Núcleo e imagen

Transformaciones inyectivas y sobreyectivas
Teorema de las dimensiones

clase pasada

Si
$$T: (\mathbb{V}, \mathcal{B}) \to (\mathbb{W}, \mathcal{A})$$

clase pasada

Si
$$T: (\mathbb{V}, \mathcal{B}) \to (\mathbb{W}, \mathcal{A})$$

la matriz asociada es:

$$_{\mathcal{A}}(T)_{\mathcal{B}} = \operatorname{coord}_{\mathcal{A}} \circ T \circ \operatorname{coord}_{\mathcal{B}}^{-1}$$

Ejemplos

 $T:\mathbb{R}^3 o\mathbb{R}^2$ tal que

$$T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$$

Encontrar $_{\mathcal{A}}(T)_{\mathcal{B}}$ en los siguientes casos:

$$\mathcal{B}=\mathcal{C}_{\mathbb{R}}^3$$
 y $\mathcal{A}=\mathcal{C}_{\mathbb{R}}^2$

Ejemplos

 $T:\mathbb{R}^3 o\mathbb{R}^2$ tal que

$$T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$$

Encontrar $_{\mathcal{A}}(T)_{\mathcal{B}}$ en los siguientes casos:

$$\mathcal{B}=\mathcal{C}_{\mathbb{R}}^3$$
 y $\mathcal{A}=\mathcal{C}_{\mathbb{R}}^2$

$$\mathcal{B} = \{(1,1,1); (1,1,0); (1,0,0)\} \text{ y } \mathcal{A} = \mathcal{C}^2_{\mathbb{R}}$$

Ejemplos

 $T:\mathbb{R}^3 o\mathbb{R}^2$ tal que

$$T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$$

Encontrar $_{\mathcal{A}}(T)_{\mathcal{B}}$ en los siguientes casos:

$$\mathcal{B}=\mathcal{C}_{\mathbb{R}}^3$$
 y $\mathcal{A}=\mathcal{C}_{\mathbb{R}}^2$

$$\mathcal{B} = \{(1,1,1); (1,1,0); (1,0,0)\} \; \mathsf{y} \; \mathcal{A} = \mathcal{C}^2_{\mathbb{R}}$$

$$\mathcal{B} = \{(1,1,1); (1,1,0); (1,0,0)\} \mathbf{y}$$

$$\mathcal{A} = \{(1,3); (2,5)\}$$

Imagen & núcleo - definición

Dados V, W e.v. sobre K y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

se define

Imagen & núcleo - definición

Dados V, W e.v. sobre K y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

se define

el núcleo de T como

$$N(T) = T^{-1}(O_{\mathbb{W}})$$

Imagen & núcleo - definición

Dados \mathbb{V}, \mathbb{W} e.v. sobre \mathbb{K} y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

se define

el núcleo de T como

$$N(T) = T^{-1}(O_{\mathbb{W}})$$

la imagen de T como

$$\operatorname{Im}(T) = T(\mathbb{V})$$

Ejemplo

$$T:\mathbb{R}^3 o \mathbb{R}^2$$
 tal que

$$T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$$

lue determinar N(T)

Ejemplo

$$T:\mathbb{R}^3 o \mathbb{R}^2$$
 tal que $T(x,y,z) = (3x+2y-4z,x-5y+3z)$

- lue determinar N(T)
- ightharpoonup determinar $\operatorname{Im}(T)$

$$T: \mathbb{V} \to \mathbb{W}$$

$$\operatorname{N}(T)$$
 s.e.v.

$$T: \mathbb{V} \to \mathbb{W}$$

- $\operatorname{N}(T)$ s.e.v.
- $\operatorname{Im}(T)$ s.e.v.

$$T: \mathbb{V} \to \mathbb{W}$$

$$\forall \mathbb{U} \subset \mathbb{W}$$
 s.e.v.

$$T^{-1}(\mathbb{U})\underset{\mathrm{s.e.v.}}{\subset}\mathbb{V}$$

$$T: \mathbb{V} \to \mathbb{W}$$

$$\forall \mathbb{U} \subset \mathbb{W}$$
 s.e.v.

$$T^{-1}(\mathbb{U})$$
 c. \mathbb{V} s.e.v.

$$\forall \mathbb{S} \subset \mathbb{V}$$
 s.e.v.

$$T(\mathbb{S})\underset{\mathrm{s.e.v.}}{\subset}\mathbb{W}$$

$$T: \mathbb{V} \to \mathbb{W}$$

$$\forall \mathbb{U} \subset \mathbb{W}$$
 s.e.v.

$$T^{-1}(\mathbb{U})$$
 c. \mathbb{V} s.e.v.

$$\forall \mathbb{S} \subset \mathbb{V}$$
 s.e.v.

$$T(\mathbb{S})\underset{\mathrm{s.e.v.}}{\subset}\mathbb{W}$$

Dados los e.v. \mathbb{V}, \mathbb{W} sobre \mathbb{K} y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

son equivalentes:

T es inyectiva

Dados los e.v. \mathbb{V}, \mathbb{W} sobre \mathbb{K} y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

son equivalentes:

- T es inyectiva
- $N(T) = O_{\mathbb{V}}$

Dados los e.v. \mathbb{V}, \mathbb{W} sobre \mathbb{K} y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

son equivalentes:

- T es inyectiva
- $\mathbf{N}(T) = O_{\mathbb{V}}$
- T lleva conjuntos l.i. en conjuntos l.i.

Dados los e.v. \mathbb{V}, \mathbb{W} sobre \mathbb{K} y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

son equivalentes:

T es sobreyectiva

Dados los e.v. \mathbb{V}, \mathbb{W} sobre \mathbb{K} y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

son equivalentes:

- T es sobreyectiva
- $T(\mathbb{V}) = \mathbb{W}$

Dados los e.v. \mathbb{V}, \mathbb{W} sobre \mathbb{K} y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

son equivalentes:

- T es sobreyectiva
- $T(\mathbb{V}) = \mathbb{W}$
- T lleva generadores en generadores.

isomorfismo - definición

dados los e.v. \mathbb{V}, \mathbb{W} sobre \mathbb{K} y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

si T es biyectiva, entonces:

T se llama isomorfismo

isomorfismo - definición

dados los e.v. \mathbb{V}, \mathbb{W} sobre \mathbb{K} y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

si T es biyectiva, entonces:

- T se llama isomorfismo

Dados los e.v. \mathbb{V}, \mathbb{W} sobre \mathbb{K} y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

son equivalentes:

T es un isomorfismo

Dados los e.v. ♥, ₩ sobre ₭ y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

son equivalentes:

- T es un isomorfismo
- $T(\mathbb{V}) = \mathbb{W} \mathbf{y} \mathbf{N}(T) = O_{\mathbb{V}}$

Dados los e.v. ♥, ₩ sobre ₭ y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

son equivalentes:

- T es un isomorfismo
- $\overline{\Gamma}(\mathbb{V}) = \overline{\mathbb{W}} \mathsf{y} \ \mathrm{N}(T) = O_{\mathbb{V}}$
- T lleva bases en bases.

Teorema de las dimensiones

Dados los e.v. \mathbb{V}, \mathbb{W} sobre \mathbb{K} , de dimensión finita y la transformación lineal

$$T: \mathbb{V} \to \mathbb{W}$$

entonces

$$\dim(\mathbb{V}) = \dim(\mathcal{N}(T)) + \dim(\operatorname{Im}(T))$$

Sea

$$T: \mathbb{V} \to \mathbb{W}$$

transformación lineal donde $\dim \mathbb{V} = n$ y $\dim \mathbb{W} = m$. Entonces:

- si n>m, entonces T no es inyectiva

Sea

$$T: \mathbb{V} \to \mathbb{W}$$

transformación lineal donde $\dim \mathbb{V} = n$ y $\dim \mathbb{W} = m$. Entonces:

- ullet si n>m, entonces T no es inyectiva
- \mathbf{r} si n < m, entonces T no es sobreyectiva

Sea

$$T: \mathbb{V} \to \mathbb{W}$$

transformación lineal donde $\dim \mathbb{V} = n$ y $\dim \mathbb{W} = m$. Entonces:

- ullet si n>m, entonces T no es inyectiva
- ullet si n < m, entonces T no es sobreyectiva
- n = m, entonces T biyectiva $\Leftrightarrow T$ inyectiva $\Leftrightarrow T$ sobreyectiva