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We present a computer-aided detection pipeline for polyp detection in Computer tomographic

colonography. The ¯rst stage of the pipeline consists of a simple colon segmentation technique
that enhances polyps, which is followed by an adaptive-scale candidate polyp delineation, in

order to capture the appropriate polyp size. In the last step, candidates are classi¯ed based on

new texture and geometric features that consider both the information in the candidate polyp

location and its immediate surrounding area. The system is tested with ground truth data,
including °at and small polyps which are hard to detect even with optical colonoscopy. We

achieve 100% sensitivity for polyps larger than 6mm in size with just 0.9 false positives per case,

and 93% sensitivity with 2.8 false positives per case for polyps larger than 3mm in size.

Keywords : Computed tomographic colonography; computer-aided detection; colonic polyp

detection; colon segmentation; curvature motion; di®erential features.

1. Introduction

Colorectal cancer is nowadays the second leading cause of cancer-related deaths in

the United States (only surpassed by lung cancer), and the third cause worldwide.28

The early detection of polyps is fundamental, allowing to reduce mortality rates up

to 90%. Polyps can be classi¯ed according to their morphology: Pedunculated polyps

are attached to the colon wall by a stalk, sessile polyps grow directly from the wall,

and °at polyps have less than 3mm of elevation above the colonic mucosa.

Nowadays, optical colonoscopy (OC) is the most used detection method due in part
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to its high detection rate. However, this technique is invasive and expensive, making

it hard to use in large screening campaigns.

Computed Tomographic Colonography (CTC), or Virtual Colonoscopy (VC), is a

promising alternative technique that emerged in the 90's.25 It uses volumetric

Computed Tomographic data of the cleansed and air-distended colon. It is less in-

vasive than OC, and much more suitable for screening campaigns once its perfor-

mance is demonstrated. However, VC is less popular than OC not only because it is a

relatively new technique, but also because it is not yet reimbursed by insurance

companies. On the other hand, in OC, incomplete studies due to obstructing lesions,

colon twists, or anatomical variations are not rare2 (5% to 15% of OC examinations)

and there is an additional important risk of colon perforation.

Nevertheless, it takes more than 15min for a trained radiologist to complete a

CTC study, and the overall performance of OC is still considered better. In this

regard, Computer-Aided Detection (CAD) algorithms can play a key role, assisting

the expert to both reduce the procedure time and improve its accuracy.21

Flat polyps are of special interest because these are an important source of false

negatives in CTC, and although there are di®erent opinions, many authors8,27 claim

that °at polyps are around 10 times more likely to contain high-grade epithelial

dysplasia, while Bond3 states that the major limitation of VC is its current low

performance for °at polyps. There are numerous discussions regarding the potential

risks of the polyps according to their size. Even though some authors consider that

\small" polyps may not represent risk, some gastroenterologists disagree.1

Summers20 claims that one of the major challenges in the ¯eld is in increasing sen-

sitivity for smaller polyps, and Church6 states that small adenomas can still be

clinically signi¯cant and should not be ignored.

The goal of the work presented in this paper is to exploit VC precisely to auto-

matically °ag (mark for attention of the expert) colon regions with high probability

of being polyps, with special attention to results in challenging small and °at polyps.

It is crucial to minimize the false negatives, keeping a reasonable false positives

number. We achieve this by an automatic four-steps process that constitutes the

entire end-to-end algorithm, from data to candidate polyps °agging.

The proposed system with its four steps is illustrated in Fig. 1. The ¯rst step is

colon segmentation, which takes as input the computed tomography (CT) volume

Fig. 1. Basic pipeline of the proposed polyp °agging system.
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data, and produces a 3D mesh representing the colon surface. The segmentation

technique proposed here is geared toward the subsequent step of polyp detection, and

simultaneously segments and prepares the obtained surface for this task. In the

second step, from the segmented mesh we perform an adaptive-scale search of can-

didates in order to capture the appropriate polyp size, obtaining a set of candidate

patches. Then, geometrical and textural features are computed for each candidate

patch that was identi¯ed in the previous stage. The ¯nal step consists of a machine

learning algorithm that uses the computed features to classify patches as polyps or

normal tissue.

The whole algorithm is completely automatic and produces state-of-the-art

results. This paper extends our previous conference publications.9,11

The rest of this paper is organized as follows. We address the colon segmentation

problem in Sec. 2 and the feature extraction and classi¯cation in Sec. 3. In Sec. 4, we

describe the classi¯cation, and in Sec. 5 we present numerical results. The discussion

is presented in Sec. 6 and we conclude in Sec. 7.

1.1. Virtual colonoscopy CAD review

Automatic polyp detection is a very challenging problem, not only because the

polyps can have di®erent shapes and sizes, but also because they can be located in

very di®erent surroundings. Most of the previous work on CAD of colonic polyps is

based on geometric features, some using additional CT image density information,

but none of them takes into account the (geometric and texture) information of

the tissues surrounding the polyp. This local and adaptive di®erential analysis is part

of the contributions of this work.

Early work on CAD methods by Vining et al.24 is based on the detection of

abnormal wall thickness. Since then, several di®erent approaches were proposed.

Most of them have a segmentation step ¯rst, and then the classi¯cation step itself.

The most common segmentation techniques are based on region growing and

thresholding methods (often followed by a smoothing stage), or level set methods,

which have the smoothing incorporated as a velocity term in the evolution. Suc-

cessful examples of these approaches are in Refs. 5, 12, 17, 21 and 29. In general, all

interfaces are di®use due to the partial volume e®ect, and special care must be taken

with the air–°uid–tissue T-junction, since artifacts here generated are a common

source of false positives. On the other hand, not much work has been done in com-

paring the smoothing techniques (or the regularization in the level set method), to

see which one is more adapted to polyp detection. The main variations in the de-

tection stage are in the features used and in the classi¯cation method. The most

discriminant features are the geometric ones, and in particular curvature-based

measures have been proved successful, see Refs. 17, 21, 23 and 29. All these tech-

niques based on local geometric computations su®er from a high dependence on the

regularity of the polyp shape itself, ignoring how pronounced it is with respect to

the surrounding area. Using only geometry is also very sensitive to the accuracy of
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the segmentation. Texture features have been also used with promising results in

Refs. 19 and 26. To the best of our knowledge, no algorithm reported in the literature

can detect small polyps properly. On the other hand, for polyps larger than 6mm in

size, no algorithm can achieve 100% sensitivity with less than one false positive per

case.

2. Colon Segmentation

The segmentation of the colon surface, which is critical in particular to compute

geometric features, is divided into two parts: a pre-processing stage for dealing with

the air–°uid composition of the colon volume, and a second stage that consists on

smoothing the pre-processed image and obtaining the ¯nal colon surface by

thresholding the smoothed volume. The overall procedure here presented is very

simple and computationally e±cient. More details are available in Ref. 10.

2.1. Classifying CT regions

All the cases from the used database have the same preparation, which includes solid-

stool tagging and opaci¯cation of luminal °uid (white liquid in Fig. 2). One of the

strongest di±culties concerning the segmentation of the colon is the presence of this

tagged °uid and its interfaces with air and tissue. Figure 2 shows a CT slice and its

pixel values over the highlighted vertical pro¯le. At ¯rst sight there are three clearly

distinguishable classes: lowest gray levels correspond to air, highest levels to °uid,

and the middle gray values correspond to tissue. Nevertheless, there are around six

interface voxels between air and °uid whose gray values lie within the normal tissue

range. Therefore, a naïve approach, ignoring the physical nature of the tissue and its

environment, is not suitable for proper tissue classi¯cation and segmentation. Also,

with a binary segmentation approach the border will be necessarily bumpy. We

propose to compute a function u0 intended to have homogeneous values in the colon

interior and exterior, and a smooth transition between them.

Fig. 2. CT slice and its gray values for air, °uid and normal tissue, along the vertical pro¯le.
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In order to do that, it makes sense to assign to each voxel the likelihood of being

air, °uid, or air–°uid interface. The air and °uid distributions are estimated using

standard kernel density estimation techniques, and these functions are then used to

assign the air and tagged °uid likelihood values to the voxels.

Note that this assignment fails on the air–°uid and air–°uid–tissue interfaces. For

assigning a value to these voxels, we take advantage of the physics of the problem:

The subject is laid horizontally so the interface between the °uid and the air is a

plane parallel to the °oor. Then, the voxels situated on the interface have a large

gradient in the vertical direction.

The implementation of these criteria is as follows. A cubic neighborhood around

each voxel x is considered, and for each \column" that results of ¯xing the x and y

coordinates, the air-likelihoods of the upper voxels and the °uid-likelihoods of the

lower voxels are accumulated. The value ICðxÞ that represents the con¯dence level of
x being an interface voxel is an increasing function of the accumulated measure. The

algorithm below provides a pseudo-code that represents this procedure.

In order to guarantee that a high value is associated to every interior voxel, we

assign to the initial segmentation u0 the maximum of these three values, namely, the

air and °uid likelihoods and the interface con¯dence level.

After the computation of the initial segmentation u0, some spurious (isolated)

voxels may have high values (bones for example), so we clean the initial segmenta-

tion by keeping the connected componentsa containing some chosen voxels used as

seeds. These seeds are automatically detected by choosing the voxels with largest

values of ICðxÞ, since these high values only occur at the interface between air and

°uid. This way, the segmentation step is able to handle the lumen discontinuities

problem and to obtain the multiple pieces of the colon that might be disconnected.

The air–°uid–tissue joint may create artifacts in the segmentation. This is a

critical point, not only because of the quality of the segmentation, but mainly for the

aActually, since the initial segmentation u0 is not binary, a (conservative) threshold of 0.6 is considered to

separate the connected components.
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potential of yielding several FPs in the polyps detection step. It is not rare that

segmentation algorithms result in \gutter-like" shapes along this interface. Then, if

small oscillations occur along the \gutter" (which is expectable due to the CT res-

olution), artifacts with polyp-like shape are produced, thus degrading the perfor-

mance of the whole CAD system. We paid particular attention to this issue while

designing the segmentation algorithm: the IC computation allows to avoid these

artifacts. Figure 3 illustrates the performance of our segmentation method compared

to a version of the algorithm without the computation of the IC, clearly presenting

some problems along this interface. This helps to detect polyps near the air-°uid

interface, and minimizes the FPs resulting from to this artifact.

2.2. Smoothing and colon surface computation

In order to eliminate noise and to obtain a smoother colon surface after the seg-

mentation stage, we proceed to smooth the initial segmentation u0. We derive a

Partial Di®erential Equation (PDE) driven smoothing technique that preserves the

shape of the polyps, while obtaining a smooth enough surface to reliably compute

local geometric features such as curvatures. Of course, the ultimate goal of the

method is to simplify and to improve the polyp/nonpolyp classi¯cation system. The

e®ectiveness of the proposed approach will be assessed with experiments both

qualitatively and quantitatively in Sec. 5, where ROC curves obtained with the

proposed PDE and other smoothing alternatives will be compared.

We concentrate on a family of smoothing PDEs of the form

@uðx; tÞ
@t

¼ �jruj; uðx; 0Þ ¼ u0ðxÞ; ð1Þ

where the initial volumetric image u0 results from the preprocessing described in the

previous section. A classical time discretization scheme is used to implement this

evolution. After a few iterations of this evolution, the inner colonic wall will be

extracted as a suitable iso-level surface of the resulting 3D image uðx;T Þ.

(a) (b)

Fig. 3. Comparison of reduced artifacts in our segmentation (a) with a previously tested more standard

version (b). The initial segmentation stage, computing the maximum of the air and °uid likelihoods and

the interface con¯dence level, successfully deals with the T-junction problems.
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We recall that the Level Set Method16 states that if uðx; tÞ evolves according

to (1), then its iso-levels (level sets) satisfy

@S
@t

¼ �N ; ð2Þ

where S is any iso-level surface and N its unit normal. This geometric view enables

to design � to ful¯ll a set of requirements we will impose to the surface evolution. In

particular, we are interested in motions driven by the principal curvatures.

With the mean curvature motion (� ¼ H), and the a±ne motion (ðKþÞ1=4), the
polyps are °attened too fast.10

As an alternative, a classical motion that appears to be well suited for our problem

is the motion by minimal curvature.4 Indeed, polyps have a curve of in°ection points

all around it, separating its upper and lower sections (see Fig. 4). Along this curve,

the minimal curvature is �min ¼ 0, and therefore this part of the polyp does not move

(or moves very slowly), so intuitively under this motion the polyps should persist

longer. This PDE already yields very good results in terms of both surface smoothing

and polyp enhancement.

We further derive two modi¯cations that lead us to the proposed smoothing PDE,

showing qualitative results to support this claim. The ¯rst modi¯cation is inspired by

the exponent 1
4 of the a±ne motions in dimension 3:

@S
@t

¼ �
1=4
minN : ð3Þ

Figure 5 shows the result after a few iterations, and Fig. 6 evidences the di®erence

between the motions by �min and �
1=4
min (in gray and in orange, respectively) with a

comparative image. On the polyp protrusion, the orange surface is above the gray

surface, while the opposite is observed in the surrounding area. This shows that the

evolution by �
1=4
min leads to better polyp enhancement.

The second modi¯cation is based on the idea of preserving the polyps qualities

that we later use to identify them. A measure of the local shape of a surface is the

so-called shape index (SI),15 and the complementary curvedness C:

SI :¼ � 2

�
arctan

�max þ �min

�max � �min

� �
; C :¼ 2

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2
max þ �2

min

2

r
:

Fig. 4. Polyp with a curve of in°ection points (in red), where �min ¼ 0 (color online).
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While the value of SI is scale-invariant and measures the local shape of the

surface, the value of C indicates how pronounced it is.

Back to the PDE motion, we now include this information in order to make

potential polyps evolve di®erently than the rest of the colon surface. More precisely,

we modify the best motion so far (� ¼ �
1=4
min), in such a way that the resulting motion

further enhances the potential polyps. In order to achieve this, we ¯rst need to

characterize the potentially polyp points, and then modify the deformation function

accordingly.

We de¯ne a function of the SI that acts as a multiplying factor to the term �
1=4
min,

making the surface evolve slower at the interest points. These function should assign

low values to SI near �1, and values close to unity to other points. A smooth function

gðSIÞ verifying these constraints is gðSIÞ ¼ 1
� arctanððSI� 0:75Þ � 10Þ þ 1

2.

The ¯nal evolution then becomes

@S
@t

¼ gðSIÞ�1=4
minN : ð4Þ

This motion keeps all the advantages of the motion by �
1=4
min and in addition,

polyps are °attened more slowly, so at the end the obtained surface is smooth and the

polyps still stand out.

Fig. 5. Evolution by �
1=4
min: original surface and the result after 2, 8, 15, 30 and 50 iterations.

Fig. 6. Comparison between evolutions. Motion by kmin in light gray versus motion by k
1=4
min in dark gray.

Both surfaces are overlaid, so sections that are not visible are hidden below the other surface (color online).
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The number of iterations can be set by choosing the value that maximizes the

overall performance of the system, in terms of the free-response ROC curve (FROC).

This can be done by trying with several values and keeping the one which maximizes

this performance. Alternatively, we can consider a sphere of the size of the CT

resolution and compute analytically the number of iterations needed to make it

vanish (see Appendix A). The idea behind this procedure is to smooth the surface up

to the resolution limit. These two approaches led to the same result, namely 15

iterations, and therefore this is the chosen value for the experiments in this paper.

At this point, after choosing the appropriate di®usion and the number of itera-

tions, we have a smoothed function uðx;T Þ whose level sets indicate the region inside

of the colon. We then extract the surface of the colon as the iso-value surface of level

� 2 ½0; 1�. The choice of the value � can be made by maximizing some criteria, in

order to obtain the most contrasted surface in a given sense. This optimization-

oriented method was tested, and we observed that in our particular application all

the consistent surfaces are very close to each other. Therefore, the computational

e®ort is not justi¯ed and we kept the iso-surface � ¼ 0:7. Note that this choice can be

safely made once for all the data. The result of this stage is then a triangulated

surface S representing the colon wall.

3. Polyp Delineation and Feature Extraction

All the polyp detection methods reported in the literature try to detect or classify

the polyps from properties de¯ned only within the candidate region. However, it is

important to analyze the spatial context in which the candidate patch is located, not

only because di®erent sections of the colon present di®erent characteristics, but also

because polyps can be situated over di®erent structures such as folds or plain colonic

wall. A good feature including the shape of the neighborhood for example, can help in

the discrimination between irregular folds and polyps over folds. In addition, looking

for signi¯cant di®erences in the gray level imitates the human-based inspection,

which highlights zones that contrast with their vicinity.

In this regard, most of the features described in this section take into account the

local information of the area surrounding the candidate patch. This makes the fea-

tures more robust to the particular local phenomena. The normal tissue of di®erent

cases may vary (due to di®erent biological properties of the subjects or to di®erent

conditions of the studies), so absolute thresholds in texture features lack meaning;

while texture patterns di®er from study to study, what does not vary is the fact that

polyps have di®erent properties than normal tissue.

3.1. Candidate detection and geometrical features

The starting point for the geometric features described in this section is the seg-

mented surface S. Let us consider the SI as a function SI : S ! ½�1; 1�, and recall

that the polyps have SI values close to �1. Therefore, it is expected that a region
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(patch) of the surface that corresponds to a polyp contains at least one local mini-

mum of this function. The detection of the candidate patches follows an adaptive-

scale search: For each local minimum x0 2 S of the function SI, several level sets of SI

(P1 . . .Pn) around x0 are tested, and the level set Pi that maximizes the distances

between the histograms described below, is the considered candidate patch, which we

simply denote by P (Fig. 7(a)). A total of n ¼ 7 level sets are tested, corresponding to

the SI values from �0:8 to �0:5 with a 0:05 step. The following description is given

for the ¯nal chosen patch P, but the ring and histogram computations are made for

all the level sets Pi in order to select the most appropriate of them.

Given a candidate patch P, a ring R around P is computed, in order to consider

geometrical measurements with respect to the area surrounding the patch. The ring

is calculated by dilating the patch P a certain geodesic distance, such that the areas

of P and R are equal. Figure 7(b) shows a candidate patch (actually a true polyp),

and its corresponding ring.

Histograms of the SI values are then computed for the patch P and the ring R,

and two di®erent distances between them are computed: the L1 distance and the

symmetric Kullback–Leibler divergence. If the patch corresponds to a polyp-like

shape then the values of the histogram P will be concentrated around the �1 ex-

trema, on the other hand, the histogram R will be inclined to the other extreme in

case of a polyp on a normal colon wall (concave), or with tendency to values near

�0:5 if the polyp is on a fold. These two features give a measure of the geometric local

variation of the candidate patch P. Although these two distances are the most

discriminative features,b we also consider the following additional ones since they

(a) (b)

Fig. 7. Patch size selection and ring around polyp (a) Sets P1 . . .Pn: Di®erent sizes are tested in order

to select the most appropriate patch and (b) Ring (in blue) surrounding a candidate polyp (in orange)

(color online).

bSeveral feature selection techniques con¯rmed this. For instance, the following methods available in

Weka13: Information Gain, Gain Ratio, and Relief-F. Using the data described below, these techniques

sort the features according to their discriminative power.
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still help to discriminate some typical false positives:

. The mean value of the SI over the patch P,

. The area of the patch, since the target polyps are in a certain range of size.

. The growth rate of the areas at the adaptive-size stage, meaning the ratio between

the area of the chosen patch P ¼ Pi and the area of the immediately smaller patch

Pi�1; this feature measures how fast the shape of the patch is changing.

. And ¯nally the shape factor,

SF ¼ 4� � Area

Perimeter2
;

which measures how e±ciently the perimeter is used in order to gain area,c and it

favors circle-like patches (like the polyp patch in Fig. 7(b)), avoiding elongated

patches (like the false positives in folds).

Therefore, we have a total of six geometric features.

3.2. Texture features

There is evidence that the gray-level of the CT image and its texture can be very

helpful for detecting polyps. This is in particular useful for °at or small polyps, where

the geometric information is limited. Some work has been done on the inclusion of

texture features (inside the candidate polyps only), in order to reduce false posi-

tives.26 According to the reported results, there is still room for improvement. We

propose both the use of new texture features and the inclusion of the information on

the candidate's surrounding area.

First, for each polyp candidate P � S, a region V1 is calculated, containing the

patch P and a portion of the inner tissue next to the patch. The region V1 is obtained

by dilating (in 3D) the patch P towards the inner colon tissue (we discard the air or

°uid voxels). A second region V2 surrounding V1 is calculated by dilating V1. Volume

V2 is intended to contain normal tissue in order to compare it with the polyp can-

didate tissue. In order to choose how much dilation to perform, we use a technique

similar to the one in the previous section: several dilation distances are tested, and we

keep the distance that makes the di®erential features most discriminative.

The features chosen are a subset of the classical Haralick14 texture features,

namely, entropy, energy, contrast, sumMean, and homogeneity. Seven co-occurrence

matrices are calculated with the voxels of V1, and all the ¯ve features are averaged

over the seven directions. The analogous computation is made for V2, and the dif-

ferences between the two 3D regions, for each texture feature, are considered. Ad-

ditionally, the mean gray levels of the voxels in both regions is computed, and their

di®erence is considered as a feature. In this way, six texture features are considered.

This approach for computing the texture features, measuring di®erences with the

cThe maximum value for the shape factor is 1 and it is achieved only by the circle.
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surrounding area, leads to better discrimination than the features computed just for

V1, as demonstrated next.

4. Classi¯cation

Once the the candidates detection has been performed with the adaptive-scale ap-

proach, the number of true polyps was much lower than the number of nonpolyps

patches, a relation on the order of 500:1, which is a signi¯cant problem for the

learning stage of the classi¯er, since most classi¯ers are designed to maximize the

accuracy,7 and this measure might not be adequate for imbalanced problems. For

instance, if we classify all candidates as \nonpolyps," we would get an accuracy of

99.8% but without detecting any polyps. Three techniques were considered to

overcome this shortcoming.

The MetaCost approach consists of combining several instances of the classi¯er

instead of modifying the proportion of classes in the training data according to the

costs. This method does not work with \stable" classi¯ers (those that produce similar

models with slightly di®erent training sets) like support vector machines (SVM).

The Cost Sensitive Learning approach, unlike the MetaCost, tries to balance the

classes before the learning stage. The implementation we used from Weka13 simply

takes as input the re-balance parameters (cost matrix) and replicates instances of the

minority class. One of the advantages of this approach is that no assumptions are

made about the behavior of the classi¯ers (unlike the previous method) nor the

distribution of the data (unlike the next method).

Finally, the Synthetic Minority Over-sampling TEchnique (SMOTE) is a method

to generate arti¯cial instances of the minority class, in order to get a balanced data to

learn from. The new arti¯cial instances are created as a convex combination of the

existing instances of the minority class.

We tested all these options and the best results were obtained using Cost Sensitive

Learning with SVM. The pipeline is then: pre-processing stage as in Sec. 2.1,

smoothing according to (4), the 12 features described in Sec. 4, and classi¯cation

using Cost Sensitive Learning with SVM.

5. Results

A total of 150 patients of the Walter Reed Army Medical Center (WRAMC) da-

tabase18 were used to test the proposed CAD algorithm. Most of these patients have

two sets of CT images, one for supine and one for prone position. Taking precautions

not to train the classi¯er with, for instance, the prone images set and test it with the

supine set (i.e. one cannot use a supine study of a given patient for training, and the

corresponding prone study for testing, or vice versa), we can consider the 300 images

sets as independent. From now on, we refer to each of these 150 images sets as a case.

The database contains 134 polyps detected by optical colonoscopy, including 12 °at

polyps. Among these 134 polyps, 86 are larger than 6mm in size, and the other 48 are

between 3 and 6mm in size. Figure 8 shows the distribution of polyps' sizes in the
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database. The size and shape classi¯cation of these polyps was taken from the

WRAMC database description. These descriptions were provided by the physicians

involved in the OC examinations. Taking these examinations as the ground truth,

patches classi¯ed as polyp were considered TP if the distance to a ground truth polyp

was less than 3mm.

The evaluation was carried out by splitting the dataset into two halves, training

and testing. Under this setting, and classifying with SVM+Cost Sensitive Learning,

we obtained the FROC in Fig. 8, which shows the performance for di®erent polyps

sizes. Again, the work with such small, as well as °at polyps, is unique to the

framework here presented, as will be discussed in Sec. 6.1. About 40% of the polyps

were covered by tagging, but the classi¯cation results do not vary depending on this

fact: the performance is the same for covered and for noncovered polyps.

These values are comparable with state-of-the-art results,26,22 but our database

includes very small polyps. A more precise comparison of results is not necessarily

meaningful, since in general each work considers its own database.

The FROC curve in Fig. 9 compares the performance of the system with the

di®erent smoothing methods discussed in Sec. 2 (the rest of the pipeline is

Fig. 8. Histogram of the polyps' sizes (left) and FROC curve (right) of the proposed system for di®erent

polyps sizes: larger than 6mm (solid), smaller than 6mm (dashed), and all polyps (dotted).
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Fig. 9. FROC curve comparing the performances using the di®erent smoothing methods, classifying large
polyps (a) and small polyps (b). The curve for the proposed evolution is shown in solid line, the results for

the evolution by the mean curvature H and �min are shown in dotted and dashed lines, respectively, and

the lower curve is the result when no smoothing is performed.
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unchanged). The proposed smoothing technique achieves better results than the

other discussed methods.

The FROC curve in Fig. 10 shows the comparison between absolute and di®er-

ential texture features. The classi¯cation was performed using all the geometric

features and either the absolute texture features (computed just for V1), or the

di®erential texture features. The results show that, when combined with the di®er-

ential geometric features, di®erential texture features are more discriminative than

the absolute ones. This fact was also con¯rmed using several feature selection

techniques available in Weka13 like Information Gain, Gain Ratio, and Relief-F. All

these methods sort the features according to their discriminative power, and in all of

them the di®erential features ranked better than absolute ones.

Finally the FROC curve in Fig. 11(a) compares the results of the di®erent clas-

si¯cation approaches. Cost Sensitive, SMOTE, and MetaCost were used as a pre-

processing stage for SVM, AdaBoost was used with C4.5 trees. The parameters in
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Fig. 10. FROC curve with 95% con¯dence intervals, comparing the performances with di®erential (solid)

and absolute (dashed) texture features, classifying polyps larger than 6mm in size (a) and smaller than

6mm in size (b).
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Fig. 11. (a) FROC curve comparing the performances of di®erent classi¯cation approaches for all polyps.
SVM with cost Sensitive (solid), SVM with SMOTE (dashed), C4.5 trees with AdaBoost (dotted) and

plain SVM (long-dashed). (b) FROC curve of the ¯nal pipeline (solid) and without the IC computation

(see Sec. 2.1).
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all classi¯ers were optimized via cross-validation. Also, the FROC curve in Fig. 11(b)

shows the e®ect of the elimination of the gutter artifact with the computation of IC

described in Sec. 2.1.

6. Discussion

6.1. Small, big and °at polyps

It is clear that both the small and °at polyps are much more di±cult to detect than

the other polyps. What is not clear is if the same kind of algorithm and features are

suitable for detecting all the range of polyp types and sizes. We showed that the

proposed combination of features, although it might not be optimal for every speci¯c

type of lesion, is able to correctly detect all of them.

Both the segmentation and the features considered here, contribute to the good

classi¯cation results for the whole database. The 93% sensitivity together with the

2.8 FP rate for polyps larger than 3mm in size is as remarkable as the 0.9 FP rate for

polyps beyond 6mm in size with 100% detection.

6.2. Geometric and texture importance

Although geometrical features are the most discriminative ones (see Table 1), texture

features still play a fundamental role in the classi¯cation. Adding the texture features

to the geometric ones, the sensitivity increases from 88% to 93%, and at the same

time the false positives rate decreases by 30%.

Figure 12(a) shows a detected polyp, where geometry is crucial, because the gray-

level does not present considerable local variations. This is specially true for polyps

Table 1. Comparison of performance using only
geometric versus only texture features.

Features

Polyps > 3mm All Geometric Texture

Sensitivity 93% 88% 68%

FPs p/case 2.8 6.5 19

(a) (b)

Fig. 12. (a) Polyp with no texture information. (b) Polyp with texture information, but weak geometric

information.
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submerged in tagged material. On the other hand, in the °at polyp of Fig. 12(b), the

geometry is weakly discriminative (although the measure considering the ring

enhances the detectability), and texture features lead to a correct classi¯cation.

Texture information is essential also because it is more robust to segmentation

errors, as texture features are computed by integrating over the volumetric data.

6.3. Qualitative analysis of false positives

In addition to the number of false positives, it is very important to study how these

FP patches look like, since some of them can be quickly ruled out by the expert and

some can be avoided by improving some aspects of the segmentation.

About half of the false positives are quite reasonable, in the sense that they are

(usually small) sections of the colon that are polyp-like shaped (see Fig. 13), specially

Fig. 14. Examples of false positives according to the available labeled data, with some segmentation

errors, parts of the insu²ation tube, and some patches with polyp-like shape.

Fig. 13. False positives: Fold and patch similar to polyp.
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taking into account that we designed the system to also detect small and °at polyps.

Among these false positives, 40% are very small patches that may be avoided by

incorporating some new features to the classi¯cation, or by adding a size threshold if

very small polyps are not considered of interest (which was not our case). On the

other hand, about 10% of the FPs occurred in fold sections of the wall (Fig. 13) and

another 10% occurred in parts of the insu²ation tube. All these patches (from folds

and the insu²ation tube), are easily ruled out by visual inspection. Another 20% of

the FPs were caused by colon segmentation errors. About half of these false positives

due to segmentation errors are caused by bad quality original CT slices in the region

(generally due to the partial volume e®ect), like the bottom-left example in Fig. 14.

Another fraction of FP due to segmentation are protuberances caused by some °uid

voxels near to the colon wall, where the gray value is away from standard values.

This is the case of the bottom-right example in Fig. 14. An additional representative

set of false positives is shown in Fig. 14.

7. Conclusion

We introduced a complete pipeline for a CAD algorithm that °ags candidate polyp

regions. The segmentation stage is very simple and fast, and its main novelty is the

smoothing PDE which enhances the polyps, leading to a better detection. In addition

to the incorporation of the Haralick texture features, the main yet simple novelties of

the proposed features and classi¯cation stages are twofold. First, the surrounding

area of candidate polyps are explicitly taken into account. Indeed, the proposed (so-

called di®erential) features are computed by comparing properties in the central and

surrounding regions of the polyps. We show that di®erential features are more dis-

criminative than the absolute ones, as they emphasize local deviations of the ge-

ometry and texture over the colon. The other novelty is an adaptive-scale strategy

that test regions of di®erent sizes and automatically selects the region that best

delineates each candidate polyp. The obtained quantitative results are very prom-

ising, detecting 100% of the true-polyps, including small and °at ones, with a low

false positives rate. Additional improvement of the segmentation and, in collabora-

tions with radiologists, ¯nding features that are tailored to polyp-like geometries, can

further improve these results.

Appendix A. Number of Iterations: Analytical Solving

We want to compute the number of iterations needed to make a certain sphere

(of the size of the CT resolution) vanish, according to our proposed PDE. For a

sphere, the SI is constant, so the PDE becomes:

@S
@t

¼ �
1=4
minN :
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Then, as kmin ¼ 1=r, the sphere radius satis¯es the following di®erential equation:

r 0ðtÞ ¼ �1

rðtÞ1=4 :

Therefore,

Z T

0

r 0ðtÞrðtÞ1=4dt ¼ �
Z T

0

1dt ) 4

5
ðrðT Þ4=5 � rð0Þ4=5Þ ¼ �T :

As we want to ¯nd the value of T so that rðT Þ ¼ 0,

T ¼ 4

5
rð0Þ4=5:

The resolution in the z-direction is 1mm in our examples, and the time step con-

sidered for the numerical method was ts ¼ 0:055. That gives a value N for the

number of iterations N ¼ d14:54e ¼ 15.
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