Producto vectorial

Definición
Interpretación geométrica
Producto mixto

Dados

$$X = (x_1, x_2, x_3)$$
 $Y = (y_1, y_2, y_3)$

Dados

$$X = (x_1, x_2, x_3)$$
 $Y = (y_1, y_2, y_3)$

el producto vectorial $X \wedge Y$ se define como:

Dados

$$X = (x_1, x_2, x_3)$$
 $Y = (y_1, y_2, y_3)$

el producto vectorial $X \wedge Y$ se define como:

$$X \wedge Y = \left(\begin{array}{c|cc} x_2 & x_3 \\ y_2 & y_3 \end{array} \right|, - \left| \begin{array}{c|cc} x_1 & x_3 \\ y_1 & y_3 \end{array} \right|, \left| \begin{array}{c|cc} x_1 & x_2 \\ y_1 & y_2 \end{array} \right| \right)$$

Dados

$$X = (x_1, x_2, x_3)$$
 $Y = (y_1, y_2, y_3)$

el producto vectorial $X \wedge Y$ se define como:

$$X \wedge Y = \left(\begin{array}{c|cc} x_2 & x_3 \\ y_2 & y_3 \end{array} \right|, - \left| \begin{array}{c|cc} x_1 & x_3 \\ y_1 & y_3 \end{array} \right|, \left| \begin{array}{c|cc} x_1 & x_2 \\ y_1 & y_2 \end{array} \right| \right)$$

Observación 1

Se puede recordar por la fórmula

$$X \wedge Y = \begin{vmatrix} e_1 & e_2 & e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

Observación 2

Producto escalar:

$$\begin{array}{ccc} \cdot : & \mathbb{R}^3 \times \mathbb{R}^3 & \to \mathbb{R} \\ & (X, Y) & \mapsto X \cdot Y \end{array}$$

Observación 2

Producto vectorial:

$$\wedge: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
$$(X, Y) \longmapsto X \wedge Y$$

$$X = (1, 2, 3), Y = (3, 2, 1)$$

$$X = (1, 2, 3), Y = (3, 2, 1)$$

$$X \wedge Y = \left[\begin{array}{cccc} e_1 & e_2 & e_3 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right] =$$

$$X = (1, 2, 3), Y = (3, 2, 1)$$

$$X \wedge Y = \begin{bmatrix} e_1 & e_2 & e_3 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = (2 - 6, 9 - 1, 2 - 6)$$

$$X = (1, 2, 3), Y = (3, 2, 1)$$

$$X \wedge Y = \begin{vmatrix} e_1 & e_2 & e_3 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{vmatrix} = (-4, 8, -4)$$

Propiedades

Antisimetría

Para todo par de vectores $X, Y \in \mathbb{R}^3$ se tiene:

Antisimetría

Para todo par de vectores $X,Y\in\mathbb{R}^3$ se tiene:

$$X \wedge Y = -Y \wedge X$$

Antisimetría

Para todo par de vectores $X, Y \in \mathbb{R}^3$ se tiene:

$$X \wedge Y = -Y \wedge X$$

el producto vectorial es antisimétrico

$$(\alpha X) \wedge Z = \alpha (X \wedge Z)$$

$$(\alpha X) \wedge Z = \alpha(X \wedge Z)$$

$$(X+Y) \wedge Z = (X \wedge Z) + (Y \wedge Z)$$

$$(\alpha X) \wedge Z = \alpha(X \wedge Z)$$

$$(X+Y) \wedge Z = (X \wedge Z) + (Y \wedge Z)$$

$$X \wedge (\alpha Z) = \alpha (X \wedge Z)$$

$$(\alpha X) \wedge Z = \alpha(X \wedge Z)$$

$$(X+Y) \wedge Z = (X \wedge Z) + (Y \wedge Z)$$

$$X \wedge (\alpha Z) = \alpha (X \wedge Z)$$

$$X \wedge (Y+Z) = (X \wedge Y) + (X \wedge Z)$$

Para todo $X,Y,Z\in\mathbb{R}^3$, y para todo $\alpha,\beta\in\mathbb{R}$

$$(\alpha X) \wedge Z = \alpha(X \wedge Z)$$

$$(X+Y) \wedge Z = (X \wedge Z) + (Y \wedge Z)$$

$$X \wedge (\alpha Z) = \alpha (X \wedge Z)$$

$$X \wedge (Y+Z) = (X \wedge Y) + (X \wedge Z)$$

el producto vectorial es multilineal

Interpretación geométrica (I)

Para todo $X, Y \in \mathbb{R}^3$:

$$X \wedge Y \perp X$$

Interpretación geométrica (I)

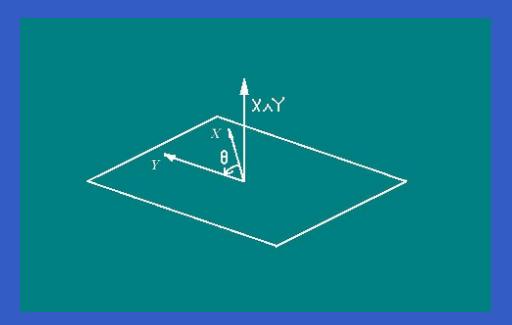
Para todo $X, Y \in \mathbb{R}^3$:

- $X \wedge Y \perp X$
- $X \wedge Y \perp Y$

Interpretación geométrica (I)

Para todo $X, Y \in \mathbb{R}^3$:

- $X \wedge Y \perp X$
- $X \wedge Y \perp Y$



Si la ecuación paramétrica de π es

Si la ecuación paramétrica de π es

$$(\pi)X = P + \lambda U + \mu V$$
 $\lambda, \mu \in \mathbb{R}$

Si la ecuación paramétrica de π es

$$(\pi)X = P + \lambda U + \mu V \qquad \lambda, \mu \in \mathbb{R}$$

entonces $N = U \wedge V$ es un vector normal al plano,

Si la ecuación paramétrica de π es

$$(\pi)X = P + \lambda U + \mu V \qquad \lambda, \mu \in \mathbb{R}$$

entonces $N = U \wedge V$ es un vector normal al plano, \therefore

$$\pi)(X - P) \cdot N = 0$$

es una ecuación reducida del plano π

$$\begin{cases} x = 1 + \lambda - \mu \\ y = -1 + 2\lambda + \mu \\ z = -2 + \lambda - 2\mu \end{cases}$$

$$\begin{cases} x = 1 + \lambda - \mu \\ y = -1 + 2\lambda + \mu \\ z = -2 + \lambda - 2\mu \end{cases}$$

$$P = (1, -2, -2)$$
 $U = (1, 2, 1)$ $V = (-1, 1, -2)$

$$\begin{cases} x = 1 + \lambda - \mu \\ y = -1 + 2\lambda + \mu \\ z = -2 + \lambda - 2\mu \end{cases}$$

$$P = (1, -2, -2)$$
 $U = (1, 2, 1)$ $V = (-1, 1, -2)$

$$U \wedge V = \begin{vmatrix} e_1 & e_2 & e_3 \\ 1 & 2 & 1 \\ -1 & 1 & -2 \end{vmatrix} =$$

$$\begin{cases} x = 1 + \lambda - \mu \\ y = -1 + 2\lambda + \mu \\ z = -2 + \lambda - 2\mu \end{cases}$$

$$P = (1, -2, -2)$$
 $U = (1, 2, 1)$ $V = (-1, 1, -2)$

$$U \wedge V = (-5, 1, 3)$$

Si las ecuaciones paramétricas de π son:

$$\begin{cases} x = 1 + \lambda - \mu \\ y = -1 + 2\lambda + \mu \\ z = -2 + \lambda - 2\mu \end{cases}$$

$$P = (1, -2, -2)$$
 $U = (1, 2, 1)$ $V = (-1, 1, -2)$

$$U \wedge V = (-5, 1, 3)$$

•

$$\pi(X - P) \perp (-5, 1, 3) = 0$$

Si las ecuaciones paramétricas de π son:

$$\begin{cases} x = 1 + \lambda - \mu \\ y = -1 + 2\lambda + \mu \\ z = -2 + \lambda - 2\mu \end{cases}$$

$$P = (1, -2, -2)$$
 $U = (1, 2, 1)$ $V = (-1, 1, -2)$

$$U \wedge V = (-5, 1, 3)$$

•

$$\pi(x) - 5(x-1) + (y+1) + 3(z+2) = 0$$

Si las ecuaciones paramétricas de π son:

$$\begin{cases} x = 1 + \lambda - \mu \\ y = -1 + 2\lambda + \mu \\ z = -2 + \lambda - 2\mu \end{cases}$$

$$P = (1, -2, -2)$$
 $U = (1, 2, 1)$ $V = (-1, 1, -2)$

$$U \wedge V = (-5, 1, 3)$$

•

$$(\pi) - 5x + y + 3z + 12 = 0$$

Intersección de 2 planos

El vector director de la recta dada por:

$$r) \begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \end{cases}$$

Intersección de 2 planos

El vector director de la recta dada por:

$$r) \begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \end{cases}$$

es:

$$(a_1, b_1, c_1) \wedge (a_2, b_2, c_2)$$

Interpretación gemoétrica (II)

Dados $X, Y \in \mathbb{R}^3$, tenemos

$$|X \wedge Y| = |X||Y|\operatorname{sen}\angle(X,Y)$$

Interpretación gemoétrica (II)

Dados $X, Y \in \mathbb{R}^3$, tenemos

$$|X \wedge Y| = |X||Y|\operatorname{sen}\angle(X,Y)$$

la terna $(X, Y, X \wedge Y)$ es directa

Terna directa - definición

Decimos que una terna de vectores (ordenados) $X,Y,Z\in\mathbb{R}^3$ es directa,

Terna directa - definición

Decimos que una terna de vectores (ordenados) $X,Y,Z \in \mathbb{R}^3$ es directa, si el determinante

$$egin{bmatrix} x_1 & x_2 & x_3 \ y_1 & y_2 & y_3 \ z_1 & z_2 & z_3 \ \end{bmatrix}$$

Terna directa - definición

Decimos que una terna de vectores (ordenados) $X,Y,Z \in \mathbb{R}^3$ es directa, si el determinante

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} \ge 0$$

Producto mixto

Dados $X, Y, Z \in \mathbb{R}^3$, se define el producto mixto de X, Y, Z como:

Producto mixto

Dados $X, Y, Z \in \mathbb{R}^3$, se define el producto mixto de X, Y, Z como:

$$[X, Y, Z] = egin{array}{c|cccc} x_1 & x_2 & x_3 \ y_1 & y_2 & y_3 \ z_1 & z_2 & z_3 \ \end{array}$$

Producto mixto

Dados $X, Y, Z \in \mathbb{R}^3$, se define el producto mixto de X, Y, Z como:

$$[X, Y, Z] = egin{array}{c|cccc} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \\ \end{array} = (X \wedge Y) \cdot Z$$

Observación

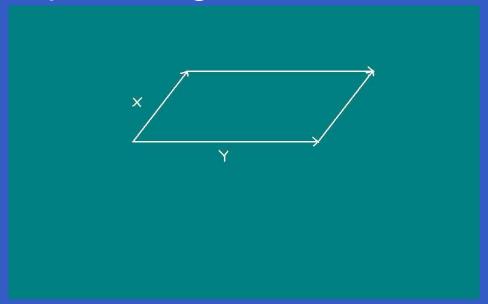
En particular

Una terna $X,Y,Z\in\mathbb{R}^3$ es directa $\Leftrightarrow [X,Y,Z]\geq 0$

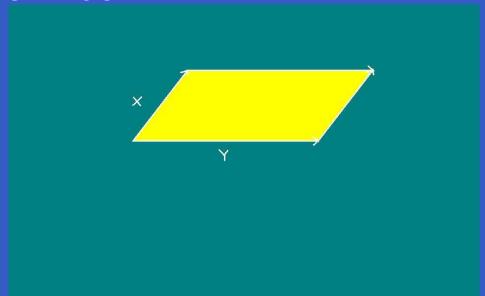
Más aplicaciones

Todo par de vectores $X,Y\in\mathbb{R}^3$ no nulos definen un paralelogramo P.

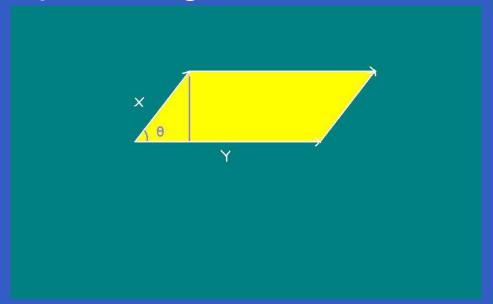
Todo par de vectores $X,Y\in\mathbb{R}^3$ no nulos definen un paralelogramo P.



Todo par de vectores $X, Y \in \mathbb{R}^3$ no nulos definen un paralelogramo P. que tiene un área bien definida.

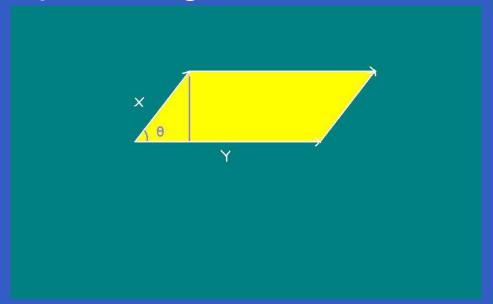


Todo par de vectores $X,Y \in \mathbb{R}^3$ no nulos definen un paralelogramo P. Para calcular



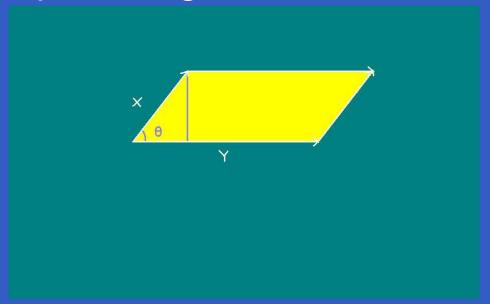
$$\text{área}(P) =$$

Todo par de vectores $X, Y \in \mathbb{R}^3$ no nulos definen un paralelogramo P. Para calcular

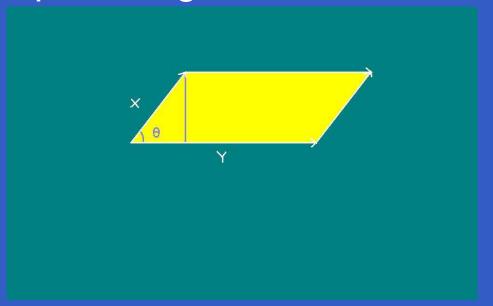


$$\text{área}(P) = |X||Y|\text{sen}\theta$$

Todo par de vectores $X,Y\in\mathbb{R}^3$ no nulos definen un paralelogramo P. Para calcular

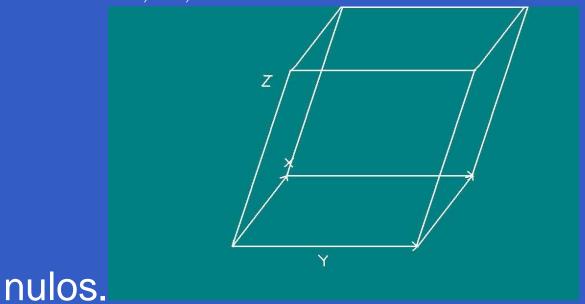


Todo par de vectores $X,Y\in\mathbb{R}^3$ no nulos definen un paralelogramo P.



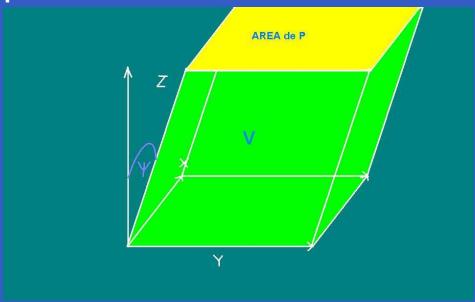
 $|X \wedge Y|$ es el área del paralelogramo definido por X e Y

Sean $X,Y,Z\in\mathbb{R}^3$ no

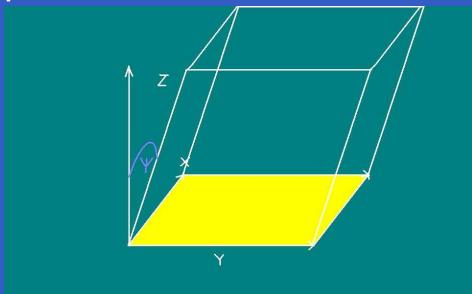


Sean $X,Y,Z\in\mathbb{R}^3$ no nulos. Entonces definen un prisma de volumen V

Sean $X,Y,Z\in\mathbb{R}^3$ no nulos. Entonces definen un prisma de volumen V



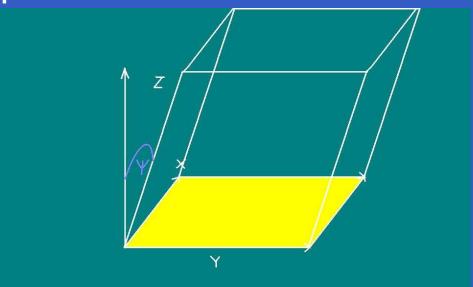
Sean $X,Y,Z\in\mathbb{R}^3$ no nulos. Entonces definen un prisma de volumen V



El área de la base del

prisma es $|X \wedge Y|$

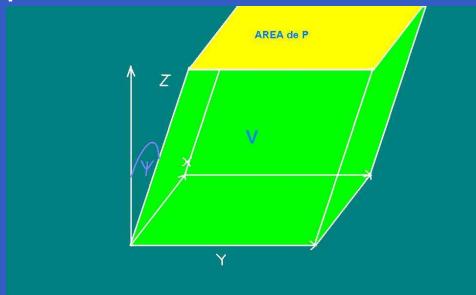
Sean $X,Y,Z\in\mathbb{R}^3$ no nulos. Entonces definen un prisma de volumen V



El área de la base del

prisma es $|X \wedge Y|$ La altura del prisma es $|Z| \cos \psi$

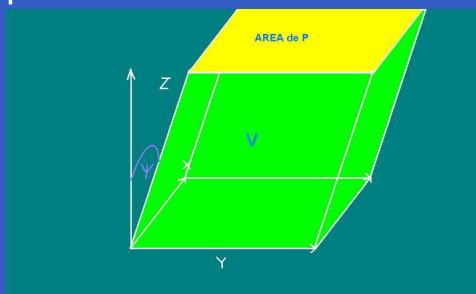
Sean $X,Y,Z\in\mathbb{R}^3$ no nulos. Entonces definen un prisma de volumen V



El volumen es

$$V =$$

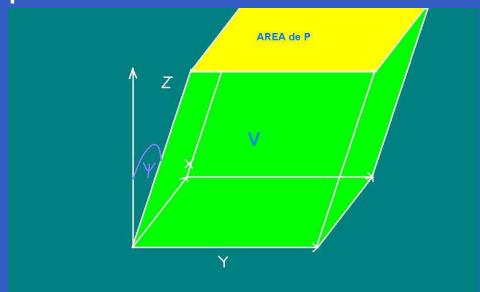
Sean $X,Y,Z\in\mathbb{R}^3$ no nulos. Entonces definen un prisma de volumen V



El volumen es

$$V = |X \wedge Y||Z|\cos\psi$$

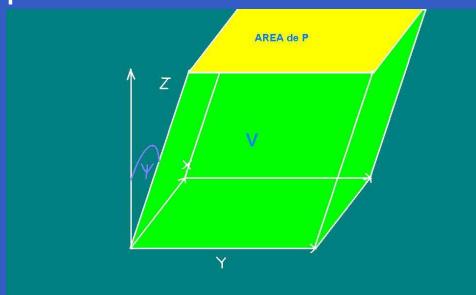
Sean $X,Y,Z\in\mathbb{R}^3$ no nulos. Entonces definen un prisma de volumen V



El volumen es

$$V = \pm (X \wedge Y) \cdot Z$$

Sean $X,Y,Z\in\mathbb{R}^3$ no nulos. Entonces definen un prisma de volumen V

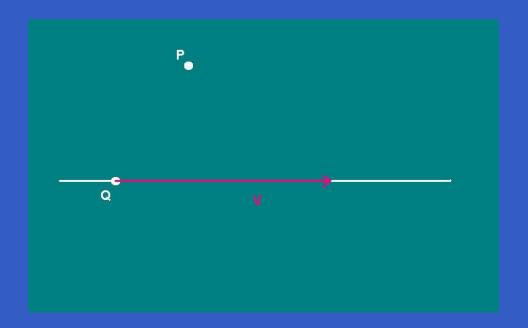


El volumen es

$$V = \pm [X, Y, Z]$$

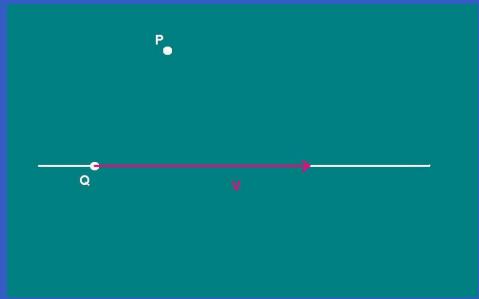
Dado un punto $P \in \mathbb{R}^3$ y una recta

$$r)X = Q + \lambda V$$



Dado un punto $P \in \mathbb{R}^3$ y una recta

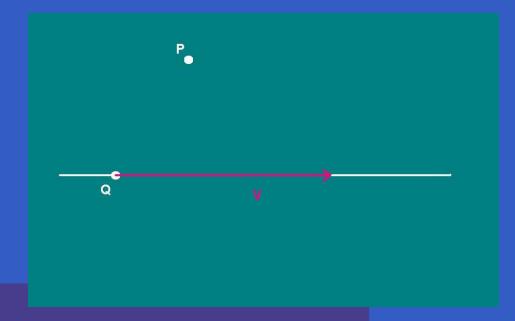
$$r)X = Q + \lambda V$$



Dado un punto $P \in \mathbb{R}^3$ y una recta

$$r)X = Q + \lambda V$$

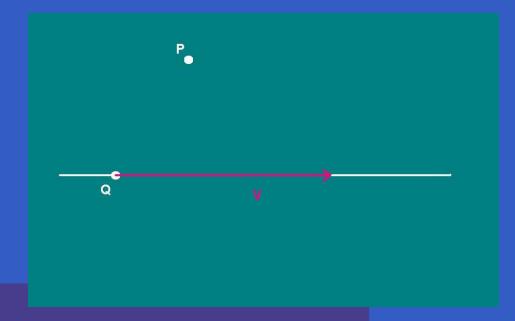
$$d(P,r) = \min\{d(P,X) : X \in r\}$$



Dado un punto $P \in \mathbb{R}^3$ y una recta

$$(r)X = Q + \lambda V$$

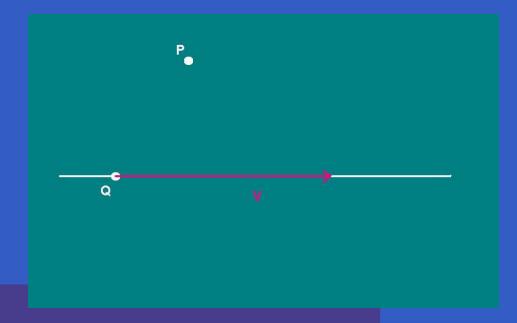
$$d(P, r) = \min\{|P - X| : X \in r\}$$



Dado un punto $P \in \mathbb{R}^3$ y una recta

$$(r)X = Q + \lambda V$$

$$d(P,r) = \min\{|P - Q - \lambda V| : \lambda \in \mathbb{R}\}$$



Dado un punto $P \in \mathbb{R}^3$ y una recta

$$r)X = Q + \lambda V$$

$$d(P,r) = \min\{|P - Q - \lambda V| : \lambda \in \mathbb{R}\}$$

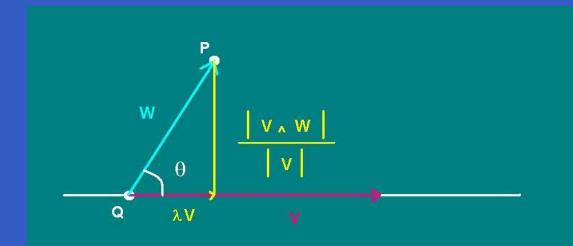


$$d(P,r) = |W|.\mathrm{sen}\theta$$

Dado un punto $P \in \mathbb{R}^3$ y una recta

$$r)X = Q + \lambda V$$

$$d(P,r) = \min\{|P - Q - \lambda V| : \lambda \in \mathbb{R}\}$$



$$d(P,r) = \frac{|V \wedge W|}{|V|}$$