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Introduction

Dans ce manuscrit, on considere des homéomorphismes préservant I'orientation
du disque D = {z € C : |z| < 1}. On motivera notre travail avec I’exemple qui

suit.

Soit f : D — D le temps un du flot dont les orbites sont dessinées sur la
figure ci-dessous.

L’homéomorphisme f a les propriétés suivantes :

1.

Prolongement au bord: [ se prolonge en un homéomorphisme du
disque fermé D
Configuration Répulseur/Attracteur elliptique: il existe des sous-

ensembles de D connexes et disjoints deux-a-deux R;, A;, i € Z/3Z, tels
que pour tout ¢:

(a) Eiﬂaﬂ)#@etziﬂc’ﬂ@#@;

(b) si C est un ensemble connexe contenant A; 1 et A;, et C’ est un
ensemble connexe contenant R;+1 et X € U;(R; U A;)\R;41, alors
onc' £10,

(¢) fF7YR;) C Int(R;) et f(A;) C Int(A;).

(Ces ensembles sont dessinés en lignes pointillés sur la figure).

Existence d’une courbe fermée simple d’indice 1: il existe une
courbe fermée simple C' C D ne contenant pas de point fixe de f et dont
Iindice est 1.



Nous rappelons que si 3 : S — D est un paramétrage de C, l'indice i(f, B)
est égal au degré de 'application

J(B()) ~ Bls)
|£(B(s)) = B(s)|
Il n’est pas difficile de voir (et ¢a sera expliqué plus tard dans ce manuscrit)

que 'on peut perturber f en un homéomorphisme g qui satisfait les propriétés
1. a 3. au dessus, et en plus les propriétés:

S

4. Réalisation d’un cycle d’enlacements elliptique: il existe a;, w;,
i € Z/nZ, n > 3, points distincts de S* = {z € C : |z| = 1} tels que pour
tout ¢ :

(a) le seul, parmi les points {c;}, {w;}, qui se trouve sur intervalle
ouvert du cercle orienté S joignant w;_1 & w; est ayy1;

(b) il existe z; € D tel que limy_, oo g7%(2;) = i, et limg_ 00 g7 (2:) = wi.
(Dans notre exemple n = 3).

5. Connexion de R; a A;: pour tout i il existe une chaine de pseudo-disques
de R; a A;.

Un pseudo-disque est une partie U de D telle que pour tout z,y € U, il existe
une courbe simple v : [0,1] = D qui va de z & y, telle que v(]0,1[) C Int(U).

Une chaine de pseudo-disques pour g est une suite (U;);=1,. r de pseudo-
disques tels que:

1. les intérieurs des pseudo-disques U; sont disjoints deux a deux;
2. chaque pseudo-disque U; est libre (c’est-a-dire que g(U;) N U; = 0);
3. il existe des entiers n; > 0 tels que g™ (U;)NU;11 # D pouri=1,...,k—1.

On dit qu’une chaine de pseudo-disques va d’une partie X a une partie Y si
Uc XetU,CY.

(En effet, dans notre exemple il y a une g - orbite de R; & A; pour tout 4, mais
c’est cette propriété plus faible qui nous intéresse.)

On dira que I'homéomorphisme f est récurrent s’il existe une chaine périodique
de pseudo-disques pour f (c’est-a-dire avec Uy = Up).

Le théoreme de point fixe de Handel [8] établit que les conditions de pro-
longement au bord (1.), et la réalisation d’un cycle d’enlacements elliptique (4.)
sont des conditions suffisantes pour avoir un point fixe. De plus, Le Calvez [11]
a raffiné ce résultat en affaiblissant I’hypothese de prolongement, en obtenant
la conclusion plus forte d’existence d’une courbe fermée simple d’indice 1 (3.).

Plus précisément:

Théoreme 1 ([11]). Soit f un homéomorphisme de D qui préserve l'orientation
et n un entier supérieur ou égal a 3. On suppose que les hypotheses suivantes
sont satisfaites:

1. il existe une famille (2;)iez/nz dans D et deux familles (a;)iez/nz €t (Wi)iez/nz
dans S1, telles que limg_s o f7%(2;) = a, et limg_soo f¥(2:) = w;, pour
tout i € Z/nZ;



2. les 2n points «;,wi, i € Z/nZ, sont distincts;

3. le seul, parmi ces points, qui se trouve sur ['intervalle ouvert du cercle
orienté St joignant w;_1 a w; est y1;

4. f se prolonge en un homéomorphisme de DU (U;ez/nz{ci,wi}).

1l existe alors une courbe fermée simple C' C D ne contenant pas de point
fixe de [ et dont l’indice est 1.

La premiere partie de ce manuscrit consiste a énoncer et montrer un théoreme
établissant que D'existence d’une configuration Répulseur/Attracteur elliptique
avec connexions entre R; et A; (2. et 5.) est une condition suffisante pour
avoir existence d’une courbe fermée d’indice 1 (3.). De plus, sous les quatre
hypotheses du théoreme de Le Calvez, on montre que soit il y a de la récurrence
(3.), soit on peut construire une configuration Répulseur/Attracteur elliptique
satisfaisant 5. En particulier, en raisonnant par contradiction, on obtient une
nouvelle preuve (qui se trouve plus simple) du Théoreme 1.

On illustrera dans la suite de I'introduction I'importance de ce théoreme de
point fixe pour I'étude de la dynamique des surfaces, ce qui nous permettra
d’introduire naturellement les autres résultats établis dans ce manuscrit.

Tout d’abord on a le résultat suivant, qui est I'outil-clé de ce travail:

Proposition 1 ([6], [13]). Soit f un homéomorphisme du plan préservant
Dorientation pour lequel il existe une chaine de pseudo-disques (U;)i=1,... 1 avec
Ui = Uy. Il existe alors une courbe fermée simple C' C D ne contenant pas de
point fixe de f et dont l’indice est 1.

Le résultat précédent entraine en particulier qu'un homéomorphisme du plan
préservant 'orientation avec un point périodique non-fixe est récurrent, et en
conséquence possede toujours un point fixe.

On appellera anneau ouvert toute surface homéomorphe & S'x]0, 1], et an-
neau fermé toute surface homéomorphe & S! x [0, 1]. Quand on dira anneau cela
signifiera anneau ouvert ou anneau fermé. Rappelons maintenant la définition
de nombre de rotation p(z, F') d’un point périodique z d’un homéomorphisme
préservant 'orientation de 'anneau f : A — A, quand on se fixe un relevement
F : A — A au revétement universel A de A. Soit ¢ la période de z, et z € A
un relevé de z. Il existe alors p € Z tel que F(2) = T?(2), on T : A — A est
la translation horizontale d’une unité & droite. Cet entier p est le nombre de
rotation p(z, F') de z pour le relevement F'. La proposition 1 entraine facilement
que pour un homéomorphisme de I’anneau sans point fixe, tout point périodique
doit “tourner autour” de cet anneau:

Proposition 2. Soit f un homéomorphisme de I’anneau préservant l’orientation
et z un point périodique. Si f n’a pas de point fixe, alors p(z, F') # 0, pour tout
relevement F' de f au revétement universel de ’'anneau.

Dans le méme esprit, on peut se poser la question suivante. On considere
maintenant une sphere trouée avec au moins trois trous; est ce qu’en l'absence
de point fixe, tout point périodique est obligé de tourner autour de 'un des
trous de la surface? La réponse affirmative est une conséquence du théoreme de



point fixe de Handel, comme on ’expliquera dans notre prochaine proposition.
Ce résultat a été utilisé par Franks [5] pour montrer qu'un homéomorphisme
de anneau préservant l'orientation ainsi que l'aire, et qui possede au moins un
point périodique doit avoir une infinité de points périodiques intérieurs.

Si (ft)tefo,1) est une isotopie issue de I'identité sur une surface M, on peut
définir la trajectoire vy, : t — fi(z) de tout point z € M. Si z est un point
périodique, de période ¢ > 1, on obtient un lacet Hf;ol Vfi(z) en assemblant les
trajectoires, dont on note p(z) € Hyi(M,Z) sa classe d’homologie.

Le résultat qui suit est du a Bestvina et Handel, et la preuve que nous
donnons est extraite de [11].

Proposition 3. Soit M = S*\{z1,...,2,}, n > 3, et (ft)teo,1) une isotopie
issue de lidentité dans M. Si f = f1 n’a pas de point fize, alors p(z) # 0 pour
tout point périodique z € M.

Remarque 1. Non seulement le lacet Hf:_g Vyi(z) n'est pas homotope a zéro, ce
qui se déduirait de la proposition 1, mais mieuz: il n’est pas homologue a zéro.

Preuve. On peut munir M d’une structure riemanniene complete de courbure
—1 et identifier le revétement universel M au disque de Poincaré D. Si (F})eo,1

est le relevement de I'isotopie (ft):e[o,1] issue de l'identité dans M, on sait alors

que F = F} se prolonge en un homéomorphisme de I qui fixe tout point de S*.
Supposons qu’il existe un point périodique z € M avec p(z) = 0, et montrons que
dans ce cas il y a un point fixe de f. Si le lacet Hg;l Vyi(z) est homotope a zéro,
F a un point périodique et en conséquence un point fixe. Sinon, soit I' 'unique
géodésique fermée qui est librement homotope a Hg;é Vfi(z)- Tout relevement
de I dans D est une géodésique de D qui joint un point o € S' & un point
w € S. De plus, il existe un antécédent Z de z tel que limy_, o F7%(2) = a,
et limy_, oo F¥(Z) = w. Puisque I' est homologue & zéro dans M, il existe alors
une fonction A : M\I' — Z localement constante, uniquement définie par les
propriétés suivantes:

e A(x) = 0 si z appartient & une composante connexe non relativement
compacte (trouée) de M\T;

o A(z) — A(a') représente le nombre d’intersection algébrique I' AT” entre T
et une courbe quelconque I joignant = et x’.

L’un au moins des deux nombres max A ou min A doit étre non nul. Sup-
posons par exemple que max A # 0 et fixons une composante connexe U de M\I'
ou A atteint son maximum. Alors, U est un disque ouvert, et sa frontiere est une
courbe simple réunion de p sous-segments de I', et U est localement a gauche
de chacun de ses segments. Toute composante connexe de la préimage de U
dans D est I'intersection de p demi-plans géodésiques, a gauche des géodésiques
relevant I'. Parmi ces demi-plans, on choisit une famille dont 'intersection est
relativement compacte dans D, et qui est minimale pour cette propriété. Les
hypothése du théoreme de point fixe de Handel sont alors vérifiées, et F' a un
point fixe dans .

Ce résultat n’est pas sans lien avec la version feuilletée équivariante du
théoréme de translation de Brouwer [9], comme on 'expliquera plus tard.



On appellera droite tout plongement topologique propre de R dans R2. Si
7 est une droite orientée de R? on notera D(v) (resp. G(v)) la composante
connexe de R?\7 qui se trouve & droite (resp. & gauche) de .

On dira qu’une droite 7 est une droite de Brouwer si

f(v) € GM), f7H(v) € D).

Théoreme 2 ([9]). Soit G un groupe discret d’homéomorphismes du plan préservant
lorientation, agissant librement et proprement. Soit f un homéomorphisme du
plan préservant l'orientation, qui n’a pas de point fize et qui commute avec les
éléments de G. Il existe alors un feuilletage topologique orienté du plan, invari-
ant sous l'action de G, dont toute feuille est une droite de Brouwer de f.

On va utiliser ce résultat pour donner une autre preuve de la proposition 3,
ce qui motivera la suite de notre travail.

On dira qu'un arc v : [0, 1] — M est positivement transverse a un feuilletage
F défini sur une surface M si pour tout ¢y € [0,1] il existe un voisinage U de
~(to) dans M et un homéomorphisme préservant l'orientation h entre U et un
ouvert V de R? qui envoie le feuilletage F sur le feuilletage vertical, orienté
suivant les y croissants, et tel que Papplication ¢t — p1(h(7(¢))) soit strictement
croissante au voisinage de tg, ol p; désigne la premiere projection.

En passant au revétement universel, on peut énoncer le théoreme sous la
forme équivalente suivante:

Théoreme 3 ([9]). Soit M une surface et (fi)icjo,1) une isotopie dans M
joignant lidentité a un homéomorphisme f. Pour tout z € M, on définit l’arc
Y. it fi(2). On suppose que f n’a pas de point fixe z contractile, c¢’est-a-dire
de point fize z tel que vy, soit un lacet homotope a 0. Il existe alors une feuil-
letage topologique orienté F sur M et pour tout z € M, un arc positivement
transverse a F joignant z & f(z) qui est homotope, a extrémités fizées, a larc
Ve

Nous dirons que le feuilletage F et 'isotopie (f;)¢c[o,1) sont transverses.

Nous allons voir comment montrer la proposition 3 comme conséquence du
théoreme 3:
Preuve. [9] Considérons un feuilletage F sur M transverse a 'isotopie (ft)¢eo,1
donné par le théoreme 3. Sila conclusion du théoreme est fausse, on peut trouver
un lacet I' positivement transverse au feuilletage qui est homologue a zéro. 11
existe alors une fonction A : M\I" = Z localement constante, uniquement définie
par les propriétés suivantes:

e A(x) = 0 si z appartient & une composante connexe non relativement
compact (trouée) de M\T';

e A(x)— A(2) représente le nombre d’intersection algébrique I' AT entre I’
et une courbe quelconque I joignant = et x’.

Quitte a perturber I', on peut supposer que cette courbe vérifie les propriétés
suivantes:

e clle n’a pas de point triple ou d’ordre supérieur;



e clle a un nombre fini de points doubles avec des auto-intersections trans-
verses.

La fonction n’est pas constante et on doit avoir max A > 0 ou min A < 0.
Plagons nous dans le premier cas. Toute composante connexe U de M\I' ol
A atteint son maximum est relativement compacte et ¢’est donc un disque. Sa
frontiere est une courbe fermée simple transverse au feuilletage. Ceci est bien str
impossible puisque le feuilletage est non singulier, par la formule de Poincaré-
Hopf.

On pourrait essayer de faire une preuve du théoreme de point fixe de Han-
del en utilisant cette méthode. En effet, plagons nous sous les hypotheses de
prolongement au bord et réalisation d’un cycle d’enlacements elliptiques (condi-
tions 1. et 4. dans I’exemple au debut de cette introduction). On veut montrer
que ces deux hypotheses entrainent ’existence d’un point fixe. Si ce n’est pas
vrai, on peut trouver un feuilletage topologique orienté F de D, et pour tout
z€Det k €Z, un arc v* joignant f*(2) et fET1(z) positivement transverse a
F. De plus, sil'on définit I'; = UkeZWfi, chaque Ff est un plongement propre de
R (sinon, on pourrait trouver un lacet positivement transverse au feuilletage, ce
qui donnerait une singularité du feuilletage, toujours par la formule de Poincaré-
Hopf).

Supposons, de plus que pour tout ¢, l'on a la propriété suivante:

(P) les courbes v¥ convergent dans la topologie de Hausdorff vers {w;} quand
k — +o0 et vers {a;} quand k — —oo.

(€3]

wWo

Wy

a2

Qo

as w3

w2 o7

Dans ce cas, chaque I'; serait un arc joignant «; et w; et on aurait

I';n Fi—i—l 75 @,



pour tout ¢ (voir la figure au dessus). On pourrait donc trouver une courbe
fermée simple positivement transverse au feuilletage, ce qui contredirait la-
encore la formule de Poincaré - Hopf.

Malheureusement, on ne peut pas faire marcher cet argument. Sans aucune
hypothese sur le comportement de f pres du bord, il n’y a aucune raison pour
que la propriété (P) soit vérifiée.

Cependant, on peut penser a la question suivante. Considérons la courbe I'
obtenue par assemblage des trajectoires d’'un point périodique pour un homéomorphisme
isotope a I'identité d’une surface M (comme dans les preuves de la proposition
3).

Y a t-il une généralisation du théoréeme de Handel correspondant a des com-
posantes connexes de S*\I' ou lorientation sur le bord est d’indice négatif?
Soyons plus précis. Considérons une isotopie issue de lidentité (f¢)iejo,1) sur
une surface M. Supposons de plus qu’il existe un point périodique z € M,
de période ¢, et que f = f1 n’a pas de point fixe. Alors, Hf:_é Vfi(z) nest
pas homotope a zéro dans M (voir proposition 1) et il existe une feuilletage
topologique orienté F sur M transverse & f. Considérons (dans lesprit de la
premieére preuve qu’on a donné de la proposition 3) la géodésique I' librement
homotope a H;];Ol Yfi(z), et ' dans la méme classe d’homotopie, positivement
transverse au feuilletage (comme dans notre deuxiéme preuve de la Proposi-
tion 3). D’apres le théoreme de Handel, on obtient un point fixe s’il existe une
composante connexe U du complémentaire de I' telle que:

e U est homéomorphe a un disque;

e le bord orienté de U est un assemblage d’un nombre fini de sous-arcs de
I" héritant 'orientation de I' ou 'orientation opposée a celle de T'.

D’apres la formule de Poincaré-Hopf, ceci est vrai aussi pour la courbe IV. On
dira qu’une composante connexe U du complémentaire d’une courbe fermée
dans M est contractile si U est homéomorphe & un disque. Les composantes
connexes du complémentaire de la courbe I transverse au feuilletage sem-
blent donner plus d’information que celles de I'. En effet, soit U une com-
posante connexe contractile du complémentaire de IV ou le bord orienté s’écrit
oUu = H0<i<27‘—1 B; ou fB; est un assemblage d’'un nombre fini de sous-arcs de
I héritant de l'orientation de I si i est pair, et héritant I'orientation opposée
si i est impair. Alors, }° gy (g, i(F,2) =1—r. On dira que ces composantes
du complémentaire de I sont d’indice négatif. Donc, pour un lacet transverse
au feuilletage, 'existence d’une composante connexe contractile d’indice négatif
du complémentaire du lacet, entraine I'existence d’un point fixe pour f.

La deuxieme partie de ce manuscrit consiste & montrer que ce fait est aussi
vrai pour les géodésiques (notamment pour n’importe quelle courbe dans la
classe d’homotopie de H?;Ol Yfi(z)). Plus précisément, considérons P C D un
polygone & n cotés compact et convexe. Soit {v; : i € Z/nZ} 'ensemble des
sommets et pour tout i € Z/nZ, soit a; I'aréte joignant v; et v;11. On suppose
chaque a; munie d’une orientation, et on peut donc dire si P se trouve a gauche
ou & droite de a;. On dira que les orientations de a; et a; coincident si P se
trouve a la fois a droite (ou & gauche) de a; et a;, 1,5 € Z/nZ.

On définit ["indice de P par



i(P):lf% > 6

1E€EZ/NZ

ou ¢; = 0 si les orientations de a;_1 et a; coincident, et §; = 1 sinon.

On note «; le premier point ou la droite A; contenant a; et héritant son
orientation intersecte 0D, et w; le dernier point ou cette droite intersecte JD.
On remarque que ces points ne sont pas nécessairement tous différents.

On dira qu'un homéomorphisme f : D — D réalise P s’il existe une famille
(2i)icz/nz de points de D telle que pour tout i € Z/nZ

: k . k
i ) = T ) =
Théoréme 4. Soit f : D — D un homéomorphisme préservant [’orientation
qui réalise un polygone compact et convexe P C D et qui se prolonge en un
homéomorphisme de DU (Uijez/nz{ci, wi}).

Sii(P) # 0, alors Fix(f) # 0. De plus, si i(P) = 1, alors il existe une courbe
fermée simple C C D ne contenant pas de point fixe de f et dont lindice est 1.

Bien entendu, 'hypothese “f : D — D réalise P” n’est autre chose qu’une hy-
pothese sur I'ordre cyclique dans S* des points a;, w;,i € Z/nZ. Notre théoréme
est plus général; on a choisi de présenter cet énoncé ici pour faciliter la lecture.
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Chapter 1

Introduction

Handel’s fixed point theorem [8] has been of great importance for the study of
surface homeomorphisms. It guarantees the existence of a fixed point for an
orientation preserving homeomorphism f of the unit disk D = {z € C: |z| < 1}
provided that it can be extended to the boundary S' = {z € C: |z| = 1} and
that it has points whose orbits form an oriented cycle of links at infinity. More
precisely, there exist n points z; € D such that

lim fk(zi):aiESl, lim fk(zi):wiESl,
k——o0 k— o0
i=1,...,n, where the 2n points {«;}, {w;} are different points in S* and satisfy
the following order property:

(*) @41 is the only one among these points that lies in the open interval in
the oriented circle S from w;_1 to w; .

(Although this is not Handel’s original statement, it is an equivalent one as
already pointed out in [11]).

Le Calvez gave an alternative proof of this theorem [11], relying only in
Brouwer theory and plane topology, which allowed him to obtain a sharper
result. Namely, he weakened the extension hypothesis by demanding the home-
omorphism to be extended just to DU (U;ez/nz{ci, w;}) and he strengthed the
conclusion by proving the existence of a simple closed curve of index 1.

We give a new, simpler proof of this improved version of the theorem and
we generalize it to non-oriented cycles of links at infinity; that is, we relax the
order property (*) as follows.

A cycle of links of order n > 3 is a family of pairs of points on the circle S,
L = ((evi,wi))iez/nz
such that for all i € Z/nZ:
1. a; # w,
2. ;i1 and w;41 belong to different connected components of S™\{a;,w;}.
If £ is a cycle of links, we define the set

0= {a;,w;:i € Z/nZ} C St
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of points in the circle which belong to a pair in the cycle.
If a,b € £, we note a — b if b follows a in the natural (positive) cyclic order
on S', and a — b if either a = b or a — b.

We say that a cycle of links £ is elliptic if for all i € Z/nZ:

Wi—1 — Q1 — Wy

We say it is hyperbolic if n = 2k, k > 2 and for all i € Z/nZ, i =0 mod 2:

o = o] — Wit+1 — Wi — Qjy2.

Wa w1 a3
a1 o wo = Q2 g
wo
w2
w1
a; aq ws
(a) An elliptic cycle of links of or- (b) A hyperbolic cycle of links of order
der 3 4

We say that L is non-degenerate if:
(ai,wi) el = (wi,ai) ¢ L.

Of course, we say it is degenerate, if this condition is not satisfied. An example
is illustrated in Figure 1.1.

We say that a homeomorphism f : D — D realizes L if there exists a family
(2i)icz/nz of points in D such that for all i € Z/nZ,

. ki, _ . : k(N — .
kEIEloof (Zz) Qs kgr}rloof (Zz) Wi.

The following result is the main theorem of this article.

Theorem 1.1. Suppose that f : D — D is an orientation preserving homeomor-
phism which realizes a cycle of links L and can be extended to a homeomorphism
of DU.
If L is either elliptic or hyperbolic, then f has a fized point. Furthermore, if L
is non-degenerate and elliptic, then there exists a simple closed curve C' C D of
index 1 .

12



w1 = Q3

Figure 1.1: A degenerate cycle of links

The elliptic non-degenerate case contains Le Calvez’s improvement
of Handel’s theorem.

Indeed, if the points in ¢ are all different, £ is non-degenerate. As the following
example shows, our theorem is more general even in this case.

a3 = W1

Figure 1.2: A non-degenerate elliptic cycle with coincidences among the points
in /.

The extension hypothesis is needed.

Consider a North-South dynamics T : D — D with a source N € dD and a sink
S € OD. One can construct a homeomorphism o : D — D such that hTh™!
realizes an elliptic cycle of links. Indeed, take any elliptic cycle of links £ of
order n, and take any n points z; € D, i € Z/nZ, in different T— orbits. We
can construct inductively simple paths v¥, i € Z/nZ, k € Z, such that:

e the paths v¥, i € Z/nZ, k € Z, are pairwise disjoint,

13



e foralli € Z/nZ and k > 0, v¥(0) = T*(2;) and 7¥(1) = w;,

e for alli € Z/nZ and k < 0, v¥(0) = a; and, v¥(1) = T*(2),

e YFNTP(z;) # 0 if and only if i = j and k = p.

For all i € Z/nZ and k € Z we construct open disks UF C D, such that:
e the disks Uik, i € Z/n7Z, k € Z, are pairwise disjoint,

e for all i € Z/nZ and k > 0, v¥([0,1)) C UF,

e for alli € Z/nZ and k < 0, 4¥((0,1]) C UF,

o UFNTP(z) # 0 if and only if i = j and k = p.

And finally, for all ¢ € Z/nZ and k € Z we construct homeomorphisms

: D — D), such that:

e cach h¥, i € Z/nZ, k € Z, is the identity outside UF,
e for alli € Z/nZ and k > 0, h¥(T*(2;)) = 4F(1 - 1/k) ,
e for alli € Z/nZ and k < 0, h¥(T*(2;)) = vF(1/k).

We define h : D — D as being the identity outside UieZ/nZkeZUik, and

h = h¥ in each disk UF. Then, the homeomorphism hTh~! realizes £ with the
family of points {h(z;)}, and hTh~" is clearly fixed-point free in D.

Non-degeneracy is needed for obtaining the index result.

Let f; be the time-one map of the flow whose orbits are drawn in the figure
below.

] = W3

Q2 = Wo oy = w2

a3 = W1

As we will explain below, one can perturb f; in a homeomorphism f such

that:

e Fix(f) = Fix(f1) = {z},
e f = f; in a neighbourhood of z,

14



e frealizes £ = ((vi,wi))iez/az-

We say that the set X is free if f(X)NX = 0.

One can find (by means of a transverse foliation, for example), free and
pairwise disjoint simple paths 5; and ~;, i € Z/4Z such that :

e 3; joins z; and z;-, where limg_s o fl_k(zi) = «; and limg_, ff(z;) =
where i* = i + 1 for even values of 4, and i* = 7 — 1 for odd values of 1,

e 7; joins fP(z;) and z, , where p; > 0 and limj_,o0 fF(2) = wi,

e v; and §; are disjoint from the fi- orbits of every z;, z;/, z;/ with i #£ j.

By thickening the paths {8;} and {~;}, one can find free, pairwise dijsoint
open disks {D;} and {D; } such that the disks D; and D, are disjoint from the
fi-orbits of the points z;, z],-, and z;-,, for i £ j.

We construct a homeomorphism h : D — D such that:

o h=1d outside Ujez/4z.D; U D;,

o h(z) =z,

o h(ff(z) ==

So, if we define f = h o f1, we obtain

lim f*k(zi) = qy;, lim fk(zi) = wj,
k— o0 k—ro0

for all i € Z/4Z. Clearly we can make this construction in such a way that

f = f1 in a neighbourhood of . Moreover, as the disks {D;} and {D; } are
free,

Fix(f) = Fix(f1) = {«}.

So, f realizes the elliptic cycle £, but there is no simple closed curve of index

No negative-index fixed point is guaranteed by hyperbolicity.

as

w2

(&%)
w3
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One could think that when £ is hyperbolic, a negative-index fixed point
should be obtained. For example, this would be the case if one had an oriented
foliation F in D\ Fix(f) whose leaves are Brouwer lines for f and simple paths
Vi, © € Z/nZ joining a; and w; such that:

e cach ~; is positively transverse to F,
e the paths {7;} bound a compact disc in D.

(See the figure above.) Indeed, in this case, the Poincaré-Hopf formula would
give a singularity z of the foliation for which i(F,z) < 0. So, z € Fix(f) and
by a result of Le Calvez ([12]) one has i(f,x) = i(F,z) < 0.

However, this is not the case, as the following example shows. Let f; be the
time-one map of the flow whose orbits are drawn in the figure below.

=7
k= e,

In the same fashion we did in our preceding example, one can perturb f; in
a homeomorphism f such that:

e Fix(f) =Fix(f1) = {z},
e f = f1 in a neighbourhood of z,
o f realizes £ = ((vi,wi))iez/az-

So, f realizes the hyperbolic cycle £, but there is no fixed point of negative
index.

A visual corollary.
Let us explain the hypothesis of Theorem 1.1 with the following corollary.

Let P C D be a compact convex n-gon. Let {v; : i € Z/nZ} be its set
of vertices and for each i € Z/nZ, let e; be the edge joining v; and v;41. We

suppose that each e; is endowed with an orientation, so that we can tell whether
P is to the right or to the left of e; . We say that the orientations of e; and e;
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coincide if P is to the right (or to the left) of both e; and e;, ¢,j € Z/nZ.
We define the index of P by

i(P):lf% > 6

1E€EZ/NZ

where §; = 0 if the orientations of e;_; and e; coincide, and §; = 1 otherwise.

We will note «; and w; the first, and respectively the last, point where the
straight line A; containing e; and inheriting its orientation intersects 0D. We
do not require all of these points to be different; some of them may coincide.
Then, £ = ((a4,w;))icz/nz is a cycle of links. We say that it is the cycle induced
by P.

(a) Handel’s index 1 polygon (b) Index -1 polygon

(¢) wi = ajpa Vi

Figure 1.3: Polygons of different indices.

We say that the homeomorphism f : D — D realizes P if f realizes the cycle
induced by P.
As a consequence of Theorem 1.1, we will show:

Corollary 1.2. Suppose that f : D — D is an orientation preserving homeo-
morphism which realizes a compact convex polygon P C 1D and can be extended
to a homeomorphism of DU (Ujez/nz{ci, wi}).

If i(P) # 0, then f has a fized point. Furthermore, if i(P) = 1, then there exists
a simple closed curve C' C D of index 1 .

The three polygons appearing in Figure 1.3 satisfy the hypothesis of this
corollary. Note, however, that the situation illustrated in (b) is not contained in
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the hypothesis of Theorem 1.1, as the order of the points {«;}, {w;} is neither
elliptic, nor hyperbolic.

The structure of this work is the following. In Chapter 2 we will recall the
notion of brick decompositions (the main tool of this article), and relate them
to the existence of simple closed curves of index 1. We also state the results we
use from [11]. In Chapter 3 we use brick decompositions to define and study
configurations of “ repellers and attractors at infinity”, with orbits connecting
repeller/attractor pairs. We prove that the existence of configurations of this
kind guarantees the existence of a fixed point, or even a simple closed curve of
index 1. Chapter 4 is devoted to give a quick and easy proof of Le Calvez’s re-
finement of the classic Handel’s theorem; this proof is contained in Proposition
3.9 and Proposition 4.1. In Chapter 5 we prove that whenever an elliptic or
hyperbolic cycle of links is realized, either one can construct one of the config-
urations studied in Chapter 3, or there exists a simple closed curve of index 1.
Finally, in Chapter 6 we give a proof of Corollary 1.2.

I am endebted to Patrice Le Calvez. Not only he suggested me to study
possible generalizations of Handel’s theorem, but he guided my research through
a great number of discussions. His careful reading and correction of thousands
of versions of this paper led to its final form.
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Chapter 2

Preliminaries

2.1 Brick decompositions

A brick decomposition D of an orientable surface M is a 1- dimensional singular
submanifold X(D) (the skeleton of the decomposition), with the property that
the set of singularities V is discrete and such that every o € V has a neigh-
borhood U for which U N (X(D)\V) has exactly three connected components.
We have illustrated two brick decompositions in Figure 2.1. The bricks are the
closure of the connected components of M\X(D) and the edges are the closure
of the connected components of X(D)\V. We will write E for the set of edges,
B for the set of bricks and finally D = (V, E, B) for a brick decomposition.

| | | /

ﬂ’,

O

(a) M =R? (b) M =R2\{0}

Figure 2.1: Brick decompositions

Let D = (V,E, B) be a brick decomposition of M. We say that X C B
is connected if given two bricks b, b’ € X, there exists a sequence (b;)o<i<n,
where by = b, b, = I’ and such that b; and b; 1 have non empty intersection,
i €40,...,n—1}. Whenever two bricks b and b have no empty intersection,
we say that they are adjacent. Moreover, we say that a brick b is adjacent to a
subset X C Bif b ¢ X, but b is adjacent to one of the bricks in X. We say that
X C B is adjacent to X’ C B if X and X’ have no common bricks but there
exists b € X and b’ € X’ which are adjacent.

From now on we will identify a subset X of B with the closed subset of M
formed by the union of the bricks in X. By making so, there may be ambigui-
ties (for instance, two adjacent subsets of B have empty intersection in B and
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nonempty intersection in M), but we will point it out when this happens. We
remark that 0X is a one-dimensional topological manifold and that the con-
nectedness of X C B is equivalent to the connectedness of X C M and to the
connectedness of Int(X) C M as well. We say that the decomposition D’ is a
subdecomposition of D if 3(D') C X(D).

If f: M — M is a homeomorphism, we define the application ¢ : P(B) —
P(B) as follows:

e(X)=4{beB: f(X)Nnb#0}.

We remark that ¢(X) is connected whenever X is.
We define analogously an application ¢_ : P(B) — P(B):

o (X)={beB:fYX)nb#0D}.

p({b})

—

S

We define the future [b]> and the past [b]< of a brick b as follows:

B> = J " (0}), < = |J " ({b})-

k>0 k>0

We also define the strict future [b]s and the strict past [b]< of a brick b :

Bl = [ " (1)), < = |J E (b))

k>0 k>0

We say that a set X C B is an attractor if it verifies ¢(X) C X; this is
equivalent in M to the inclusion f(X) C Int(X). A repeller is any set which
verifies p_(X) C X. In this way, the future of any brick is an attractor, and
the past of any brick is a repeller. We observe that X C B is a repeller if and
only if B\ X is an attractor.

Remark 2.1. The following properties can be deduced from the fact that X C
B is an attractor if and only if f(X) C Int(X):

1. If X C B is an attractor and b € X, then [b]> C X ; if X C B is a repeller
and b € X, then [b]< C X,

2. if X C B is an attractor and b ¢ X, then [b]l< N X
repeller and b ¢ X, then [b]> N X =0,

0;if X CBisa
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3. if b € B is adjacent to the attractor X C B, then [b]~ N X # 0; if b € B
is adjacent to the repeller X C B, then [b]o N X # (;

4. two attractors are disjoint as subsets of B if and only if they are disjoint
as subsets of M; in other words, two disjoint (in B) attractors cannot be
adjacent; respectively two disjoint (in B) repellers cannot be adjacent;

The following conditions are equivalent:
be [b]>a [b]> = [b]Za be [b]<a [b]< = [b]g, [b]< n [b]Z 7é @a [b]ﬁ n [b]> 7é (Z)

The existence of a brick b € B for which any of these conditions is satisfied
is equivalent to the existence of a closed chain of bricks , i.e a family (b;);cz/rz
of bricks such that for all i € Z/rZ, Ug>1f*(b;) Nbiy1 # 0.

In general, a chain for f € Homeo(M) is a family (X;)o<i<, of subsets of M
such that for all 0 <i<r—1, Ukzlfk(Xi) N X1 # 0. We say that the chain
is closed if X, = Xj.

We say that a subset X C M is free if f(X)N X = 0.

We say that a brick decomposition D = (V, E, B) is free if every b € B is a
free subset of M. If f is fixed point free it is always possible, taking sufficiently
small bricks, to construct a free brick decomposition.

We recall the definition of mazimal free decomposition, which was introduced
by Sauzet in his doctoral thesis [15]. Let f be a fixed point free homeomorphism
of a surface M. We say that D is a maximal free decomposition if D is free and
any strict subdecomposition is no longer free. Applying Zorn’s lemma, it is
always possible to construct a maximal free subdecomposition of a given brick
decomposition D.

2.2 Brouwer Theory background.

We say that T : [0, 1] %_ﬁ is an arc, if it is continuous and injective. We say
that an arc I joins z € D to y € D, if I'(0) = 2 and I'(1) = y. We say that an
arc [ joins X CDtoY CD,if ' joinsze X toyeY.

Fix f € Homeo™ (D). An arcy joining z ¢ Fix(f) to f(z) such that f(y)ny =
{z, f(2)} if f2(z) = z and f(y) N~y = {f(2)} otherwise, is called a translation
are.

Proposition 2.2. (Brouwer’s translation lemma [1], [2], [4] or [7]) If
any of the two following hypothesis is satisfyed, then there exists a simple closed
curve of index 1:

1. there exists a translation arc v joining z € Fix(f?)\ Fix(f) to f(2);

2. there exists a translation arc vy joining z ¢ Fix(f?) to f(z) and an integer
k > 2 such that f*(v) N~y # 0.

If z ¢ Fix(f), there exists a translation arc containing z (this is not difficult
to prove once you have that the connected components of D\ Fix(f) are invari-
ant; for this last fact you can see [10] for an easy proof in dimension 2 , or [3]
for a general result in dimension n). We deduce:
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Corollary 2.3. If Per(f)\ Fix(f) # 0, then there exists a simple closed curve
of index 1.

Proposition 2.4. (Franks’ lemma [6]) If there exists a closed chain of free,
open and pairwise disjoint disks for f, then there exists a simple closed curve of
indez 1.

Following Le Calvez [11], we will say that f is recurrent if there exists a
closed chain of free, open and pairwise disjoint disks for f.

The following proposition is a refinement of Franks’ lemma due to Guillou
and Le Roux (see [13], page 39).

Proposition 2.5. Suppose there exists a closed chain (X;)icz/rz for [ of free
subsets whose interiors are pairwise disjoint and which verify the following prop-
erty: given any two points z,z" € X; there erists an arc «y joining z and 2’ such
that Y\{z, 2’} C Int(X;). Then, f is recurrent.

We deduce:

Proposition 2.6. Let D = (V, E, B) be a free brick decomposition of D\ Fix(f).
If there exists b € B such that b € [b]~, then [ is recurrent.

2.3 Previous results.

Fix f € Homeo™ (D), different from the identity map and non-recurrent. We
will make use of the following two propositions from [11] (both of them depend
on the non-recurrent character of f). The first one (Proposition 2.2 in [11]) is a
refinement of a result already appearing in [15]; the second one is Proposition
3.1 in [11].

Proposition 2.7. [15],/11] Let D = (V,E, B) be a free mazimal brick decom-
position of D\ Fix(f). Then, the sets [b]>, [b]>, [bl< and [b]< are connected. In
particular every connected component of an attractor is an attractor, and every
connected component of a repeller is a repeller.

Proposition 2.8. [11] If f satisfies the hypothesis of Theorem 1.1, then for all
i € Z/nZ we can find a sequence of arcs (Y¥)kez such that:

o cach vF is a translation arc from f¥(z;) to fE¥T1(z),

o f(Y) N =0 if K <k,

e the sequence (YF)r<o converges to {a;} in the Hausdorff topology,
e the sequence (YF)i>0 converges to {w;} in the Hausdorff topology.

This result is a consequence of Brouwer’s translation lemma and the hypoth-
esis on the orbits of the points (z;);ez/nz. In particular, the extension hypothesis
of Theorem 1.1 is used. Proposition 2.8 allows us to construct a particular brick
decomposition suitable for our purposes:
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Lemma 2.9. For every i € Z/nZ, take U, a neighbourhood of o; in D and UZ-+
a neighbourhood of w; in D such that U —n U;r = (. There exists two families
(V) iczmzi>1 and (b)) iez/mz1<—1 of closed disks in D, and a family of integers
(li)icz/nz such that:

1. each V]! is free and contained in U; (1< —1) orin U (1> 1),

2. Int(®") NInt (B} =0, if L # 1",

3. for every k > 1 the sets (bl!)1<i<x and (b)) _r<i<—1 are connected,
4. for alli € Z/nZ, 0 Uiez 0y bl is a one dimensional submanifold,

5. if x € D, then x belongs to at most two different disks in the family
(bél)zeZ\{O}, s Z/nZ,

6. for all i € Z/nZ flitl(z) € Int(b]TY) for all 1 > 0, and f~l Y(z) €
Int(b;"""1) for all 1 >0,

7. fF(z) bl ifand only if j =i and k=1; +1 — 1,

8. the sequence (b');>1 converges to {w;} in the Hausdorff topology and the
sequence (b!)<_1 converges to {c;} in the Hausdorff topology.

The idea is to construct trees T, C U, , TZ-+ C UZ-+, i € Z/nZ by deleting the
loops of the curves [[,~_;vF NU; and [[,., 7% NU;" respectively, and then
thickening these trees to obtain the families (b;l)iez/,lzm and (bgl)iez/nzﬁlg,l.
We refer the reader to [11] for details. We have illustrated these families in

Figure 2.2.

Figure 2.2: The families b/

Remark 2.10. The fact that the sequence (b});>1 converges in the Hausdorff
topology to w;, implies that we can find an arc I'; : [0, 1] — Int(U;>ob!)) U {w;}
such that T'f (1) = w;, i € Z/nZ. Similarly, we can find an arc T'; : [0,1] —
Int(U;>ob; ") U {a;} such that T; (1) = oy, i € Z/nZ.

Remark 2.11. If the points a;,w;, i € Z/nZ, are all different, the bricks b,
i € Z/nZ, 1 € Z\{0} can be constructed as to have pairwise disjoint interiors.
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Corollary 2.12. If the points o;,w;, i € Z/nZ, are all different, there exists a
free brick decomposition (V,E, B) of D\ Fix(f) such that for all i € Z/nZ and
all I € Z\{0}, there exists b, € B such that b} C bl.

We will make use of proposition 2.7 in the next chapter. Propositions 2.8
and 2.9 will not be used until chapter 5.
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Chapter 3

Repeller /Attractor
configurations at infinity

3.1 Cyclic order at infinity.

Let (a;)iez /nz be a family of non-empty, pairwise disjoint, closed, connected
subsets of D, such that @; NOD # () and U = D\(U;ez/nza:) is a connected open
set. As U is connected, and its complementary set in C

{z€C: 2| > 1} UUjiez/nza;

is connected, U is simply connected.

With these hypotheses, there is a natural cyclic order on the sets {a;}.
Indeed, U is conformally isomorphic to the unit disc via the Riemann map
@ : U — D, and one can consider the Carathéodory’s extension of ¢,

P U— D,
which is a homeomorphism between the prime ends completion U of U and the
closed unit disk D. The set J; of prime ends whose impression is contained in
a; is open and connected. It follows that the images J; = gb(ji) are pairwise
disjoint open intervals in S!, and are therefore cyclically ordered following the
positive orientation in the circle.

We devote this section to explaining the preceeding paragraph to the reader
unfamiliarized with prime end theory.

We say that z € OU is accessible if there exists an arc v : [0,1] — U U {z}
such that (1) = z.
Lemma 3.1 ([14]). If z € OU is accessible, then lim;—1 p(y(t)) =z € ST.

Lemma 3.2 ([14]). The set of accessible points in OU is dense in OU, and the
set H of points in S' that are images of accessible points in OU is dense in S'.

A crosscutin U is an arc v : [0,1] — U such that yNoU = {7(0),v(1)}. Any
crosscut separates U in two connected components. We choose a basepoint by €
U, and for any crosscut v which is disjoint from by, we define the neighbourhood
N(v) as to be the connected component of U\ which does not contain by.
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A fundamental chain is a sequence of disjoint crosscuts (v )ren such that

N(’yl)DN(’YQ):)...,

and such that NgenyNV(7%) does not contain two different accessible points. The
impression of a fundamental chain is

NkenN (Vk)-

Lemma 3.3 ([14)). If (vk)ken @8 a fundamental chain, then Ngene(N (Vi)
contains a unique point x € ST.

A fundamental chain (yg)gen is said to determine a prime end of the domain
U, and the point x in the preceding lemma is called the image of the prime end
under . Prime ends are said to be different if they have distinct images, and
the same if they have the same image.

Lemma 3.4 ([14]). If x € S, then there exists a fundamental chain (Vi)ken
such that x is the image of the prime end it determins.

The two preceding lemmas establish a one-to- one correspondence between
the set of prime ends in U and points in the circle S!.

We define the impression of a prime end & as to be the impression of any
representative chain. We will note () the impression of the prime end £. For
all i € Z/nZ, we define J; as to be the set of prime ends whose impression is
contained in a;. We define J; C S' as the set of images of prime ends in J;.

Lemma 3.5. Fach J; is open and connected.

Proof. We will first prove that J; is open. Take a point z € J;, and a funda-
mental chain (y;)ren defining the prime end £ corresponding to x (see Lemmas
3.3, 3.4). As x € J;, the impression of I({) is contained in a,. Take an open
neighbourhood V' of I(§) in D such that V N oU C a;. So, if k is big enough
N(vr) € V. In particular, there exists k& € N such that the whole interval
©(N (7)) N St is contained in J;. So, z is an interior point of J;.

To prove that J; is connected, let us suppose that it has two different con-
nected components I; and I>. So, there exists two points x1, xo inSl\Ji such
that any arc joining I; and I, separatesz; from z9 in D.

Lemma 3.2 and the fact that each I; is an open interval, [ = 1,2 imply that
we can find two points point z1 € Iy N H and z3 € I, N H. We can find an arc
B C DU{z1, 22} joining z; and z5 such that 8/ = ¢=1(8ND) is an arc joining
two points 2] and 25 in OU. Then, both 2] and 24 belong to a;. Let C; and Cy
be the connected components of U\S’. One of this components, say C7 has the
property that C; NOU C a;. Otherwise, a; would not be connected, as we could
find an embedding I" of R such that

TAB =1, and TNa; =10

The closure of the corresponding connected component of D\ contains one of
the points x1 or z5. But then, I(£) C a;, where ¢ is the prime end corresponding
to this point. This contradiction finishes the proof.

O
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We deduce that (J;)icz/nz is a family of pairwise disjoint open intervals in
S1. This allows us to define a cyclic order on the sets (ai)iez/nz- We say that
a; follows a; in the cyclic order induced by the orientation of D (and we note
a; — a;), if and only if .J; follows J; in the natural (positive) cyclic order on S?.

Lemma 3.6. If z € a; is an accessible point, z = v(1),~v : [0,1] — U U {z},
then lim; 1 (y(t)) =« € J;.

Proof. The point x correponds to a prime end & whose impression contains z,
and as z is accessible, it is the only accessible point on this impression. If I(£)
is not contained in a;, as I(§) is a connected set containing z, and the sets {a,}
are pairwise disjoint, there exists @ € 9D N I(£). As the set of accessible points
is dense in OU, it follows that there must be an accessible point in I(£)\{z}, a
contradiction.

O

Lemma 3.7. If (xy,)nen C D is such that lim, o x, = x € J;, then

{(p_l(xn) n e N} NoU C a;.

Proof. As x € J;, x is the image of a prime end & such that I(§) C a;. Let Take
a neighbourhood V of I(§) such that V N oU C a;, and a fundamental chain
(Vi )ken defining €. So, if k is large enough, N(v) C V. Besides, (N (7))
is a neighbourhood of z in D. So, if n is large enough, ¢~ !(z,) € V, and
{7 (xn) :n e N} NOU C a,.

O
Lemma 3.8. If v is a crosscut from a; to aj, then:
1. ~' = W is an arc joining J; and Jj,
2. if v separates Jy and Jy, then a; U~y U a; separates ay from ay.
Proof. 1. Lemma 3.1 implies that 7/ is an arc, and Lemma 3.6 implies that

it joins J; and Jj.

2. If ai and a; belong to the same connected component of D\(a; U~ U a;),
we can find a crosscut o from aj to a; such that o« Ny = (. Then,
o' = p(anU) is an arc joining Ji and J;, and such that o’ N+" = (. This
contradicts that +" separates J and Jj.

[l

3.2 Repeller/Attractor configurations.

We fix f € Homeo™ (D) together with a free maximal decomposition in bricks
D= (V, E, B) of D\ Fix(f) .

Let (R;)icz/nz and (A;)iez/mz be two families of connected, pairwise disjoint
subsets of B such that :

1. For all i € Z/nZ:

(a) R; is a repeller and A, is an attractor;
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(b) there exists non-empty, closed, connected subsets of D, r; C Int(R;),
a; C Int(A;) such that 77N 0D # () and @; N ID # 0 ,

2. D\(Ujez/nz(a; Ur;)) is a connected open set.

We say that the pair ((R;)icz/nz, (Ai)icz/nz) is a Repeller/Attractor config-
uration of order n .
We will note

Property 2 in the previous definition allows us to give a cyclic order to the
sets 14, a;,1 € Z/nZ (see the previous section).

We say that a Repeller/Attractor configuration of order n > 3 is an elliptic
configuration if :

1. the cyclic order of the sets r;,a;, i € Z/nZ, satisfies the elliptic order
property:

ag — 7T — a1 — ... =2 Q; > Ti42 —> Aijr1 —7 ... —> Qp—1 — T'1 — QQ.
2. for all i € Z/nZ there exists a brick b; € R; such that bi, NA; # 0;

We say that a Repeller/Attractor configuration is a hyperbolic configuration
if:

1. the cyclic order of the sets r;,a;, i € Z/nZ, satisfies the hyperbolic order
property:

rTo—ayg —T1—> Q1 —> ... =T > A = Tir1 7> QGirl —7 ... 7 Tp—1 —7 AQp—1 — T0-

2. for all i € Z/nZ there exists two bricks bZ, bi~! € R; such that [b]i_ NA; #

1) 7

i>

0, and [BJ2" N Aiy £ 0;

>

<]

(a) An elliptic configuration (b) A hyperbolic configuration

‘We will show:

Proposition 3.9. If there exists an elliptic configuration of order n > 3, then
f is recurrent.
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Proposition 3.10. If there exists a hyperbolic configuration of order n > 2,
then Fix(f) # 0.

One could think that Proposition 3.10 should give a negative-index fixed
point, as the example that comes to mind is that of a saddle point (see the
figure below).

AO

R1 RO

Ay

Figure 3.1: A hyperbolic configuration arising from a saddle point.

However, this is not the case, as the following example shows. (Compare
with the remarks following the statement of Theorem 1.1.)

Example 1. Let f; be the time-one map of the flow whose orbits are drawn in
the following figure:

Ap

. @ .

Ay

Figure 3.2: A hyperbolic configuration without a fixed point of negative index.

One can perturb f; in a homeomorphism f such that:

L. Fix(f) = Fix(f1) = {},
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2. f = f1 in a neighbourhood of z,

3. f = f1 in a neighbourhood of S! (and so f preserves the repellers and
attractors drawn in dotted lines),

4. there is an f-orbit from Ry to Aj,

5. there is an f-orbit from R; to Ajg.

So, ((Ri)iez/2z, (Ai)icz/2z) is a hyperbolic configuration for f, but the only
fixed point f has is an index-one fixed point.

We define an order relationship in the set of Repeller/Attractor configura-
tions of order n :

(Ri)ieznzs (Ai)iczynz) < (R})icznzs (A})icz/nz)
if and only if for all i € Z/nZ

A; C Al and R; C R..

As the union of attractors (resp. repellers) is an attractor (resp. repeller),
the existence of an elliptic (resp. hyperbolic) Repeller/Attractor configuration
implies the existence of a maximal elliptic (resp.hyperbolic) Repeller/Attractor
configuration by Zorn’s lemma.

Example 2. The hyperbolic configuration in Figure 3.1 is maximal.

We will assume for the rest of this chapter that f is non-recurrent. In
particular, for any brick b € B, the sets [b]>, [b]s, [b]< and [b]< are connected
(see Proposition 2.7).

The following lemma is an immediate consequence of the maximality of
configurations:

Lemma 3.11. Let ((Ri)icz/nz, (Ai)icz/nz) be a mazimal configuration (either
elliptic or hyperbolic), and consider a brick b € B\ Ujez/nz (R; U A;). If b is
adjacent to R;, then there exists, j # i, such that [bl« N R; # 0 in B. If b is
adjacent to A;, then there exists, j # i, such that [b]s N A; # 0 in B.

Proof. Let b € B\ Ujez/nz (R; U A;) be adjacent to R;. As both R; and [b]<
are connected and they intersect, it follows that the repeller R = [b]< U R; is
connected. As our configuration is maximal and R; C R, there exists X &
E\{R;}, such that RN X # () (in B). As the sets in £ are pairwise disjoint, and
b does not belong to X, this implies that [b]« N X # 0 (in B). So, X = R; for
some j # i , because [b]< cannot intersect any attractor (see Remark 2.1, item

2). The second statement in the lemma is proved analogously.
O

We say that a brick b € B is a connexion brick from R; to A; if:

1. be B\ Usez/nz (Rl UA;),
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Figure 3.3: A connexion brick.

2. b is adjacent to R; and

3. [b]> contains a brick b" € B\ U;ez/nz (R; U A;) which is adjacent to A;.

Lemma 3.12. Let ((R;)icz/nz, (Ai)icz/nz) be a mazimal elliptic or hyperbolic
configuration. The following two conditions guarantee the existence of a con-
nexion brick from R; to A;:

1. There exists a brick b ¢ U;ez/nz(R; U A;) which is adjacent to both R; and
Ai7

2. R; is not adjacent to A;.

Proof. 1. Let b' ¢ Ujez/mz(Ri U A;) be adjacent to both R; and A;. As a subset
of B, the repeller [0']« meets a repeller R; different from R; (Lemma 3.11),
meets R; because V' is adjacent to R; (Remark 2.1, item 3), and does not meet
any Aj, j € Z/nZ (Remark 2.1, item 2). As it is connected, [b']< contains a
brick b which is adjacent to R;, which implies that b ¢ U;cz/n7(RiUA;) (Remark
2.1, item 4). As V' € [b]s, and b’ is adjacent to A;, b is a connexion brick from
Ri to Ai.

2. Assume that R; is not adjacent to A;. We know there exists b; € R; such
that [bi]> N A; # 0. As [b;]> is connected, it contains a brick b’ adjacent to
A;. This brick ¥’ is not contained in R;; otherwise, R; would be adjacent to A;.
Neither it is contained in any attractor or in any repeller other that R; (Remark
2.1, items 2 and 4). Therefore, ' ¢ U;cz/mz(Ri U A;) .

As b; € [b']< and [b']< is connected, [b']< contains a brick b adjacent to R;. If
b € [V']<, then b is a connexion brick from R; to A; (again, b ¢ Uz /nz(Ri U A;)
by Remark 2.1, items 2 and 4). If b = ¥, then b is adjacent to both R; and A;
and we are done by the previous item.

O

Remark 3.13. Connexion bricks do not always exist; Figure 3.1 exhibits an
example. Of course, none of the conditions of Lemma 3.12 is satisfied. Indeed,
in this example U;cz/97(R; U A;) = B and R; is adjacent to A; for all i € Z/27.
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3.3 The elliptic case.

The following consequences of the elliptic order property will be used in the
proof of Proposition 3.9:

Lemma 3.14. Let ((R:)icz/nz, (Ai)icz/mz) be an elliptic configuration.

1. If C C B is a connected set containing both R; and A;, and C N (R;41 U
Aiy1) =0 in B, then Ri11 and A;y1 belong to different connected compo-
nents of D\ Int(C); in particular Ri11 N A;11 = 0 in D.

2. If C C B is a connected set containing both R; and R;y1, and CN(R;—1 U
Ai_1) =0 in B, then R;_1 and A;_1 belong to different connected compo-
nents of D\ Int(C); in particular R;—1 N A;—1 =0 in D.

3. If C C B is a connected set containing every repeller R;, and disjoint
(in B) from every attractor A;, then the n attractors {A;} belong to n
different connected components of D\ Int(C').

Proof. 1. First we remark that CN(R;+1UA;+1) = 0 in B implies Int(R;41)N
Int(C) = 0 and Int(A;11) N Int(C) = 0. Besides, Int(C) is a connected
set containing both r; and a;. So, the elliptic order property implies
that 7,41 and a;11 belong to different connected components of D\ Int(C').
Now, Int(R;11) and Int(A4;41) belong to different connected components
of D\ Int(C'). As each connected component of D\ Int(C') is closed (in D),
we obtain that R;; and A;;; belong to different connected components
of D\ Int(C); in particular R;11 N A;q =0 in D.

2. As before, we know that Int(R;—1)NInt(C) = @) and Int(A;_1)NInt(C) = 0.
Besides, Int(C) is a connected set containing both r; and r;11. So, the
elliptic order property implies that r;_; and a;—; belong to different con-
nected components of D\ Int(C). Tt follows that Int(R;_1) and Int(A;_1)
belong to different connected components of D\ Int(C'), and we conclude
as in the preceding item.

3. As before, we know that Int(A4;) N Int(C') = @ for all ¢ € Z/nZ. Further-
more, Int(C) is a connected set containing r; for all i« € Z/nZ. So, the
elliptic order property implies that each a;, i € Z/nZ belong to a different
connected component of D\ Int(C'). It follows that each Int(A;), i € Z/nZ,
belong to a different connected component of D\ Int(C'), and we conclude

as in the preceding item.
O

Lemma 3.15. Let ((Ri)iez/nz, (Ai)iez/mz) be a mazimal elliptic configuration.
Then, for some i € Z/nZ there exists a connexion brick from R; to A;.

Proof. Because of lemma 3.12, it is enough to show that for some i € Z/nZ, R;
is not adjacent to A;.

If R; is adjacent to A;, then C' = R; U A; is a connected set containing R;
and A;. Besides, CN(R;+1 U A;41) = 0 in B, because the sets in £ are pairwise
disjoint. So, item 1 of the preceeding lemma tells us that R; 11N A; 41 = 0 in D.
In particular, R;y; cannot be adjacent to A;1. O
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The following lemma tells us that it is enough to prove Proposition 3.9 for
configurations of order n = 3:

Lemma 3.16. Let ((Ri)icz/nz, (Ai)icz/mz) be an elliptic configuration of order
n > 3. Then, there exists an elliptic configuration ((R})iez/(n-1)z, (A7)iez/(n—1)z)
of order n — 1.

Proof. We claim that there exists a brick b € Ry such that [b]>NA; # (0. Indeed,
(Ro @] [bo]z U Ao) NR =0in B,

by Remark 2.1, item 2 (we recall that for all i € Z/nZ there exists b; € R; such
that [b;]> N A4; # 0). So, Lemma 3.14, item 1 implies that either

(Ro U [bo]> U Ag) N A1 #0 in B,

or Int(Ro U [bg]> U Ap) separates Ry from A; (recall that by € Ry, [bo]>N A # 0,
and that the future of any brick is connected). In the first case, necessarily

[bo]z NA # 0in B,
and we take b = by. In the second case, we obtain
(RoU by ]> UAg) N (R U< UA) #0in B,

where b € [b1]> N A; . By Remark 2.1, item 2, we know that [bo]> N Ry = ()
and [bf]< N Ag = 0. So, in fact

(Ro Ulbo]>) N ([bf]< UAL) #0 in B.

If RoN[b]]< # 0 in B, we take any brick b € RoN[b]]<; if [bo]>N([b]]<UA1) # 0
in B, we take b = by. (Note that b € [b] ]< implies b € [b]> N Ay). This finishes
the proof of our claim.

Now, by defining

R(/):Ro, R;ZRH_l fOI‘lSiSn—Q,

A;:AH—I for0§i§n—2,

we are done.

We are now ready to prove Proposition 3.9 :

Proof. Because of the previous lemma, we can suppose that there exists an
elliptic configuration of order n = 3 and take a maximal one

((Ri)iez/3z, (Ai)iez)3z)-

We will show that our assumption that f is not recurrent contradicts the max-
imality of this configuration. Lemma 3.15 allows us to consider a connexion
brick b from R; to A;, for some i € Z/3Z, and there is no loss of generality
in supposing ¢ = 0. Let b € B\ Ujez/sz (R U A;) be adjacent to Ap and
such that ¥ € [b]s. We will first show that [b]« meets every repeller and no
attractor in the configuration. Then, by defining A’ as to be the connected
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component of B\(U;ez/3zR; U[b]<) containing A;, we will be able to show that
((Ri)iez/3z, (A})iez/3z) is an elliptic configuration strictly bigger than the initial
configuration, due to the fact that v’ € Aj\ Ay.

Indeed, we know by Lemma 3.11 that [b]< N R; # () for some j € {1,2}. We
will suppose [b]< N Ry # 0; the proof is analogous in the other case. We claim
that this implies [b]< N Ry # (). To see this, note that item 2 of Lemma 3.14
implies

RN (R U [ba]> U Az) #0,

where
R=RyU [b]g U R;y.

So, actually
[b]< N [bo]> # 0,

which implies [b]< N Ry # 0.

We have obtained that R’ = U,cz/3zR; U [b]< is a connected repeller dis-
joint (in B) from every attractor A;, i € Z/3Z (Remark 2.1, item 2). Let
A be the connected component of B\R' containing A; for all j € Z/3Z.
Then, the sets A} j € Z/3Z are pairwise disjoint (in D) by the elliptic or-
der property. We know that & € B\R’; otherwise, we would have b’ € [b]<
as b ¢ Ujez/sz(Ri U A;), which is impossible because 0’ € [b]s and we are
supposing that f is non-recurrent. So, Ag is strictly contained in A} and we
deduce that ((R;)icz/nz, (A])icz/3z) is an elliptic configuration strictly greater
than ((Ri)iez/3z, (Ai)iez/3z), contradicting the maximality of the configuration.

O

3.4 The hyperbolic case.

In what follows, we deal with the hyperbolic case. The proof of the following
lemma is analogous to that of Lemma 3.14, substituting of course the elliptic
order property by the hyperbolic order property.

Lemma 3.17. Let ((Ri)icz/nz, (Ai)icz/mz) be a hyperbolic configuration.
If C C B is a connected set containing R; and R;+1, and CNA,, =0 in B
for all m € Z/nZ, then Int(C') separates (in D) A; from any A;, j # i.

Lemma 3.18. Let ((R;i)icz/nz, (Ai)icz/nz) be a hyperbolic configuration. If
X € &, then there is only one connected component of B\X containing sets in

€.

Proof. We will suppose that X = Rj,j € Z/nZ; the proof is analogous for any
X € £ We will show that the connected component C' of B\R; containing A;
contains every X € £, X # R;. As B\R; is an attractor, and there is a brick in
R;11 whose (connected) future intersects A;, we have that Rj11 C C (we recall
that every connected component of an attractor is an attractor, see Proposition
2.7). As there is also a brick in R;;; whose future intersects A;;1, the same
argument shows that A;;, € C. By induction, we get that every X € E\{R;}
belongs to C. O

Lemma 3.19. Let ((R;)icz/nz, (Ai)icz/mz) be a mazimal hyperbolic configura-
tion. One of the following is true:
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1. Fix(f) # 0,

2. there exists a connexion brick from R; to A; for some j € Z/nZ.

Proof. We will show that if Fix(f) = 0, then there exists a connexion brick
from R; to A; for some j € Z/nZ. By Lemma 3.12, we can suppose that R;
is adjacent to A; for all ¢ € Z/nZ. If R; is adjacent to A;, either there is one
connected component v of OR; which is also a connected component of 0A; or
there is a point x € R; N A; NI(R; U A;). If Fix(f) = 0, then every connected
component of X is an embedded line in D, for any X € £. So, if there were
one connected component v of JR; which is also a connected component of
0A;, v would separate D into two connected components C; and Cs, containing
Int(A;) and Int(R;) respectively. Then, Lemma 3.18 would imply that every
set in E\R; belongs to C1, and that every set in £\ A; belongs to Co, which is
clearly impossible.

We are left with the case where there is a point @ € R; N A; N I(R; U A4;).
This point z is necessarily a vertex of (D). It belongs to three bricks: one
that belongs to R;, another one which belongs to A;, and a third one which
is adjacent to both R; and A;. This third brick brick does not belong to any
repeller or attractor, as it is adjacent to both R; and A; (see Remark 2.1, item
4). So, by Lemma 3.12, item 1, there exists a connexion brick from R; to A;.

O

We will prove Proposition 3.10 by induction on the order of the configuration.
We begin by the case n = 2:

Proposition 3.20. If there exists a hyperbolic configuration of order 2, then
Fix(f) # 0.

Proof. Suppose there exists such a configuration and take a maximal one

(Ri)iezs2z, (Ai)iez)2z)-

Because of Lemma 3.19, we can suppose that there exists a connexion brick b
from R; to A; for some j € Z/2Z, and there is no loss of generality in supposing
J = 0. We take a brick b such that b’ € [b]>, b’ € B\ Ujez/nz (R U A;) and b
is adjacent to Ag. Here again, we will first show that [b]<, the strict past of b,
meets every repeller and no attractor in the configuration. Then, by defining A
as the connected component of B\(U;cz/2zR: U [b]<) containing A;, we will be
able to show that ((R;)icz/2z, (A])icz/22) is a hyperbolic configuration strictly
greater than the original one, due to the fact that o’ € A\ Ap.
Because of Lemma 3.11 we know that [b]< N Ry # () in B. So,

R:RoUbSURl

is connected and disjoint from every attractor in the configuration (see Remark
2.1, item 2). It follows that Int(R) separates Ag from A, this being the content
of Lemma 3.17. Let A} be the connected component of B\R containing A,
i € Z/27Z. Then, AjN A} = 0. We know that & ¢ R, because b’ € [b]~, and
otherwise f would be recurrent. So, b’ belongs to A{\Ap, contradicting the
maximality of ((R;)iez/2z, (4i)iez/22)-

O
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Now we are ready to prove Proposition 3.10:

Proof. We will show that given a maximal hyperbolic configuration of order
n>2

(Ri)iez/nzs (Ai)icz/nz);

we can construct a new hyperbolic configuration whose order is strictly smaller
than n (and yet greater or equal to 2). We can suppose there exists a connexion
brick b from R to Ag. We take a brick b" € [b]s such that b' € B\ U;cz/,7 (R; U
A;) and b is adjacent to Ag. By Lemma 3.11,

[bl< N R; # 0 for some i # 0.

We can suppose that i # 1; otherwise, we could use the same argument we
used for the case n = 2. Indeed, Lemma 3.17 would imply that Ry U Ry U [b]<
is a connected repeller which separates Ay from any other A;, j # 0. So, by
replacing Ag by Aj, the connected component of B\(RyU R; U [b]<) containing
Ag, we would have a hyperbolic configuration strictly bigger than the original
one.

So, we may suppose that

i=min{je{l,...,n—1}: [b]<NR; #0} # 1.

We define
R =Ry U [bl< UR;,

which is a connected repeller.
If we set R, = R, R} =Rjforalll <j<i—1,and A; = A, foralli € Z/nZ,
0 <j <i-—1. Then, ((R})jecz/iz, (A})jezsiz) is a hyperbolic configuration of
order i, 2 <1 < n.
O

3.5 Applications.

We finish this section giving applications of Propositions 3.9 and 3.10 respec-
tively, that will be used in the proof of Theorem 1.1. We will introduce two
technical lemmas that will not be used until Chapter 5. In particular, Chap-
ter 4 is independent of these lemmas. The reader interested in the proof of
the classic Handel’s theorem can skip what follows and go directly to the next
chapter.

We recall that we have fixed f € Homeo™ (D) together with a free maximal
decomposition in bricks D = (V, E, B) of D\ Fix(f), and that we are supposing
that f is non-recurrent.

Let a;, i € Z/n7Z, be non-empty, pairwise disjoint, closed, connected subsets
of D, such that @; N OD # 0, for all i € Z/nZ, and U = D\ (U;ez/nzai) is a
connected open set. We consider the Riemann map ¢ : U — D, and the open
intervals on the circle J;, i € Z/nZ defined in 3.1. We recall that the interval J;
correspond to the prime ends in U whose impression is contained in a;.

Let (I;);ez/mz be the connected components of Sl\(Uiez/ani). So, each I;
is a closed interval, that maybe reduced to a point.
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Remark 3.21. One can cyclically order the sets (ai)icz/nz, (7))icz/mz, Where
(15)iez/mz is any family of closed, connected and pairwise disjoint subsets of U
satisfying:

1. 5NOU #0, j € Z/mZ,

2. for all j € Z/mZ, there exists i; € Z/nZ such that ¢(r;) N S* C I,

3. the correspondence j — %; is injective.
Lemma 3.22. We suppose that:
1. the cyclic order of the sets a;, i € Z/n7Z, is the following:

ap— a1 — ... = A —7> Qi1 —7 ... =7 Ap_1 — AQ.

2. for all i € Z/nZ there exists by € B, such that a; C [b]]~,

3. there exists three bricks (b3 )scz 3z such that

S

(a) for all s € Z/3Z and for all i € Z/nZ, one has by C [b]]< (and so

(b) [bs |< NOU # 0 for all s € Z/3Z,
(c) for all s € Z)37Z there exists is € Z/nZ such that p([bs|<)NST C I,

Then, the correspondence s — is is not injective.

Figure 3.4: Lemma 3.22

Proof. We will prove that if the correspondence s — i, is injective, we can
construct an elliptic configuration of order 3. As we are assuming f is not
recurrent, this is not possible by Proposition 3.9.

We begin by proving that [b7]< N [b7]< # @ implies is = 4,. Indeed, if
b5 ]< N [by )< # 0, then [b]]< U [by ]< is a connected set and ¢([bs |< U [by <)
intersects both I;, and I; . If is # ., then there exists jo,j1 € Z/nZ such that

37



any arc joining J;, and Jj, separates I;, from I;, in D . Our hypothesis 3.(a)
allows us to take a crosscut v from a;, to aj, such that yNU C [b;]>. So,
e(yNU) is an arc joining Jj, and J;, (see Lemma 3.8), and

e(yNU) Np(lbs]< U by ]<) # 0.
This gives us
(bsl< U l<)Nbg]s #0,

and as we are supposing that f is not recurrent,

by 1< N[bs]> # 0.
So,

[bs]< < [br]<
which implies
p(bs1<)NS' C L, NI,

a contradiction.

So, if the correspondence s — i is injective, the sets [b;]|< are pairwise
disjoint, and one can cyclically order the n+3 sets a;, [b; <, ¢ € Z/nZ, s € Z/37Z
(see Remark 3.21). We may suppose without loss of generality that

by l< = [b7]< = [b3 ]< = [bg ]<-

For all s € Z/3Z, we can take j; € Z/37Z such that

[bo]< = aj, = [b7]< = aj, = [by]< = aj, — [bo] <
(see Figure 3.4).
For all s € Z/37Z, we define:
Rs = [bs_]<’ As = [bj;]>
We want to show that

((RS)SEZ/BZ)a (AS)SGZ/BZ)a

is an elliptic configuration. It is enough to show that the sets As, Ry, s € Z/3Z,
are pairwise disjoint, because of the cyclic order of these sets , and our hypothesis
3.(a). We already know that the sets R, s € Z/3Z, are pairwise disjoint. As we
are supposing that f is not recurrent, and bjt € [by]> for every pair of indices
s,s" in Z/37Z (3.(a)), we know that

bf 1> b3)< =0

for all s,s" in Z/37Z. So, the sets {A;}, are disjoint from the sets {Rs}, and we
just have to show that the sets { A} are pairwise disjoint to finish the proof of
the lemma.

Because of the symmetry of the problem it is enough to show that

AgNA =0.
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If this is not so,
AO U Al == [bj;]> U [b;]>

would be a connected set containing both a;, and a;,, and the cyclic order would
imply that
([b;;]> U [b;rl]>) n [b;ro]< #0,

by our hypothesis 3.(a). As we are supposing that f is not recurrent, we have
[b;rl]> N [b;]< # 0.

But this implies that [b;rl]> is a connected set containing both a;, and aj,. Once
again our hypothesis 3.(a) and the cyclic order gives us

b ]> N} )< #0,

and we are done.
O

For our next lemma, we keep the assumption on the cyclic order of the sets
a;,i € Z/nZ:

apg —ay — ... = Q; — Aj+1 —> ... —> Qp—1 — AQ-

We define I;, as to be the connected component of S\ Ujez/nz Jj that follows
Ji—1 in the natural cyclic order on S*, so that we have:

Ji—1 — I; — Ji,
for all i € Z/n’Z.
Lemma 3.23. If for all i € Z/nZ:

1. there exists b € B, such that a; C [b]]>,

2. there exists b; € B such that b; C [bf]<, j € {i — 1,i},

3. [b;]< CU, and [b; ]« NOU # 0,
4 p(b7l<)nS* C I,

then Fix(f) # 0.

Proof. By Proposition 3.10 it is enough to show that we can construct a hyper-
bolic configuration.

We begin by proving that the sets {[b; ] <}, are pairwise disjoint. Otherwise,
there exists i # j, such that

[b; ]< N[bj]< #0.
Then, [b; ]< U [b;]< is a connected set and ¢([b; |< U [b;]<) intersects both I;

and I;. The cyclic order implies that any arc joining J;_1 and J; separates I;
from I, 1 # j.
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LzgP as

Figure 3.5: Lemma 3.23 with n =6

Our hypothesis 2. allows us to take a crosscut v from a;—1 to a; such that
YNU C [b;]>.
So, (yNU) is an arc joining J;—1 and J;, and

p(yNU) Ne(lby 1< U b ]<) # 0.
This gives us
(b l<ub;]<) N[ ]> # 0,

and as we are supposing that f is not recurrent,
b7 1< N by ]> # 0.

So, [b; ]< C [bj]<, which implies
p(b7lc)nSt c Linl;,

a contradiction.
So, we can cyclically order the 2n sets a;, [b; |<, ¢ € Z/nZ (see Remark
3.21). Moreover, for all i € Z/nZ,

a;—1 — [b;]< — Aj.

Define A; = [b]s and R; = [b;]<, for i € Z/nZ. To finish the proof of
the lemma, it is enough to show that the sets R;, A;,i € Z/nZ, are pairwise
disjoint. Indeed, if this is true, our previous remark on the cyclic order, and our
hypothesis 2. imply that ((R;)icz/nz, (Ai)icz/nz) is a hyperbolic configuration.

We have already proved that the sets R;,i € Z/nZ are pairwise disjoint.
We will also show that [b; ]< N [b;']> = () for any j € Z/nZ. By hypothesis 2.,

[b; ]<N[b; )= = 0, as we are supposing that f is not recurrent. If [b; | <N[b; ]~ # 0
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for some j # i, then [b;r]< C [b; )<, j # i. Therefore, @([b;r]<) NS c I, j #1,
which contradicts our hypothesis 4..

We have proved that the sets R; are disjoint from the sets A4;,i € Z/nZ. So,
in order to finish, we only have to prove that the sets A;,i € Z/nZ are pairwise
disjoint.

If this is not the case, there would exist i # j, such that [b;]~ ﬂ[b;r]> # 0. So,
[b]s U [b;r]> is a connected set containing a; U aj, and must therefore intersect
[bj]<, because of the cyclic order and hypothesis 2. We may of course assume
that [b;r]> N [bf]< # 0. Now, we have that [b;r]> is a connected set containing
a; Ua; and must therefore intersect [b;r]<. This contradiction proves our claim.

O
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Chapter 4

A simple proof of Handel’s
fixed point theorem

In this short chapter we include a simple proof of Le Calvez’s improvement [11]
of the classic fixed point theorem of Handel [8].

Proposition 4.1. Suppose that f : D — D is an orientation preserving homeo-
morphism which realizes a cycle of links L and can be extended to a homeomor-

phism of DU (Usez/nz{ci, wi}).
If L is elliptic, and the points «;,wi, i € Z/nZ, are all different, then f is
recurrent.

Remark 4.2. With these assumptions, the order of the points «;,w;,i € Z/nZ
at the circle at infinity satisfies:
Wwop — Qg > W1 —> ... > W = Qjy2 —> Wit —7 ... —> Wp—1 — Q1 — Wo.

From now on, we suppose that f is not recurrent. We apply Lemma
2.9 and obtain a family of closed disks (b/il)lEZ\{O},iEZ/nZ- The hypothesis on the
points «;, w;, © € Z/nZ, allows us to suppose that all the disks (b/il)leZ\{O},ieZ/nZ
have pairwise disjoint interiors (see Remark 2.11).

Remark 4.3. The sets I'; N D, I';; N D defined in Remark 2.10 satisfy the
elliptic order property (see Remark 4.2).

By Corollary 2.12, we can construct a free brick decomposition (V, FE, B)
such that for all i € Z/nZ and for all I € Z\{0}, there exists b} € B such that
bl C bL. Moreover, one can suppose that this decomposition is maximal.

Remark 4.4. As Ul>_0[bﬁ]§ is a connected set whose closure contains both «;
and w;, if T': [0, 1] — D is an arc that separates a; from w;, then T'NUjso[bl]< #

0.

Lemma 4.5. If for some k > 0, m > 0 and j € Z/nZ, both b? and b§+1 are
contained in [b; "], then there exists | > 0 such that b’ , € [b;™]>.

Proof. Tf bY and b, | are contained in [b;™], then b% and b7, are contained
in [b;™]s for all p > k (note that [b; ™]> is an attractor, and that Lemma 2.9,
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item 6. implies that b C [bf]z for all p > k). So, as [b; ™|~ is connected, we
can find an arc
[ 0,1] = [b7™]> U{wj, wja }

joining w; and w; 41 (see Remark 2.10). Then, I separates a2 from wjio in D
(see Remark 4.2). By Remark 4.4, we obtain

TN (Uisolbjyall) # 0.

So,
b, ™) N (Uiso[bjr2]L) # 0,
from which one gets (as the future of any brick is an attractor) that there exists
[ > 0 such that b§-+2 € ;M.
O

Lemma 4.6. (Domino effect) There exists k > 0 such that for alli,j € Z/nZ,
[b;*] contains b?.

Proof. Fix i € Z/nZ. There exists an arc
I': [0, 1] — Ul>0[bi_l]> U {ai,wi}

joining «; and w; (see Remark 2.10). Then, I' separates a;41 from w;y; in D
(see Remark 4.2). So, Remark 4.4 gives us

I'N (Upso[blq]<) # 0.

So,
(Uiso[0; 1]5) N (Urso[bly1]<) # 0,
L

from which one immediately gets that there exists /;,m; > 0 such that b; , €

[b;™]s. As bl € [b;™]s as well, the previous lemma tells us that there exists
[ > 0 such that b§+2 € [b; ™]~. We finish the proof of the lemma by induction,
and then taking £ > 0 large enough. O

We are now ready to prove Proposition 4.1:

Proof. We will show that (([b;k]<)iez/nz, ([b¥)>)iez/mz) is an elliptic configu-
ration, where k£ > 0 is given by the preceding lemma. This contradicts our
assumption that f is not recurrent, by Proposition 3.9.

We define r; = I'; N Umzkb;k, and a; = F;r N Um>kb¥, i € Z/nZ; we may
suppose that the sets r;, a;, i € Z/nZ are arcs (the sets I; ND, T} ND were
defined in Remark 2.10). These arcs a;,r;, i € Z/nZ satisty the elliptic order
property (see Remark 4.3). Besides, for all i € Z/nZ,

o i C[b;"]<,

e a; C [b¥]5, and

o bF € bR

7
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So, we only have to show that the sets {[b; ]}, {[bf]> }, are pairwise disjoint.
As we are supposing that f is not recurrent, the preceding lemma gives us that
for any pair of indices 4, j in Z/nZ:

b7 "< N 5] = 0.

Let us show that for for any pair of different indices 7, j in Z/nZ one has

Otherwise, there would exist i # j such that [b; ] U b}

containing r; and ;. As [b; *]s is a connected set containing a; for all j € Z/nZ
(again by the preceding lemma), the elliptic order property tells us:

([b7¥]< U b7 "]<) N by *)s # 0.

We deduce (as f is not recurrent) that

[b;k]< N b ¥ #0,

M. is a connected set

but then [bj_k]< is a connected set containing both r; and r;, and once again
the preceding lemma and the elliptic order property imply

b5 1< N b *]> # 0,

a contradiction. To prove that for any pair of different indices ¢, j in Z/nZ one
also has
[bF]> N [b§]> =90,

it is enough to interchange the roles of < and >, k and —k in the proof we just
did. O
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Chapter 5

Our fixed point theorem

This chapter is devoted to the proof of Theorem 1.1.

We fix an orientation preserving homeomorphism f : D — D which realizes
a cycle of links £ = ((a,w;))icz/nz. We recall that this means that there exists
a family (z;);ez/nz of points in I such that for all i € Z/nZ

. ki, _ . : k(N — .
kEIEloof (Zz) Qs kgl}rloof (Zz) Wi.

We also recall that
¢ ={aj,w; i € Z/nZ} C S,

and that we supppose that f can be extended to a homeomorphism of D U £.

5.1 The elliptic case.

Let us state our first proposition:

Proposition 5.1. If L is elliptic, then Fix(f) # (. Moreover, one of the
following holds:

1. f is recurrent,

2. L is a degenerate cycle.

As the proof is long, we will first describe our strategy. The first part of the
work consists in constructing a brick decomposition which is suitable for our
purposes. Once this done, we study the “domino effect” of the elliptic order
property; that is, we prove an analogue of Lemma 4.6 in the previous chapter.
Then, we show that if f is not recurrent, this “domino effect” gives rise to con-
straints on the order of the cycle of links £. We will show (as a consequence
of Lemma 3.22) that the only possibility for the order of £ is n = 4. The case
n = 4 is special, as degeneracies may occur (see Figure 1.1, and Chapter 1
where we explain that non-degeneracy is needed for obtaining the index result).
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For n = 4 we prove that Fix(f) # (), and that if f is not recurrent, then £ is
degenerate.

I. Construction of the brick decomposition.

We consider cycles of links where the points {«;}, {w;}, are not necessarily
different. In particular, we have that n > 3 (if n = 3, the definition of cycle
of links implies automatically that these points are all different). As we are
dealing with the elliptic case, the only possible coincidences among the points
{a;}, {w;}, are of the form w;_3 = «;. In particular, the points {w;} are all
different and for all i € Z/nZ we can take a neighbourhood U;" of w; in D in
such a way that U;" N U;’ = () if i # j. We define U, = U;", if a; = w;_2, and
for all i € Z/nZ such that «; # w;_2 we take a neighbourhood U;~ of «; in D in
such a way that U, N Uj+ = { for all j € Z/nZ and U; NU; =0 for all i # j.

We suppose from now on that f is not recurrent.

We apply Lemma 2.9 and obtain families of closed disks (b;l)leZ\{O},ieZ/nZ-
So, the disks in the family (b}');>1 ez /nz, have pairwise disjoint interiors.

Let Ireg be the set of i € Z/nZ such that «; # w;_a, or such that o; = w;_o
but there exists K > 0 such that

Uk Int (6% 5) N Ups i It (077) = 0.

Let Ising

After discarding a finite number of disks, we can suppose that the disks b

with [ > 1, i € Z/nZ, and b, with | > 1,i € Iyeg, have pairwise disjoint
interiors.

If i € Iging,

such that Int(b¥',) NInt(b;7") # 0.
In the following lemma we refer to the family of integers (l;);cz/nz constructed
in Lemma 2.9.

be the complement of Ireg in Z/nZ.

then o; = w;_9 and for all k > 0 there exists k' > k, 7' > k,

m

Lemma 5.2. Ifi el we can find sequences of free closed disks (¢*)m>0,

sing’
such that:

1. encUr, =0,
2. there exists an increasing sequence (kI'")m>o such that b;k:; Nne # 0 for
allm >0,

3. X, uE) N Or Uy =0 for all p £ m,

4. there exists an increasing sequence (j7*)m>o0 such that f~H=7"+1(z;) € ¢t
for allm >0,

5. the sequence (I

M m>0 converges in the Hausdorff topology to wi—o = .

6. b;k:; N e is an arc for all m > 0 (so, ¢f* U b;k:; is a topological closed
disk),

7. O(Up>1b 5 UU>0c) s a one dimensional submanifold,

8. if x € D, then x belongs to at most two different disks in the family
{bF, cm ik >1,m>0}

1—27 1
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Figure 5.1: The disks b}*7% and ¢

Proof. Take i € Igjyo and consider the family of closed disks (b k=1 C U,
Asi e Ising’ there exists 50 > 1, such that
Int(Ugs 100 5) N Int (6,77 ) # 0.
By Lemma 2.9, item 7, f(=li—3/+D(z,) € Int(b;_j?)\(ulzleQQ). We take an arc
9P € (6] 7)\ It (Ui B)
joining f(-L=3+1D(z;) and a point 29 € O(Uis1blL ). We define k9 > 1 by
z) € b;li.
We define inductively for m > 0:

1. Uy, C U, =U; aneighbourhood of w;_» = ; in D such that

m

Uy N (Int (b)) UTnt (b)) = 0,

— %

2. K., > 0 such that for all k > K,, b/*, Ub™F C Uy,

m+1

3. j > Ky, such that Int(Ugs g, b% ) NInt(b; 75 ) £ 0,
_-m+1 m
4. 4t c Int(b; TN\ (Upsk,, bl ) an arc joining f(—7i +1“)(zi) and a
point :C?Jrl S 8(Uk2Kmb§k_2),

5. k"M > K, by B
ot e b;k—i2

The existence of K,, comes from the fact that both sequences (b;fl)lzl,
(b ,)1>1 converge in de Hausdorff topology to a; = w;_o; that of 5! from
the fact that i € Ising; that of 7! from the choice of j"** and the fact

-m _jmAt
that fL=3"" 4D () € Int(b, 7" )\(Uisk,, b ,), and that of 27+! and k™!

follows from the choice of j;"“.
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By thickening these arcs {7"}, we can construct disks {c"} verifying all the
conditions of the lemma.
O

The proposition above allows us to construct a free brick decomposition
(V, E, B) such that:

1. for all i € Z/nZ and for all | > 1, there exists bl € B such that b/ C bl,

2. for all i € Iyeg and for all [ > 1, there exists b7! € B such that b~  b; ",

3. for all m > 0 and for all i € I there exists b, i € B such that

sing
m

m —Ji

et Cb .

Remark 5.3. The main difference between this brick decomposition and the
one we were able to construct when the points «;, w;, @ € Z/nZ, were all
different, is that for i € Ising we do NOT necessarily have

Uzgjgbrl C [bi_jio]ﬁ-
In particular, we may not be able to construct a curve
T:[0,1] = Upsolb; 7 |5 U {a,w;}
joining «; and w; (see the proof of Lemma 4.6 in the previous Chapter).

II. The “domino effect” of the elliptic order property.

Lemma 5.4. Take two indices i,j in Z/nZ, and two integers k and N. If
b and bl , are contained in [b)]s, then there exists k' € Z such that by is

contained in [bY]s for alll € Z/nZ.

Proof. We will show that if b? and b? 1o are contained in [bN], then there

exists k" such that both bﬂl and b¥, 5 are contained in [b)¥]-. If b¥ and 0%,
are contained in [b}]s, bé- and b§-+2 are contained in [b)¥]s for all [ > k. By

Remark 2.10, we can find an arc
7:[0,1] = [b¥]s U {wj, wjive}

joining w; and w;12. As n > 3, and the coincidences are of the form o; = w;_»,
we know that the points a1, w;, ajq3,w; 2 are all different. So, v separates
both a1 from w;i1 and ;43 from w;i3. So, by Remark 4.4 there exists
k" > 0 such that [b¥, )< N [bN]s # 0 and [b¥, 5]< N [b]]5 # 0. We are done by
induction, and by taking k' large enough.

O

In the following lemma we make reference to the sequences (k")m,>0 and
(J")m>0 defined in Lemma 5.2.

- N
Lemma 5.5. For everyi € I there exists N > 0 such that [b; ’ |> contains

sing’
kN
b;% .
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Proof. We will prove the following stronger statement which implies immedi-
N N N

ately that [b, 7 |> contains bfiQ.: there exists N > 0 such that f(cf-v)ﬂb;k_i2 # 0.

I. Let us begin by studying the local dynamics of the brick decomposition

at a; = w;_o,1 € Ising' We define for all m > 0,

X = b;’i:; Ug,
and we recall that every X, is a closed disk (see Lemma 5.2). Then, for all

m > 0,
FUmt T o) U fTH I (2) € X

So, given any two positive integers m > p, one has:
Ukzlfk(Xp) NXoy # 0

and
Ukzlfk(Xm) n Xp 7& 0.

Besides, X,,, N X,, = 0 and X,, and X, are topological closed disks. There-
fore, if we can find m > p > 0 such that both X, and X,, are free sets, f
would be recurrent by Proposition 2.5. So, we can suppose that for all m > 0
the set X,, is not free. So, as for all m > 0 both b;k’"' and ¢}" are free sets,

then either f(b;k_:;) Nne™ #0,or f(c™)N b;k_:; # (). If there exists m > 0 such
that f(c") N b;k_:; # (), we are done. So, we may assume that for all m > 0,
FOFLYNEm # 0. Then, f(b5,)Nb;7 # 0 for all m > 0. In particular, [b} 5]-
contains bé for all { > 0 and for all m > 0.

I1. We will show that this implies that f is recurrent. As [bfjn;]> contains b¥
and bf_Q, for k > k", Lemma 5.4 implies that for all m > 0 there exists {,, > 0

such that [bfz;]> contains bé- for all j € Z/nZ and for all | > I,,.
In particular, Remark 2.10 tells us that for all m > 0 there exists an arc

Ty [0,1] = [B¥ 5] U {wi—o,wi_s}

joining w;_s and w;_y4, which implies that T, separates a;_; from c;_3 in D
(see Figure 5.2 (a) and observe that as n > 3 the points «;_3,w;—4, j—1,w;—2
are all different). As we are assuming that f is not recurrent, we obtain that
the closure of [bfz;]g cannot contain both points «;_1 and «;_3.

We will suppose that for all m > 0, the closure of [bfimQ]g does not contain
one of the points ;1 and «;_3, and obtain a contradiction. As m > p implies

P R
[b;a]< C b7 5]<,

one of the points «;_; or «;_3 is not contained in the closure of any of the

sets [bfj;]g, m > 0. Let us suppose that «;_3 is not contained in [bfj;]g

for any m > 0 (the proof is analogous in the other case). In particular, for

all m > 0, [bfiQ]g does not contain any of the bricks containing the orbit of
J— 0

zi—3. We take a neighbourhood U of «;_3 in D such that U N [bfiQ]g = () and

such that U NUjspobl 5 = 0. We take j > 0 such that f=7(z;_3) € U, and
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an arc 8 : [0,1] — U joining a;_3 and f77(z;_3). Take a brick b € B such
that f=7(zi—3) € b. As Uj>1b/l 5 C [b]>, Remark 2.10 allows us to take an arc
v :[0,1] = [b]> Uw,;_3 joining f~7(z;_3) and w;_3.

So, B.v separates a;_o from w;_5 in D and

0]
BN (Uiskobl_p U b7,]<) # 0,
which implies
0
v N (Ul>koblif2 U [bfi2]§) # 0,
because of our choice of U (see Figure 5.2 (b)). So,
b> NUpso[bl_o]< # 0,

which implies that for some m > 0,
Bls 1 [ # 0.

So, b e [bf;]g, and [bf;]g contains a brick containing one point of the orbit
of Zi—3.
This contradiction finishes the proof of the lemma.
O

(a)

Figure 5.2: The proof of lemma 5.5

Lemma 5.6. There exists k > 0 such that for any pair of indices i,j in Z/nZ,
the attractor [b; *]~ contains bk

Proof. For all i € Ireg, we know that Ulzlbfl C Ul>0[b;l]> (note that this is

not necessarily the case if ¢ € Ising)' So, by Remark 2.10, there exists an arc
I [0, 1] — Ul>0[b;l]> U {ai,wi}

j_oining «; and w;. So, I'; separates both «;_; from w;_; and ay41 from w;4; in

D. By Remark 4.4, there exists m > 0 such that [b; "]~ contains both b}}; and

b7 ;. By Lemma 5.4, [b; "]~ contains bé— for all j € Z/nZ, and [ large enough.
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For all 7 € I

sing’ the previous lemma tells us that there exists N > 0 such

—jN . kN —jN . kN
that [b; " |> contains b,”,. Clearly, [b; 7" |> also contains b;" and so once

N
again, Lemma 5.4 implies that [b; 7 |> contains bé, for all j € Z/nZ, and [ large
enough. We finish by taking k sufficiently large. O

III. Constraints on the order of the cycle of links L.
We fix k& > 0 such that for any pair of indices 4, j in Z/nZ, [b;k]> contains
bf. We define

a; = (Umskb!") NI, i € Z/nZ

(see Remark 2.10 for the definition of I';"). We may suppose that
U =D\ Uiez/nz i

is simply connected. As a; C Up>ib]", and we are supposing that f is not

recurrent, we know that [b; "] C U for all i € Z/nZ.

Let ¢ : U — D be the Riemann map and consider the intervals J;,i € Z/nZ
defined in 3.1. We define I; as to be the connected component of S\ Uiez/nz Ji
following J;_o in the natural (positive) cyclic order on S* . So, each I; is a

closed interval, and we have:

Jico = I — Ji—y
for all i € Z/n’Z.

Lemma 5.7. For alli € Z/nZ,

1. there exists j; € Z./n7Z such that p([b;*]<) N S* C I,
2. jefi—1,i},
3. Zf (677} 75 Wi;—2, then ji =1.

Proof. 1. If there exists x € ¢([b; *]<)NJ; for some j € Z/nZ, then [b;*]- N
a; # () (see Lemma 3.7). As [b; *] - is closed in D, and as a; C I, we obtain

[b;7*]< Naj # 0, a contradiction. So, ([b;*]<) C Ujez/nzlj. If o(b7%1<)
intersects I; and Iy, k # j, then there exists two different indices iy and
i1 in Z/nZ such that any arc joining J;, and J;, separates I; from I,. We
take a crosscut v from a;, to a;, such that v C [b;k]>. So, Lemma 3.6
implies
p(yNU) Ne([b;*]<) # 0,
and consequently
b "> N [ *< # 0,

which contradicts our assumption that f is not recurrent.

2. Take a crosscut v C [b;k]> from a;—3 to a;—1. Then, the elliptic order
property implies that a; belongs to the closure of only one of the two
connected components of U\~v; the one to the right of 4. We use here
the fact that a; ¢ {w;_3,w;_1}. So, [b; *]< also belongs to the connected
component of U\7y which is to the right of v. Consequently, ga([bi_k]<)
belongs to the connected component of D\ (y N U) which is to the right
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of p(yNU). As ¢(yNU) is an arc from J;_3 to J;_; (see Lemma 3.6),
the closure of this connected component only contains I; and I;_;. So, we
obtain j; € {i —1,i}.

3. If a; # w;—_o, we can apply exactly the same argument than in the preced-
ing item, but using a crosscut v from a;_s to a;—1, obtaining j; = .
O

Remark 5.8. If we set b, = b; ¥, and b = b | the bricks b, i € {ig,i1,i2}
satisfy all the hypothesis of Lemma 3.22, where ig, 1,72 are any three different
indices € Z/nZ. Indeed, k is chosen so that 2. and 3. (a), hold, 3.(b) is granted
since a; C [b; |< for all i € Z/nZ, and 3. (c) is the content of item 1. in the
preceding lemma.

The second item in the preceding lemma gives us:
Corollary 5.9. If i — 1| > 2, then j; # ji.

The constraints on the order £ follows.
Lemma 5.10. The order of L is either 4 or 5.

Proof. If n > 6, the sets {i,i — 1}, ¢ € {0,2,4} are pairwise disjoint, and so
the three indices jo, j2,ja given by Lemma 5.7 are different. This contradicts
Lemma 3.22. O

Lemma 5.11. We have n = 4.

Proof. We show that n = 5 also contradicts Lemma 3.22. If jg, jo, j3 are all
different, we are done because of Lemma 3.22. Otherwise, the only possibility
is that jo = j3 = 2 (see Lemma 5.7). But then, ji,j3 and j4 are different.

O

Lemma 5.12. L is degenerate.

Proof. We will show that if n = 4 and £ is non-degenerate, we can also find
a triplet ig,41,i2 in Z/nZ such that the correspondent j; ., s € {0,1,2} are
different.

For a non-degenerate cycle of links, there can be at most two coincidences
of the type a; = w;—s. Furthermore, if o; = w;—2 and a;; = w;_» for some i # j,
then |i — j| = 1. Indeed, the points in ¢ are ordered as follows:

woiagﬁwliagﬁwgiaoﬁwgial — Wo,

and non-degeneracy means that we cannot have both w; = a;;12 and w12 = oy,
for some i € Z/47. So, there exists | € Z/47 such that a; # w;—2 and a1 #
wi—1. We can suppose without loss of generality that g # wo, and a3 # ws
(see Figure 5.3). Items 2. and 3. in Lemma 5.7 imply that jo, j1, and j3 are
different, and we are done.

O

The following lemma finishes the proof of Proposition 6.2.

Lemma 5.13. If n =4, then Fix(f) # 0.
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Qas

Figure 5.3: The case n =4

Proof. We will be done by constructing a hyperbolic Repeller/Attractor config-
uration of order 2. We define

Ry =[by"]<, R1=[b"]<, Ao = [b5]>, A1 = [bf]>.

By the choice of k, there exists two bricks ¢, cifl, contained in R;, i € Z/27
such that [¢]]s NA; #0,if j € {i,i—1}.
Besides, the cyclic order of these sets is the following;:
R()%Ao*)Rl*)Al*)Ro.
Indeed, we know that jo € {0,3}, jo € {2,1}, and the cyclic order of the
intervals J;, I;,i € Z /47 is:
I()ng*)Il%J()%IQ‘)Jl‘)Ig*)JQ*)IO,

So, we just have to show that the sets R;, A;,7 € Z/2Z are pairwise disjoint.
The choice of k implies that [b;*]< N [b*]. = 0 for all 4,j in Z/4Z. As a

2

consequence, we just have to check Rg N Ry = (), and Ag N Ay = (.
If this is not the case, [by "]« U[by *]< is a connected set separating [b¥]- and
[b5]>. Again by the choice of k we have:

(b "< U b2 "l<) N g "> # 0,
and as we are supposing that f is not recurrent,
b3 1< N [bg *]> # 0.
But then,

bM< N by "> # 0,

because [by ¥]~ contains [by ¥]. and therefore separates [b}]~ and [b§]~, both of
which are contained in [b; *]s. O
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5.2 The hyperbolic case.

Our next proposition finishes the proof of Theorem 1.1:
Proposition 5.14. If £ is hyperbolic, then Fix(f) # 0.

We recall that the order of a hyperbolic cycle of links is an even number.
That is, from now on n = 2m, m > 2.

To illustrate the ideas, we include a proof for the case where the points
{a;},{w;}, are all different. We did this for the elliptic case in Chapter 4.

Proposition 5.15. If L satisfy the additional hypothesis:
(H) the points «;,w;, i € Z/2mZ are all different,
then Fix(f) # 0.
Remark 5.16. With these assumptions, the cyclic order of the points {«; }, {w;},
at the circle at infinity satisfies:
Q; — Qi1 — Wit — Wi — Q42
for all even values of i € Z/2mZ.

We apply Lemma 2.9 and obtain a family of closed disks (b!! )leZ\{o} i€z/2mz-
The hypothesis (H) allows us to suppose that all the bricks (b NleZ\ {0} ieZ/2mZ
have pairwise disjoint interiors (see Remark 2.11). We construct a maximal free
brick decomposition (V, E, B) such that for all ¢ € Z/2mZ and for all I € Z\{0},
there exists bl € B such that b C bl (see Corollary 2.12).

We will suppose that f is not recurrent, and we will show that we can
construct a hyperbolic configuration.

Lemma 5.17. (Hyperbolic domino effect) There exists k > 0 such that for
all even values of i € 7/2mZ, both attractors [b; *]s and [b; %] contain bF for
allle {i—2,i—1,i,i+ 1}.

Remark 5.18. Note that for all i =0 mod 2:
Wi—1 — Wij—2 — QO — Q1 — Wi+l — Wj.

So, the “future indices” {i—2,i—1,4,i+ 1} are those coming immediately before
and immediately after the “past indices” {i,7 — 1} in the cyclic order.

Proof. By Remark 2.10, we can find an arc
I [0, 1] — UlZl[b;l]> U {ozi,wi}

joining «; and w;. So, I' separates 04Z 1 from w;—1 and ;41 from wit1 (in
So, there exists I > 0 such that [b; ']~ N [bl_;]< # 0 and [b;"]s N [bL,]<
So,

).
2.
(Ukztbf 1) N (Ukzbiyy) C [0

Using Remark 2.10 again, we can find an arc

I [0,1] = [b7]> U {wis1,wi1}
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joining w; 41 and w;—1. The cyclic order at St of the points {a;}, {w;}, implies
that I separates w;_o from a;_o in D. So,

I’ MUz [b o)< # 0,

which implies that there exists j > 0 such that bg_Q € [bi_l]>. By taking m > 0

large enough, we obtain that for all [ € {i — 2,79 — 1,4, + 1}, b € [b;"]>.

Analogously we obtain b} € [b, )]s for alll € {i —2,i—1,4,i+1}, for a suitable

p > 0. We finish by taking k& > max{m, p} O
We are now ready to prove Proposition 5.15:

Proof. We will show that (([b;¥]<)iz0 mod 2, ([0¥]>)i=0 mod 2) is a hyperbolic
configuration, where k > 0 is given by Lemma 5.17 (the choice of even indices
is arbitrary; we may as well have chosen the odd indices).

By Remark 5.16 and Lemma 5.17, we just have to show that the sets [bi_k]<,
[b¥]s, for i even, are pairwise disjoint. Lemma 5.17 also gives us,

[b;k]< N[bE,]s =0,

for i even. If [b; *]. N [b§]> # () for an even j other than ¢ — 2, then we can find
an arc T : [0,1] = [b; *]< U {i,a;} joining oy and a;. The cylic order at S*
of the points {a;}, {w;} implies that I' separates w; from w;_» in D. As [b; ¥]>
is a connected set whose closure contains both w; and w;—o (by the previous
lemma), one gets
b7 NT #0
and so
;"] N[ < # 0,

which implies that f is recurrent. So, we have:
b7 1< N [Bf]> = 0,
for any pair of even indices 7, j. We will show that

b7 N b7 = 0

K2

for any two different even indices 4, j. Otherwise, we could find an arc
[0, 1] = [b7 "< U b7 *]< U {ai, a5}
joining o; and a;, from which we deduce again using the preceding lemma that
(Ib;*]< U [bj_k]<) N b ¥ # 0.
So, as f is not recurrent, we have
[b;k]< N b ¥ # 0.

—k

But now we can find an arc I' : [0,1] — [b;

which implies

<« U{aj,a;} joining «a; and «;,
J J

b1« N [b7*]> # 0,

contradicting that f is not recurrent. The proof of the fact that [6¥] N [b§]> =0
for any two different even indices ¢, j, is completely analogous.
O
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In what follows, we will deal with the general case; that is, we consider
cycles of links where the points {c;}, {w;}, are not necessarily different. By
the hyperbolic order property, the only possible coincidences among the points
a;,wi, i € Z/n7Z are of the form w; o = «, for even values of i, or w;12 = a;,
for odd values of 1.

As the points {w;} are all different, we can take a neighbourhood U;" of w;
in D in such a way that that UZ-+ N U]Tir = 0 if i # j. For even values of i, we
define U, = U;[Q if oy = wi—2, and if o; # w;—o we take a neighbourhood U~
of a; in D in such a way that U, ﬁUjTir = { for any j, and U; NU; =0 if j # i.
Similarly, for odd values of 7, we define U, = i—:z if oy = wjto, and if a; # wito
we take a neighbourhood U; of a; in D in such a way that U, N U;’ = () for
any j, and U; NU; =0 if j # 4.

We keep the assumption that f is not recurrent.

We apply Lemma 2.9 and obtain families of closed disks (bgl)leZ\{o},ieZ/QmZ-
So, the disks in the family (b});>1 ez /2mz have pairwise disjoint interiors.

Let Ireg be the set of even ¢ € Z/2mZ such that a; # w;_2, or such that
;i = w;_» but there exists K > 0 such that Uy g0 , NUgs 50" = (), together
with the set of odd i € Z/2mZ such that a; # wita, or such that a; = wita
but there exists K > 0 such that Uk>Kb’i’i2 N U;C>Kbg_]C = (. Let Ising be the
complementary set of Ireg in Z/2mZ.

We can suppose that all the disks in the families (b’il)IZLZ-eZ/QmZ, (b/i_l)lzl,ie]reg
have disjoint interiors.

We define i* = ¢ — 2 if 7 is even, and * = i + 2 if 4 is odd.

Lemma 5.19. Ifiel

sings We can find sequences of free closed disks (¢}')n>0,
satisfying :

1. CUL=U],

2. there exists an increasing sequence (kI')n,>0 such that b;lf? Nc £ 0 for all
n >0,

ke kP
3. (b Uer)n (bt Ucl) =0 for alln # p,
4. there exists an increasing sequence (jI')n>0 such that i (z;) €,

T

5. the sequence (c}

Mn>0 converge in the Hausdorff topology to wi- = a,

6. b;lf Ncit is an arc for all n > 0,
7. O(Up>1bk UU,>o0ct) ds a one dimensional submanifold,

8. if x € D, then x belongs to at most two different disks in the family
{b etk >1,n>0}.
Proof. Note that the local dynamics in a neighbourhood of a point «;,i € Ising
is exactly the same as that in the elliptic case. So, the same proof we did for
Lemma 5.2 works here as well.

O

We construct a maximal free brick decomposition (V, E, B) such that:
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1. for all i € Z/2mZ and for all [ > 1, there exists bl € B such that b/’ C b,

2. for all i € Iyeg and for all | > 1, there exists b; ' € B such that b, C b; ",

3. foralln > O0andforalli € I there exists bi_jin € Bsuch that ¢! C bi_jin.

sing

- N
Lemma 5.20. Ifie I then there exists N > 0 such that [b, " |> contains

sing’
B
bl .

Proof. Fix an even index i € Igno (the proof for odd indices is analogous).
The first part of the proof is identical to part I. in the proof of Lemma 5.5.

Indeed, this proof is local, that is, it does not depend on how the rest of the

N
point in £ are ordered. So, there are two possibilities: either f(c¥) N b;ka #0

or f (b;k_];) NN # 0. In the first case we are done, as it implies immediately the
statement of the lemma. As a consequence, we may assume that for all n > 0,
[bf§2]> contains b} for all | > 0. We will show that this contradicts the fact that
f is not recurrent.

With this assumption, for all n > 0 there exists an arc

T, [0,1] = b5 ,)s U {wiia,w;}

joining w; o2 and w; (see Remark 2.10). So, the arc I';, separates «;—1 from o;_3
in D for all n > 0 (see Figure 5.4, and note that the points c; 1,3, w;i_2,w;
are all different ).

We deduce (as we are supposing that f is not recurrent) that for any n > 0

[b," 5]< cannot contain both o;_; and o;_3. So, one of the points a;_1 or a;_3

is not contained in any of the sets [bfiTLQ]g, n > 0. We will suppose that for all

n>0, a1 ¢ [bfinQ]g (the proof is analogous in the other case). We fix n > 0
and consider the connected set

k™
K = Upsgnbl_o U b7 )<.

We choose a neighbourhood U of «;_1 in D such that U N K = (. Then, we

take j > 0, such that f77(z;—1) € U and b € B such that f~7(z;_1) € b. We
take an arc v C U joining a;—; and f~7(z;_1), and an arc 8 C [b]> U w;—1
joining f~7(z;_1) and w;_1. We deduce that 7.6 N K # 0, and as v C U, we
have BN K # (). So, there exists [ > kI such that b € [b!_,]<, and consequently
ai—1 € [b!_,]<. This contradiction finishes the proof of the lemma.

O

Lemma 5.21. There exists k > 0 such that for all even values of i € Z/2mZ,
both attractors [b; ¥~ and [b; " ]s contain bF for alll € {i —2,i —1,i,i+ 1}.

?

Proof. If i € I the previous lemma tells us that there exists N > 0 such

ing>

—iN . N
that [b; " ]> contains bfiQ. So, we can find an arc

r:[o,1] — [b;jé\]]> U{wi—2,w;}
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Q2

Qit1

Figure 5.4: The proof of lemma 5.20

joining Wi—2 and w;. This arc separates both a;_1 from w;_1, and a;4; from
wit1 in D (see Figure 13). As a consequence, both Uy>1[bF_;]< and Ug>1[bf,4]<
N
intersect I, and so there exists k > 0 such that b¥ | and b¥ , belong to [b; " ]-.
N
If i —1 € Igpg, we can show analogously that [b, /1"']s contains b for all
le{i—2,i—1,i,i+ 1} and some k > 0.
Ifi Ireg, we can find an arc

r:[0,1] — Ul>0[b;l]> U{ai,wi}

joining «; and w;. So, I separates (in D) both «;41 from w;4+1 and «;—1 from
wi—1. So, both Up>1[bF_]< and Up>1[bF, |]< intersect I', and there exists k, N >
0 such that [b; V]s N[5 ]< # 0 and [b; N]> N [bE, )< # 0. Once b!_; and b,
belong to [b; V], we can find an arc

I 00,1 = b7 Vs U{wimt,wig1}

joining w;—1 and w;+1. So, IV separates a;_o from w;_s in ﬁ, and one obtains
bF , € [b;N]s, for some k > 0. We obtain the result by sufficiently enlarging

2

k. O
We fix £k > 0 as in Lemma 5.21.

Lemma 5.22. There exists p > k such that [bi_k]<ﬂb;-l =0 for alli,j in Z/2mZ
and l > p.

Proof. Fix i € Z/2mZ even. There exists an arc

i 0 0,1] = [b7*]s U{wigr, wio1}
joining w;;+1 and w;_1. As the three points ai,wiﬂ,_and w;_1 are different, ~;
separates ; from any w; j ¢ {i —2,i— 1,9+ 1} (in D) .

So, there exists I; > k such that v; separates [b; ]~ from any b}l with [ > [;
and j ¢ {i —2,i— 1,9+ 1}. Besides, we already know that b;l N b§> =0 if
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je{i—2,i—1,14+ 1}, because bi_>li contains bé?'. In particular, b:i N b;-l = () for
I>1l;and je{i—2,0—1,i+ 1}.
If ¢ is odd, we can do the same argument with an arc

Yie1 £ [0,1] = [b7 ¥ U {wi, wi—a}

joining w; and w;—_s.

We finish by taking p = max{l;,i € Z/2mZ}.

Thanks to the two preceeding lemmas we may fix k£ > 0 such that:

1. both attractors [b; *]~ and [b; %] contains bf for all even values of i, and
for all [ € {i —2,i— 1,4,i+ 1},

2. [b; ¥« Nb} =0 for all i,j in Z/2mZ, and | > k.

We define
a; = F:r n Ulzkb/il

for all i € Z/2mZ. The cyclic order of the sets {a;} satisfies:
Qi—2 =7 Qi41 —7 A4,

for all even values of . We may suppose that each a; is an arc, and so U =
D\ Uiez/2mz @i is simply connected. Let ¢ : U — D be the Riemann map and
consider the intervals {.J;} defined in 3.1.

For all even ¢, we define I; as to be the connected component of Sl\Ulez/ng
J; following J;_» in the natural (positive) cyclic order on S'. We define I, 1, as
to be the connected component of S*\ Uiez/2mz Ji following I;. So, for all even
i we have:

Jico = Ii = Jiy1 = Liy1 — J;.
Lemma 5.23. For alli € Z/2mZ,

1. b7¥ U,

2

2. ifi is even, then p([b; *]<)NS* C LUIL,_; , and gp(bi__k1<)ﬁ51 C L;UILiqq,

3. there exists j; such that p([b; *]<)NS* C I, (so, ifi is even, j; € {i,i—1},
Jic1 € {i,i41}).

Proof. 1. This is trivial because of the choice of k > 0.

2. First, we show that go([bi_k]<) C Ujez/amzl;j. Otherwise, there exists

x € p([b;*]2) N J; for some j € Z/2mZ. So, [b;*] contains a point in a;
(see Lemma 3.7). As [b; ¥]- is a closed subset of D, and a; C D we obtain

[b;7%]< Na; # 0, contradicting the previous item.
Fix if i € Z/2mZ even. Take a crosscut v C [b;k]> from w;_1 to wiy1.
So, a; belongs to the closure of only one of the connected components of
D\7; the one to the right of 7. So, ¢([b; *]<) belongs to the connected

component of D\ (yNU) which is to the right of o(yNU). As p(yNU) is
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an arc joining J;_; and J; 41, the cyclic order implies that ¢([b; *]<)NS* C
LUl .

The statement for ¢ — 1 is proved analogously.

3. Suppose i is even (as before, the other case is analogous). The previous
item implies that if ¢([b;*]<) intersects I; and I;, j # I, then {j,1} =
{i,a—1}.

Take a crosscut v C [b;7%] from wi_1 to w;_p. Then, ¢(y N U) separates
inDD I,_; from I;. This gives us

b "< b7 *]s # 0,

a contradiction.

O

Remark 5.24. If we set a} = ag;, by = by", and b = bk, for all i € Z/mZ,

then af, b, bf, i € Z/mZ, satisfy hypothesis 1. to 3. of Lemma 3.23. So,

if we prove that jo; = 2i for all i € Z/mZ, then Fix(f) # 0. Indeed, the sets
ai,i € Z/mZ are cyclically ordered as follows:
ap —>ay = ah = ...=>an o —an | — a.
Besides, if we set J] = Jo;, for all ¢ € Z/mZ, we have:
Jilfl — Is; — JZ/,
for all i € Z/2mZ, and so ja; = 2i is exactly hypothesis 4. of Lemma 3.23.
We are now ready to prove Proposition 5.14:

Proof. Because of the previous remark, it is enough to show that jo; = 2i for all
i € Z/mZ. We will show that if this is not the case, we contradict Lemma 3.22.
Lemma 5.23, tells us that jo; € {2¢,2¢ — 1}. Let us assume that jo; = 2i — 1.
This implies that jo;_2,j2;—1, and jo; are different. Indeed, by Lemma 5.23
Joi—o € {20 — 3,20 — 2}, joi—1 € {2i,2i + 1}, and by assumption jo; = 2i — 1.
Besides, we have:

e [b5"]> contains bk, bk, |, and bk, ,,

e b5 ,]> contains bk, bk, |, and b5, ,,

e [b3",]> contains both b5, , and b§; ;.

So, as jai—2, joi—1, and js; are different, if we show that [b;i112]> also contains

b’;i, we contradict Lemma 3.22. Take a crosscut v C [b;iliQ]> from ag;_9 to agi_4.

Then, ¢(y N U) separates Is;_; from Jo;. On the other hand, p([b%;]<) joins this
both sets, as we are assuming jo; = 27 — 1, and by definition of Js;. So,

e([bhi]<) Np(yNT) # 0,

and we are done.
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Chapter 6

Polygonal cycles

In this section we prove Corollary 1.2. We fix an orientation preserving homeo-
morphism f : D — D which realizes a compact convex polygon P C D, and can
be extended to a homeomorphism of D U ¢. We suppose that i(P) # 0, and we
will show that either f is recurrent, or we can construct an elliptic or hyperbolic
Repeller/Attractor configuration.

Some polygons can be simplified, due to the fact that they may have “extra”
edges. More precisely, we will say that the polygon P is minimal if for every
i € Z/nZ, the lines {A; : j # i} do not bound a compact convex polygon. The
following lemma tells us that it is enough to deal with minimal polygons.

Lemma 6.1. The map f realizes a minimal polygon P’ such that i(P’) = i(P),
or a triangle T such that i(T) = 1.

Figure 6.1: A non-minimal hexagon of index —2 presenting an index 1 subtri-
angle.

Proof. If P is not minimal, then there exists i € Z/nZ such that the straight
lines {A; : j # i} bound a compact polygon P’ C D. The line A; intersects in
D both A;_; and A;4q; it follows that necessarily

A1 NALND# 0.
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So, the lines A;_1, A; and A;11 bound a triangle 7' C ID. Moreover,
i(P') =i(P) +i(T),

and the only possibilities for the index of a triangle are 0 or 1.

If i(T) = 1, we are done. Otherwise, i(P') = i(P). If P’ is minimal, we
are done. If not, we apply the same procedure as before. We continue like this
until we obtain an index 1 triangle, or a minimal polygon with the same index
as P. (|

Let us state our first proposition:
Proposition 6.2. If i(P) =1, then [ is recurrent.

Proof. We observe that lemma 6.1 allows us to suppose that P is minimal; we
will also suppose that the boundary of P is positively oriented. With these
assumptions, the order of the points {a;}, {w;}, satisfy the elliptic order prop-
erty. Moreover, the cycle induced by P is non degenerate. We are now done by
Theorem 1.1.

O

Our next proposition finishes the proof of Corollary 1.2:
Proposition 6.3. If i(P) < 0, then Fix(f) # 0.

By Lemma 6.1 and Proposition 6.2, we can suppose that P is minimal. We
would also like to suppose that ¢; = 1 for all ¢ € Z/nZ, so as to fix the cyclic
order of the points {«;},{w;}, at the circle at infinity. For this reason, we
introduce the following lemma.

Lemma 6.4. If 6; = 0 for some i € Z/nZ, then there exists g € Homeo™ (D)
such that :

1. Fix(g) = Fix(f);
2. g = [ on the orbits of the points z;, j ¢ {i — 1,4},

3. there exists z € D such that limy_, o ¢*(2) = a;_1 and limy_, 4 oo g¥(2) =
Wi .

We will need the following lemma, which is nothing but an adaptation of
Franks’ Lemma (see 2.2).

Lemma 6.5. Let (D;)o<i<p be a chain of free, open and pairwise disjoint disks
for f, and take two points x € Dy and y € Dy,
Then, there exists g € Homeo™ (D) and an integer ¢ > p such that:

 Fix(g) = Fix(f),
e g= [ outside UY_,D;,

e g%(x) = f(y).
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Proof. Take z; € D; and k; > 0 the smallest positive integer such that f*i(z;) €
D;t1,i€{0,...,p—1}. We may suppose that the chain (D;)o<i<p is of minimal
lenght; that is, every f¥(2),0 < k < k; is outside U’;:ODJ-. We construct a
homeomorphism hg which is the identity outside Dy and such that hg(z) =
20, and a homeomorphism h, which is the identity outside D, and such that
hy(ffe=1(2p-1)) = y. Fori € {1,...,p — 1}, we construct homeomorphisms h;
such that:

e h; is the identity outside D;,
o hi(f¥1(zim1)) = 2

Finally, we construct a homeomorphism h which is the identity outside
U_yD; and identical to h; in D, i € {0,...,p}.

So, as the disks {D;} are free, g = f o h satisfy all the conditions of the
lemma.

O
The proof of Lemma 6.4 follows.

Proof. We will first construct a brick decomposition that suits our purposes.
As the points a;_1, @, w;—1,w; are all different and f is not recurrent, we can
construct families of closed disks (b)")rez\ 03, (0 1)kez\ (0} as in Lemma 2.9
with the property that the interiors of the bricks in these families are pairwise
disjoint.

Let O = Uiez/nz,kesz(zi)- Here again we construct a maximal free brick
decomposition such that for all [ € Z\{0}, there exists b},b!_, € B such that
bl C bl and b! | C bl_,. Furthermore, we may suppose that for all # € O there
exists b, € B such that = € Int(b,).

If §; = 0 for some ¢ € Z/nZ, then P is either to the right of both A; and
A,;_1 or either to the left of both A; and A;_;. We will suppose that P is to
the left of both lines, as the other case is analogous. By Remark 2.10, we can
find an arc

I':[0,1] = Upso[bl]<

joining a; and w;. So, I' separates in D «;_; from w;_1. This implies that there
exist two positive integers j, k such that

[b;—j1]> N[bfl< #0

(note that Ujo[b;”]s is a connected set whose closure contains a;_; and w;_1).
So, we can find a sequence of bricks (b,,)o<m<p such that by = b; ?;, b, = bF
and f(by) Nbpmy1 # O if m € {0,...,p—1}. We will suppose that this sequence
is of minimal lenght, that is:

J(bm) Nbyy # 0= m' =m+ 1(x).
We define for all 1 <m <p-—1
Xm = b \O.
We also define
Xo =bo\(O = {fF 77 (zi1)})
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and
Xp = b\(O = {5+ (z)})

(we recall from Lemma 2.9 that f~!-179%1(z_1) is the only point of the orbit
of z;_1 which lies in by, and that f%*+*=1(z;) is the only point of the orbit of z;
which lies in b,). As every x € O belongs to the interior of a brick, we know
that

f(XM) N Xm+1 ?é @

ifme{0,...,p—1}.

For each m € {0,...,p — 1}, we take x,, € X,, such that f(z,,) € Xint1-
We take an arc v C Xo from f=%-179%1(2;_1) to ¢, and an arc v, C X, from
fzp_1) to fFitk=1(z). For each m € {1,...,p — 1} we take an arc v,, C X,
joining f(x;,—1) and z,,. As the interiors of the sets { X,,} are pairwise disjoint,
the arcs {7, } can only meet in their extremities. However, condition (*) implies
that the points {x,,} (and thus the points {f(x,,)} ) are all different. Indeed, if
Ty = Ty, then f(z,) € Xprg1, and 8o f (b )Ny 11 # 0. It follows by () that
m = m’. On the other hand, if f(z,,) = xm, we obtain that f(by,) N by # 0,
and so m’ = m + 1. This means that the arcs {v,,} are pairwise disjoint (some
of them maybe reduced to a point).

It follows that we can thicken this arcs {7,,} into free, open and pairwise
disjoint disks {D,,}, such that ~,, C D,,, and such that D,, 1O = {.

We are done by Lemma 6.5.

(I

Lemma 6.6. Let f realize a minimal n-gon P such that i(P) < 0. If §; = 0
for some i € Z/nZ, then either

1. there exists g € Homeo™t (D) realizing an n — 1-gone P’ such that i(P') =
i(P) and Fix(g) = Fix(f),

2. Fix(f) # 0.
Proof. By Lemma 6.4, there exists g € Homeo™ (D) such that :

1. Fix(g) = Fix(f);
2. g = f on the orbits of the points z;, j € Z/nZ, j ¢ {i — 1,4},

3. there exists z € D such that limy_, o g"(2) = a;_1 and limy,_, 1, ¢¥(2) =
ws.

If the lines (A;)jez/nz\{i,i—1} and the straight (oriented) line A, from ;1
to w; bound a polygon P’, then P’ is an n — 1- gon, i(P’) = i(P), and g
realizes P’. Otherwise, the line A, must coincide with some already existing
Aj, j € Z/nZ. By minimality of P, the only possibility is A, = A;;2. Besides,
as i(P) < 0 the orientations of these lines cannot coincide. We conclude that P is
a pentagone and i(P) = —1. We can construct as before a free perturbation g of
f such that hmkiproo gk(Zifl) = W; = 042, hIIlkA),OO gk(zi,l) = i1 = W;42,
g = f on the orbits of the points z;, j € Z/5Z, j ¢ {i — 1,i}. We define
L = ((&},w)))jez/az, Where (ap,wp) = (ai-1,w;), and for all j € {1,2,3},
(o, w}) = (@it j,wits). Then, L is a (degenerate) hyperbolic cycle of links, and
g realizes L. We are now done by Theorem 1.1.
O
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By applying the previous lemma inductively, if Fix(f) # ), then there exists
g € Homeo™ (D) such that Fix(g) = Fix(f) and g realizes a minimal n-gon P
such that ¢(P) < 0, and 0; = 1 for all i € Z/nZ.

This next lemma finishes the proof of Corollary 1.2:

Lemma 6.7. If f realizes a minimal n-gon P such that i(P) < 0, and §; = 1
for all i € Z/nZ, then Fix(f) # 0.

Proof. It §; = 1 for all ¢ € Z/nZ, then the points in ¢ satisfy the hyperbolic

order property. We are now done by Theorem 1.1.
O
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