1 = [y]f . The proof proceed by cases on y = x.y = x . By de�nition of substitution we �rst have that (([x]f)[x := e2])��is equal to ([x]f)��, which in turn is equal to [x]f ��. On the other hand,it is not di�cult to see that the expression ([x]f ��)[x := e2��] also reducesto [x]f ��.y 6= x . By de�nition of substitution and unfolding we have that theexpression (([y]f)[x := e2])�� reduces to [y](f [x := e2])��. On the otherhand, ([y]f)��[x := e2��] reduces to [y](f ��[x := e2��]). Then, we can applyinduction to get that both abstractions are equal.We now digress to discuss the issue of the termination of the algorithm of typechecking presented in the previous section.In contrast to the usual presentation of this kind of algorithms, we have used arecursively de�ned function to compute the weak head normal form of well-typedexpressions. Actually, the de�nition given in Figure 4.8 of section 3.3 is a slightlymodi�ed version of its corresponding de�nition in Haskell [Pet96]. In accordancewith this, then, when de�ning the semantics of our programs we explicitly introducedthe termination requirement for the whole checking procedure to succeed.There is, in principle, no need for proving that the function + is normalizingon types and objects of certain types, for being able to give a proof of soundnessof the algorithm. This is not the case if we want to establish its decidability. Wehave already pointed out in chapter 3, and it is also clear from the de�nition ofthe programs, that the whole process of type checking is ultimately reduced to thechecking of object conversion, which in turn, for being succesful, needs to completelynormalize its arguments.We could have, on the other hand, de�ned an inductive reduction relation, whichwe show in Figure 5.5, which extends the relation) introduced in chapter 4 toconsider the unfolding of constants present in the typed environment. Therefore,any premiss of the form e1 � e2 would be replaced by one of the form e1 �) e2.But then, we would place ourselves in the situation that what we are de�ning, whenintroducing checkExp E e for instance, is closer to an inductively de�ned predicateon expressions than a program. This latter approach is particularly useful if onewants to carry out proofs as the one we shall present in the next section, becausethen we can apply the natural induction principles that can be obtained from thede�nition of the relations in question.

4. CORRECTNESS OF THE ALGORITHM 87We shall need, in particular, to characterize the interplay of the function + withthe relation). More precisely, we need the followingClaim 1. Given a well-formed expression e1, and a valid typed environment �,If e1 + � � e2 then e1 �) e2.It is quite easy to prove, on the other hand, by induction on the derivationof e1 �) e2, that if e1 �) e2 then e1��) e2��. Therefore, we will understand, in theproofs that follows, that an assumption of the form e1 + � � e2 amounts to one ofthe form e1��) e2��.4.2. Soundness.Proposition 5.3. Let E be the valid checking environment (�;�). Then it holdsthat ��� context.Proof. By induction on the de�nition of valid typed environment.� = [] . Trivial� = �1; p:� . By de�nition of valid checking environment we know that (�,�1)is also valid, that p is fresh for the latter context and that �1�� ` ��� : type.Then, by induction, �1�� context and we also have that p is also fresh for itby de�nition of unfolding. Thus, by rule of context formation we get that�1��; p:��� is a context.Proposition 5.4. Let E be the valid checking environment (�;�),th1 � if checkType E � then ��� ` ��� : typeth2 � if checkRecType E � then ��� ` ��� : record-typeth3 � if checkType E � and checkTypeFam E � �then ��� ` ��� : ���!type.th4 � if ��� ` ��� : type and checkExp E a �then ��� ` a�� : ���.th5 � if inferExp E f � � then eitheri) ��� ` ��� : type and ��� ` f �� : ���,ii) � 2 T and ��� ` f �� : � oriii) � = �1![x]t, t 2 T and ��� ` f �� : �1��![x]tProof. The proof is done by simultaneous induction on the de�nitions of theprograms involved in the proposition.th1 .� = Set . Assume checkType E Set.

88 5. THE PROOF CHECKERp �) pSet �) Set�!� �) �!�hi �) hih�; L:�i �) h�; L:�i[x]e �) [x]ehr; L = ei �) hr; L = eie �1) vc �) v � = �1; c : � = e; �2f �) [x]e e[x := a] �) vfa �) vf �) f1fa �) f1a f1 6= [x]er �) hr1; L1 = ei e �) vr:L �) v L = L1r �) hr1; L1 = ei r1:L �) vr:L �) v L 6= L1r �) r1r:L �) r1:L r1 6= hr2; L2 = eiFigure 5.5. Weak head reduction relation in a typed environmentThen, as ��� context we have that ��� ` Set : type by type formation andthinning.� = �1!� . Assume checkType E �1!�.Then we know that

4. CORRECTNESS OF THE ALGORITHM 89i) checkType E �1ii) checkTypeFam E � �1We can apply induction to get both that ��� ` ��� : type and also that��� ` ��� : ���!type. Then by function type formation we can derivethat ��� ` �1��!��� : type.� = f . Assume checkType E f .We know then that inferExp E f � s and s 2 S. Thus, in the casethat s is the sort Set, by th5 we know that ��� ` f �� : Set. Therefore,by type formation we obtain that ��� ` f �� : type. Otherwise, s is eitherthe sort type or record-type. Thus, th5 gives either ��� ` f �� : type or��� ` f �� : record-type respectively.� = hi . Analogous to the case Set.� = h�; L:�i . Assume checkType E h�; L:�i.Then we know that checkRecType E h�; L:�i. By th2 we know that��� ` h���; L:���i : record-type. Thus, from type formation for recordtypes follows the desired conclusion.th2 .� = hi . Trivial.� = h�; L:�i . Assume that checkRecType E h�; L:�i.Then we know that checkRecType E � and checkTypeFam E � �, andmoreover, L fresh in �. .Induction gives that ��� ` ��� : record-type and, furthermore, th2 givesthat ��� ` ��� : ���!type. The second rule of record type formation canthen be applied because L is also fresh for ��� by de�nition of unfolding.� = f . Assume checkRecType E f .We know then that inferExp E f � record-type. By th6 we get that��� ` f �� : record-type.th3 .� = [x]�1 . Assume checkType E � and checkTypeFam E [x]�1 �.We know then that checkType E; p:� �1[x := p]. In the �rst place, asp is a fresh parameter and checkType E � by hypothesis we have thatE ; p:� is a valid environment. Observe that this latter checking envi-ronment is equal to (�,�; p:�). Thus, by Proposition 5.3 , de�nition ofunfolding for contexts and th1 we get that ���; p:��� ` �1[x := p]�� : type.We can use Proposition 5.2 to get that the latter type is equal to�1��[x := p]. Finally, the rule for type family formation can then beapplied to get that ��� ` [x]�1�� : ���!type.

90 5. THE PROOF CHECKER� = F . Assume that checkTypeFam E F �.We know then typeIncl E �1 � and further, that F : �1![x]s = e isa declaration in E . Thus, by Proposition 5.1 we have that for a typedenvironment �1 included in �. checkTypeFam (�1; []) e �1, On theother hand by Proposition 5.5 we also know that ��� ` �1�� v ���. Wecan then apply induction to get, �rst, that ��� ` e�� : �1��!type. Finally,the rule of subtyping for families gives that ��� ` e�� : ���!typeth4 .a = [x]e . Assume that checkExp E [x]e �.Then we know thati) � + E = !�ii) checkExp E; p: e[x := p] �p, with p a fresh parameter.By claim in the previous section we have that ���) ��!���. Now,by Proposition 4.9 we have that ��� ` ��!��� : type, and moreover,that ��� ` ��� = ��!��� : type From the former, in turn, we get that��� ` �� : type and also that ��� ` ��� : ��!type. We can then use in-duction hypothesis to get that ��� ` e[x := p]�� : �p��. We show belowthe derivation that ��� ` [x]e�� : ��!���.���; p:�� ` e[x := p]�� : �p�����; p:�� ` e��[x := p] : ���x[x := p]��� ` [x]e�� : ��![x]�x ��� ` ��![x]���x = ��!��� : type��� ` ��![x]���x v ��!������ ` [x]e�� : ��!���In the uppermost step of derivation in the left branch we have usedProposition 5.2 for obtaining the object and that � is independent ofp and Proposition 4.2 for obtaining the type. The leaf judgement ofthe right branch was shown to hold chapter 4. Finally, then, we canuse subsumption, due to the equality of ��� and ��!��� to obtain that��� ` [x]e�� : ���.a = hi . Trivial.a = hr; L = ei . Assume that checkExp E hr; L = ei : Then we havethati) � + E = h�; L:�iii) checkExp E r �iii) checkExp E e �rWe can use the claim again to get that ���) h���; L:���i. By a similarreasoning as above we get that ��� ` ��� : type and ��� ` ��� : ���!type.

4. CORRECTNESS OF THE ALGORITHM 91Induction then gives that ��� ` r�� : ��� and therefore ��� ` ���r�� : type.Thus, we can again use induction to get ��� ` e�� : ���r��. Finally, we canapply the rule of record object extension to get the desired conclusion.a = f . With the expresion f we mean here a generalized selection.Assume then that checkExp E f �.Therefore we can assume thati) inferExp E f � �1ii) typeIncl E �1 �iii) �1 62 Sand �1 6= �2![x]tThen th6 says that it must be the case that ��� ` �1�� : type, and more-over, that ��� ` f �� : �1��. Then, as Proposition 5.5 below gives that��� ` �1�� v ��� we �nally can apply the rule of subsumption to get that��� ` f �� : ���.th5 .f = p . Assume that inferExp E p � �.We have the side condition p : � in �. On the one hand, then, we haveby Proposition 5.3 that ��� context. It is easy to see, by de�nition of un-folding, that p : ��� in ���. Thus, by general rule and rule of assumptionwe obtain that ��� ` ��� : type and ��� ` p : ���.f = c . Assume that inferExp E p � �. We know then that � =�1; c : � = e; �1. By de�nition of valid environment we know that �1 isalso valid, then we can use Proposition 5.1 and induction.f = ge . Assume inferExp E ge � �e.We know then thati) inferExp E ge � �ii) � + � = �1!�iii) checkExp E e �1We will assume that ��� ` �1�� : type in order to apply th5 using iii)and have at hand that ��� ` a�� : �1��. We shall make sure that thisassumption is valid. We then �rst apply induction with i), and nowproceed by case analysis1) We have that ��� ` ��� : type and ��� ` f �� : ���.By claim then we get that ���) �1��!���, and further, byProposition 4.9 ��� ` �1��!��� : type. From the latter we alsoknow that ��� ` �1�� : type and ��� ` ��� : �1��!type. Thus,by application rules we �nally get that ��� ` ���a�� : type and��� ` f ��a�� : ���a��.

92 5. THE PROOF CHECKER2) This is an impossible case. It cannot be both that � 2 T and� + � = �1!�.3) We have that � = �2![x]t and ��� ` f �� : �2��!type. Fromthis we know that ��� ` �2�� : type. By ii) and de�nition of +we get then that �1 = �2 and that � = [x]t. From the formerwe also get then that ��� ` �1�� : type. Thus, �a = t, andthereby it belongs to T . Finally, application rule for familiesgives that ��� ` f ��a�� : type.f = r:L . Assume inferExp E r:L � �r.We then know thati) inferExp E r � �ii) L : � in �Induction on i) gives only one possible case, namely, that ��� ` ��� : typeand ��� ` r�� : ���. This is because we know that for ii) to hold, � mustbe a record form, and so must ���, by de�nition of unfolding. Moreoverwe also know that L : ��� in ��� (unfolding preserves the structure of theexpressions). Then by rule of �elds we have that ��� ` ��� : ���!type,we can then apply the rule of selection to achieve that ��� ` r��:L : ���r��.Proposition 5.5. Let E be the valid environment (�;�) and let us assume- ��� ` �1�� : type and ��� ` �2�� : type for the cases th1 and th2.- ��� ` ��� : type, ��� ` a�� : ��� and ��� ` b�� : ��� for the cases th3 and th4.th1 � If typeIncl E �1 �2 then ��� ` �1�� v �2��th2 � If whTypeIncl E �1 �2 then ��� ` �1�� v �2��th3 � If objConv E a b � then ��� ` a�� = b�� : ���th4 � If whObjConv E a b � then ��� ` a�� = b�� : ���th5 � If headConv E a b � �then ��� ` � �� : type and ��� ` a�� = b�� : � ��Proof. This proof is by simultaneous induction on the de�nition of the pro-grams and functions above.th1 . . Assume typeIncl E � �.Then ��� ` ��� v ��� by reexivity.. Assume typeIncl E �1 �2. We know then thati) �1 + E = �10ii) �2 + E = �20

4. CORRECTNESS OF THE ALGORITHM 93iii) whTypeIncl E �10 �20By the claim we have then that �1��) (�10)�� and also that�2��) (�20)��. Thus by Proposition 4.9 we have thativ) ��� ` (�10)�� : type and ��� ` �1 = (�10)�� : typev) ��� ` (�20)�� : type and ��� ` �2 = (�20)�� : typeand induction gives thatvi) ��� ` (�10)�� v (�20)��From iv) we get that ��� ` �1�� v (�10)��. This latter andvi) give that ��� ` �1�� v (�20)�� by transitivity. From v),we have, �rst, that ��� ` (�20)�� = �2�� : type, by symmetry oftype equality, and thus ��� ` (�20)�� v �2��.Finally, then, again using transitivity of type inclusion, we getthat ��� ` �1�� v �2��.th2 . . Assume whTypeIncl E �1!�1 �2!�2.We are allowed to assume then thati) typeIncl E �2 �1ii) typeIncl E; p:�2 �1p �2p, with p a fresh parameter.We know by hypothesis that ��� ` �1��!�1�� : type and alsothat ��� ` �2��!�2�� : type. Then, in particular we know that��� ` �1�� : type, ��� ` �2�� : type, ��� ` �1�� : �1��!type and��� ` �2�� : �2��!type. Therefore, in the �rst place, the envi-ronment E; p:�2 is valid, and further, �1��p and �2��p are typesunder ���. Thus we can apply induction to get thatiii) ��� ` �2�� v �1��iv) ���; p:�2�� ` �1��p v �2��p.Actually, that �1��p is a type can be derived after iii) and subtyp-ing for families. As done for equality of families of types, it is pos-sible to justify a rule of \extensionality" for the inclusion of familyof types. Thereby, from iv) we get that ��� ` �1�� v �2�� : �2��!type.Then, we can apply the rule of function type inclusion to get that��� ` �1��!�1�� v �2��!�2��.. Assume whTypeIncl E � hi.Then we apply the �rst rule of record types inclusion.. Assume whTypeIncl E �1 h�2; L:�2i.We know then thati) typeIncl E �1 �2

94 5. THE PROOF CHECKERii) typeIncl E; p:�1 �1p �2p, with p fresh and L : �1 in �1The rest of the proof is completely analogous to the one for functiontypes but using as the last step of derivation the second rule of recordtypes inclusion.. Assume whTypeIncl E �1 �2.We know then that objConv E �1 �2 Set.Induction 3 then gives that ��� ` �1�� = �2�� : Set. We can then constructthe following derivation:��� ` �1�� = �2�� : Set��� ` �1�� = �2�� : type��� ` �1�� v �2��th3 . . Assume objConv E a a �.Then ��� ` a�� = a�� : ��� by reexivity.. Assume objConv E a b �. We know then thati) � + E = �1ii) whObjConv E a b �1By i), claim and Proposition 4.9 we know that ��� ` ��� = �1�� : type.Thus, by symmetry of type equality and inclusion from identity we havethat ��� ` �1�� v ���. Induction on ii) gives that ��� ` a�� = b�� : �1��.Finally, the second rule of subsumption gives that ��� ` a�� = b�� : ���.th4 . . Assume whObjConv E f g �!�.We can, then, in turn, assume that objConv E ; p:� fp gp ; with p afresh parameter. As ��� ` ���!��� : type, we know that ��� is a typefamily over the type ���. Therefore we have that ���; p:��� ` ���p : type.Moreover, we also have that ��� ` f ��p : ���p and ��� ` g��p : ���p. We canthen use induction to obtain that ���; p:��� ` f ��p = g��p : ���p. Thereby,the rule of extensionality for function objects can be applied to �nallyget that ��� ` f �� = g�� : ���!���.. Assume whObjConv E r s hi.The �rst rule of record objects equality gives directly ��� ` r�� = s�� : hi. Assume whObjConv E r s h�; L:�i. We have thati) objConv E r s �3In order to apply induction we need to know that both are objects of type Set! Observethat both �1 and �2 are in weak head normal form and we know that their respective unfoldingsare types di�erent from a record and a function type, thus necessarily they have to be objects oftype Set.

4. CORRECTNESS OF THE ALGORITHM 95ii) objConv E r:L s:L �rAs we know that ��� ` h���; L:���i : record-type we are allowed to assumethat ��� ` ��� : record-type and ��� ` ��� : ���!type. Then, in particu-lar we know that ��� ` ���r�� : type. By hypothesis and rule of selectionwe also know that both r��:L and s��:L are objects of type ���r un-der ���. Now, by induction then we get that ��� ` r�� = s�� : ��� and��� ` r��:L = s��:L : ���r��.These latter are the premisses needed to apply the second rule of recordobject equality to derive that ��� ` r�� = s�� : h���; L:���i.. Assume whObjConv E a b �.We then know thati) a + E = a1ii) b + E = b1iii) headConv E a1 b1 � �1iv) typeIncl E �1 �We now use the claim and Proposition 4.10 to get thatv) ��� ` a1�� : ��� and ��� ` a�� = a1�� : ���vi) ��� ` b1�� : ��� and ��� ` b�� = b1�� : ���From iii) and induction we get thatvii) ��� ` �1�� : type and ��� ` a1�� = b1�� : �1��As both ��� and �1�� are types under ��� we get also by andiv) and th1 thatviii) ��� ` �1�� v ���We can then use the second rule of subsumption with premisses vii)and viii) to get as result that ��� ` a1�� = b1�� : ���. Finally then, bysymmetry and transitivity of object equality, v) and vi) we get that��� ` a�� = b�� : ���.th5 . . Assume headConv E p p � �. Then we have that p : � in �. A sim-ilar argument as in th5 in Proposition 5.4 gives that ��� ` ��� : type and��� ` p : ���. From the latter, in turn, we obtain that ��� ` p = p : ���.. Assume headConv E fa gb � �a. Then we know thati) headConv E f g � �ii) � + E = �1!�iii) objConv E a b �1

96 5. THE PROOF CHECKERBy i) and induction we obtain thativ) ��� ` ��� : typev) ��� ` f �� = g�� : ���Now, ii) and Proposition 4.9 give thatvi) ��� ` �1��!��� : type and ��� ` ��� = �1��!��� : typeTherefore, we are allowed to assume that ��� ` �1�� : type and��� ` ��� : �1��!type. Moreover, from v), vi) and subsump-tion we obtain thatvii) ��� ` f �� = g�� : �1!�Induction hypothesis and iii) give that ��� ` a�� = b�� : �1��. Thus, bythe rule of application , ��� ` f ��a�� = g��b�� : ���a��. We also have that��� ` ���a�� : type.. Assume headConv E r:L s:L � �r. Then we know thati) headConv E r s � �ii) L : � in �Induction hypothesis gives that ��� ` ��� : type and ��� ` r�� = s�� : ���.As L : � in �, the type ��� must necessarily be a record type. Moreover,by the rule of �elds, we get that ��� ` ��� : ���!type. Then ���r�� is atype under ���.Finally rule of selection gives that ��� ` r��:L = s��:L : ���r��.5. Implementation of the proof checkerThe proof checker described in previous sections has been implemented on ma-chine. The programming language used is Haskell 1.3, and the code has been com-piled using Chalmers Haskell-B, the compiler implemented by L. Augustsson atChalmers University of Technology [Aug97].The general design and implementation of the system follows the approach takenin the recent years by the implementation group of the Programming Logic group atthe Department of Computing Science at the same university. That is to say, thereis a basic kernel constituted by the type checking algorithm, and on top of that aninteractive system is built up that helps the user in the process of proof construction.In our case the help amounts to very simple commands mostly oriented to obtaininformation from the proof environment and to the checking of declarations. It isalso possible to type check �les of declaration in a batch fashion. Furthermore, wehave also adopted the methodology of developing a completely pure functional code.In particular, the state of the system is implemented as a simple monad, in the senseof [Wad92], which has associated a basic set of combinators that allow to accessand update the state components. The type checking monad, is just a combination

5. IMPLEMENTATION OF THE PROOF CHECKER 97of a state and error monad, which also interacts with a parsing monad, this latterimplemented along the lines of [Bur75, Hut92, R�oj95]. Our code greatly bene�tedfrom the one developed for an early implementation of Half, a successor of ALF, byThierry Coquand and Bj�orn von Sydow, and also from an experimental type checkerfor the framework extended with dependent pairs implemented in collaboration withDaniel Fridlender.In what follows we shall give a avour of the implemented code, (partially)describing the monads referred to above to �nally end up showing the part of thetype checking function, checkExp, concerned with the checking of abstractions.data E a = Error String | Val ainstance Monad E where(Val x) >>= k = k x(Error s) >>= _ = Error sreturn = ValFigure 5.6. Error monad
data STE s a = STE (s -> E (a,s))funOfSTE (STE f) = finstance Monad (STE s) where(STE f) >>= g = STE (\s -> f s >>= \(a,s') -> funOfSTE (g a) s')return = \a -> STE (\s -> return (a,s))getSTE :: STE s sgetSTE = STE (\s -> return (s,s))putSTE :: s -> STE s ()putSTE s = STE (_ -> return ((),s))updateSTE :: (s -> s) -> STE s ()updateSTE f = getSTE >>= (putSTE . f)Figure 5.7. State-error monad

98 5. THE PROOF CHECKERtype CheckState = (Ctxt,Env,Par,...)getCtxtParamChSt (c,_,i,_,_) = (c,i)putParamChSt i (c,e,_,...) = (c,e,i,...)putCtxtChSt c (_,e,i,...) = (c,e,i,...)Figure 5.8. Checking statetype ChM a = STE CheckState aselectChM :: (CheckState -> a) -> ChM aselectChM acc =dochst <- getSTEreturn (acc chst)getCtxtParamChM =do(c,i) <- selectChM getCtxtParamChStputParamChM (i+1)return (c,i)updateChM :: (a -> CheckState -> CheckState) -> a -> ChM ()updateChM f = updateSTE . fputCtxtChM = updateChM putCtxChStFigure 5.9. Checking monadIn Figure 5.6 we show the de�nition of the monad E, which is used for handlingand raising errors. First a parameterized data type with two constructors is de�ned.It is almost the same as the primitive type Maybe, with the di�erence that in caseof errors a string for providing a message is also considered. Then, this data type isdeclared as an instance of the primitive class Monad, by providing the implementa-tion for the two basic combinators >>= and return , which are respectively calledbind and unit in [Wad92].In Figure 5.7 the de�nition of the state-error monad is given. The combinatorsgetSTE, putSTE and updateSTE allow to recover the state, to initialize it (the ar-gument s), and to update it using a given function, respectively. The operator . isfunction composition.

5. IMPLEMENTATION OF THE PROOF CHECKER 99Then, the de�nition of the checking state, which is partially presented in Fig-ure 5.8, is introduced as a tuple type, where the components Ctxt, Env and Parare the types of contexts, typed environments and the source of the \gensym" func-tion, in this case an integer, respectively. The combinators getCtxtParamChSt,putParamChSt and putParamChSt allow to access and update the context and \fresh"parameter of the checking state, respectively.The monad ChM is just a partial re�nement of the monad STE where the stateis instantiated to be the checking state CheckState. Its de�nition is given in Fig-ure 5.9.We illustrate the use of do expressions, as provided by Haskell, which allow toexpress monadic programming by means of a more readable syntax. The semanticsof the combinator selectChM, which takes as argument a (selection) function onthe checking state and returns the computation of that selection, is understoodas follows: �rst compute getSTE, whose result, the state component, is bound tothe pattern chst, and then return the computation resulting from applying theargument function acc to it. The combinator getCtxtParamChM selects the contextand the counter of the state and also increments, as a \side-e�ect", the value ofthe latter. The behaviour of the rest of the combinators in the same �gure is quitedirect to grasp.Finally, we show in Figure 5.10, the code of the function checkExp in the casethat the expression to be checked is an abstraction. We also include the correspond-ing rule of computation as presented in section 3.2. The abstract syntax for theexpressions [x]e and �!� is EAbs x e and EPi alfa beta respectively.As already explained, the program is de�ned by case analysis on the objectexpression, which in this case is an abstraction. Thus, �rst the weak head normalform of the type expressions is computed by the function whnf, which is a directimplementation of the one in Figure 5.3. If it is a function type, then the contextand the available parameter are recovered from the state. For the sake of readability,we use a let expression to abbreviate the expression obtained from substituting thefresh parameter for the variable x in the expression e, the body of the abstraction,and for building up the application of the type family � to the same parameter.Further, we also abbreviate by c' the new context obtained by extending c withthe declaration of the parameter p as of type alfa. The e�ect of mkParam is togenerate a parameter (which, as additional information, carries over the name ofthe bound variable being substituted) out of an integer value. Finally, then, theprogram is recursively performed on the expressions e' and beta' in the updatedchecking state.A very simple XEmacs interface has also been incorporated to the system. Thebasic kernel was implemented by Guillermo Calder�on, a researcher at the Depart-ment of Computing Science (InCo) at Montevideo, Uruguay. We then extended it toconsider all the commands that were already present in the checking engine. Eventhough it is still in a very primitive stage, we have found its use to be of considerablehelp to the task of proof construction using the system.

100 5. THE PROOF CHECKER� + � � �1!� checkExp E ; p:�1 e[x := p] �pcheckExp E [x]e � p fresh in E
checkExp :: Exp -> Exp -> ChM ()checkExp obj alfa =case obj of... ->EAbs x e ->dowhalfa <- whnf alfacase whalfa ofEPi alfa1 beta ->do(c,i) <- getCtxtParamChMlet p = mkParam i xe' = substVar p x ebeta' = EApp beta pc' = addCtxt (i,alfa1) cputCtxtChM c'checkExp e' beta'_ -> errorChM "checkExp, Function type expected"... -> Figure 5.10. Type checking abstractions

CHAPTER 6Applications: Integral domains and Cayley's theorem1. IntroductionIn this chapter we shall comment on some experiments we have done concern-ing the formalization of abstract algebra using the proof checker described in theprevious chapter.In chapter 2 we gave a brief discussion on the process that led our work toconsidering the use of dependent record types as an appropriate mechanism for therepresentation of abstract constructions. The starting point was the work describedin [Bet93], where we present a formalization of the notion of integral domain andthe representation of the properties that can be derived from the postulates ofsuch system of algebras. In addition, we also illustrate the possibility of formallyestablishing that a particular construction conforms a concrete algebra satisfyingthose postulates. All this was achieved using the notions of context and substitutionand making use of the language of the logical framework which ALF implements.The incremental de�nition of systems of algebras, like \a group is a monoid with aninverse operation such that...", was naturally reected by the extension of a contextMonoid with new assumptions corresponding to the operation and the propertiesthat such operation must satisfy. Thus, a proof of a derived property for monoids,formally a proof developed under the context Monoid, would naturally remain validunder the above extension of the context.It was also remarked in chapter 2 that the \context approach" for the repre-sentation of algebraic constructions, however, soon revealed itself to have manydrawbacks. Already when trying to represent simple higher order algebraic con-structions, like the notion of morphism between algebras for instance, the formalcounterpart to these notions in terms of contexts has many shortcomings.We will show in section 2 the reformulation of the representation of the systemintegral domain in terms of record types. The incremental de�nitions now are di-rectly accomplished by using record extension. We also provide a simple applicationof subtyping, namely, the reutilization of proofs developed groups and commutativerings when reasoning about integral domains. In section 3 we highlight the con-structions we needed to develop for the formal representation of Cayley's theoremfor group theory, which says that any abstract group is isomorphic to a group ofpermutations. The formal proof of this theorem per se is not a signi�cant contri-bution. Nevertheless, it allows to illustrate the adequacy of the extended theory forbuilding up a little more involved algebraic constructions, like isomorphims betweengroups, the construction of groups of transformation and permutations over a givenspace, and morphisms between (these) groups.101

102 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY'S THEOREMThe complete code of the case studies presented here can be found athttp://www.cs.chalmers.se/�gustun/algebra/[IntDom,Cayley], respectively.2. Integral domainsWe shall reuse many of the de�nitions introduced in chapter 2. In principle themethodology that we shall follow to achieve the formal de�nition of the system ofalgebras Integral domain is the same as the one for Boolean algebras in that samechapter, namely, we start from the notion of Setoid and then successively enrich thisstructure with new components and axioms. This is also the approach followed inthe formalization using contexts. However, using record types we shall be able ofexplicitly consider an algebraic system as formed out of an algebraic part, the carrierset, the equivalence relation, and the operation symbols and, on the other hand, theaxioms that any such algebra must satisfy. Furthermore, we shall naturally maintainthis structure when we perform the consecutive extensions.In Figure 6.1 we show the de�nition of MonoidRelOpElem : typeRelOpElem = hRelOp; e1 : AiisUnitLeft : RelOpElem!typeisUnitLeft Roe = use Roe : RelOpElem in (x : A) � (� e1 x) xisUnitRight : RelOpElem!typeisUnitRight Roe = use Roe : RelOpElem in (x : A) � (� x e1) xPreMonoid : typePreMonoid = hSetoid;+ : binOp S; 0 : SiAxsOfMonoid : RelOpElem!typeAxsOfMonoid Roe = h cong : isCong Roe,assoc : isAssoc Roe,unitL : isUnitLeft Roe,unitR : isUnitRight RoeiMonoid : typeMonoid =hPreMonoid,props : AxsOfMonoid hA = S;R = �;� = +; e1 = 0ii Figure 6.1. Monoid

2. INTEGRAL DOMAINS 103The system Monoid, then, is de�ned as a record type, which is the result ofextending the record type PreMonoid with a new �eld corresponding to the axiomsthat any monoid must satisfy. The type associated to the label props is obtained byapplying the family of record types AxsOfMonoid, whose de�nition is parameterizedby a set, a binary relation, a binary operation on the set and a distinguished element,to the appropriate record object.We proceed by introducing in Figure 6.2 the de�nition of the system Group.RelOpElUn : typeRelOpElUn = hRelOpEl;� : A!AiisInvLeft : RelOpElUn!typeisInvLeft Roeu = use Roeu : RelOpElUn in (x : A) � (� (� x) x) e1isInvRight : RelOpElUn!typeisInvRight Roeu = use Roeu : RelOpElUn in (x : A) � (� x (� x)) e1AxsOfGroup : RelOpElUn!typeAxsOfGroup Roeu = h AxsOfMonoid Roeu,invL : isInvLeft Roeu,invR : isInvRight RoeuiPreGroup : typePreGroup = hPreMonoid;� : S!SiGroup : typeGroup =hPreGroup,props : AxsOfGroup hA = S;R = �;� = +; e1 = 0;� = �ii Figure 6.2. GroupObserve that the axioms of Group are de�ned as a family of record types whichis obtained by extending the axioms of Monoid with two new �elds corresponding tothe axioms of the inverse operation of the group. The family AxsOfGroup is furtherparameterized with a unary operation. The application of the family AxsOfMonoidto the variable Roeu is correct because of the subtyping induced for families of types.Thus, we can understand the de�nition of Group as the respective extension of thealgebraic and axiomatic part of the previously de�ned system Monoid.We will not show here the whole sequence of de�nitions we made to obtain theone corresponding to the system integral domain. Instead we shall illustrate somefeatures of the record approach that we consider interesting. After introducing

104 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY'S THEOREMthe de�nitions of the systems AbGroup (for Abelian group) and Ring (with themultiplicative binary operation �and its identity 1), we can then de�ne the recordtype CommRing as shown in Figure 6.3RelOpsElUns : typeRelOpsElUns = hRelOpElUn;� : binOp A; e2 : AiAxsOfCRing : RelOpsElUns!typeAxsOfCRing Roeus =use Roeus : RelOpsElUnsin h AxsOfAbGroup Roeus,multmon : AxsOfCommMonoid hA = A;R = R;� = �; e1 = e2i,di�units : Not (R e1e2),distlft : (x; y; z : A) � (� x (+ y z)) (+ (� x y) (� x z)) iPreRing : typePreRing = hPreGroup;� : binOp S; e2 : SiCommRing : typeCommRing =hPreRing,props : AxsOfCRing hA = S;R = �;� = +; e1 = 0;� = �;� = �; e2 = 1ii Figure 6.3. Commutative ringThus, a PreRing forms a commutative ring if it is formed out of an additiveAbelian group and a multiplicative commutative monoid such that the identities ofboth operations are di�erent, and multiplication is distributive (to the left) withrespect to the addition operator. Observe that if we had available an operationthat allowed the concatenation of two record types to form a new one it might notbe necessary to stratify the axioms for multiplication. We have been experimentingwith these kind of record operations (both for types and objects) but no satisfactoryformulation of them has yet been obtained. However, even if such a concatenationoperation were available, notice that in this particular case we should still have todeal with duplicated labels.Another example in the spirit of the function dualPreLatt presented in chapter 2is the de�nition of the function extractMonoid, that extracts the multiplicativemonoid out of a commutative ring. We show its de�nition in Figure 6.4Observe, in the �rst place, that the variable Cr is used in the de�niendum bothas of type CommRing and as of type PreMonoid. The �rst requirement is clear fromthe form of the use expression. On the other hand, for the record object that is theresult of the function to be an object of typeMonoid, Cr must have type PreMonoid.This requires an application of subtyping. Moreover, that Cr is, as a component of

2. INTEGRAL DOMAINS 105extractMonoid : CommRing!MonoidextractMonoid Cr = use Cr : CommRingin hCr; props = props:multmoniFigure 6.4. Extraction of the multiplicative monoid of a commuta-tive ringthe record being constructed, considered as an object of the latter type will preventaccess to the information proper of a commutative ring. One more application ofsubtyping is illustrated by the fact that the object props:multmon is accepted as aproof of the axioms of a monoid when it actually is one of a commutative monoid.Finally, the de�nition of IntDom is given in Figure 6.5.AxsOfIntDom : RelOpsElUns!typeAxsOfIntDom Roeus =use Roeus : RelOpsElUnsin hAxsOfCRing Roeusmcancel : (x; y; z : A) R (� z x) (�zy)! Not (R z e1)! R x yiIntDom : typeIntDom =hPreRing,props : AxsOfIntDom hA = S;R = �;� = +; e1 = 0;� = �;� = �; e2 = 1ii Figure 6.5. Integral domain2.1. Derived properties. We now show the proofs of three simple properties,namely, that the operation of a group is left cancellative, that the identity of theadditive operation of a commutative ring is absorbent with respect to multiplication,and �nally, that in an integral domain no element divides the identity of the additiveoperation. We intend to illustrate with these examples, on the one hand, the kindof expressions that are obtained. They do not look much di�erent from programsexpressed in a functional language like, say, Haskell. On the other hand, we shallsee the reutilization we can make of proofs due to the use of subtyping.To begin with, we show in Figure 6.6 a (skeleton of the) proof of the �rst of theproperties above.There is not much to say about this proof. The constant eqtoeq allows the re-placement of equivalents objects in an equality proof. The use of G makes availableall of its �elds. The proof of lemma is trivial.

106 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY'S THEOREMcancelL : (G : Group) (x; y; z : G:S)use G : Group in � (+ z x) (+ z y)! (� x y)cancelL =[G x y z h]useG : Groupinlet lemma : (x; y : S) � (+ (� x) (+ x y)) y= : : :in eqtoeq G (+ (� z) (+ z x)) (+ (� z) (+ z y)) x y(props:cong (� z) (+ z x) (� z) (+ z y) (refl (� z)) h)(lemma z x)(lemma z y)Figure 6.6. Cancellation on the leftIn Figure 6.7 we show the skeleton of the proof of the property on commutativerings mentioned above.multAddUnit : (Cr : CommRing) (x : Cr:S)use Cr : CommRing in � (� x e1) e1multAddUnit =[Cr x]use Cr : CommRinginlet cancelprop : � (+ (� x x) (� x e1)) (+ (� x x) e1)= : : :in cancelL Cr (� x e1) e1 (� x x) cancelprop;Figure 6.7. Multiplication by identity of additionObserve that we apply cancelL to the variable Cr of type CommRing.We end up this section showing in Figure 6.8 the proof of the property of \nonzero divisors", as it is usually called in the literature, for integral domains. Theproof multaddUnit is used as one of integral domains.3. Transformations and Cayley's theoremIn this section we will review the implementation we have done of the proof ofCayley's theorem presented in [MB67]. Actually, the original aim was to formalize

3. TRANSFORMATIONS AND CAYLEY'S THEOREM 107nonZeroDiv : (Id : IntDom) (x; y : Id:S)use Cr : IntDom in � (� x y) e1 ! Not (� x e1)! � x e1nonZeroDiv =[Id x y h1 h2]use Id : IntDomin mcancel y e1 x(trans (� x y) e1 (� x e1)h1(symm (� x e1) e1 (multAddUnit Id x)))h2 Figure 6.8. Non zero divisorsin type theory the whole chapter on basic group theory included in the book by thesame authors [BM53]. This is one of the reasons why we use the term transfor-mation, the old fashioned terminology used in this latter book to mean functions.The �rst reference above is a revised edition of this book, which uses the languageof category theory to introduce most of the basic notions and provides new insightsto modern algebra.We managed to give a formal representation to the contents of sections 1 to 5 inthe mentioned chapter, which ends up with a (very informal and succinct) proof ofCayley's theorem. In [MB67], however, this theorem is given a more detailed andclear proof, even though there are still constructions that remain informally treated.The idea there outlined is the one that we followed to build up the formal proof.We shall further comment on this in section 3.3.Just for the sake of completeness we include here the de�nitions (as given in eitherof the books above) of some of the notions involved in the whole development. Atthe same time we shall also provide insights on how they were grasped and codi�edin the language of the type theory with which we are concerned.3.1. Transformations.Definition (Transformation). A transformation � : S!T from a (non-empty)set S into a set T is a rule which assigns to each element p 2 S a unique imageelement �(p).The notion of a transformation of S into T is thus the same as that of a functionde�ned on the elements of S, with values in T, and as that of a many-one correspon-dence of the elements of S to those of T. The set S is called the domain of �, andT its codomain.3.1.1. Algebra of transformations. Two transformations � : S!T and �0 : S!Tare called equal if they have the same e�ect upon every point of S; that is,� = �0 means that �(p) = �0(p) for every p 2 S (1)

108 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY'S THEOREMThe product � of two transformations is de�ned as the result of performingthem in succession.The identity transformation I on the set S can be de�ned as that transformationI : S!S which leaves every point of S �xed.Proposition 6.1 (Associative law). Whenever the products involved are de�nedmultiplication of transformations conforms to the law (�)� = �(�).Proof. Follows straightforwardly by equality of transformations and de�nitionof product of transformations.Proposition 6.2 (Identity law). I� = �I = � for all �.Proof. Follows by de�nition of I and de�nition of product of transformations.Theorem 6.1. A transformation � : S!S is one-one if and only if it has aright-inverse; it is onto if and only if it has a left-inverse.Definition (Group of transformations). By a group of transformations on a\space" S is meant any set G of one-one transformations � of S onto S such thati) the identity transformation of S is in Gii) if � is in G, so is its inverseiii) if � and are in G, so is their product � Theorem 6.2. The set G of all one-one transformations of any space S ontoitself is a group of transformations3.1.2. Formalization. We introduce the notions of a non-empty setoid (insteadof sets we work with setoids) and equality of transformations on non-empty setoidsas shown in Figure 6.9.NESetoid : typeNESetoid = hSetoid; el : SieqTS : (T; U : NESetoid)(phi; xi : (x : T:S) U:S) SeteqTS T U phi xi = (x : T:S) U:� (phi x) (xi x)Figure 6.9. Non empty setoids and equality of transformationsThen it is proved that eqTS is an equivalence relation on transformations.The proof of Theorem 6.1 provided in the references makes use of the axiomof choice. This is needed for the construction of the right inverse of �. In orderto construct the proof of Theorem 6.2 we shall �rst de�ne the notion of injectivetransformation of a space onto any other space. Then, we de�ne the family of setsPerms as the set of bijections of a space into itself. This is shown in Figure 6.10.

3. TRANSFORMATIONS AND CAYLEY'S THEOREM 109Bijec : (X; Y : Setoid) SetBijec X Y = �fun 2 (x : X:S)!Y:S:�map 2 (x; y : X:S)!X:� x y!Y:� (fun x) (fun y):((x; y : X:S)!Y:� (fun x) (fun y)!X:� x y) �((y : Y:S)!�x 2 X:S:Y:� (fun x) y)Perms : (X : Setoid) SetPerms X = Bijec X XFigure 6.10. Permutations on a setoidThus, Perms X is the set of all bijective functions with domain and codomainthe carrier set of X. We use sigma sets to de�ne this family because they areintended to constitute the carrier of the group of permutations, which, by de�nitionof NESetoid, has to be an object of type Set.Then, if the product (prodP) of objects of the set Perms X is de�ned as compo-sition of functions, it is quite straightforward to prove that it satis�es the propertiesof the operation of a group, with identity permId. It is also quite direct to de�nea function permInv, that given any permutation p returns its inverse. Therefore,we can de�ne the function permGroup over non empty setoids which is shown inFigure 6.11. permGroup : (X : NESetoid) GrouppermGroup X =hsetoidPerm X+ = prodP X0 = permId X� = permInv Xprops = h cong = congprodP Xassoc = assocprodP XunitL = permIdunitL XunitR = permIdunitR XinvL = permInvinvL XinvR = permInvinvR XiiFigure 6.11. Group of permutations on a setoid3.2. Isomorphisms.Definition . By an isomorphism between two groups G1 and G2 is meant aone-one correspondence a$ a0 between their elements which preserves group mul-tiplication { i.e., which is such that if a$ a0 and b$ b0, then ab$ a0b0.

110 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY'S THEOREMThe notion of isomorphism between any two groups is represented by a (record)type family indexed by two groups. This family has two �elds, a bijection de�nedon the carrier of the groups (bijec), and the one expressing the morphism propertyto be satis�ed by the function that constitutes the bijection (morphprop). This isshown in Figure 6.12isoGroup : hG1 : Group;G2 : Groupi!typeisoGroup gs =use gs : hG1 : Group;G2 : Groupiin h bijec : Bijec G1 G2morphprop : (x; y : G1:S) G2:� (fst bijec (G1:+ x y))(G1:+ (fst bijec x) (fst bijec y))i Figure 6.12. Isomorphism of groupsThe two following theorems were also proved.Theorem 6.3. The relation \G1 is isomorphic to G2" is an equivalence relationbetween groups.Remark. It is worth observing that Theorem 6.3 and its proof hold equallyfor isomorphisms between integral domains, and indeed for isomorphisms betweenalgebraic systems which are extension of the system Group.Theorem 6.4. Under an isomorphism between two groups, the identity elementscorrespond and the inverses of corresponding elements correspond.3.3. Cayley's theorem. We now proceed to discuss the formal proof carriedout for the following result by CayleyTheorem 6.5. Any abstract group G is isomorphic with a group of permuta-tions.The �nal presentation of this proof bene�ted from discussions with Gilles Bartheand Daniel Fridlender.In [BM53] the theorem is enunciated and some ideas of the proof are laid down.There, it is suggested and justi�ed what should be the morphism � between theelements of a given group G and the elements of a group of transformations T:\de�ne � as a function that given an element a of the carrier set ofG yields a function�a, such that �a(x) = ax for each x 2 G". Thus, the function � is a mapping fromG to a transformation that operates on elements of G to return elements of G.Therefore, in the �rst place, we have to construct the group T out of G, so wemust de�ne a sort of functor that for any given group yields the intended group oftransformations, such that � is an isomorphism between the carrier sets of G and T.Thus, the �rst question was to de�ne what should be the carrier set of the group T.We chose to de�ne it as the sigma set �a 2 G:�f 2 G!G:8x 2 G:f(x) = ax. Thede�nition of � is given in Figure 6.13

3. TRANSFORMATIONS AND CAYLEY'S THEOREM 111Phi : (Group) SetPhi G = �a 2 G:S:�phi 2 G!G:(x : G:S)!G:� (phi x) (G:+ x a)Figure 6.13. De�nition of the family �With this set at hand, thus, it is possible to de�ne, in the �rst place, an equiv-alence relation over its elements in terms of the equality eqTS introduced in sec-tion 3.1.The product of two transformations � and � prodTG, can also be easily de�nedin terms of the product of transformations. It remains then to de�ne the identityelement of the set Phi G and the inverse of any element of this set, which is done asshown in Figure 6.14.phiId : (G : Group) Phi GphiId G = fG:0, [x]G:+ x G:0, [x]G:ref (G:+ x G:0) gphiInv : (G : Group) (phi : Phi G) Phi GphiInv G phi =fG:� (fst phi), [x]G:+ x (G:� (fst phi)), [x]G:ref (G:+ x (G:� (fst phi))) gFigure 6.14. Identity and inverse of Phi GThe proofs corresponding to the postulates that say that given any group G,hPhi G; prodTG; phiId; phiInvi form a group are quite direct. Thus, we de�ne afunctor transfGroup in Figure 6.15, that given any group G returns the correspond-ing group of transformations described above.In order to complete the proof, then, it has to be shown that given any group G:i) transfGroup G is a group of permutations,ii) it is possible to de�ne an isomorphism between G and transfGroup GThis was done as follows: �rst we proved that it is possible to construct amonomorphism of groups between transfGroup G and permsGroup G. This is equiv-alent to say that the �rst is a subgroup (and therefore a group) of the latter. Then,we constructed the isomorphism between G and transfGroup G. The skeleton of thelatter is shown in Figure 6.16.Thus, for any group G, fst (Cayley G:bijec) is the isomorphism that can be con-structed between G and its corresponding group of permutations.

112 6. APPLICATIONS: INTEGRAL DOMAINS AND CAYLEY'S THEOREMtransfGroup : (G : Group) GrouptransfGroup G =hsetoidPhi G+ = prodTG G0 = phiId G� = phiInv Gprops = h cong = congprodTG Gassoc = assocprodTG GunitL = phiIdunitL GunitR = phiIdunitR GinvL = phiInvinvL GinvR = phiInvinvR GiiFigure 6.15. The group of transformations out of GCayley : (G : Group) isoGroup G (transfGroup G)Cayley G =use G : Groupinlet transf : S!Phi G = [a]fa; [x]+ x a; [x]ref (+ x a)gismaptransf : (x; y : S)!� x y!eqTG G (transf x) (transf y) = : : :oneonetransf : (x; y : S)!eqTG G (transf x) (transf y)!� x y = : : :ontotransf : (f : Phi G)!�x 2 S:eqTG G (transf x) f = : : :isMorphtransf : (a; b : S) eqTG G (transf (+ a b))(prodTG G (transf a) (transf b))= : : :in h bijec = ftransf; ismaptransf; foneonetransf; ontotransfgg,morphprop = isMorphtransf iFigure 6.16. Any group G is isomorphic to transfGroup G

CHAPTER 7Related Work and ConclusionsRelated workFormal algebra in type theory. The formalization of abstract algebra in typetheory (in a wide sense) has lately received an increasing amount of attention.In [Acz94, Acz95], Aczel presents a notion of class and overloaded de�nitionsfor predicative type theories. The motivations behind this proposal are mainly con-cerned with the development of mathematical abstractions for the formalization ofalgebra in type theory. The key notion that there arises is that of a system of alge-bras. A crucial condition required from these systems is that they should determinethe type of algebras of the system. In accordance to this, thus, algebras should be�rst class objects of the formal language. Furthermore, in order to naturally re-ect the usual presentation of these notions in the informal language, it should befeasible, on the one hand, for the systems to be de�ned in an incremental manner.On the other hand, it is also desirable to be able to reuse notation introduced fora given system S when it comes to consider a system T which has been de�ned asan extension of it. In other words, T should inherit the proof constructions, forinstance, developed for S. In this work, the notion of system of algebra is identi�edwith that of a class for which methods can be de�ned that in turn may be reused(overloaded) on elements of subclasses of the one for which they have been originallyde�ned.In [Bar95], the ideas above are extended to consider in uniform way the notionthat two types are somewhat related in such a way that one can be considered asubtype of the other. This relation is formally reected by introducing a coercionfunction that indicates how to get an object of the supertype out of one of thesubtype. But a mechanism, which is formulated for pure type systems, is introducedthat allows to leave the coercions implicit. Applications are then shown using theextended calculus of constructions [Luo94], where the representation of systems ofalgebras is formulated in terms of � types. The relation between types of algebraicstructures that we achieve in terms of record inclusion is partially achieved in termsof (the transitive closure of) coercions.Direct successors of this work are the mechanisms implemented by Bailey [Bai97]and Sa��bi [Sa��97] for de�ning coercions between types or classes of types developedfor the proof-assistants LEGO [Pol94a] and Coq [Bar97], respectively. They havealso formalized corresponding large-scale case studies on Galois theory and Categorytheory.In [Jac95] algebraic structures are formalized in Nuprl's version of type theory[Con86] using sets of unlabeled dependent pairs and subsets. Since these are set113

114 7. RELATED WORK AND CONCLUSIONSformers and the theory is predicative, one has that sets that are components ofstructures have to be restricted to be elements of a universe set, as indicated inchapter 2. No general solution is given in this work to the problem of representingthe inclusion of types of structures that we have been considering.In [Luo96], a calculus in the spirit of Martin-L�of's theory of types is presented,where forms of judgement are introduced, among others, that express the concept ofa kind K being a principal kind of an object k and that of (proper) kind inclusion.The meaning explanation of the relation of subkinding is given in terms of coercions.This makes it possible to justify the various coercive rules of the calculus which areexpressed as judgemental equalities. As a particular example the author illustratesthe use of coercions in the formalization of algebraic constructions.The mechanism of subtyping obtained in all these works is, on the one hand, morelimited than the one we have illustrated in chapters 2 and 6, since the inclusions thatcan be veri�ed to hold are only those induced from the explicitly declared coercions.On the other hand, they all achieve forms of subtyping not coming from recordsubtyping.Abstraction and modularization. The explanation of the notions of abstractdata type and module in terms of type-theoretic constructions has been extensivelyexplored since the beginning of the last decade.In [MP85] the authors present a functional language (SOL) which incorporatesexistential types of the form 9t:�(t), where t is a type variable which may occurfree in the type expression �(t). Values of such types are also introduced andare intended to model abstract data types. They are called data algebras. Theintuitionistic explanation of the existential quanti�er and what it means to be aproof of an existential proposition together with the Curry-Howard correspondenceof propositions with types provide the conceptual basis for this understanding ofabstract data types.In [Mac86] MacQueen proposes the use of dependent function types and �-typesto described the notion of structures, functors and signatures as provided by thelanguage SML [MTH90, MTH87]. A language (DL) with a rami�ed type systemin the spirit of the language of Martin-L�of's type theory is presented and examplesconcerned with the de�nition and use of modules are discussed. In [Luo88] Luopresents a higher order calculus (�CC). The language includes a �-type constructortogether with the corresponding projection operations. In these two latter worksthe adequacy of �-types as a basic mechanism to express abstract structures isanalysed and put forward as a safe methodology to deal with the manipulation ofindependently developed theories. Our understanding of systems of algebras (andabstract data types in general) as types of tuples has to a great extent been inspiredby these two works.The formulation of module mechanisms that, as a formal counterpart, makeuse either of existential types or �-types have been presented (and some of themimplemented) in, among others, [HMM90, Luo94, HL94, Ler94].

RELATED WORK 115On the other hand, closer to the proposal we make in this work of regardingmodules as record types are the works by [Apo93] and [Jon96]. In the former, theauthor proposes an extension to the ML-records to express modules, but functorsare only �rst order. The language analysed in the second of these works supportshigher order functors, but no notion of subtyping is introduced. It is, nevertheless,acknowledged that it could be useful to have available one such notion.In the context of variants of type theory, Coquand [Coq96] gives a type-theoreticformulation of the notion of theory, as provided by the PVS system. The combinationof (parameterized) theories and �-types, both mechanisms implemented in Alfa,provides a powerful tool for the task of abstract and modular development of proofs.Coquand's ideas were adopted by Pollack and included, with some modi�cations,into the system LEGO [Pol97].A module calculus for pure type systems is investigated in [Cou97]. Meta-theoretic results are discussed, but, as far as we know, no implementation of thiscalculus has been carried out.Records and subtyping. The study of record types and subtyping have founda natural setting in object oriented programming. Starting with the pioneering workof Dahl and the team behind the language Simula [DN] these two notions haveprincipally been exploited for providing foundations to the mentioned programmingparadigm. Our work, however, is not intended to provide new insights and mech-anisms for the theory of object oriented languages. It is primarily concerned withthe use of dependent types for expressing speci�cations of abstract data types andmodules in a general way. In principle we do not reject the idea of applying theformalism presented in this work to the study of objects, but it should be clear atthis point that not even the ground notions of the paradigm, like that of self forinstance, can be given a natural formulation in it.Several extensions of the Hindley-Milner type system have been proposed to dealwith records. A seminal work by Wand is [Wan87]. This work has been correctedand extended in [Rem89], [Wan89] and others. In these systems the only notionof polymorphism is generic polymorphism. But record types schemes are used thatcan be assigned to any record object in which certain labels are bound to objects ofappropriate types, no matter whether or not other labels are present in the recordobject in question. This allows to express some of the (inclusion) polymorphismthat we introduce using subtyping.A variant of Girard's system F [Gir72] with record types and subtyping isgiven in [CM91] which extends earlier proposals in [CW85, Car88]. This system,which in the literature is referred to as F�, also includes impredicative boundedquanti�cation. One of the motivation for the latter is to assign a type to functionsthat update records in such a way that �elds that are not mentioned in the functionare preserved from input type to output type. This formalism has been shown byPierce [Pie94] to have undecidable type checking.In the language we have presented, record objects are extensible and thus updatefunctions can be written. Extension is actually overriding, as in [Wan87], i.e. arecord object may contain multiple occurrences of a label, the latest overriding the

116 7. RELATED WORK AND CONCLUSIONSprevious ones. An overriding operator is shown to be derivable from the basic recordoperations introduced in [CM91], which do not include this latter mechanism as aprimitive one.The type systems considered in the works cited above (most of them includedas a chapter in [GM94]) do not embody types depending on individuals. As aconsequence their record types are non dependent as opposed to the ones in ourwork.Dependent record types have been implemented in PVS [OSR], which is a theo-rem proving system based on classical higher order logic. The subtyping that recordtypes induce is, however, not a part of the implementation.Type checking dependent types. The type checking algorithm we have pre-sented in chapter 5 is much inuenced by the one presented in [Mag95] for completeterms. This latter algorithm, in turn, makes use of ideas presented by Th. Coquandin [Coq91]. As already discussed in chapter 3, however, in addition to the factthat we also de�ne the type checker to deal with record types and subtyping, ouralgorithm implements the formal veri�cation of the judgement of a calculus that, tosome extent, deviates from Martin-L�of's calculus of explicit substitutions. The cal-culus that we consider, instead, is a modi�ed version of the one originally proposedby Tasistro and presented in [Tas97, BT97] which incorporates the notion of pa-rameters to represent the notion of \free names". In that respect, we have situatedourselves closer to the spirit of the calculus presented by Coquand in the work wereference above. The work by McKinna and Pollack, presented in [MP93, Pol94a],concerning the type checking of PTS has also been quite inuential in the develop-ment of our work.In another direction, Coquand [Coq96] has recently proposed an algorithm fortype checking dependent types that, to some extent, conceptually departs from thespirit of the ones above mentioned. The notion of the closure of an expression withthe environment under which it has been introduced plays a principal role in theprocedure that describes the checking of the typing judgements of a system of proofrules there introduced. Regarding this latter observation, the algorithm shares someof the principles used by Magnusson in the de�nition of her algorithm. However,a notion of generic value is introduced by Coquand that allows to cope with thechecking of abstraction operators without the restrictions that have to be imposedfor Magnusson's algorithm to work. The methodology used by Coquand, that relieson a model theoretic understanding of the type system, is shown in that same work tosmoothly accommodate to provide explanation for extensions of the original system,like let expressions and the theory mechanisms mentioned in the previous section.The problems posed by the type checking of languages with dependent typeswhich incorporate mechanisms of subtyping have been studied in [Car87] and[AC96]. The latter work presents an extension to �P , an abstract version of theEdinburgh Logical Framework LF . A type checking algorithm for the extended sys-tem is there proposed and some meta-theoretic properties are shown to hold bothfor the calculus and the algorithm in question. The notion of subtyping introduced,

CONCLUSIONS AND FURTHER WORK 117however, applies only to (dependent) function types and constant type constructors.A more recent work is the one presented in [JLS97]. The study of a type checkingalgorithm for Luo's logical framework with coercive subtyping above mentioned iscarried out in that work.Conclusions and further workWe have presented investigations concerned with the understanding, implemen-tation and use of an extension of Martin-L�of's logical framework with dependentrecord types and subtyping.We have motivated the use of this system of proof rules for the formalization ofalgebraic constructions. Dependent record types have been illustrated to constitutean appropriate mechanism for the representation of types of algebraic structures.In addition, the inclusion relation induced by record types allows to represent in adirect manner incremental de�nition of types of structures. Moreover, the subtypingmechanism made it possible to give a formal account of the fact that a system thatconforms to an extension of one previously introduced inherits the constructionsassociated to the latter.Our main concern, however, was to design and implement an algorithm for theformal veri�cation of the forms of judgement of the extended theory. We then hadto face the problems inherent in the formal language when considering the process oftype checking. There is no general algorithm for inferring the type of the (unlabeled)abstractions of the original framework. This restriction is transferred to the objectsof the extension. Further, there arises an analogous situation with the type checkingof record objects. The decision was taken then of restricting the forms of expressionthat constitute a valid input to the algorithm. We have shown, however, that theshortcomings resulting from that restriction seem to be harmless for the naturalpractice.When considering the formal veri�cation of the relative forms of judgement of thecalculus there also appeared the well known problems posed by the manipulationof free names in the presence of dependent types. We adopted the technique ofusing parameters to stand for the notion of free variables of the various types. Thisdecision led to a reformulation of the proof system. To have available this particularformulation of the calculus facilitated the task of reasoning about the correctness ofthe implemented algorithm.The experiments reported in this work were all mechanically veri�ed using theproof checker. This provided us with interesting feedbacks concerning the new mech-anisms introduced. In particular, the incorporation of use expressions pursues, inthe �rst place, to alleviate notation. We think, however, that the latter expressionformer combined with subtyping might provide a uniform mechanism for hidingimplementations of abstract data types. This we consider merits to be further in-vestigated.Besides the case studies presented here, the system has been used to verify anabstract version of sorting by insertion [Tas97], which uses record types to expressspeci�cations of abstract data types. As a continuation of this latter work, the

118 7. RELATED WORK AND CONCLUSIONSformal derivation of di�erent implementations of insertion sort using the system hasbeen reported in [Gas98].No mechanism for the de�nition of inductive sets has been discussed in this work.We would like to formulate one that extends the relation of subtyping to considerinclusion between sets.

Bibliography[AC96] D. Aspinall and A. Compagnoni. Subtyping dependent types. In Proceedings of the11th. IEEE Symposium on Logic in Computer Science, 1996.[Acz94] P. Aczel. A Notion of Class for Theory Development in Algebra (in a Predicative typetheory), 1994. Presented at Workshop of Types for Proofs and Programs, B�astad,Sweden.[Acz95] P. Aczel. Simple Overloading for Type Theories, 1995. Privately circulated notes.[Apo93] M. V. Aponte. Extending record typing to type parametric modules with sharing. InTwentieth Annual ACM Symp. on Principles of Prog. Languages, pages 465{478. ACMPress, 1993.[Aug97] L. Augustsson. HBC - The Chalmers Haskell Compiler. Documentation report, avail-able at http://www.cs.chalmers.se/ augustss/hbc.html, 1997.[Bai97] A. Bailey. Lego with implicit coercions, 1997. Documentation report, available atftp.cs.man.ac.uk/pub/baileya/Coercions.[Bar92] H. Barendregt. Lambda Calculi with Types. In T. S. E. Maibaum D. M. Gabbay,S. Abramsky, editor, Handbook of Logic in Computer Science, pages 117{309. OxfordUniversity Press, 1992.[Bar95] G. Barthe. Implicit coercions in type systems. In Selected Papers from the InternationalWorkshop TYPES '95, Torino, Italy, LNCS 1158., 1995.[Bar97] B. Barras et al. The Coq Proof Assistant Reference Manual { Version V6.1. TechnicalReport 0203, INRIA, 1997.[Bet93] G. Betarte. A case-study in machine assisted proofs: The Integers form an IntegralDomain, 1993. Licenciate thesis, Dpt. of Computer Sciences, Chalmers University ofTechnology and University of G�oteborg.[Bet97] G. Betarte. Dependent record types, subtyping and proof reutilization. In online Proc.of the working group TYPES workshop Inheritance, subtyping and modular develop-ment of proofs, Durham, England, September 1997.[BM53] G. Birkho� and S. MacLane. A Survey of Modern Algebra. Macmillan, 1953.[BS81] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Graduate Texts inMathematics, Springer-Verlag, 1981.[BT97] G. Betarte and A. Tasistro. Extension of Martin-L�of's Type Theory with Record Typesand Subtyping. To appear in 25 Years of Constructive Type Theory, Oxford UniversityPress, 1997.[Bur75] W. H. Burge. Recursive Programming Techniques. Addison-Wesley Publishing Com-pany, 1975.[Car87] L. Cardelli. Typechecking dependent types and subtypes. In L.C. Aiello M. Boscaroland G. Levi, editors, Proc. of the Workshop on Foundations of Logic and Functionalprogramming, number 306 in Lectures Notes in Computer Science. Springer, 1987.[Car88] L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76,1988.[CH88] Th. Coquand and G. Huet. The calculus of constructions. Information and Computa-tion, 76((2/3)), 1988.[CM91] L. Cardelli and J. Mitchell. Operations on records. Mathematical Structures in Com-puter Science, 1, 1991. 119

120 BIBLIOGRAPHY[CNSvS94] Th. Coquand, B. Nordstr�om, J.M. Smith, and B. von Sydow. Type theory and pro-gramming. In EATCS 52, 1994.[Con86] R. Constable et al. Implementing mathematics with the Nuprl development sys tem.Prentice-Hall, 1986.[Coq91] Th. Coquand. An algorithm for testing conversion in type theory. In Logical Frame-works, Huet G., Plotkin G. (eds.), pages 71{92. Cambridge University Press, 1991.[Coq96] Th. Coquand. An algorithm for type-checking dependent types. In Science of ComputerProgramming 26, pages 167{177, 1996.[Cou97] J. Courant. A module calculus for pure type systems. In Typed Lambda Calculi andApplications 97, LNCS. Springer, 1997.[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymor-phism. Computing Surveys, 17(4), 1985.[DN] O. Dahl and K. Nygaard. Simula, an algol-based simulation language. Comm. ACM 9,671-678, 1966.[Dow93] G. Dowek. The undecidability of typability in the lambda-pi-calculus. In TLCA, LNCS664, Bezem M., Groote J.F. (eds.), 1993.[Gas98] V. Gaspes. Deriving instances of Abstract Insertion Sort in an implementation ofMartin-L�of's type theory extended with dependent record types and subtyping. Talkgiven at The Winter Meeting 1998, Dept. of Computing Science, Chalmers Universityof Technology., 1998.[Gir72] J.-Y. Girard. Interpr�etation fonctionelle et �elimination des coupures de l�arithm�etiqued�ordre superi�eur. PhD thesis, Universit�e Paris VII, 1972.[GM94] C.A. Gunter and J.C. Mitchell, editors. Theoretical Aspects of Object Oriented Pro-gramming. MIT, 1994.[Gog94] H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, Universityof Edinburgh, 1994.[Gr�a71] G. Gr�atzer. Lattice Theory. First concepts and Distributive Lattices. W. H. Freemanand Company, 1971.[HL94] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules withsharing. In Twenty First Annual Symp. on Principles on Prog. Languages. ACM Press,1994.[HMM90] R. Harper, J. Mitchell, and E. Moggi. Higher-order modules and the phase distinction.In Seventeenth Annual Symp. on Principles on Prog. Languages. ACM Press, 1990.[Hut92] G. Hutton. Higher-order functions for parsing. Functional Programming, 2:323{343,1992.[Jac95] P. Jackson. Enhancing the Nuprl Proof Development System and Applying it to Com-putational Abstract Algebra. PhD thesis, Cornell University, 1995.[JLS97] A. Jones, Z. Luo, and S. Soloviev. Some algorithmic and proof-theoreticsl aspectsof coercive subtyping. In E. Gim�enez and C. Paulin-Mohring, editors, Proceedings ofTYPES '96, LNCS, 1997. To appear.[Jon96] M. Jones. Using parameterized signatures to express modular structures. In TwentyThird Annual Symp. on Principles on Prog. Languages. ACM Press, 1996.[Ler94] X. Leroy. Manifest types, modules, and separate compilation. In Twenty First AnnualSymp. on Principles on Prog. Languages. ACM Press, 1994.[Luo88] Z. Luo. A Higher-order Calculus and Theory of Abstractions. Technical report, LFCS,Department of Computer Science, University of Edinbu rgh, 1988.[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Number 11in International Series of Monographs on Computer Science. Oxford University Press,1994.[Luo96] Z. Luo. Coercive subtyping in type theory. In CSL'96, the 1996 Annual Conference ofthe European Association for Computer Science Logic, Utrech, 1996.[Mac86] D. MacQueen. Using Dependent Types to Express Modular Structures. In Proceedingsof the 13th POPL, 1986.

BIBLIOGRAPHY 121[Mag95] L. Magnusson. The Implementation of ALF - a Proof Editor based on Martin-L�of'sMonomorphic Type Theory with Explicit Substitution, 1995. Ph.D. thesis. Program-ming Methodology Group, Dept. of Computing Science, University of G�oteborg andChalmers University of Technology.[Mar84] P. Martin-L�of. Intuitionistic Type Theory. Bibliopolis, 1984.[Mar87] P. Martin-L�of. Philosophical Implications of Type Theory., 1987. Lectures given at theFacolt�a de Lettere e Filoso�a, Universit�a degli Studi di Firenze, Florence, March 15th.- May 15th. Privately circulated notes.[Mar92] P. Martin-L�of. Substitution calculus., 1992. Talks given in G�oteborg.[MB67] S. MacLane and G. Birkho�. Algebra. MacMillan, 1967.[MP85] John Mitchell and Gordon Plotkin. Abstract types have existential type. In Proc. ofthe 12th ACM Symposium on Principles of Programming Languages, pages 37{51, NewYork, 1985.[MP93] J. McKinna and R. Pollack. Pure type systems formalized. In M. Bezem andJ.F.Groote, editors, Proc. of the International Conference on Typed Lambda Calculians Applications, number 664 in LNCS. Springer-Verlag, 1993.[MTH87] R. Milner, M. Tofte, and R. Harper. A type discipline for program modules. In TAP-SOFT 87, volume 250 of LNCS. Springer, 1987.[MTH90] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press, 1990.[Nor] B. Nordstr�om. The typechecking algorithm. Document in preparation.[NPS89] B. Nordstr�om, K. Petersson, and J. M. Smith. Programming in Martin-L�of 's TypeTheory.An Introduction. Oxford University Press, 1989.[OSR] S. Owre, N. Shankar, and J. M. Rushby. User guide for the PVS speci�cation andveri�cation system (Beta release). Comp. Sc. Laboratory, SRI International, 1993.[Pet96] J. Peterson et al. Report on the Programming Language HASKELL. A Non-strict,Purely Functional Language, May 1996.[Pey87] S. Peyton Jones. The Implementation of Functional Programming Languages. PrenticeHall, 1987.[Pie94] B. Pierce. Bounded quanti�cation is undecidable. Information and Computation,112(1), 1994.[Pol94a] R. Pollack. The Theory of LEGO: a proof checker for the Extended Calculus of Con-structions. PhD thesis, University of Edinburgh, 1994.[Pol94b] R. Pollak. Closure under alpha-conversion. In Types for Proofs and Pro-grams:International Workshop TYPES'93, Nijmegen, May 1993, Selected Papers, vol-ume 806 of LNCS, 1994.[Pol97] R. Pollack. Theories in type theory. In Online Proc. of the TYPES working groupworkshop Subtyping, inheritance and modular development of proofs, Durham, Eng-land, Sep. 1997.[Rem89] D. Remy. Typechecking records and variants in a natural extension of ml. In Conf.Rec. of the 16th. Ann. ACM. Symp. on Principles of Programming Languages, 1989.[R�oj95] N. R�ojemo. Garbage collection, and memory e�ciency, in lazy functional languages.PhD thesis, Dept. of Computing Science, University of G�oteborg and Chalmers Uni-versity of Technologyf, 1995.[Sa��97] A. Sa��bi. Typing algorithm in type theory with inheritance. In 24th. Annual SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1997.[Sev96] P. Severi. Normalisation in Lambda Calculus and its relation to type inference. PhDthesis, Eindhoven University of Technology, 1996.[Tas93a] A. Tasistro. Extension of Martin-L�of's Theory of Types with Record Types and Sub-typing, 1993. Privately circulated notes.[Tas93b] A. Tasistro. Formulation of Martin-L�of's theory of types with explicit substitution,1993. Licenciate thesis.Programming Methodology Group, Dept. of Computer Science,University of G�oteborg and Chalmers University of Technology.

122 BIBLIOGRAPHY[Tas97] A. Tasistro. Substitution, record types and subtyping in type theory, with applica-tions to the theory of programming, 1997. Ph.D. thesis. Programming MethodologyGroup, Dept. of Computing Science, University of G�oteborg and Chalmers Universityof Technology.[Wad92] P. Wadler. The essence of functional programming. In 1992 Symposium on principlesof Programming Languages, pages 1{14, 1992.[Wan87] M. Wand. Complete type inference for simple objects. In 2nd. Symposium on Logic inComputer Science, 1987.[Wan89] M. Wand. Type inference for record concatenation and multiple inheritance. In 4th.Symposium on Logic in Computer Science, 1989.

Appendices

A - CATEGORY OF EXPRESSIONS, SUBSTITUTIONS AND PROPERTIES 125A - Category of expressions, substitutions and propertiesThe category of expressions. The expressions of the language are given bythe grammar in Figure A.1e ::= x j p j c j [x]e j e1e2 j hi j he1; L = e2i j e:Le1!e2 j he1; L:e2iFigure A.1. Syntax of expressionsInstantiation and Substitution. We show in Figure A.3 and Figure A.2 the def-inition of the functions that perform the substitution of a expression for a variableand the instantiation of a parameter by an expression respectively.x[e1=p] =def xq[e1=p] =def e1 if p = q=def q if p 6= qc[e1=p] =def c([x]e2)[e1=p] =def [x]e2[e1=p]fe2[e1=p] =def (f [e1=p])(e2[e1=p])(�!�)[e1=p] =def (�[e1=p])!�[e1=p]hi[e1=p] =def hihe; L = e0i[e1=p] =def he[e1=p]; L = e0[e1=p]ie:L[e1=p] =def (e[e1=p]):Lhe; L:e0i[e1=p] =def he[e1=p]; L:e0[e1=p]iFigure A.2. Instantiationy[x := e1] =def e1 if x = y=def y if x 6= yp[x := e1] =def pc[x := e1] =def c([y]e2)[x := e1] =def [y]e2 if x = y=def [y]e2[x := e1] if x 6= yfe2[x := e1] =def (f [x := e1])(e2[x := e1])(�!�)[x := e1] =def (�[x := e1])!�[x := e1]hi[x := e1] =def hihe; L = e0i[x := e1] =def he[x := e1]; L = e0[x := e1]ie:L[x := e1] =def (e[x := e1]):Lhe; L:e0i[x := e1] =def he[x := e1]; L:e0[x := e1]iFigure A.3. Substitution

126 (wf-Par): wf p (wf-Con): wf c(wf-Lda): wf e[x := p]wf [x]e (wf-App): wf f wf ewf fe(wf-ERec): wf hi (wf-RecO): wf e wf e0wf he; L = e0i (wf-Sel): wf ewf e:L(wf-Fun): wf � wf �wf �!� (wf-RecT): wf e wf e0wf he; L:e0iFigure A.4. Well-formed expressionslgth p = 1lgth x = 1lgth c = 1lgth fe = lgth f + lgth elgth [x]e = 1 + lgth elgth �!� = lgth � + lgth �lgth hi = 1lgth he1; L = e2i = lgth e1 + lgth e2lgth e:L = 1 + lgth elgth he1; L:e2i = lgth e1 + lgth e2Figure A.5. Length of an expressionProperties of well-formed expressions. The notion of being a well-formed expres-sion is inductively de�ned as shown in Figure A.4. Some of the properties below areproved by complete induction on the length of expressions. This function, in turn,is de�ned in Figure A.5.Proposition A.1. Given expressions e and e1, a parameter p, variables x andy, if x 6= y and e[y := p][x := e1] = e[y := p] then e[x := e1] = e.Proof. This proposition can be proved by complete induction on the lengthof e. The interesting case is when e is an abstraction.Proposition A.2. Given expressions e1 and e2, such that wf e2, and any vari-able x, then e2[x := e1] = e2.Proof. This proposition is also proved by complete induction, in this case onthe length of the expression e2. The interesting case is when e2 is an abstraction.

A - CATEGORY OF EXPRESSIONS, SUBSTITUTIONS AND PROPERTIES 127lgth e2 = 1 . If e2 is either a parameter, a constant or a sort the proof isdirect by def. of substitution. As to a variable y, notice that to assume thatwf y leads to contradiction.e2 = [y]e .Assume that for all expression e0, such that lgth e0 < lgth [y]e, if wf e0then e0[x := e1] = e0, and also that wf [y]e. We have to prove that([y]e)[x := e1] = [y]e. We now proceed by cases on the equality of xand y:x = y . By de�nition the substitution has no e�ect on [y]e, thereby theequality holds.x 6= y . The goal becomes now to prove [y]e[x := e1] = [y]e. Noticethat the assumption that [y]e is well-formed allows ourselves to assumethat wf e[y := p] for any parameter p. Furthermore, the substitutionof p for y does not change the length of e, which is less that the oneof [y]e. Thus, we can apply induction with e[y := p] to obtain thate[y := p][x := e1] = e[y := p]. Now, by Proposition A.1, we get thate[x := e1] = e, and then so are [y]e[x := e1] and [y]e.The rest of the cases follow by de�nition of substitution and induction.Remark . The intuition behind this proposition is that well-formed expressionsare not a�ected by substitution.Using the proposition above is then quite direct to prove the followingProposition A.3. Given expressions e,e1 and e2, variables x and y, if x 6= y,wf e1 and wf e2 then e[y := e2][x := e1] = e[x := e1][y := e2]Proof. Surprisingly enough, at least to us, the proof can be done by structuralinduction on the expression e. We show the cases where e is either a variable or anabstraction.e = z . First we perform case analysis on z = y:z = y . y[y := e2][x := e1] = e2[x := e1] and y[x := e1][y := e2] = e2.Now, as e2 is a well-formed expression, we can apply Proposition A.2 toget that e2[x := e1] = e2. Transitivity and symmetry of the equality onexpressions do the rest.z 6= y . Now we make case analisys on z = x:z = x . We repeat the former argument but now we use that e1 iswell-formed in order to apply Proposition A.2.z 6= x . Both expressions reduce to z.e = [z]f . First we perform case analysis on z = yz = y . Both expressions reduce to [y]f [x := e1]

128 y 6= z . Now we make case analysis on x = zx = z . Both expressions reduce to [x]f [y := e2]x 6= z . By de�nition of substitution the expressions([z]f)[y := e2][x := e1] and ([z]f)[x := e1][y := e2] are equal to theexpressions [z]f [y := e2][x := e1] and [z]f [x := e1][y := e2] respec-tively. Thus it su�ces to prove that f [y := e2][x := e1] andf [x := e1][y := e2] are equal expressions, which we get from theinduction hypothesis on f .Proposition A.4. Given an expression e, a parameter p and variable x, thenfor all parameter q if wf (e[x := p]) it also holds that wf (e[x := q]).Proof. The proof of this proposition is by complete induction on the length ofthe expression e.Now we can prove a very useful propertyProposition A.5. Given expressions e1 and e2, a variable x and parameter pif wf (e1[x := p]) and wf e2 then wf (e1[x := e2]).Proof. The proof proceeds by complete induction on the length of the expres-sion e1. Thus we will have to prove that for all expression e, if for all expres-sion e0 such that lgth e0 < lgth e, wf e0[x := p] and wf e2 implies wf e0[x := e2] thenwf e[x := p] and wf e2 implies wf e[x := e2]. We show the proof for the cases p, x,fe0, [y]e0, the cases when e is a constant or a sort are identical to p, the rest to theapplication case.e = p . Follows directly by de�nition of substitution and well-formedness.e = y . We proceed by case analysis on y = xy = x . By def. of substitution x[x := e2] = e2, then the goal followsby the assumption that wf e2x 6= y . Notice that y[x := p] = y, then to assume that it is wf y[x := p]leads to contradiction, due to de�nition of well-formedness.e = fe0 . Assume that it is wf fe0[x := p] and wf e2. By de�nition of sub-stitution and wf fe0, we are allowed to assume that both wf f [x := p] andwf e0[x := p]. Clearly lgth f < lgth fe0 and lgth e0 < lgth fe0. We can now usethe ind. hyp. to obtain that wf f [x := e2] and wf e0[x := e2]. Applying rule(wf-App) in Figure A.4 we get wf f [x := e2]e0[x := e2].e = [y]f . Assume that it is wf (([y]f)[x := p]) and wf e2. Now we proceedby cases on y = xy = x .. The goal is to prove that the expression ([y]f)[x := e2] is well-formed. Now, by de�nition of substitution this latter expression is equal

A - CATEGORY OF EXPRESSIONS, SUBSTITUTIONS AND PROPERTIES 129to [y]f . The �rst assumption gives that wf [y]f (the substitution hasno e�ect).x 6= y . The �rst assumption gives, by def. of well-formedness, thatwf f [x := p][y := q] for any parameter q. Now, the goal to prove inthis case is wf [y]f [x := e2] (after performing the substitution). Thus,it su�ces to prove that wf f [x := e2][y := r] for any parameter r, andthen apply rule (wf-Lda) in Figure A.4. If we now assume r we get{ wf f [x := p][y := r], instantiating the parameter q in the propo-sition above with r{ wf f [y := r][x := p], by Proposition A.3, wf r and wf pand we have that lgth f [y := r] < lgth [y]f . Thus, by induction we getthat wf f [y := r][x := e2]. Finally, as e2 is also well-formed , we can useagain Proposition A.3 to get wf f [x := e2][y := r].Closed expressions. In the following we will talk of closed expressions. As an-ticipated, the valid open expressions that participate in a relative judgement willdepend on parameters not on variables. Therefore, we shall need a notion of closedexpression that says more than the one traditionally used in languages with bindingoperators. For doing that, we �rst introduce the notion of independence of an ex-pression e of a parameter p. The inductive de�nition of this predicate on expressionsis given in Figure A.6.We can now formulate an important property of expressions:Proposition A.6. Given expressions e1 and e2, let p be a parameter such thate1 indep p, then e1[e2=p] = e1.Proof. The proof of this lemma is by structural induction on the proof ofe1 indep p. We show only the cases where e1 is either a parameter or an abstraction.q indep p . Thus, p 6= q and then by de�nition of instantiation q[e2=p] = q.[x]e indep p . By de�nition of substitution we have ([x]e)[e2=p] = [x]e[e2=p].We know that e indep p, thus by induction hypothesis we get e[e2=p] = e.Then [x]e[e2=p] = [x]e.Proposition A.7. Given expressions e, e1 and e2, a parameter p and a vari-able x, if e indep p then e[x := e1][e2=p] = e[e2=p][x := e1[e2=p]].Proof. The proof of this lemma is by structural induction on the expression eand nested structural induction on e indep p.As a corollary of the two propositions above we obtain the following:

130 (indep-Par): q 6= pq indep p (indep-Var): x indep p(indep-Con): c indep p(indep-Lda): e indep p[x]e indep p (indep-App): f indep p e indep pfe indep p(indep-ERec): hi indep p (indep-RecO): e indep p e0 indep phe; L = e0i indep p(indep-Sel): e indep pe:L indep p(indep-Fun): � indep p � indep p�!� indep p (indep-RecT): e indep p e0 indep phe; L:e0i indep pFigure A.6. IndependenceProposition A.8. Given expressions e1 and e2, a parameter p and a variable x,if e1 indep p then e1[x := p][e2=p] = e1[x := e2].Proof. By Proposition A.7 we know e1[x := p][e2=p] = e1[e2=p][x := p[e2=p]].Now, as e1 indep p Proposition A.6 says that e1[e2=p] = e1. Finally, the expressionp[e2=p] is equal to e1.Definition 1.1. [Closed expression] An expression e is closed if and only if e iswell-formed and for all parameter p the expression e is also independent of p .Proposition A.9. Given expressions e1 and e2 variable x and parameter p. Ife1 is a closed expression then e1[x := e2] = e1 and e1[e2=p] = e1.Proof. This proposition is a corollary of both Proposition A.2 and Proposi-tion A.6. By de�nition e1 is both well-formed and independent of p.Proposition A.10. Let e1 and e2 be any two expressions and p and p1 be twoparameters such that p 6= p1.If a1 is closed then e1[e2=p][a1=p1] = e1[a1=p1][e2[a1=p1]=p].Proof. This can easily be proved by structural induction on expression e1. Weshow here the cases that e1 is either a parameter or an abstraction.e1 = q . We perform case analysis on the equality of q and p:

A - CATEGORY OF EXPRESSIONS, SUBSTITUTIONS AND PROPERTIES 131q = p . Both expressions reduce to e2[a1=p1]q 6= p . We perform case analysis on the equality of q and p1:q = p1 . The �rst expression reduces directly to the expression a1by de�nition of instantiation. The right-hand side expressions, onthe other hand, reduces to a1[e2[a1=p1]=p]. However, by hypothesiswe know that a1 is closed, then the latter instantiation has no e�ecton a1.q 6= p1 . Both expressions are equal to the parameter q.e1 = [x]e . By de�nition of instantiation we have that the lhs expressionreduces to [x]e[e2=p][a1=p1]. Moreover, we also know that the rhs expressionis equal to [x]e[a1=p1][e2[a1=p1]=p]. We can then apply induction to show thatthese expressions are equal.The above proposition can be generalized as followsProposition A.11. Given expressions e and a, and closed expressions ai withi = 1::n, let p,p1; : : : ; pn be n+ 1 mutually distinct parameters.Then e[a=p][a1=p1; : : : ; an=pn] = e[a1=p1; : : : ; an=pn][a[a1=p1; : : : ; an=pn]=p].Proof. By induction on n and using Proposition A.10.Proposition A.12. Given expressions e1,e2, a variable x and a parameter p1.If a1 is a closed expression then e1[x := e2][a1=p1] = e1[a1=p1][x := e2[a1=p1]]Proof. By structural induction on expression e1. We here show the proof forthe cases where e1 is either a variable, a parameter or an abstraction.e1 = y . We make case analysis on the equality of x and y:y = x . Both the rhs and the lhs are equal to the expression e2[a1=p1].y 6= x . Both the rhs and the lhs are equal to the variable y.e1 = q . We make case analysis on the equality of parameters q and p1:q = p1 . The lhs is equal to a1 by de�nition of substitution and instanti-ation. By de�nition of instantiation the rhs is equal to a1[x := e2[a1=p1]].Now, as the expression a1 is closed by hypothesis, this latter substitutionhas no e�ect.e1 = [y]e . We make case analysis on the equality of x and y:y = x . Both the lhs and the rhs are equal to the expression [x]e[a1=p1].y 6= x . The lhs reduces to [y]e[x := e2][a1=p1] and the rhs to the ex-pression [y]e[a1=p1][x := e2[a1=p1]]. We can then apply the inductionhypothesis to show that these two expressions are equal.

132The above proposition can be generalized as followsProposition A.13. Given expressions e1,e2, a variable x, closed expressions aiand mutually distinct parameters pi, with i = 1::n. Then, the expressionse1[x := e2][a1=p1; : : : ; an=pn] and e1[a1=p1; : : : ; an=pn][x := e2[a1=p1; : : : ; an=pn]] areequal.Proof. By induction on n and using Proposition A.12.As a corollary of the former proposition we can obtain the following:Proposition A.14. Given expression e1 a variable x, closed expressions ai andparameters piwith i = 1::n. If p is a parameter distinct from pi for i = 1::n thene1[x := p][a1=p1; : : : ; an=pn] = e1[a1=p1; : : : ; an=pn][x := p].Proof. By Proposition A.13 we get that e1[x := e2][a1=p1; : : : ; an=pn] is equalto e1[a1=p1; : : : ; an=pn][x := p[a1=p1; : : : ; an=pn]]. Now, as p is di�erent from all theparameters pi the instantiations p[a1=p1; : : : ; an=pn] have no e�ect on p.

B - THE CALCULUS 133B - The calculusGeneral rules. In Figure B.1 we present the rules for formation of contexts,the (schematic) rule of thinning and the rules of assumption and type formation.context formation, thinning and assumption:[] context � context � ` � : type�; p:� context p fresh in �� ` J� ` J � � �� ` p : � p : � in � � ` � : type p : � in �Figure B.1. Context formation, thinning and assumptionEquality rules. These are the general rules for the equality relation of types,objects of a type and families of types. Their justi�cation is done as in previousformulations of type theory. We have then reexivity, symmetry and transitivityrules for identity of types, objects of types and families of types under a givencontext.inclusion from identity:� ` �1 = �2 : type� ` �1 v �2 � ` �1 = �2 : �!type� ` �1 v �2 : �!typesubsumption:� ` a : �2 � ` �2 v �1� ` a : �1 � ` a = b : �2 � ` �2 v �1� ` a = b : �1� ` �1 v �2 � ` � : �2!type� ` � : �1!type� ` �1 v �2 � ` �1 = �2 : �2!type� ` �1 = �2 : �1!type � ` �1 v �2 � ` �1 v �2 : �2!type� ` �1 v �2 : �1!typeFigure B.2. Rules of subsumption and inclusion of families of types

134 Rules of inclusion. We have also rules for expressing that the inclusion of twotypes and two families of types follows from their identity, as well as the reexivityand transitivity of inclusion of types. The rules in Figure B.2 are immediatelyjusti�ed from the meaning explanation of the judgement of inclusion.Rules of instantiation. The various rules of instantiation are presented inFigure B.3instantiation of types:�; p:� ` �1 : type � ` a : �� ` �1[a=p] : type �; p:� ` �1 = �2 : type � ` a = b : �� ` �1[a=p] = �2[b=p] : type�; p:� ` �1 v �2 � ` a = b : �� ` �1[a=p] v �2[b=p]instantiation of objects:�; p:� ` b : �1 � ` a : �� ` b[a=p] : �1[a=p] �; p:� ` b1 = b2 : �1 � ` a = c : �� ` b1[a=p] = b2[c=p] : �1[a=p]instantiation of families of types:�; p:� ` � : �1!type � ` a : �� ` �[a=p] : �1[a=p]!type �; p:� ` �1 = �2 : �1!type � ` a = b : �� ` �1[a=p] = �2[b=p] : �1[a=p]!type�; p:� ` �1 v �2 : �1!type � ` a = b : �� ` �1[a=p] v �2[b=p] : �1[a=p]!typeinstantiation of record types and record families:�; p:� ` � : record-type � ` a : �� ` �[a=p] : record-type �; p:� ` � : �1!record-type � ` a : �� ` �[a=p] : �1[a=p]!record-typeFigure B.3. Rules of instantiationRules for families of types and types. The rules of application for familiesof types and the associated equality and inclusion rules are shown in Figure B.4.Then, in Figure B.5 we show the rule for formation of families, the corresponding�-rule and the various rules of equality.Sets and elements of sets. The rules in Figure B.6 introduce the type of(inductively) de�ned set, the rule saying that any set gives rise to a type and theassociated equality rule.

B - THE CALCULUS 135application:� ` � : �!type � ` a : �� ` �a : type � ` � : �!type � ` a = b : �� ` �a = �b : typeequality and inclusion:� ` �1 = �2 : �!type � ` a : �� ` �1a = �2a : type � ` �1 v �2 : �!type � ` a : �� ` �1a v �2aFigure B.4. Family application, equality and inclusionabstraction and �:�; p:� ` �1[x := p] : type� ` [x]�1 : �!type �1 indep p �; p:� ` �1[x := p] : type � ` a : �� ` ([x]�1)a = �1[x := a] : type �1 indep pextensionality and �-rule:�; p:� ` �1p = �2p : type� ` �1 = �2 : �!type �1; �2 indep p � ` � : �!type� ` � = [x]�x : �!type wf �Figure B.5. Family formation, �-conversion and equality rules
` Set : type � ` A : Set� ` A : type � ` A = B : Set� ` A = B : typeFigure B.6. The type of setsFunction types. The rule of formation of function types and the correspondingequality and inclusion rules are shown in Figure B.7Then it comes the rules of (function) object application (in Figure B.8) and inFigure B.9 the formation of opbjects of funtional types together with the variousequality rules.Record Types. We then turn to present the rules of record types and recordobjects. In Figure B.10 there are the rules for record type formation and recordtype equality.Formation and application of families of record types are given in Figure B.11The so-called rule of �elds and a rule of record inclusion are shown in Figure B.12.Then, in Figure B.13 we show the rules saying when any two record types are inthe inclusion relation.

136formation of �!�: � ` � : type � ` � : �!type� ` �!� : typeequality and inclusion of �!�:� ` �1 = �2 : type � ` �1 = �2 : �1!type� ` �1!�1 = �2!�2 : type� ` �2 v �1 � ` �1 v �2 : �2!type� ` �1!�1 v �2!�2Figure B.7. Function types formation, equality and inclusionapplication:� ` f : �!� � ` a : �� ` fa : �a � ` f = g : �!� � ` a = b : �� ` fa = gb : �aFigure B.8. Application of function objectsabstraction: �; p:� ` b[x := p] : �1[x := p]� ` [x]b : �![x]�1 b; �1 indep p�-conversion and extensionality:�; p:� ` b[x := p] : �1[x := p] � ` a : �� ` ([x]b)a = b[x := a] : �1[x := a] �; p:� ` fp = gp : �p� ` f = g : �!� f; g; � indep p� and �-rules:� ` b : �!�� ` [x]bx = b : �!� wf b �; p:� ` f [x := p] = g[x := p] : �1[x := p]� ` [x]f = [x]g : �![x]�1 f; g; �1 indep pFigure B.9. Function object formation and equality rulesWe end up showing in Figure B.14, �rst, the rules of record object extension.Then, the rule governing the selection of a label from a record object and the onewhich says that if two record objects are equal then the result of selectings the same

B - THE CALCULUS 137formation of record-types:� ` hi : record-type � ` � : record-type � ` � : �!type� ` h�; L:�i : record-type L fresh in �type formation: � ` � : record-type� ` � : typerecord types equality:` hi = hi : type � ` �1 = �2 : type � ` �1 = �2 : �1!type� ` h�1; L:�1i = h�2; L:�2i : typeFigure B.10. Record types formation and equality rules� ` � : �!record-type � ` a : �� ` �a : record-type �; p:� ` �[x := p] : record-type� ` [x]� : �!record-type �1 indep pFigure B.11. Record types families� ` h�; L:�i v � � ` � : �!type L : � in �Figure B.12. Rules of �elds� ` � : record-type� ` � v hi � ` �1 v �2 � ` �1 v �2 : �1!type� ` �1 v h�2; L:�2i L : �1 in �1Figure B.13. Inclusion of record typeslabel from them must be equal objects. Finally there are the equality rules for recordobjects.

138record object extension:� ` hi : hi � ` r : � � ` e : �r� ` hr; L = ei : h�; L:�i L fresh in �� ` r : � � ` e : �r� ` hr; L = ei = r : � L fresh in � � ` r : � � ` e : �r� ` hr; L = ei:L = e : �r L fresh in �selection: � ` r : �� ` r:L : �r L : � in � � ` r = s : �� ` r:L = s:L : �r L : � in �equality rules:� ` r : hi � ` s : hi� ` r = s : hi � ` r = s : � � ` r:L = s:L : �r� ` r = s : h�; L:�iFigure B.14. Record object extension, selection and equality rules

