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Noise, why I care?
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Cool, how can I remove noise?



fo) = llx = ylI5 + R(x)



f0) = llx = yll5 +HR()

Fitting Data Regularization

X = argmin |[|x — yH% + R(x)



argmin{f(x)}

i
s -] .-. s >

B

g
N
3
-
o0
=
I
e
e

A
B
=
|
—
<




Regularization

x = argmin{f(x)}




Jx) = {lx = yli5 + R(x)

Fitting Data Regularization

x = argmin{f(x)}
;
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f0) = llx = yll5 +HR()

Fitting Data Regularization



f0) = llx = yll5 +HR()

Fitting Data Regularization
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for implementation details see: https://nbviewer.org/github/gpeyre/numerical-tours/blob/master/matlab/denoisingsimp_4_denoiseregul.ipynb Duke



3.2.2  Reqgularization of the Problem

A classical way to overcome ill-posed minimization problems is to add a
regularization term to the energy. This idea was introduced in 1977 by
Tikhonov and Arsenin [317]. The authors proposed to consider the following
minimization problem:

F(u) = /|u0 — Rul® dz + /\/\Vu|2 dx. (3.4)
Q2 Q2

addilive Gaussian noise mulliplicative blur and addilive
(Gaussian nolse (Gaussian noise

Aubert, G. & Kornprobst, P. Mathematical Problems in Image Processing Partial Differential Equations and the Calculus of Variations. (2006). doi:10.2307/3615195. @ U c U
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3.3. PDE-Based Methods 95

3.3.1 Smoothing PDES

THE HEAT EQUATION

The oldest and most investigated equation in image processing is probably
the parabolic linear heat equation[43, 5, 198|:

?)_g(t:r) —Au(t,z) =0, t>20, = € R, (3.44)
u(0,z) = uo(x). |

The motivation to introduce such an equation came from the following
remark: Solving (3.44) is equivalent to carrying out a Gaussian linear fil-
tering, which was widely used in signal processing. More precisely, let uy
be in L2, (C). Then the explicit solution of (3.44) is given by

ut,o) = [ Gumle-pw@dy=Gomrwle),  (349)
B2
where G, (x) denotes the two-dimensional Gaussian kernel
Go(z) = —— exp [ - | (3.46)
T ez TP\ T 242 ) '

Figure 3.12. Examples of the test image at different scales.
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PROBLEM, IT
BLURS
UNIFORMLY AND
DESTROY EDGES
AND IMAGE
CONTRAST

3.3. PDE-Based Methods 95

3.3.1 Smoothing PDES

THE HEAT EQUATION

The oldest and most investigated equation in image processing is probably
the parabolic linear heat equation[43, 5, 198]:

{ 9 (t,0) - Au(t,z) =0, t>0, o € R (344

u(0,z) = up(x).

The motivation to introduce such an equation came from the following
remark: Solving (3.44) is equivalent to carrying out a Gaussian linear fil-
tering, which was widely used in signal processing. More precisely, let uy
be in L2, (C). Then the explicit solution of (3.44) is given by

u(t, z) = ] G zi(z — y) wo(y) dy = (G * uo) (@), (3.45)
R2

where G, (x) denotes the two-dimensional Gaussian kernel

G (z) = —— exp (- 2"12 ) | (3.46)

27 o

Figure 3.12. Examples of the test image at different scales.
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1

E(u) = 5

/ o — Rul? dz + X / (V) da. (3.6)

2 2

NONLINEAR DIFFUSION

We are going to describe models that are generalizations of the heat equa-
tion. What we would like to do is to find models (if possible, well-posed
models) for removing the noise while preserving the edges at best. For now,
the domain image will be a bounded open set  of R*. Let us consider the
following equation, initially proposed by Perona and Malik [275]:

ou , 2 :
5 div (e(|Vu|®) Vu) in ©x (0,T),

ou (3.49)
AN 0 on 9002 x (0,7,

u(0,z) = ug(x) in €,

@ucu



Original

Anisotropic Diffusion

Heat equation
o1 _
— =div (¢(z,y,t)VI)

Elu] = J\Vu\z — u, = Au
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Ahstract

The gradicnt of images can be directly edited to perform uscful operations, this is called gradient-
based image processing or Poisson editing, For example operations such as seamnless cloning,
contrast enhancement. texture flartening ar seamless tiling can he perfarmed in a very simple and
efficient way by combining/modifving the image gradients. In the present work we will describe
the Puisson nage ediling melhod, and review the conlributions Lhal have been made sioce il
was proposed in 2003, Tn addirion the infegration problem will be discussed and analyzed, hoth
from the theoretical and numerical points of view. Two different numerical inplementations will
be discussed, the first one uscs discrete versions of differential operators to convert the problem
into a sparse linear system of sgualions, while the second one is based on Fourier transform
propeTies.

v
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Source Code

. F 2
The Oecrave/Matlah sowrce code, the code documentation. and the anline demo are accessible ml / | ‘ V — V | | d x
Il )

at the TPOT. web page of this articla! and usape instrnerion are inclnded in the README. txt

file of the compressed archive. f — ng (R)

Keywords: Taisson aditing; image gradient; intagration: Maisson equation: seamless cloning;

image filtering st. fI’R\Q — f*"R,\Q

1 Introduction

Methaods hased an the manipulation of image gradients are a powerful tool for processing or combining . *

images. For example operations such as seamless cloning, local tllumination changes, texture flation- A f o d f ll Q d f — f

tng or scamless tiling can be performed 1n & very simple and cfficient way by combining/modifving ‘,'U lv v x Or a’ x e ) a'Il BQ 3 Q ?
the image gradients as illustrated in Tigure 1. In addition, many practical applications allow to

retrieve the gradient field of different physical quantities of interest; for example, Photometric Stereo

(PS) [33, Shape from Shading (SfS) 15] and Differential 3D (DA3D] [11 | retrieve the pradient field

‘h't'tps:!/doi.org/lO.SZO;/ipol .202€.163

Jo Marias D1 Marrmie, GARTIE = Facaora, FENma MENIANDT- | Sors, Paissan Image Fditing, Image Processing (On Line, B {2015),
pp. 300=125, httgs.//do.org,/10.5201 fipol.201€.163
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Other good thing about denoising:
Comes with multi-scale analysis for free




2 Denoising as a Natural Decomposition

One of the remarkable aspects of well-behaved (even if not ideal) denoising operators is that we can em-
ploy them to easily produce a natural multi-scale decomposition of an image, with perfect reconstruction
property”. To start, consider a denoiser f(x.a). We can write the ohvious relation:

x = [(x,0) + [x = [(x, )] (9)

The first term on the right-hand side is a smoolhed (or denoised) version of x, whereas the second term in
the brackets is the residual ry(x, o) = x — f(x, ) which is an ostensibly "high-pass” version. Next, we can
apply the same decomposition repeatedly to the alrcady-denoised components®:

x = f(fxe)a) t [foxa) - F(fxa)a)] 1 ro(x0) (10)
= [(J(x,a),a)+rm(x, o)+ rox, «) (11)
(12)
n—1
= xR o) (13)
k—0

Milanfar, P. & Delbracio, M. Denoising: A Powerful Building-Block for Imaging, Inverse Problems, and Machine Learning. Preprint at http://arxiv.org/abs/2409.06219 (2024).
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ploy them to easily produce a natural multi-scale decomposition of an image, with perfect reconstruction
property®. To start, consider a denoiser f(x,a). We can write the obvious relation:

x = [(x,0) + [x = [(x, )] (9)

The first term on the right-hand side is a srmoothed (or denoised) version of x, whereas the second term in
the brackets is the residual ry(x, @) = x — f(x, ) which is an ostensibly "high-pass” version. Next, we can
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(12)
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Milantar, P. & Delbracio, M. Denoising: A Powerful Building-Block for Imaging, Inverse Problems, and Machine Learning. Preprint at http://arxiv.org/abs/2409.06219 (2024).
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X = argmin_f(x) = LSS

) =[x — yII2 +RG

Fitting Data Regularization

% = argmax P(x|y) = X = argmin_— log p(y | x) — log p(x)

Recall, Bayes Theorem:

P(x|y) = POI0PE) > argmax P(x|y) = argmax P(y | x)P(x)

P(y)

___—— MMSE (mean)



fo) = llx = yll5 +HR()

Fitting Data Regularization
Energy
R(x) = A |x||5

Smoothness
R(x) = A||Lx||5



fx) = llx = ylI3 +RG)

Fitting Data Regularization

Total Variation

R(x) = A|[Vxll;
R(x) = Allx|13

¢ § A 1

Smoothness Wavelets
R(x) = 2 ||Lx||5 R(x) = A ||[Wx||,

Energy




fx) = llx = ylI3 +RG)

Sparse & Redundant

Fitting Data Regularization Representations
R(x) = Allyllo
Total Variation for Dy = x
Energy R(x) = A||[Vx|[, |
RG) = 4 1x12 & ﬁ
SmOOthness Wavelets

R(x) = A ||Lx]||2 R(x) = A||Wx|l,



fx) = llx = ylI3 +RG),

Sparse & Redundant

Fitting Data Regularization Representations

R(x) = Allyllo

Total Variation for Dy = x

Energy R(x) = Al[Vx||; |
RGO = 2 I & 1
Smoothness Wavelets
_ 2
R(x) = AllLx]l3 R(x) = 4 [[Wxll Deep

Learning

Image credit: Jeremi Sulam
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This is a high dimensional
space, e.g., image 1000x1000

leaves in 2 1076 dimensional
space
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Kadkhodaie, Z., & Simoncelli, E. P. (2021). Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser (arXiv:2007.13640). arXiv. http://arxiv.org/abs/2007.13640



https://www.carmin.tv/en/collections/a-multiscale-tour-of-harmonic-analysis-and-machine-learning-to-celebrate-stephane-mallats-60th-birth/video/photographic-image-priors-in-the-era-of-machine-learning
https://www.carmin.tv/en/collections/a-multiscale-tour-of-harmonic-analysis-and-machine-learning-to-celebrate-stephane-mallats-60th-birth/video/photographic-image-priors-in-the-era-of-machine-learning
http://arxiv.org/abs/2007.13640

Denoising with CNNs
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'THIS THING HAS AN IMPLICIT PRIOR P(X), HOW WE PULL IT OUT?
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Suppose we make a noisy observation of an image, y = x + z, where € R is the original image
drawn from p(x), and 2 ~ N (0, 0?1 ) is a sample of Gaussian white noise. The observation density
p(y) (also known as the prior predictive density) is related to the prior p(x) via marginalization:

ply) = / p(ylx)p(x)de = / g(y — z)p(x)dx, (1)

where the noise distribution 1s

1 2 e 2
— —[lz]1" /20
9(2) (27Tc72)N/26 |



p(y) = / p(yla)p(x)dz — / o(y — 2)p(a)da,

1.2 Least squares denoising and CNNs

Given a noisy observation, y, the least squares estimate (also called "minimum mean squared error",
MMSE) of the true signal 1s well known to be the conditional mean of the posterior:

z(y) = /‘mp(:r\y)dm = / ;.’rp(y‘x)p(x)dm (2)
p(y)

For example, minimizing the denoising MSE over a large training set of example signals and their noise-corrupted counterparts

other measurement models in [27]. For the Gaussian noise case, the least-squares estimate of Eq. ()
may be rewritten as:

Y

i(y) =y + 0"V, logp(y). (3)



Accessing the prior implicit in a denoiser

MMSE estimator: ~ 3(y) = E(zly) = [ @ p(yle) p(z) do/p(y)
Prior predictive density (assuming AWGN), is the “1 [ prior:

p(y) = / p(y|z) p(x) dz o / e~ Ilv=2l1"/20% 1 1) dx

Vy p(y) = % / (z —y)p(y|z)p(z)dr = — / (z —y)p(y, z)dz.

(-

- - - 2 [Miyasawa, 1961;
e :E(y) =yto Vy log p (y) Tweedie, via Robbins, 1956]

¢ Equivalent to the MMSE estimator (no approximations)
e Suggestive of gradient ascent, but non-iterative

e Prior 1s implicit (in blurred form) in the prior predictive density

Kadkhodaie, Zahra, and Eero Simoncelli. "Stochastic solutions for linear inverse problems using the prior implicit in a denoiser.” Advances in Neural Information Processing Systems 34 (2021):
13242-13254.



Algorithm 1: Coarse-to-fine stochastic ascent method for sampling from the implicit prior of a
denoiser, using denoiser residual f(y) = z(y) — v.

parameters: o, o, hg, 3
initialization: ¢t = 1, draw yo ~ N(0.5,051)
while o1 < OJ, do

— hot .
hy = 1+ho(t—1)°

di = f(ye—1); /X
o2 — ||d;\_,||2; Jﬁ
’Yt2 — ((1 — Bh)* — (1 — ht)Q) 0,52;

Draw z; ~ N (0, I);

Yt < Yp—1 + hedy + Ve 24
t<+—t+1

21

end

https://www.carmin.tv/en/collections/a-multiscale-tour-of-harmonic-analysis-and-machine-learning-to-celebrate-stephane-mallats-60th-birth/video/photographic-image-priors-in-the-era-
of-machine—learning

Kadkhodaie, Z., & Simoncelli, E. P. (2021). Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser (arXiv:2007.13640). arXiv. http://arxiv.org/abs/2007.13640
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C Visualization of Universal Inverse Sampler on a 2D manifold prior

Figure 10: Two-dimensional simulation/visualization of the Universal Inverse Sampler. Fifty example
signals x are sampled from a uniform prior on a manifold (green curve). First three panels show,
for three different levels of noise, the noise-corrupted measurements of the signals (red points), the
associated noisy signal distribution p(y) (indicated with underlying grayscale intensities), and the -
least-squares optimal denoising solution #(y) for each (end of red line segments), as defined by ~
Eq. (@), or equivalently, Eq. (). Right panel shows trajectory of our iterative coarse-to-fine inverse
algorithm (Algorithm 2, depicted in Figure[), starting from the same initial values y (red points) of
the first panel. Algorithm parameters were hg = 0.05 and 8 = 1 (1.e., no injected noise). Note that,
unlike the least-squares solutions, the iterative trajectories are curved, and always arrive at solutions

on the signal manifold.



https://www.carmin.tv/en/collections/a-multiscale-tour-of-harmonic-analysis-and-machine-learning-to-celebrate-stephane-mallats-60th-birth /video/photographic-image-priors-in-the-era-

of—machine—learnin

Kadkhodaie, Z., & Simoncelli, E. P. (2021). Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser (arXiv:2007.13640). arXiv. http://arxiv.org/abs/2007.13640


https://www.carmin.tv/en/collections/a-multiscale-tour-of-harmonic-analysis-and-machine-learning-to-celebrate-stephane-mallats-60th-birth/video/photographic-image-priors-in-the-era-of-machine-learning
https://www.carmin.tv/en/collections/a-multiscale-tour-of-harmonic-analysis-and-machine-learning-to-celebrate-stephane-mallats-60th-birth/video/photographic-image-priors-in-the-era-of-machine-learning
http://arxiv.org/abs/2007.13640

Sampling

Iterative
algorithm

Iterative
algorithm

Iterative
algorithm




Now, we can use this to solve
inverse problems



3 Solving linear inverse problems using the implicit prior

Many applications in signal processing can be expressed as deterministic linear inverse problems -
deblurring, super-resolution, estimating missing pixels (e.g., inpainting), and compressive sensing
are all examples. Given a set of linear measurements of an image, ¢ = M Ty where M is
a low-rank measurement matrix, one attempts to recover the original image. In Section [J, we
developed a stochastic gradient-ascent algorithm for obtaining a high-probability sample from p(x).

Here, we modity this algorithm to solve for a high-probability sample from the conditional density
. i O
plae|M*x = x°).
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pseudo-inverse of M ', and that matrix M M ' can be used to project an image onto the measurement
subspace. Using Bayes’ rule, we write the conditional density of the noisy image conditioned on the
[inear measureement as

Algorithm 2: Coarse-to-fine stochastic ascent method for sampling
ply|z°) = p(y°, y*|z%) = p(y*|y°, z9)p(y°|z°) = p(y*|z°)p(y°|z®) on the residual of a denoiser, f(y) = Z(y) — y. Note: e is an imag
parameters: o, o, hg, 3, M, x°

initialization: t=1; draw yo ~ N(0.5(1 — MM?")e + Mx¢, o31)
while 0,1 < o7 do

where y° = M Ty, and y* = M Ty (the projection of ¥ onto the orthogonal complement of M). As
with the algorithm of Section [, we wish to obtain a local maximum of this function using stochastic
coarse-to-fine gradient ascent. Applying the operator 02V log(-) yields

2 - e 2 ] 2 R S o B ht - 1+,’-}II;(()::_1);
0" Vy log p(y|z%) = o7V, log p(y"|2) + o7V, log p(y©|z”). dy = (I = MM") f(ye-1) + M(2¢ = My, 1)
The second term 1s the gradient of the observation noise distribution, projected into the measurement o2 = [lde |I”.
space. If this is Gaussian with variance o<, it reduces to M (y“ — x“). The first term is the gradient 5 i 3h.)2 b2 2
ace. 1 . ! Ve - v = ((1=Bhe)? = (1 = hy)?) o7
of a function defined only within the subspace orthogonal to the measurements, and thus can be Draw z, ~ N(0, I):
) i ~ ~ ~ " . s . S ToO <~ ~ ’ ’
computed by projecting the measurement subspace out of the full gradient. Combining these gives: U U1 + hedy + ez
UQV:U logp(y) = (I — MM’ )OQVy log p(y) + M (x“ — y“) t+—t+1

o ?(‘ - | end
= —MM")f(y) + Mz — M"y). 9)




v
7&{
ey 3

> o
’ %:(3\ / “C:(b)
.

Algorithm 2: Coarse-to-fine stochastic ascent method for sampling
on the residual of a denoiser, f(y) = Z(y) — y. Note: e is an imag

parameters: og, o, ho, 3, M, x°
initialization: t=1; draw yo ~ N (0.5(1 — A[ﬂ[ir)e + Mac. (78[)
While Tt S or, dO

: }L()[

dy = (I — MMT)f(ys—1) + M(z¢ — MTy,_1):;

N

i = ((1 = Bhe)? — (1 — he)?) o7
Draw z; ~ N (0, I);

Yt < Yi—1 + hedy + Ve 2y
t+—t+1

end
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ABSTRACT

High-quality samples generated with score-based reverse dilTusion algorithms
provide evidence that deep nenral netwarks (DNN} tramed far denoising can learn
high-dimensional densiries, despite the corse of dimensionality. However, recent
reports of memorization of the training set ruise the question ol whether these
networks are learning the “true”™ conrinupus density of the data. Here, we show
that two denoising DNNs trained on non-overlapping subsets of a dataset learn
nearly the same score function, and thus the same density. with a surprsingly small
number of training images. This strong generalization demanstrates an alignment
ol powerful induclive hiases in the DNN archilecture anidfor training algorithm
with propertics of the data distribution. We analvze these., demonstrating that
the denosser performs a shrinkage operation tn a basss adapted to the underlying
image, Examinaton of these buses reveals oscillaling harmonic structures alung
contours and in homogeneous image regions. We show that uamed denoisers are
inductively hiased towards these genmetry-adaprive harmanic represenrations by
demonstrating that they arise even when the network is truined on imuge classes
such as low-dimensional manifolds, for which the hanmonic basis is subaprimal.
Additionally, we shaw thart the denaising performance of the netwarks is near-
optimal when trined on regular mmage elasses for which the oplimal basis 1s known
to be pcometey-adaptive and harmonic.

I INTRODUCTION

Deep neural nelworks (DNN) have demonsiraled ever-maore impressive capabilines for learning and
sampling [rom high-dimensional image densities, most recently through the development of ditTusion
methods. These methods operate by trauung a denosser, which provides an estumate of the score
(the log of the noisy image distiibution). The score is then used (0 sample [rom the coresponding
estimated density, using an iteradve reverse dilfusion procedure (Sohl-Dickstein et al., 2015; Seng &
Erman. 20109: Ho et al., 2020). However, approximating a cantinunus deasity in a high-dimensional
space is notorionsly difficult: how do these nerworks achieve rhis fear, learning fram a relarively small
raining set o generate high-gquaity sumples, in apparent delianee ol the curse ol dimensionality”?
The answer to this question must lie in the restrictions that the DN architecture and nptimizarion
place on the learned denaising Minction. But the approximation class associaled with these models 1s
not well understood. Here. we take several steps toward clucidating this mystery.

Several recently reported results show that. when the waming set s small relative to the network
capacity, diffusion generative madels memorize samples of the traming ser, which are then repraduced
(or recembined) W generate new samples (Somepalli et al,, 2023; Carlini et al.. 2023). This is 4 form
of everfitting, implying thar the learned score mndel dees not provide a poad appraximation of the

e Source code for all experiments will be releasad upon puhlicatian
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ABSTRACT

High-quality samples generated wilh score-based reverse dillusion algorithms
provide evidence that deep nenral nerwarks (NN} tramed far denoising can learn
high-dimensional densiries, despite the curse nf dimensionality. However, recent
reporls of memorization of the training set ruise the question ol whether these
networks are learning the “true” conrinunus density of the data. Here, we show
that two denoising DNNs trained on non-overlapping subsets of a dataset learn
nearly the same score function, and thus the same density. with a surprsingly small
number of training images. This strong peneralization demanstrates an alighment
ol pawerful induclive hiases in the DNN archilecture and/or iraining algonthm
with propertics of the data distribution. We analvze these. demonstrating that
the denosser pertorms a shrinkage operation tm a basss adapted to the underlying
image, Cxaminauon of these buses reveals oscillaling harmonic structures along
contours and in homogeneous image regions. We show that uained denoisers are
inductively hiased towards these geaometry-adaprive harmanic represenrations by
demonstrating that they arise even when the network 1s truined on imuge classes
such as low-dimensional manifolds, for which the hanmonic basis is subaprimal.
Additionally, we show that the denaising performance of the networks is near-
optimal when trined on regular image elasses for which the oplimal basis 1s known
to be gcometry-adaptive and harmonic.

I INTRODUCTION

Deep neural nelworks (DNNS) have demonstmaled ever-maore impressive capabiliies for learning and
sampling [rom high-dimensional image densities, most recently through the development of ditTusion
methods. These methods operate by trauung a denosser, which provides an estumate of the score
(the log of the noisy image distiibution). The score is then used (0 sample [rom the corresponding
estimated density, using an iteradve reverse dilfusion procedure (Sohl-Dickstein et al., 2015; Seng &
Frman. 2019, Ho et al., 2020). However, approximating a cantinunus density in a high-dimensional
space is notorionsly difficult: how do rhese nerworks achieve rhis fear, learning from a relarively small
raining set o generate high-quality sumples. in apparent detianee ol the curse ol dimenstonality”?
The answer to this questinm must lie in the restrictions that the DNYN architecture and nptimizarion
place on the learned denaising Minction. But the approximation class associaled with these models 1s
not well understood. Here, we take several steps toward clucidating this mystery.

Several recently reported results show that. when the wamng set s small relatve to the network
capacity, diffusion generative madels memorize samples of the traming ser, which are then repeoduced
(or recembined) W generate new samples (Somepalli et al,, 2023; Curlini et al.. 2023). This is a form
of everfitting, implying thar the learned score mndel dees not provide a poad appraximation of the

e Source code for all experiments will be releaszad upon puhlicatian
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High-quality samples generated wilh score-based reverse dillusion algorithms
provide evidence that deep nenral nerwarks (NN} tramed far denoising can learn
high-dimensional densiries, despite the curse nf dimensionality. However, recent
reporls of memorization of the training set ruise the question ol whether these
networks are learning the “true” conrinunus density of the data. Here, we show
that two denoising DNNs trained on non-overlapping subsets of a dataset learn
nearly the same score function, and thus the same density. with a surprsingly small
number of training images. This strong generalization demanstrates an alighment
ol pawerful induclive hiases in the DNN archilecture and/or iraining algonthm
with propertics of the data distribution. We analvze these. demonstrating that
the denosser pertorms a shrinkage operation i a basss adapted to the underlying
image, Cxaminauon of these buses reveals oscillaling harmonic structures along
contours and in homogeneous image regions. We show that uained denoisers are
inductively hiased towards these genmetry-adaprive harmanic represenrations by
demonstrating that they arise even when the network 1s truined on imuge classes
such as low-dimensional manifolds, for which the hanmonic basis is subaprimal.
Additionally, we show that the denaising performance of the networks is near-
optimal when trined on regular image elasses for which the oplimal basis 1s known
to be gcometry-adaptive and harmonic.

I INTRODUCTION

Deep neural nelworks (DNNS) have demonstmaled ever-maore impressive capabiliies for learning and
sampling [rom high-dimensional image densities, most recently through the development of ditTusion
methods. These methods operate by tramung a denowser, which provides an estumate of the score
(the log of the noisy image distiibution). The score 18 then used (v sample from the comresponding
estimated density, using an iteradve reverse dilTusion procedure (Sohl-Dickstein et al,, 2015; Seng &
Erman. 2019, Ho et al., 2020}, However, approximating a cantinunus density in a high-dimensional
space is notorionsly difficult: how do rhese nerworks achieve rhis fear, learning from a relarively small
lraming set o generate high-quality sumples. in apparent detianee ol the curse ol dimenswonality”?
The answer to this questinm must lie in the restrictions that the DNYN architecture and nptimizarion
place on the learned denoising function. But the approximation class ossocialed with these maodels is
not well understood. Here. we take several steps toward clucidating this myvstery.

Several recently reported results show that. when the wamng set s small relatve to the network
capacity, diffusion generative madels memorize samples of the traming ser, which are then repeoduced
(or recembined | W generate new samples (Somepalli et al,, 2023; Curlini et al.. 2023). This is a form
of everfitting, implying thar the learned score mndel dees not provide a poad appraximation of the

e Source code for all experiments will be releaszad upon puhlicatian
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3 INDUCTIVE BIASES

1.0

The number of samples needed for estimation of an arbitrary probability density grows exponentially
with dimensionality. As a result, estimating high-dimensional distributions without a strong implicit
prior over the hypothesis space is infeasible. The network architecture and the optimization algorithm
induce a prior over the space of functions. This implicit prior over the hypothesis space is refereed to
as inductive bias (Wilson & Izmailov, 2020). In Section 2.2, we demonstrated that DNN denoisers can
learn scores, and thus a density, from relatively small train sets. This generalization result 1s evidence
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ABSTRACT

High-quality samples generated wilh score-based reverse dillusion algorithms
provide evidence that deep nenral nerwarks (NN} tramed far denoising can learn
high-dimensional densiries, despite the curse nf dimensionality. However, recent
reporls of memorization of the training set ruise the question ol whether these
networks are learning the “true” conrinunus density of the data. Here, we show
that two denoising DNNs trained on non-overlapping subsets of a dataset learn
nearly the same score function, and thus the same density. with a surprsingly small
number of training images. This strong generalization demanstrates an alighment
ol pawerful induclive hiases in the DNN archilecture and/or iraining algonthm
with propertics of the data distribution. We analvze these. demonstrating that
the denosser pertorms a shrinkage operation i a basss adapted to the underlying
image, Cxaminauon of these buses reveals oscillaling harmonic structures along
contours and in homogeneous image regions. We show that uained denoisers are
inductively hiased towards these genmetry-adaprive harmanic represenrations by
demonstrating that they arise even when the network 1s truined on imuge classes
such as low-dimensional manifolds, for which the hanmonic basis is subaprimal.
Additionally, we show that the denaising performance of the networks is near-
optimal when trined on regular image elasses for which the oplimal basis 1s known
to be gcometry-adaptive and harmonic.

I INTRODUCTION

Deep neural nelworks (DNNS) have demonstmaled ever-maore impressive capabiliies for learning and
sampling [rom high-dimensional image densities, most recently through the development of ditTusion
methods. These methods operate by tramung a denowser, which provides an estumate of the score
(the log of the noisy image distiibution). The score 18 then used (v sample from the comresponding
estimated density, using an iteradve reverse dilTusion procedure (Sohl-Dickstein et al,, 2015; Seng &
Erman. 2019, Ho et al., 2020}, However, approximating a cantinunus density in a high-dimensional
space is notorionsly difficult: how do rhese nerworks achieve rhis fear, learning from a relarively small
lraming set o generate high-quality sumples. in apparent detianee ol the curse ol dimenswonality”?
The answer to this questinm must lie in the restrictions that the DNYN architecture and nptimizarion
place on the learned denoising function. But the approximation class ossocialed with these maodels is
not well understood. Here. we take several steps toward clucidating this myvstery.

Several recently reported results show that, when the waimning set s small relatve to the network
capacity, diffusion generative madels memorize samples af the traming ser, which are then mpmdumd
(or recembined | W generate new samples (Somepalli et al,, 2023; Curlini et al.. 2023). This is a form
of everfitting, implying thar the learned score mndel dees not provide a poad appraximation of the

e Source code for all experiments will be releaszad upon puhlicatian

1

3 INDUCTIVE BIASES

The number of samples needed for estimation of an arbitrary probability density grows exponentially
with dimensionality. As a result, estimating high-dimensional distributions without a strong implicit
prior over the hypothesis space 1s infeasible. The network architecture and the optimization algorithm
induce a prior over the space of functions. This implicit prior over the hypothesis space is refereed to
as inductive bias (Wilson & Izmailov, 2020). In Section 2.2, we demonstrated that DNN denoisers can
learn scores, and thus a density, from relatively small train sets. This generalization result 1s evidence

Geometry-adaptive harmonic bases. Denoising estimators calculated with DNNs may be interpreted
as best-basis estimators that adapt the basis (ek)1< r<q 0 the noisy image y in order to obtain a
sparser repleqentatlon of the unknown clean image x. We now evaluate the inductive biases of the

DNN trained on 10* images used in Section 2.
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Figure 6: DNN denoiser trained on a shuffled face dataset. For visualization purposes, we “unshutfie”
the pixels by applying the inverse of the permutation to the images before display. Top left. Clean
(shuffled then unshuffled), noisy (unshuffled, o = 0.3), and denoised (unshuffled) images. Middle.
The shrinkage factors A, (y) decay more slowly than when the denoiser is trained on non-shuffled
faces (Figure 3). Right. The denoiser performs significantly worse than the denoiser trained on
unshuffled faces. Bottom left. Basis vectors (top row: shuffled, bowwom row: unshuffled). After
unshuffling, we observe GAHBs adapted to the geometry of the face, although these are noisier and
less precisely aligned with the image features than the non-shuffled examples in Figure 3.
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Abstract

Denedising, the proecss of reducing tandom Huctnations (o a slgnal to cuphasize eszential patierns,
nsd been a hondamental problam of interest gines the davn of moderm =eientifie inguiry. Recent denai<ing
technigues, paiticularly in imaging, have achievend remarkable sucesss, nearing tnecretical limits by some
measures. Yet. despite tens of thousands of secearch papers, the wide-rangiog applications of denoising
bevend noise removal have not been fully recognized. This is partly due te the vast and diverse literature,
making a clear overview challenging.

This paper alms to address this gap. We prescnt a comprehensive perspective on denoisers, vhelr
structure, and desired propertics. We ctaphasize the inercasing importatce of denocising and showcase its
evolution into an essential building Block for complex tasks in iimaging. inverse problems. and machine
learning. Despite its long hustory, the communivy continues to uncover unexpected and groundbreaking
nses far dengising, brther selidifying its place 82 & cornerstone of seientifie and angineering practice.

1 Introduction

Like all things of fundamental inportance. unage denvising s easy 1o describe, and very diflicudt w do well
in practice. Tt is therefore nat surprising that <he field has been araund sinee the beginming of the modern
seientific and technologieal age - o as along as Lhere have been sensors Lo roecrd data, there has heen noise
to contend with.

Consider an image x. campased of a “elean” (smootht) companent u, and a “rongh™ or noisy component
e. which we take to be zero mean Gaussian white noise of variance %, going furward:

X u e, r

where all images are seanned leceagraphically into veetars. The ain of any denniser iz to decompase the
image X back into its constibnenl campanents - specifeally, o recover an estimale ol w, the nnderlying signal,
by applying some operator [denoiser) S a), parameterized by some o as follows:

Xleo) = J{x; o0 = w 2]

where afo®) is o worotonie funelion of Lhe noise varisnce, aud therefore controls lhc-@trcugth” ol the
clenciser.

As the deseription abave indieates, a denaiser is not a single nperatar but a family of bounded® maps
fix,a): 10, 1:'\ — [0.1] Y We expect "good” denoizers to have certain naturally desirable properties, which
alas o practice, many do not, For the salke of completeness, and as a later guide for how to design good
denocisers. we call a denoiser idenl if it satislies Lhe following properlies:

e im cmgrortand Lo nbe that this “smenth” componrsns csnceontan edpes sod beshures, Tenoe we soe asing The Lo e L

Ioverly here ta deacrihe aneratars rhat remove small-seale effecta, leaving larger acsle and higher eantrasr disermtinmties a/one.
“WYWe ascume all images are in the numerical range [0, 1], 1n practice. an 8-bit image would have values iz [0, 235] range.
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Abstract

Iuversion by Direct HMeration (InDI) s a new [ormulation for supervised image restoration
that wvolds the so called "regression to the mean™ efect and produces more realistic and
detailed images than existing regression-hased methads. I does this by gradually impraving
imapge guality i small steps. sitilar o generative denoising difflusion models.

Imagze restoration is an ill posed problem where multiple hich quality images are plausible
reconstructions of a given low guality input. Therefore, the outcome of w single step regres
sian model is typically an aggregare of all possible cxplanations, therelfore lacking details
and reallsm. The main advaulage of InDI is that it does pot try 1o predicl Lhe clean targer
lmage in a single step but instead gradually nnproves the toage in small steps, resulting in
hetter perceptual gqualivy.

While generative denaising diffuzion modelz alsa wark in small steps, onr formualation is dis-
tinet in that it does not require knowledge of any analytic form of the degradation provess.
Instead, we directly learn an iterative resworation process from low gquality and high quality
paired cxamples. TnDT can be applicd 1o vietaally any image degradation, given paired
training data. In conditional dencising dilfusion hwage resloration the denolsing nelwork
generaves the restored hnage by repeatedly denoising an mitial hnage of pure noise, cond:-
tianed on the degraded input. Contrary ta comditional denoising formulations, InDIE divectly
proceecs by ileratively resloring Lhe inpul low-gualivy image, producing Lipgh-cualite re-
sults on w variety of image restoration tasks, including motion apd out of foeus deblurring,
super-resolution. compression artifact rernoval, and denaising.

1 Introduction

Recovering a high quality imagze Gom a low quality observation is a fundamentsl problen: in computer vision
and computational jmaging, Sipgle fmage restoration is a highly ill posed inverse problem where multiple
plansibile sharp and elean images conld Tead wo the very same degraded obeervation. The tepieal supervised
approach is Lo [ormulave image restoration as a problem of inferring the anderlving hnage given a lov-quality
version of it, by truining & model with paired examples of the relevant degradation (Ougie et all, [2020).
One of the mass common approaches is ta direetly menimize a pixel reconstaction ervor using the Ly or o
loss; an approach that correlates well vwith the popular PSNR (peak sigual-to-poise-ratio) metric. However.
it has been observed often in recent literature that measures such as PSNR (and in general point distortion
metriea) do not carrelate well to hnman pereeprion (Ban & Michacll, 2018; Delbracio et all, 202174: Freivicl
ki all. Z02T). Diespite these shorteamings, mmeh af the recent researeh work has hoen facnsed on improving
deep architectures and cptimizing o variesy of point loss formulations, resulting in general models that give
an aggregate improved Qoage in one step of interence,

To see the issues more concretely. let’s assume that we are given buage pairs (@.y) ~ ple, ) where @
represents @ target high quality mage, and g represents che respective degraded observation. For instance.
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Abstract

Denedising, the proecss of reducing tandom Huctnations (o a slgnal to cuphasize eszential patierns,
nsd been a hondamental problam of interest gines the davn of moderm =eientifie inguiry. Recent denai<ing
technigues, paiticularly in imaging, have achievend remarkable sucesss, nearing tnecretical limits by some
measures. Yet. despite tens of thousands of secearch papers, the wide-rangiog applications of denoising
bevend noise removal have not been fully recognized. This is partly due te the vast and diverse literature,
making a clear overview challenging.

This paper alms to address this gap. We prescnt a comprehensive perspective on denoisers, vhelr
structure, and desired propertics. We ctaphasize the inercasing importatce of denocising and showcase its
evolution into an essential building Block for complex tasks in iimaging. inverse problems. and machine
learning. Despite its long hustory, the communivy continues to uncover unexpected and groundbreaking
nses far dengising, brther selidifying its place 82 & cornerstone of seientifie and angineering practice.

1 Introduction

Like all things of fundamental inportance. unage denvising s easy 1o describe, and very diflicudt w do well
in practice. Tt is therefore nat surprising that <he field has been araund sinee the beginming of the modern
seientific and technologieal age - o as along as Lhere have been sensors Lo roecrd data, there has heen noise
to contend with.

Consider an image x. campased of a “elean” (smootht) companent u, and a “rongh™ or noisy component
e. which we take to be zero mean Gaussian white noise of variance %, going furward:

X u e, r

where all images are seanned leceagraphically into veetars. The ain of any denniser iz to decompase the
image X back into its constibnenl campanents - specifeally, o recover an estimale ol w, the nnderlying signal,
by applying some operator [denoiser) S a), parameterized by some o as follows:

Xleo) = J{x; o0 = w 2]

where afo®) is o worotonie funelion of Lhe noise varisnce, aud therefore controls lhc-@trcugth” ol the
clenciser.

As the deseription abave indieates, a denaiser is not a single nperatar but a family of bounded® maps
fix,a): 10, 1:'\ — [0.1] Y We expect "good” denoizers to have certain naturally desirable properties, which
alas o practice, many do not, For the salke of completeness, and as a later guide for how to design good
denocisers. we call a denoiser idenl if it satislies Lhe following properlies:

e im cmgrortand Lo nbe that this “smenth” componrsns csnceontan edpes sod beshures, Tenoe we soe asing The Lo e L

Ioverly here ta deacrihe aneratars rhat remove small-seale effecta, leaving larger acsle and higher eantrasr disermtinmties a/one.
“WYWe ascume all images are in the numerical range [0, 1], 1n practice. an 8-bit image would have values iz [0, 235] range.
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Abstract

Iuversion by Direct HMeration (InDI) s a new [ormulation for supervised image restoration
that wvolds the so called "regression to the mean™ efect and produces more realistic and
detailed images than existing regression-hased methads. I does this by gradually impraving
imapge guality i small steps. sitilar o generative denoising difflusion models.

Imagze restoration is an ill posed problem where multiple hich quality images are plausible
reconstructions of a given low guality input. Therefore, the outcome of w single step regres
sian model is typically an aggregare of all possible cxplanations, therelfore lacking details
and reallsm. The main advaulage of InDI is that it does pot try 1o predicl Lhe clean targer
lmage in a single step but instead gradually nnproves the toage in small steps, resulting in
hetter perceptual gqualivy.

While generative denaising diffuzion modelz alsa wark in small steps, onr formualation is dis-
tinet in that it does not require knowledge of any analytic form of the degradation provess.
Instead, we directly learn an iterative resworation process from low gquality and high quality
paired cxamples. TnDT can be applicd 1o vietaally any image degradation, given paired
training data. In conditional dencising dilfusion hwage resloration the denolsing nelwork
generaves the restored hnage by repeatedly denoising an mitial hnage of pure noise, cond:-
tianed on the degraded input. Contrary ta comditional denoising formulations, InDIE divectly
proceecs by ileratively resloring Lhe inpul low-gualivy image, producing Lipgh-cualite re-
sults on w variety of image restoration tasks, including motion apd out of foeus deblurring,
super-resolution. compression artifact rernoval, and denaising.

1 Introduction

Recovering a high quality imagze Gom a low quality observation is a fundamentsl problen: in computer vision
and computational jmaging, Sipgle fmage restoration is a highly ill posed inverse problem where multiple
plansibile sharp and elean images conld Tead wo the very same degraded obeervation. The tepieal supervised
approach is Lo [ormulave image restoration as a problem of inferring the anderlving hnage given a lov-quality
version of it, by truining & model with paired examples of the relevant degradation (Ougie et all, [2020).
One of the mass common approaches is ta direetly menimize a pixel reconstaction ervor using the Ly or o
loss; an approach that correlates well vwith the popular PSNR (peak sigual-to-poise-ratio) metric. However.
it has been observed often in recent literature that measures such as PSNR (and in general point distortion
metriea) do not carrelate well to hnman pereeprion (Ban & Michacll, 2018; Delbracio et all, 202174: Freivicl
ki all. Z02T). Diespite these shorteamings, mmeh af the recent researeh work has hoen facnsed on improving
deep architectures and cptimizing o variesy of point loss formulations, resulting in general models that give
an aggregate improved Qoage in one step of interence,

To see the issues more concretely. let’s assume that we are given buage pairs (@.y) ~ ple, ) where @
represents @ target high quality mage, and g represents che respective degraded observation. For instance.




Solving inverse problems using a denoiser

® “Plug-n-Play” - Venkatakrishnan, Bouman & Wohlberg (2013)
Zhang et al. (2017);
Romano, Elad, & Milanfar (2017) - “RED”;
Kamilov, Mansour & Wohlberg (2019);
Mataev Elad & Milanfar (2019);
Reehorst & Schnitzer (2019);
Sun, Liu & Kamilov (2019);
Teodoro, Bioucas-Dias & Figueiredo (2019)

® “Denoising Score-matching” - Vincent (2011);
Alain & Bengio (2014);
Saremi & Hyvarinen (2019);
L1, Chen, Sommers (2019);
Guo, Han & Wen (2019);
Song & Ermon (2019);
Bigdeli et. al. (2020)

® “Diffusion-based generative models™ - Sohl-Dickstein et al. (2015)
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Abstract

Noise-vondiioned denoisers in difTusion models rely on implicil priors (0 recover
the manifold of clean data. Explonng umplicil priors within non-condiioned

|
3 denoisers is thus fundamental toward better understanding and deployment of
4 diflusion models. Previous works have devised solulions to sample high-probability
s images [rom denotser implicit prors. Unlortunately, these solutions are not directly
¢ applicable to point cloud denoisers as the irregularicy of poinc cloud introduces an
H exua permutation matrix during denoising, disrupting the space where the implicit
; prior lives. In this work, we address this imitation by leveraging denoiser implicit
; priors in the space of a structured representation of point clouds. We propose
1 Pyramidbolding, which leams to organize point coordinates in an 1mage-like grd
11 structure dubhed Point Geometry Image (PG This ennbles 21D denoisers to medel
17 the implicit prior of PGls and equivalently madeling the prior of clean 31D shapes.
11 As a result, and as here exiensively tllustrated, 31 shapes can be sampled fram 212
14 UNet denoisers using Langevin-sivle gradient asceat, providing for the (st time a
15 cemputetional solution for implicit priors of point cloud deta. Code 15 available at
15 http://anonymous . 4opan.acience/r/pgi-DIP-C1739.

17 1  Introduction

15 Madern discrete representations of images and surfaces are high-dimensional (e.g., in the order of
1= thawsands af pixels or 3D poings). These high-dimensianal representations are typically orpanized
22 along low-dimensiomel manifalds, whether explicitly known ar inferred. This 1s repeatedly proven by
#1  the continuous success of generative madels [1-4]. In recent years, diffusion madels [2,5 6] have
2z been proven a be remarkably successful penerative maodels compared to their earhier countemarts
2z such as vartational awoencoders (VAES) [3], nonualizing Jows (NFs) [4], and generative adversarial
2+ networks (GANs) [1]. Diflusion models rely on the conneclion between deaoising autoencoders
2t (DAEs) |7] and score matching [8]. A DAE conditioned on a specific diffusion timestep is a score
2z estimator ol a noise~convolved density conditioned on its noise level, known as noise conditioned
zr  score nelworks (NCSNg) [6], and a non-conditioned DAE 15 4 one-step score estiiator of the clean
density [9]. NCSN is a stack of DAEs that gradually move the data towards higher probability regions
to arrive at a high probability sample. Thus, exploring means to sample from a non-conditioned
DAF is fundamental to hetter understanding and deploying diffusion madels. This area is generally
Known as “deroiser as prior” In the context of images, Kadkhedaie et al. [ LO] proposed a stechastic
coarse-to-fine gradient ascent procedure to sample high-probability data from the prior. Our work
extends for the first ime this idea and discusses the similarities and challenges when working with 31
point clouds, thus advencing towards a better understanding and utilization of the diffusion process in
this challenging novel domain.
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Closing the Gap Between Point Cloud and Image
Representations to Leverage Denoiser Implicit Priors

2.2 Implicit Prior in Structured and Unstructured Denoisers
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Adine Denoising CNNs can be viewed as powerful least squares estimators that recover
the true signal by computing the conditional mean of the posterior:

Abstract
| owse-condiioned denoisers 1n dilTusion models rely on implicil priors (0 recover “ p (y Ix)p (x)
z :m mzmill,:.alhllJ of (Ll'lgam data. Eipl{ming imﬁlil ;ln)"iors »l'li':ll:inl::uurolndiliolmd i (y) — mp(x | y)da} — I dx ’ (6)
3 denoisers is thus fundamental toward better understanding and deployment of p(y)
4 diflusion models. Previous works have devised solulions to sample high-probabality

iumgl,cs from dx:u.uix:r implicit Plim‘s. Unl'u.rluxmlc.l_\:, l.htbt‘t aii‘Jlul-i‘uns are not dim:-.lly ~ . . . . .
D ertonon s during denoising, dnamtin cha pace where he iophict where Z(y) is the best (in the L2 sense) approximation of the recovered signal.

prior lives. In this work. we address this limitation by leveraging denoiser implicit

; priors in the space of a structured representation of point clouds. We propose This SOlution can be expressed as [ l ( )] .

12 Pyramidiolding, which leams to organize point coordinates in an 1mage-like grid

11 structure dubhed Ponnt Geometry Image (PG, This ennbles 21 denoisers to medel 9

17 the implicit prior of PGls and equivalently madeling the priar of clean 21 shapes. A

13 As a result, end as here exiensively llustrated, 312 shapes can be sampled from 21D & (y) — y + 0 Vy log p(y) . (7)
14 UNet denoisers using Langevin-sivle gradient asceat, providing for the (st time a

1 cemputational solutiom for implicit priors of point cloud deta. Code 15 pvailable at

15 http://anonymous.4opan.acience/r/pgi-DIP-C173.

2 1 Inteoduction p(y|1I) p(yl|z, Ip(z[I)dz = [ g(y — Z)p(z|II)dz, (10)

+  Maodern discrete representations of images and surfaces are high-dimensional (e.g., in the order of H H
thausands al pixels or 3D poings). These high-dimensional representations are typically orpanized A p y Xz b) p Xz
along low-dimensiomel manifalds, whether explicitly known or inferred. This 15 repeatedly praven by T (y) wp(x | y H) dw = T dx . ( 1 1 )
the continuous success af generative madels [1-4]. In recent years, diffusion madels [2,/5] 6] have ) H
been proven 1 be remarkably successful generative models compared to their earlier countemarts p y
such as vartational auoencoders (VAES) [3], nonualizing Jows (NFs) [4], and generative adversarial
networks (GANs) [1]. Dillusion models rely on the connection between deavising autoencoders

(DAEs) 7] and score matching [8]. A DAE conditioned on a specific diffusion timestep is a score The fOllOWing pl’OpOSitiOn fO].lOWS .

estitnator ol a noise~convolved density conditioned on its noise level, known as noise conditioned
score nelworks (NCSNs) [6], and a non-conditioned DAE 15 2 one-step score estiinator of the clean

densicy [91. NCSN is a stack of DAES thar gradually meve the data towards higher probability regions Proposition 1. The denoiser residual, f (y) = I—1y 18 proportional to Vy log p(y),

to arrive at a high probability sample. Thus, explering means to sample from a non-conditioned

DAE is fundamental to hetter understanding and deploying diffusion madels. This area is generally N : —_

known as “denoiser as prior™ In the context of images, Kadkhedaie et a1, [LO] proposed a stechastic () and only if II =1 NxN -
coarse-to-fine gradient ascent procedure to sample high-probabilicy data from the prior. Our work

extends for the first time this idea and discusses the similarities and challenges when working with 3D

point clouds, thus advincing towards o hetter understanding and utilization of the diffusion process in
this challenging novel domain.
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2.2 Implicit Prior in Structured and Unstructured Denoisers

™
@ Denoising CNNs can be viewed as powerful least squares estimators that recover
g' the true signal by computing the conditional mean of the posterior:
©
- i) = [aptely)iz = [ D g, ©)
ket p(y)

where Z(y) is the best (in the L2 sense) approximation of the recovered signal.
~ This solution can be expressed as [10]:
v .
= 2(y) =y + 0°Vy log p(y). (7)
=
%)
- ~
i P = [ plule Mp(aMdo = [ gy - Dp(eiDda, (10

. p(ylz, IT)p(z|IT)
z(y) = | zp(x ,Hda:=/a: dx. 11

- ) = [ oplaly, D) e (1)
ey The following proposition follows.
§ Proposition 1. The denoiser residual, f(y) = £—y is proportional to V, log p(y),
2 if and only if I =InxN.
2

Permutation 1 Outputs independent of permutations

noise

2D Unet
Denoiser

Pyramid Folding
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Lrecon .5 Lsmooth

unstructured structured denoised




Langevin style Gradient Ascent Generated Samples

Fig. 5: Examples of single class generation. All samples are generated starting from
standard Guassian noise and following Algorithm 1.
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