CURSO DE TEORÍA ERGÓDICA 2008 - IV

1. Definición de ergodicidad

DEFINICIÓN 1.1. Definición oficial.

Sea (X, \mathcal{A}, μ) espacio de probabilidad. $T: X \to X$ automorfismo.

T se dice ergódico si $\forall A \in A$ tal que $T^{-1}(A) = A \Rightarrow \mu(A)$ o $\mu(A) = 1$.

1.1. Definiciones equivalentes.

Definición 1.2. T se dice ergódica si $\forall A \in A$ tal que

$$T(A) \subset A \Rightarrow \mu(A) = 0 \ o \ \mu(A) = 1.$$

Dem. Si T cumple la definición equivalente 1 entonces T es ergódica ya que $T(A)\subset A$ implica $A\subset T^{-1}(A).$

Por otro lado si T es ergódica entonces considero

$$A_n = T^{-n}(A)$$
 para $n \ge 0$.

Se tiene que:

$$(i)\mu(A_n) = \mu(A)$$
 por ser μ T-invariante.

(1.1)

$$(ii)\{A_n\}$$
 creciente.

Así que:

$$B = \bigcup A_n \Rightarrow \mu(B) = \lim \mu(A_n) = \mu(A)$$

Además

$$T^{-1}(B) = T^{-1}(\bigcup_{n \ge 0} A_n) = T^{-1}(\bigcup_{n \ge 0} T^n(A)) = \bigcup_{n \ge 0} T^n(A) = \bigcup_{n \ge 1} A_n \subset B$$

Como
$$A \subset T^{-1}(A)$$
entonces $\mu(B) = 0$ o $\mu(B) = 1 \Rightarrow \mu(A) = 0$ o $\mu(A) = 1$.

Definición 1.3. T se dice ergódica si $\forall A \in A$ tal que

$$\mu(A) > 0 \Rightarrow \mu(\bigcup_{n>0} A_n) = 1$$

Dem. Voy a probar está definición si
i la definición equivalente 1. Si T es ergódica y A es tal que $\mu(A) > 0$, considero

$$B = \bigcup_{n \ge 0} T^{-n}(A).$$

Como

$$B \subset T^{-1}(B) \Rightarrow \mu(B) = 0 \text{ o } \mu(B) = 1.$$

Al ser μ T invariante y la unión creciente se tiene $\mu(A)=1$ o $\mu(A)=0$ pero esto último contradice hipótesis, así que $\mu(B)=1$

Ahora sea T que cumple con la definición equivalente 2 voy a mostrar que es ergódica. Sea $A \subset T^{-1}(A)$ entonces $\mu(A) = 0$ o $\mu(A) > 0$, si pasa lo segundo entonces

$$1 = \mu(\bigcup_{n \ge 0} T^{-n}(A)) = \lim \mu(T^{-n}(A)) = \lim \mu(A) = \mu(A)$$

Así que T es ergódica.

Definición 1.4. T se dice ergódica si

$$\tilde{f}(x) = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n-1} f \circ T^{j}(x) = constante \ c.t.x \quad \forall f \in \mathcal{L}^{1}.$$

Dem.

 (\Rightarrow)

$$\tilde{f}$$
 constante c.t. x $\Rightarrow \int f d\mu = \tilde{f}(x)$

Defino

$$A = \{x : \tilde{f}(x) > \int f d\mu\}$$

$$B = \{x : \tilde{f}(x) < \int f d\mu\}$$

Son T invariantes luego si $\mu(A) = 1$ entonces

$$\int \tilde{f} > \int f$$
 absurdo, contradice Birhoff.

Así que $\mu(A) = 0$. Analogamente para B (\Leftarrow)

Sea $A \setminus T^{-1}(A) = A$ se tiene que

$$\chi_A(x) = \chi_{T^{-1}(A)}(x) = \chi_{T^{-n}(A)}(x)$$

Luego,

$$\frac{1}{n} \sum_{i=0}^{n-1} \chi_A \circ T^j(x) = \chi_A(T^{-1}(x))$$

Luego

$$\chi_A(x) = \tilde{\chi}_A = \int \chi_A = \mu(A)$$

Por lo tanto $\mu(A) = 0$ o $\mu(A) = 1$.

Definición 1.5. T es ergódico si

$$\tilde{f}(x) = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n-1} f \circ T^{i}(x) = constante \ c.t.x \quad \forall f \in \mathcal{D} \subset \mathcal{L}^{1}$$

donde \mathcal{D} es un denso.

Dem.

Es claro que si T es ergódica entonces cumple esto. Voy a mostrar que si $\tilde{f}=$ cte para un denso entonces pasa $\forall f\in\mathcal{L}^1$. Dada $f\in\mathcal{L}^1$ y ε , sea $g\in\mathcal{D}$ tal que

$$||f - g||_1 \le \varepsilon/3$$

y n_0 tal que

$$\left\| \frac{1}{n} \sum_{j=0}^{n-1} g \circ T^{j}(x) - \int g \right\| < \varepsilon/3 \qquad \forall n \ge n_0$$

Entonces

$$\|\frac{1}{n}\sum_{j=0}^{n-1}f\circ T^{j}(x) - \int f\| \leq \frac{1}{n}\|\sum_{j=0}^{n-1}f\circ T^{j}(x) - \sum_{j=0}^{n-1}g\circ T^{j}(x)\|$$

$$+ \|\frac{1}{n}\sum_{j=0}^{n-1}g\circ T^{j}(x) - \int g\| + \|f - g\|_{1} < \varepsilon.$$

Definición 1.6. T se dice ergódica si $\forall A, B \in \mathcal{A}$ se tiene

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \mu(T^{-j}(A) \cap B) = \mu(A)\mu(B).$$

Dem. Si T es ergódica entonces usando el teorema de Birkhoff se tiene que:

$$\lim \frac{1}{n} \sum_{j=0}^{n-1} \chi_A(T^j(x)) = \tilde{\chi_A} = \int \chi_A d\mu = \mu(A)$$
 c.t.p.

Usando el teorema de convergencia dominada

$$\mu(A)\mu(B) = \int_{X} \left(\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \chi_{A}(T^{j}(x))\chi_{B}\right) d\mu$$

$$= \lim_{n \to +\infty} \frac{1}{n} \int_{X} \left(\sum_{j=0}^{n-1} \chi_{A}(T^{j}(x))\chi_{B}\right) d\mu$$

$$= \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \int_{X} \chi_{A}(T^{j}(x))\chi_{B} d\mu$$

$$= \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \mu(T^{-j}(A) \cap B)$$

Vamos a probar que si T cumple está definición entonces T es ergódica. Sea A un conjunto T invariante.

(1.4)
$$\mu(A)\mu(A^c) = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \mu(T^{-j}(A) \bigcap \mathcal{A}^c)$$
$$= \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \mu(A \bigcap \mathcal{A}^c) = 0$$

Así que
$$\mu(A) = 0$$
 o $\mu(A^c) = 0$.

Definición 1.7. T es ergódica si

$$\tilde{\chi_A} = \mu(A) \ c.t.p. \quad \forall \quad A \in (A)$$

Dem.

$$\widetilde{\chi}_A(x) = \int_X \quad \chi_A d\mu = \mu(A) \text{ c.t.p}$$

Sea A T invariante entonces, si $\mu(A)>0$, como $\tilde{\chi_A}=1 \quad \forall x\in A$ se tiene que $\mu(A)=1$

Recordemos la definición de transitividad y un par de condiciones equivalentes a está, ya que veremos en breve que ergodicidad implica transitidad.

Definición 1.8. T un mapa continuo en X se dice transitivo sí

$$\forall U, V \text{ abserts no vac\(io\)} se tiene $\exists n \geq 1 \text{ tal que } T^{-n}(U) \cap V \neq \emptyset$$$

Proposición 1.9. Sea X un espacio métrico completo y $\mathbb{T}: X \to X$ un mapa continuo. Las siguientes afirmaciones son equivalentes:

- (i) T es transitivo.
- (ii) Para un residual de X se tiene $\omega(x) = X$
- (iii) Para todo abierto no vacío $U \subset X$ se tiene que el conjunto $\bigcup_{n\geq 0} T^{-n}(U)$ es denso.

Proposición 1.10. Sea T un mapa continuo en X un espacio métrico completo, μ una medida T invariante que le asigna medida positiva a los abiertos. Si T es ergódico entonces es transitiva.

Dem. Sea U_0 un abierto no vacío, por hipótesis $\mu(U_o) > 0$, al ser T ergódica, el conjunto $U = \bigcup_{n \geq 0} T^{-n}(U_0)$ tiene medida 1 y es T invariante. Su complemento tiene medida cero y como μ es positiva en abiertos $int(U^c) = \emptyset$, así que U es denso.

2. Transformaciones unicamente ergódicas y transformaciones mixing.

DEFINICIÓN 2.1. Un mapa T se dice únicamente ergódico si $\sharp M_T=1$, es decir si existe una única medida T-invariante

Un par de condiciones equivalentes a ser únicamente ergódica en el caso de que T sea una transformació continua.

Proposición 2.2. Sea T continua en X métrico compacto. Son equivalentes:

- (i) T únicamente ergódica
- (ii) $\forall f \in \mathcal{C}'$, $x \in X$ existe el límite de Birkhoff y no depende de x.
- (iii) $\forall f \in \mathcal{C}'$ la sucesión de funciones continuas $\{f_n\}$ definidas por:

$$f_n = \frac{1}{n} \sum_{j=0}^{n-1} f \circ T^j(x)$$

converge uniformente a una constante.

A continuación se probará que las rotaciones irracionales en S^1 son únicamenete ergodicas y por lo tanto ergódicas.

Proposición 2.3. Las rotaciones irracionales en S^1 son únicamente ergódicas.

Dem. Dada $f: S^1 \to \mathbb{R}$ una función continua. T una rotación irracinal en S^1 . Como f es continua usando Birhoff existe $x_1 \in S^1 : \exists f(x_1)$. Se mostrará que f_n , definida por

$$f_n = \frac{1}{n} \sum_{i=0}^{n-1} f \circ T^j(x)$$

converge uniformente a $\tilde{f}(x_1)$.

Dado $\varepsilon > 0$, sea el δ de continuidad de f correspondiente a $\varepsilon/3$. Como la órbita de x es densa para el futuro entonces $\exists M > 0$ tal que $||T^M(x) - x_1|| < \delta$. Para todo $j \leq 0$ se tiene $||T^{M+j}(x) - T^j x_1|| < \delta$. Usando continuidad de f se tiene, para $n \geq 1$:

$$\left| \frac{1}{n} \sum_{j=0}^{n-1} f \circ T^{M+j}(x) - \frac{1}{n} \sum_{j=0}^{n-1} f \circ T^{j}(x_{1}) \right| < \varepsilon/3.$$

Sea n_0 tal que para $n \ge n_0$ se cumpla que:

$$\left| \frac{1}{n} \sum_{j=0}^{n-1} f \circ T^{j}(x_{1}) - \tilde{f}(x_{1}) \right| < \varepsilon/3$$

Sea n_1 tal que se cumpla para todo $n \ge n_1$:

$$|\frac{1}{n}\sum_{i=0}^{n-1}f\circ T^{M+j}(x)-\frac{1}{n}\sum_{i=0}^{n-1}f\circ T^{j}(x)|\leq \frac{1}{n}(\sum_{i=0}^{M-1}\|f\|_{\scriptscriptstyle{0}}+\sum_{i=n}^{n+M-1}\|f\|_{\scriptscriptstyle{0}})\leq \frac{2M\|f\|_{\scriptscriptstyle{0}}}{n}<\varepsilon/3.$$

Tomando N el máximo entre n_0 y n_1 usando desigualdad triangular, se tiene para todo $n \geq 0$ que:

$$|f_n - \tilde{f}(x_1)| < \varepsilon.$$

Por lo tanto T es únicamente ergódica.

DEFINICIÓN 2.4. Una $T: X \to X$ medibe, μ - invariante, se dice mixing si $\forall A, B \in \mathcal{A}$ se tiene que:

$$\lim_{n \to +\infty} \mu(T^{-n}(A) \cap B) = \mu(A)\mu(B).$$

Proposición 2.5. Si $T: X \to X$ es medible, preserva μ y es mixing entonces T es ergódica.

Dem. Dado $A \in \mathcal{A}$ un conjunto T-invariante. entonces

$$0 = \mu(\emptyset) = \mu(E \cap E^c) = \mu(T^{-n}(E) \cap E^c) \qquad \forall n > 0$$

Luego

$$0 = \lim_{n \to +\infty} \mu(T^{-n}(E) \bigcap E^c) = \mu(E)\mu(E^c) = \mu(E)(1 - \mu(E))$$

Así que o $\mu(E) = 0$ o $\mu(E) = 1$

El recíproco no es cierto, se demostrará más adelante que las rotaciones irracionales no son mixing.

DEFINICIÓN 2.6. Sea $T: X \to X$ medible Borel en un espacio topológico X se dice topologicamente mixing si $\forall U, V$ abiertos no vacíos, existe n_0 tal que $T^n(U) \cap V \neq \emptyset \quad \forall n > n_0$

A continuación mostraremos la siguiente propiedad que vincula las transformaciones mixing y las que son topologicamente mixing.

Proposición 2.7. Sea $T: X \to X$ medible Borel y preserva μ , T mixing y μ postiva sobre abiertos entonces T es topologicamente mixing.

Dem. Dados U, V abiertos no vacíos, como T es mixing se tiene:

$$\lim_{n \to +\infty} \mu(T^{-n}(U) \bigcap V) = \mu(U)\mu(V) > 0.$$

Esto implica que para valores suficientemente grandes de n se cumple que $\mu(T^{-n}(U) \cap V) > 0$ y por lo tanto $T^{-n}(U) \cap V$ no es vacío.

Por último y usando esta proposición mostraremos que las rotaciones irracionales no son mixing.

Sea $T: S^1 \to S^1$ $T(z) = e^{2\pi i\alpha}z$ donde α es un número irracional en (0,1). Como la medida de Lebesgue es positiva sobre abiertos bastaría chequear que T no es topologicamente mixing. Sea U un intervalo abierto de S^1 de longitud ε tal que $0 < \varepsilon < \frac{\pi}{2} min\{\alpha, 1 - \alpha\}$. Sea $V = e^{2i\varepsilon}U$. Basta ver que si $T^{n_0}(V) \cap U \neq \emptyset$ entonces $T^{n_0+1}(V) \cap U = \emptyset$ Si esto no fuera así la longitud de $T^{n_0+1}(V) \cup U \cup T^{n_0}(V)$ sería menor que $3\varepsilon < 2\pi min\{\alpha, 1 - \alpha\}$ pero contendría dos puntos x_0 y $T(x_0)$ que distan $2\pi min\{\alpha, 1 - \alpha\}$, lo cual es absurdo.

References

- [KH] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems Encyclopedia of Mathematics and its Applications, **54**
- [M] R. Mañé, *Teoria ergódica*, Projeto Euclides, **14**, IMPA, Rio de Janeiro (1983)
- [EC] E. Castigeras, *Teoria ergódica*, Notas sobre el curso, IMERL, Montevideo (1997)