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Abstract
Almost every field has some problems related with graphs or networks. From
natural examples in physics and mathematics, to applications in medicine and
signal processing, graphs are either a very powerful tool, or a very rich object of
interest.

In this thesis we address two classes of graph-related problems. First, we focus
on graph-inference problems, consisting in the estimation of a graph or network
from a dataset. In this part of the manuscript, we modify the existing formulations
of the inference problem to incorporate prior topological information of the graph,
and to jointly infer several graphs in a collaborative way. We apply these techniques
to infer genetic regulation networks, brain connectivity patterns, and economy-
related networks. We also present a new problem, which consists of the estimation
of mobility patterns from highly asynchronous and incomplete data. We give a
first formulation of the problem with its corresponding optimization, and present
results for airplane routes and New York taxis mobility patterns.

The second class consists of the so-called graph matching problems. In this type
of problems two graphs are given, and the objective is to find the best alignment
between them. This problem is of great interest both from an algorithmic and
theoretical point of view, besides the very important applications. Its interest and
difficulty lie in the combinatorial nature of the problem: the cost of seeking among
all the possible permutations grows exponentially with the number of nodes, and
hence becomes intractable even for small graphs.

First, we focus on the algorithmic aspect of the graph matching problem. We
present two methods based on relaxations of the discrete optimization problem.
The first one is inspired in ideas from the sparse modeling community, and the
second one is based on a theorem presented in this manuscript. The importance
of these methods is illustrated with several applications.

Finally, we address some theoretical aspects about graph matching and other
related problems. The main question tackled in the last chapter is the following:
when do the graph matching problem and its convex relaxation have the same
solution? A probabilistic approach is first given, showing that, asymptotically,
the most common convex relaxation fails, while a non-convex relaxation succeeds
with probability one if the graphs to be matched are correlated enough, showing
a phase-transition type of behavior. On the other hand, a deterministic approach
is presented, stating conditions on the eigenvectors and eigenvalues of the adja-
cency matrix for guaranteeing the correctness of the convex relaxation solution.
Other results and conjectures relating the spectrum and symmetry of a graph are
presented as well.
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Resumen

En prácticamente todos los campos hay problemas relacionados con grafos o redes.
Desde los ejemplos más naturales en f́ısica y matemática, hasta aplicaciones en
medicina y procesamiento de señales, los grafos son una herramienta muy poderosa,
o un objeto de estudio muy rico e interesante.

En esta tesis atacamos dos clases de problemas relacionados con grafos. Primero,
nos enfocamos en problemas de inferencia de grafos, que consisten en estimar un
grafo o red a partir de cierto conjunto de datos. En esta parte del manuscrito,
modificamos las formulaciones existentes de inferencia de grafos para incorporar
información topológica previamente conocida sobre el grafo, y para inferir de man-
era conjunta varios grafos, en un modo colaborativo. Aplicamos estas técnicas para
inferir redes de regulación genética, patrones de conectividad cerebral, y redes rela-
cionadas con el mercado accionario. También presentamos un nuevo problema, que
consiste en la estimación de patrones de movimiento a partir de un conjunto de
datos incompleto, y altamente aśıncrono. Mostramos primero una formulación
del problema con su correspondiente optimización, y presentamos resultados para
rutas de aviones en Estados Unidos, y patrones de movilidad de taxis en New York.

La segunda clase consiste en los llamados graph matching problems (problemas
de apareamiento de grafos). En este tipo de problemas, dos grafos son dados, y
el objetivo es encontrar el mejor alineamiento entre ellos. Este problema es de
gran interés tanto desde un punto de vista algoŕıtmico como teórico, además de
las importantes aplicaciones que tiene. El interés y la dificultad de este problema
tienen ráız en la naturaleza combinatoria del mismo: el costo de buscar entre todas
las permutaciones posibles crece exponencialmente con el número de nodos, y por
lo tanto se vuelve rápidamente intratable, incluso para grafos chicos.

Primero, nos enfocamos en el aspecto algoŕıtmico del problema de graph match-
ing. Presentamos dos métodos basados en relajaciones del problema de opti-
mización discreta. El primero de ellos está inspirado en ideas de la comunidad
de sparse modeling, y el segundo está basado en un teorema presentado en este
manuscritp. La importancia de estos métodos es ilustrada con varias aplicaciones
a lo largo del caṕıtulo.

Finalmente, atacamos algunos aspectos teóricos sobre graph matching y otros
problemas relacionados. La pregunta principal que se encara en el último caṕıtulo
es la siguiente: ¿cuándo el problema de graph matching y su relajación convexa
tienen la misma solución? Primero damos un enfoque probabiĺıstico mostrando
que, asintoticamente, la relajación convexa más común falla, mientras que una re-
lajación no convexa es capaz de resolver el problema con probabilidad uno, siempre



y cuando los grafos originales estén lo suficientemente correlacionados, mostrando
un comportamiento del estilo de transición de fases. Por otro lado, un enfoque
determińıstico es también presentado, estableciendo condiciones sobre los valores
y vectores propios de las matrices de adjacencia de los grafos, que garantizan que
el problema de graph matching y su relajación convexa tienen la misma solución.
Otros resultados y conjeturas relacionando el espectro y la simetŕıa de un grafo
son presentados también en este caṕıtulo.

x
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Chapter 1

Introduction

The terms graph and network are of daily use nowadays, mainly because of the
massive (and maybe abusive) use of social networks, but problems related with
graphs have been an enjoyable challenge for the scientific community for centuries.
While some of the oldest questions remain unsolved, as technology advances and
the application of graph-related techniques grows, new problems and challenges
arise. In this thesis we address some of these new problems, as well as some old
classic questions about graphs and their spectrum.

Informally, a graph is a set of points connected by lines, therefore, it is not
surprising that an enormous amount of real world problems can be modeled by
graphs. Let us enumerate some of these applications to illustrate the strength of
this tool, starting with real world problems resembling three of the classic puzzles
in graph theory.

The Seven Bridges of Königsberg is a problem solved in 1735 by Leonhard
Euler, in what is said to be the first graph theory paper. The Pregel River crossed
the city of Königsberg, dividing it in four land regions, two of which were large
islands (see Figure 1.1). These regions were connected by seven bridges, and the
problem solved by Euler was to find a path through the city crossing each bridge
exactly once. Euler proved the impossibility of such walk, associating a node to
each land region, connecting them according to the existent bridges, and then
developing the basis of graph theory. The same concepts arise for planning or
analyzing a transportation system for a city. The metro and bus designs can be
thought as a graph (and actually they are displayed as graphs in every map),
for which certain constraints should be satisfied: for instance, the average trip
time cannot be too large, if one segment breaks there should be alternative paths
connecting every pair of stations, and all this must be done with limited resources:
we cannot connect every station with each other.

There is another famous “impossible” puzzle: connect three houses with the
water, energy and gas supply stations, without any pipe crossing another one.
This is a planar puzzle (two lines cannot cross each other in the drawing), and
of course we can use the third dimension to solve the problem in the real world,
but the design and modification of (much larger and complex) graphs of energy
companies poses a tremendous challenge, again because of limited resources and
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→ →
Figure 1.1: The Seven Bridges of Königsberg problem. Images from Wikipedia.

very complex constraints (see Figure 1.2a). Nevertheless, maybe the most faithful
example of an application of this puzzle is the printing of electronic circuits, where,
of course, two lines cannot cross each other.

The last classic problem we mention here is the graph coloring problem. In
1852, Francis Guthrie stated the four color conjecture, which says that four colors
are sufficient to color a map so that no adjacent regions are painted with the
same color. This conjecture remained unsolved until 1976, when Appel and Haken
proved it.1 Besides the obvious application of coloring maps (see Figure 1.2b), this
area also helps to solve scheduling, pattern matching, compiler register allocation,
and frequency allocation problems, to name a few.

(a) (b)

Figure 1.2: An incorrect solution (why?) of the house supply puzzle (image taken from
www.archimedes-lab.org), and coloring of the US map using the four color theorem (image
from Wikipedia).

We already mentioned social networks, where each node represents a person,
and one edge between two people represents a connection in the social network
(typically meaning that these people know each other). Here, graph problems
appear everywhere and constantly, from recommendation of people to complex
searches in the network.

Maybe the largest and most complex network is the Internet itself, but every
communication network involves a number of graph problems, which have been
pushing and extending the limits of the field for several years now.

1This theorem is also famous for being the first major theorem proved with the aid of
a computer.
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How does a certain population move within a metro station? How are the
different regions of the brain connected one to each other? What is the depen-
dency of the socio-economic aspect of a country with respect to others? All these
applications can be cast into a graph problem. We will address some of these as-
pects along this manuscript, from functional magnetic resonance imaging (fMRI)
data of the brain activity to infer the significant connections in the brain, to the
estimation of mobility patterns of subjects using only local and static information.

The beauty of the underlying mathematics justifies by itself the interest in
graph problems, and all these applications (and those we do not mention here)
complement the unneeded justification. Now, let us formalize the main concepts
and analyze where the difficulty in these graph problems lies.

An undirected graph G = (V,E) consists of a vertex set V and an edge set
E, where E contains unordered pairs of vertices. All the information of the graph
can be conveniently and compactly expressed as the so-called adjacency matrix.
If the graph G has n vertices, then its adjacency matrix A is an n × n matrix,2

such that A(i, j) = 1 if and only if there is an edge joining the nodes i and j, and
A(i, j) = 0 otherwise. This matrix representation allow us to use all the powerful
tools from linear algebra to deduce properties of the graph.

Figure 1.3: Graph adjacency matrix.

If instead of unordered pairs, the edges set E is formed by ordered pairs, we
say that the graph is directed, since each link has an origin and destination node.
In this case, the corresponding adjacency matrix is not necessarily symmetric.

On the other hand, both for directed and undirected graphs, we can add weights
to each edge, which corresponds to adjacency matrices with real entries instead of
binary ones.

All these concepts and classes of graphs are used along this manuscript, ad-
dressing problems that we can divide in two large groups. The first type of prob-
lems consists on estimating a graph of particular interest to explain or analyze
some given data. In the second class of problems, the graph or graphs are given,
and the goal is to decide something about the graph, or about the relationship
between the graphs.

There are several ways to infer a graph from a dataset, and in general the most
appropriate one depends on the nature of the data, on the problem, and on the
objective of the estimation. Let us assume that we have a data matrix X of size

2Throughout this manuscript, we refer to matrices in uppercase bold font (e.g., A),
vectors in lowercase bold font (e.g., v). The matrix/vector entries are denoted in lowercase
(e.g., aij , vi).

3
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t×n, where each column X1,X2, . . . ,Xn corresponds to a certain entity, and each
row corresponds to a certain measurement of the system. The goal is to detect the
dependence relations between the entities. Very often, the problem with these es-
timations is that the number of measurements is much smaller than the dimension
of the problem [60]: i.e. t << n, which makes the estimation problem ill-posed in
general.3 If X is a multivariate normal distributed variable, then two coordinates
Xi and Xj are conditionally independent given all the other coordinates if and
only if the (i, j) entry of the inverse covariance matrix Σ−1 is zero. This property
makes the inference of the inverse covariance matrix (and moreover the structure
of the non-zero values) of enormous importance. Nevertheless, the inference of this
structure is also of great interest for several distributions of X, even for discrete
ones [66]. When the amount of data is small in comparison with the number of
dimensions the problem is ill-posed, and therefore it is reasonable to add some
prior information in order to stabilize the solution. In this manuscript, we assume
that the number of non-zero entries of the inverse covariance matrix is small in
comparison with the total number of entries, i.e., the matrix is sparse. This is
a very reasonable assumption for a large class of problems, and during the last
decade there has been an outstanding progress both in theoretical guarantees and
methods to solve optimization problems with sparsity regularizers.

In this thesis, we address the graph inference problem following this methodol-
ogy in Chapter 2. First, we add topological information to the estimation problem,
and illustrate the applicability of the resulting algorithms using stock market data
and genetic regulatory networks. Then, we adapt an idea from the sparse modeling
community to jointly estimate two or more graphs, which we assume have simi-
lar structure. This is true, for instance, for brain connectivity graphs of certain
population, which is the application illustrated in the corresponding section.

The last graph inference problem tackled in this manuscript is somehow dif-
ferent, mainly due to the dynamic aspect. Indeed, a simple example to illustrate
the problem is the following: let us assume that we know how many airplanes are
in each airport at each time interval. The available information has a time com-
ponent, since we know the number of airplanes for several time intervals, but no
explicit information about the dynamics is available. The goal is then to infer the
routes of the airplanes. There are several problems falling into this category, in-
cluding for example the estimation of the mobility pattern of people from counting
data at specific places.

Back to the airplanes example, since each route has different average flight
durations, and when an airplane is flying we cannot see it in the available data, the
timing component of this model is very different from the previous formulation,
and makes the problem very challenging. Moreover, since there may be several
combination of routes that could explain the data, the problem is generally severely
ill-posed. To finish the second chapter of this thesis, we present a model and
an algorithm to infer the mobility pattern of entities from counting data, with
applications to real world scenarios.

3In statistics, this is known as the n << p problem, due to the standard notation in
the field.
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Figure 1.4: Some domestic routes between 11 US airports.

Let us briefly introduce now some of the problems of the second category,
where instead of inferring a network, the graphs are given.

From its formal definition, a graph is a set of vertices and edges, but of course
the picture of the graph is a much direct way to visualize the graph. However, we
can represent a graph in many different ways, with different node positions and
order (see Figure 1.5). Therefore, how can we recognize a graph from its picture?
Given two different pictures, can we decide whether they represent the same graph
or not?

The formal formulations of this problem are the so-called Graph Matching
Problem and Graph Isomorphism Problem, which we briefly describe in what
follows.

An isomorphism is a bijection between the vertex sets of the graphs, preserving
the edge structure, i.e., a re-ordering of the nodes.

Figure 1.5: Two isomorphic graphs. Image from Wikipedia.

The Graph Isomorphism Problem consists in deciding whether two given graphs
are isomorphic or not (i.e., if there exists an isomorphism between them). The
computational complexity aspect of this problem is very particular, since its com-
plexity class is still unsolved: it is one of the few problems in NP not yet classified
as P nor NP-complete [25].

5
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In terms of the adjacency matrices, since an isomorphism is simply a bijection
between the vertex sets, it can be thought of as a permutation matrix. Indeed,
two graphs with adjacency matrices A and B are isomorphic if and only if there
exists a permutation matrix P such that A = PBPT . The number of permutation
matrices of a given size is finite, and therefore one could try all the possibilities to
decide whether two graphs are isomorphic or not. However, the number of permu-
tation matrices grows exponentially with the number of nodes, which makes this
näıve approach computationally intractable very fast; in fact, even for a moderate
number of nodes, like a dozen, the computational cost is enormous.

Another related problem is the Graph Matching Problem, which consists in
finding the “best” bijection between the vertex sets, given certain criteria. If the
graphs are isomorphic, the goal is to find the isomorphism. Remember that in the
Graph Isomorphism Problem, one has to decide whether two graphs are isomorphic
or not, a yes or no question, while in this Graph Matching Problem the objective
is to find the isomorphism itself, and hence it is at least as hard as the Graph
Isomorphism Problem.

Since the problem of finding a permutation matrix P such that A = PBPT,
or equivalently, minimizing ‖AP − PB‖2F over the set of permutation matrices,
is computationally intractable, relaxation techniques are often used to find an
approximate solution. Two very important questions arise immediately: (i) Which
is the “best” relaxation of the problem? and (ii) When does it give the correct
answer? These two questions set the roadmap of the two final chapters of this
manuscript.

In Chapter 3 we focus on the algorithmic aspect. First, we borrow some ideas
from sparse modeling to define a new objective function, and after the description
of the corresponding optimization, we test the algorithm and present results for
several databases. The basic idea behind the classic minimization of ‖AP−PB‖2F
is to match globally AP and PB. The obtained P may result in a good matching
for A and PBPT, which is the ultimate goal. The main difference of this sparsity
based approach with respect to the classic minimization of ‖AP−PB‖2F , is that
we aim to match the supports of AP and PB (i.e., the non-zero structure), which
represents better the edge structure of the graph. The results suggest that this
approach tends to outperform the classic graph matching algorithms especially
when the graphs are weighted, or multimodal.

The second algorithmic section is strongly related to some theoretical analyses
presented in the Chapter 4. We discuss convex and non-convex relaxations of the
graph matching problem, with a deep experimental analysis of several techniques,
not only for undirected graphs, but also for directed and weighted graphs, as well
as graph matching with features and seeds.

This algorithmic chapter leaves us with a battery of methods for graph match-
ing problems, but also with the open question: do we have guarantees for the
success of these methods? For this reason, the fourth chapter of this manuscript is
dedicated to investigate under which circumstances the solution to the relaxations
coincides with the solution of the original graph matching problem.

In the first half of Chapter 4, we study the problem form a probabilistic point

6



of view, assuming a Bernoulli model for the graphs, which is the most general
edge independent random graph model. The main result from this analysis has
two components: a pessimistic result for the classical graph matching relaxation,
and an optimistic result for a non-convex relaxation, showing a phase-transition
type of behavior.

Then, in the second half of the chapter, we tackle the problem from a determin-
istic point of view. It is well known that spectral analysis is fundamental in graph
theory, although often this analysis is focused in the spectrum of the Laplacian
matrix of the graph. In a recent paper [1], the authors prove the equivalence of the
graph matching problem with its classical relaxation for a certain class of graphs,
defined by the spectrum of the adjacency matrix. In this manuscript, we extend
these results, also deducing important properties of the graphs from the spectral
analysis of the adjacency matrix, and providing tools for further understanding
the deep relationship between graph spectrum and symmetry.

Outline of the manuscript

The rest of the document is organized as follows:

Chapter 2: Presents three problems related with graph inference. First, the
incorporation of topological information to the graph inference problem. Second,
the joint and collaborative inference of multiple graphs. And finally, the estimation
of mobility patterns from counting data.

Chapter 3: Is devoted to the derivation of graph matching algorithms. First, a
new formulation based on sparse modeling techniques is introduced, which tends to
outperform classic graph matching methods for weighted and multimodal graphs.
Then, an exhaustive experimental analysis of several graph matching algorithms
is presented, and in collaboration with some theoretical results of Chapter 4, we
suggest new techniques for graph matching problems.

Chapter 4: Tackles the question of when certain graph matching relaxations give
the correct answer. In the first place, a probabilistic approach is described, with
pessimistic and optimistic results for different convex and non-convex relaxations.
Finally, a deterministic analysis is presented, showing conditions on the spectrum
of the adjacency matrix of a graph that are sufficient for the equivalence of the
graph matching problem and its relaxation.

The manuscript ends with conclusions and bibliography.

7
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8



Chapter 2

Graph Inference

2.1 Introduction
Among all the network related problems presented in the previous chapter, here we
focus on graph inference problems. We work with different problem formulations,
different data modalities, and different algorithms.

The first two sections have something in common, which is the type of data.
Indeed, in these sections we assume that we have a data matrix X which comes
from a multivariate distribution, for instance, a Gaussian multivariate distribution.
Each of the n columns Xi ∈ Rm of X corresponds to a coordinate of the random
variable, and each row to an observation. In a general setting, the objective is
to infer a graph which illustrates the dependencies between the coordinates of
the random variable. It is not rare to have fewer observations than the problem
dimension, either because the number of coordinates is extremely large, or the cost
of measuring each observation is too high. This situation leads to an extremely
ill-posed problem, unless some other prior information is added. A common and
reasonable assumption for a large class of real problems is the sparsity of the
underlying graph: only a small portion of all the n(n− 1) possible edges is active.
This prior information can be incorporated to the inference formulations by means
of `1 penalty terms, as successfully done in several fields [72,81,89,97]. Besides this
sparsity constraint, in Section 2.2 we incorporate prior topological information to
the graph inference problem, and in Section 2.3 we present a formulation to jointly
estimate several graphs, which are assumed to have a common structure.

The problem presented in Section 2.4, on the other hand, has never been intro-
duced to the best of our knowledge. Although it is still a graph inference problem,
the type of data is completely different. The timing aspect is fundamental, and
for the applications addressed in this final section, the asynchronicity component
makes the graph inference problem a very challenging task.

2.1.1 Sparse modeling background
Let us first describe some basic concepts of sparse modeling, which are present
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along several sections in this manuscript.

Assume we have a set of n data points xi ∈ Rm, and a linear model represented
in the m×p matrix D, such that each data point xi can be written as xi = Dai+ε,
ai ∈ Rp, ε ∈ Rm. That is, each xi can be expressed as a linear combination of the
columns of D, plus some (small) noise. In the sparse modeling community, this
matrix D is usually called a dictionary, and each column of D is called an atom.
The underlying assumption in sparse modeling theory is that only a few of these
atoms are enough for representing most of the xi. This can be expressed formally
by means of the `0 pseudo-norm, which counts the number of non-zero elements
of a vector v = (v1, v2, . . . , vp) ∈ Rp: ‖v‖0 = #{j : vj 6= 0}. Then, if one wants to
find the sparsest solution to Da = xi, the corresponding formulation would be:

min
a∈Rp

‖a‖0 s.t. Da = xi,

or more generally, allowing some reconstruction error upper bounded by ε,

min
a∈Rp

‖a‖0 s.t. ‖Da− xi‖22 < ε.

The equivalent unconstrained formulation to this last problem (meaning that
for each ε there exist a λ such that the solutions of the two problmes coincide) is

min
a∈Rp

‖Da− xi‖22 + λ‖a‖0.

However, the combinatorial nature of this problem, due to the `0 pseudo-
norm, makes this an NP-hard problem. Therefore, a common way to deal with
this problem is to relax the `0 pseudo-norm to its closest `p convex norm, which
is the `1 norm. The relaxed optimization problem becomes

min
a∈Rp

1

2
‖Da− xi‖22 + λ‖a‖1,

which is a convex problem (referred as Lasso [87] or Basis Pursuit [32] in the
community), and can be solved efficiently by modern optimization techniques,
designed for these non-differentiable optimization problems [13,98].

The relationship between the original `0 constrained problem and its relaxation
has been deeply studied during the last decade, and under some conditions the so-
lutions of the two problems coincide [20,33]. The intuition behind this equivalence
can be nicely illustrated with the following formulation:

min
a∈Rp

‖Da− xi‖22 s.t. ‖a‖1 ≤ µ, (2.1)

whose geometric representation is shown in Figure 2.1. Note how the `1 constraint
promotes sparsity, unlike the `2 constraint.

In some cases, it makes sense to impose that some variables have to be active
at the same time. This can be achieved by means of the Group Lasso [100]. Given
a partition G of {1, 2, . . . , p}, the Group Lasso problem is:

10
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Figure 2.1: The `1 norm promotes sparsity: geometric representation of problem (2.1). Level
lines of ‖Da−x‖2, intersected with the balls satisfying the constraints. Left: problem with `1
norm constraint, where the solution is achieved at a vertex, therefore achieving sparsity. Right:
non-sparse solution of problem with `2 norm constraint.

min
a∈Rp

1

2
‖Da− xi‖22 + λ

∑
G∈G
‖a[G]‖2,

where a[G] stands for the coefficients of a corresponding to group G.

This is a generalization of the `1 minimization problem, in the sense that when
the partition G consists of each coordinate as a singleton, then the Group Lasso
formulation reduces to the classical Lasso. The effect on the sparsity is also a
generalization: only a portion of the groups are active.

Both the Lasso and Group Lasso are used along this and the following chapters,
applied first to graph inference problems, and then to graph matching problems.

2.2 Topology Constraints for Graph Inference
Section summary

Graphical models are a very useful tool to describe and understand natural
phenomena, from gene expression to climate change and social interactions. The
topological structure of these graphs/networks is a fundamental part of the anal-
ysis, and in many cases the main goal of the study. However, little work has
been done on incorporating prior topological knowledge onto the estimation of the
underlying graphical models from sample data. In this section we propose exten-
sions to the basic joint regression model for network estimation, which explicitly
incorporate graph-topological constraints into the corresponding optimization ap-
proach. The first proposed extension includes an eigenvector centrality constraint,
thereby promoting this important prior topological property. The second devel-
oped extension promotes the formation of certain motifs, triangle-shaped ones in
particular, which are known to exist for example in genetic regulatory networks.
The presentation of the underlying formulations, which serve as examples of the
introduction of topological constraints in network estimation, is complemented

11
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with examples in diverse datasets demonstrating the importance of incorporating
such critical prior knowledge.

2.2.1 Problem description
The estimation of the inverse of the covariance matrix (also referred to as precision
matrix or concentration matrix ) is a very important problem with applications in
a number of fields, from biology to social sciences, and is a fundamental step in
the estimation of underlying data networks. The covariance selection problem, as
introduced by [30], consists in identifying the zero pattern of the precision matrix.
Let X = (X1 . . . Xp) be a p-dimensional multivariate normal distributed vector,
X ∼ N (0,Σ), and C = Σ−1 its concentration matrix. Then two coordinates
Xi and Xj are conditionally independent given the other variables if and only if
C(i, j) = 0 [63]. This property motivates the representation of the conditional
dependency structure in terms of a graphical model G = (V,E), where the set of
nodes V corresponds to the p coordinates and the edges E represent conditional de-
pendency. Note that the zero pattern of the G adjacency matrix coincides with the
zero pattern of the concentration matrix. Therefore, the estimation of this graph
G from k random samples of X is equivalent to the covariance selection problem.
The estimation of G using `1 (sparsity promoting) optimization techniques has
become very popular in recent years.

This estimation problem becomes particularly interesting and hard at the same
time when the number of samples k is smaller than p. Several real life applications
lie in this “small k-large p” setting. One of the most studied examples, and indeed
with great impact, is the inference of genetic regulatory networks (GRN) from DNA
microarray data, where typically the number p of genes is much larger than the
number k of experiments. Like in the vast majority of applications, these networks
have some very well known topological properties, such as sparsity (each node is
connected with only a few other nodes), scale-free behavior, and the presence of
hubs (nodes connected with many other vertices). All these properties are shared
with many other real life networks like Internet, citation networks, and social
networks [74].

Genetic regulatory networks also contain a small set of recurring patterns called
motifs. The systematic presence of these motifs was first discovered in Escherichia
coli [84], where it was found that the frequency of these patterns is much higher
than in random networks, and since then they have been identified in other organ-
isms, from bacteria to yeast, plants and animals.

The topological analysis of networks is fundamental, and often the essence of
the study. For example, the proper identification of hubs or motifs in GRN is
crucial. Thus, the agreement of the reconstructed topology with the original or
expected one is critical. Sparsity has been successfully exploited via `1 penalization
in order to obtain consistent estimators of the precision matrix, but little work has
been done with other graph-topological properties, often resulting in the estimation
of networks that lack critical known topological structures, and therefore do not
look natural. Incorporating such topological knowledge in network estimation is

12
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the main goal of this work.

Eigenvector centrality (see Section 2.2.3 for the precise definition) is a well-
known measure of the importance and the connectivity of each node, and typical
centrality distributions are known (or can be estimated) for several types of net-
works. Therefore, we first propose to incorporate this structural information into
the optimization procedure for network estimation in order to control the topology
of the resulting network. This centrality constraint is useful when some prior in-
formation about the graphical model is known, for example, in dynamic networks,
where the topology information of the past can be used; in networks which we
know are similar to other previously studied graphs; or in networks that model a
physical phenomenon for which a certain structure is expected.

As mentioned, it has been observed that genetic regulatory networks are com-
posed by a few geometric patterns, repeated several times. One of these motifs
is the so-called feedforward loop, which is manifested as a triangle in the graph.
Although it is thought that these important motifs may help to understand more
complex organisms, no effort has been made to include this prior information in
the network estimation problem. As a second example of the introduction of topo-
logical constraints, we propose a simple modification to the `1 penalty, weighting
the edges according to their local structure, in order to favor the appearance of
these motifs in the estimated network.

Both developed extensions here presented are very flexible, and they can be
combined with each other or with other extensions reported in literature.

To recapitulate, we propose several contributions to the network estimation
problem: we show the importance of adding topological constraints; we propose
an extension to `1 models in order to impose the eigenvector centrality; we show
how to transfer topology from one graph to another; we show that even with
the centrality estimated from the same data, the proposed extension outperforms
the basic model; we present a weighting modification to the `1 penalty favoring
the appearance of motifs; as illustrative examples, we show how the proposed
framework improves the edge and motif detection in the E. coli network, and how
the approach is important as well in financial applications.

The rest of this section is organized as follows. In Section 2.2.2 we describe
the basic precision matrix estimation models used in this chapter. In Section 2.2.3
we introduce the eigenvector centrality and describe how to impose it in graph
estimation. We propose the weighting method for motifs estimation in Section
2.2.5. Experimental results are presented in Section 2.2.6, and we conclude in
Section 2.2.8.

2.2.2 Graphical model estimation
Let X be a k × p matrix containing k independent observations of X, and let us
denote by Xi the i-th column of X. Two main families of approaches use sparsity
constraints when inferring the structure of the precision matrix. The first one is
based on the fact that the (i, j) element of Σ−1 is, up to a constant, the regression
coefficient βij in Xi =

∑
l 6=i β

i
lXl + εi, where εi is uncorrelated with {Xl|l 6= i}.
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Following this property, the neighborhood selection technique by [73] consists in
solving p independent `1 regularized problems [87],

arg min
βi:βii=0

1

k
||Xi −Xβi||2 + λ||βi||1 ,

where βi is the vector of βijs. While this is an asymptotically consistent estimator of

the Σ−1 zero pattern, βij and βji are not necessarily equal since they are estimated
independently. A joint regression model which guarantees symmetry is proposed
in [80]. This regression of the form X ≈ XB, with B sparse, symmetric, and with
null diagonal, allows to control the topology of the graph defined by the non-zero
pattern of B, as it will be later exploited in this work. A symmetric version of the
model by [73] is also solved in [48], where the authors incorporate some structural
penalties as the group Lasso by [100].

Methods of the second family are based on a maximum likelihood (ML) estima-
tor with an `1 penalty [9,47,101]. Specifically, if S denotes the empirical covariance
matrix, the solution is the matrix Θ which solves the optimization problem

max
Θ�0

log det Θ− tr(SΘ)− λ
∑
i,j

|Θij | .

An example of an extension to both models (the regression and ML approaches),
and the first to explicitly consider additional classical network properties, is the
work by [65], which modifies the `1 penalty to derive a non-convex optimization
problem that favors scale-free networks.

A completely different technique for network estimation is the use of the PC-
Algorithm to infer acyclic graphs [58]. This method starts from a complete graph
and recursively deletes edges according to conditional independence decisions. In
this work, we use this technique to estimate the graph eigenvector centrality.

2.2.3 Eigenvector centrality model extension
Node degree (the number of connections of a node) is the simplest algebraic prop-
erty than can be defined over a graph, but it is very local as it only takes into
account the neighborhood of the node. A more global measure of the node impor-
tance is the so-called centrality, in any of its different variants [74]. In this work,
we consider the eigenvector centrality, defined as the dominant eigenvector (the
one corresponding to the largest eigenvalue) of the corresponding network connec-
tivity matrix. The coordinates of this vector (which are all non-negative by the
Perron-Frobenius theorem) indicate the corresponding centrality of each node, and
provide a measure of the influence of the node in the network (Google’s PageRank
is a variant of this centrality measure). Distributions of the eigenvector centrality
values are well known for a number of graphs, including scale-free networks as the
Internet and GRN [74].

In certain situations, we may have at our disposal an estimate of the centrality
vector of the network to infer. This may happen, for instance, because we already

14



2.2. Topology Constraints for Graph Inference

had preliminary data, or we know a network expected to be similar, or simply
someone provided us with some partial information about the graph structure. In
those cases, we would like to make use of this important side information, both to
improve the overall network estimation and to guarantee that the inferred graph
is consistent with our prior topological knowledge. In what follows we propose
an extension of the joint regression model which is capable of controlling this
topological property of the estimated graph.

To begin with, let us remark that as Σ is positive-semidefinite and symmetric,
all its eigenvalues are non-negative, and thus so are the eigenvalues of Σ−1. By
virtue of the Perron-Frobenius Theorem, for any adjacency matrix A, the eigen-
value with largest absolute value is positive. Therefore for precision and graph
connectivity matrices it holds that max||v||=1 |〈Av,v〉| = max||v||=1〈Av,v〉, and
moreover, the eigenvector centrality is c = arg max||v||=1〈Av,v〉.

Suppose that we know an estimate of the centrality c ∈ Rp, and want the
inferred network to have centrality close to it. We start from the basic joint
regression model,

min
B
||X−XB||2F + λ1||B||1 , s.t. B symmetric, Bii = 0 ∀ i, (2.2)

and add the centrality penalty,

min
B
||X−XB||2F+λ1||B||1−λ2〈Bc, c〉 , s.t. B symmetric, Bii = 0 ∀ i

(2.3)
where || · ||F is the Frobenius norm and ||B||1 =

∑
i,j |Bij |. The minus sign is due

to the minimization instead of maximization, and since the term 〈Bc, c〉 is linear,
the problem is still convex.

Although B is intended to be a good estimation of the precision matrix (up to
constants), formulations (2.2) or (2.3) do not guarantee that B will be positive-
semidefinite, and therefore the leading eigenvalue might not be positive. One way
to address this is to add the positive-semidefinite constraint in the formulation,
which keeps the problem convex. However, in all of our experiments with model
(2.3) the spectral radius resulted positive, so we decided to use this simpler for-
mulation due to the power of the available solvers.

Note that we are imposing the dominant eigenvector of the graph connectivity
matrix A to a non-binary matrix B. We have exhaustive empirical evidence that
the leading eigenvector of the matrix B obtained by solving (2.3), and the leading
eigenvector corresponding to the resulting connectivity matrix (the binarization of
B) are very similar (see Section 2.2.6). In addition, based on [96], these type of
results can be proved theoretically [103].

As shown in Section 2.2.6, when the correct centrality is imposed, our proposed
model outperforms the joint regression model, both in correct reconstructed edge
rates and topology. This is still true when we only have a noisy version of c. Even
if we do not have prior information at all, and we estimate the centrality from the
data with a pre-run of the PC-Algorithm, we obtain improved results.

The model extension here presented is general, and the term 〈Bc, c〉 can be
included in maximum likelihood based approaches like [9, 47,101].
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2.2.4 Implementation
Following [80], the matrix optimization (2.3) can be cast as a classical vector
`1 penalty problem. The symmetry and null diagonal constraints are handled
considering only the upper triangular sub-matrix of B (excluding the diagonal),
and forming a vector θ with its entries: θ = (B12,B13, . . . ,B(p−1)p). Let us
consider a pk × 1 column vector y formed by concatenating all the columns of X.
It is easy to find a pk×p(p−1)/2 matrix Xt such that ||X−XB||2F = ||y−Xtθ||22
(see [80] for details), and trivially ||B||`1 = 2||θ||1. The new term in the cost
function is 〈Bc, c〉, which is linear in B, thus there exists a matrix Ct = Ct(c)
such that 〈Bc, c〉 = 〈Ct,θ〉. The construction of Ct is similar to the construction
of Xt. The optimization problem (2.3) then becomes

min
θ
||y −Xtθ||22 + λ1||θ||1 − λ2〈Ct,θ〉,

which can be efficiently solved using any modern `1 optimization method [98].

2.2.5 Favoring motifs in graphical models
One of the biggest challenges in bioinformatics is the estimation and understanding
of genetic regulatory networks. It has been observed that the structure of these
graphs is far from being random: transcription networks seem to be conformed by
a small set of regulation patterns that appear much more often than in random
graphs. It is believed that each one of these patterns, called motifs, are responsible
of certain specific regulatory functions. Three basic types of motifs are defined [84],
the “feedforward loop” being one of the most significant. This motif involves three
genes: a regulator X which regulates Y, and a gene Z which is regulated by both
X and Y. The representation of these regulations in the network takes the form of
a triangle with vertices X, Y, Z.

Although these triangles are very frequent in GRN, the common algorithms
discussed in Section 2.2.2 seem to fail at producing them. As these models do not
consider any topological structure, and the total number of reconstructed triangles
is usually much lower than in transcription networks, it seems reasonable to help
in the formation of these motifs by favoring the presence of triangles.

In order to move towards a better motif detection, we propose an iterative
procedure based on the joint regression model (2.2). After a first iteration of
solving (2.2), a preliminary symmetric matrix B is obtained. Recall that if A is
a graph adjacency matrix, then A2 counts the paths of length 2 between nodes.
More specifically, the entry (i, j) of A2 indicates how many paths of length 2 exist
from node i to node j. Back to the graphical model estimation, this means that
if the entry (B2)ij 6= 0 (a length 2 path exists between i and j), then by making
Bij 6= 0 (if it is not already), at least one triangle is added. This suggests that
by including weights in the `1 penalization, proportionally decreasing with B2, we
are favoring those edges that, when added, form a new triangle.

Given the matrix B obtained in the preliminary iteration, we consider the cost
matrix M such that Mij = e−µ(B2)ij , µ being a positive parameter. This way,
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if (B2)ij = 0 the weight does not affect the penalty, and if (B2)ij 6= 0, it favors
motifs detection. We then solve the optimization problem

min
B
||X−XB||2F + λ1||M ·B||`1 , (2.4)

where M ·B is the pointwise matrix product.
The algorithm iterates between reconstructing the matrix B and updating the

weight matrix M (initialized as the identity matrix). Usually after two or three
iterations the graph stabilizes.

2.2.6 Experimental results
In this section we present numerical and graphical results for the proposed models,
and compare them with the original joint regression one.

As discussed in the introduction, there is evidence that most real life networks
present scale-free behavior. Therefore, when considering simulated results for val-
idation, we use the preferred-attachment model by [11] to generate graphs with
this property. Namely, we start from a random graph with 4 nodes and add one
node at a time, randomly connected to one of the existing nodes. The probability
of connecting the new node to the node i is proportional to the current degree of
node i.

Given a graph with adjacency matrix A, we simulate the data X as follows [65]:
let D be a diagonal matrix containing the degree of node i in the entry Dii, and
consider the matrix L = ηD − A with η > 1 so that L is positive definite. We

then define the concentration matrix Θ = Λ
1
2 LΛ

1
2 , where Λ is the diagonal matrix

of L−1 (used to normalize the diagonal of Σ = Θ−1). Gaussian data X is then
simulated with distribution N (0,Σ). For each algorithm, the parameters are set
such that the resulting graph has the same number of edges as the original one.
As the total number of edges is then fixed, the false positive (FP) rate can be
deduced from the true positive (TP) rate. We therefore report the TP rate only,
since it is enough to compare the different performances.

Including actual centrality
In this first experiment we show how our model (2.3) is able to correctly incorporate
the prior centrality information, resulting in a more accurate inferred graph, both
in terms of detected edges and in topology.
The graph of the example in Figure 2.2 contains 20 nodes. We generated 10 samples
and inferred the graph with the joint regression model and with the proposed model
(2.3) using the correct centrality.

The following more comprehensive test shows the improvement with respect to
the basic joint model (2.2) when the correct centrality is included. For a fixed value
of p = 80, and for each value of k from 30 to 50, we made 50 runs generating scale-
free graphs and simulating data X. From these data we estimated the network
with the joint regression model with and without the centrality prior. The TP
edge rates in Figure 2.3a are averaged over the 50 runs, and count the correctly
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Figure 2.2: Comparison of networks estimated with the simple joint model (2.2) (middle) and
with model (2.3) (right) using the eigenvector centrality. Original graph on left.

detected edges over the (fixed) total number of edges in the network. In addition,
Figure 2.3b shows a ROC curve. We generated 300 networks and constructed a
ROC curve for each one by varying λ1, and we then averaged all the 300 curves. As
expected, the incorporation of the known topological property helps in the correct
estimation of the graph.
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(a) True positive rates for different sample
sizes on networks with 80 nodes.
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(b) Edge detection ROC curve for net-
works with p = 80 nodes and k = 50.

Figure 2.3: Performance comparison of models (2.3) and (2.2). In blue (dashed), the standard
joint model (2.2), and in black the proposed model with centrality (2.3). In thin lines, curves
corresponding to 95% confidence intervals.

Following the previous discussion, Figure 2.4 shows the inner product 〈vB,vC〉
for several runs of model (2.3), where vB is the leading eigenvector of the obtained
matrix B, C is the resulting connectivity matrix (the binarized version of B), and
vC its leading eigenvector.

Imposing centrality estimated from data

The previous section shows how the performance of the joint regression model (2.2)
can be improved by incorporating the centrality, when this topology information
is available. However, when this vector is unknown, it can be estimated from the
data, using an independent algorithm, and then incorporated to the optimization
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Figure 2.4: Inner product 〈vC,vB〉 for 200 runs.
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Figure 2.5: True positive edge rates for different sample sizes on a network with 100 nodes.
Dashed, the joint model (2.2), dotted, the PC-Algorithm, and solid the model (2.3) with
centrality estimated from data.

in model (2.3). We use the PC-Algorithm to estimate the centrality (by computing
the dominant eigenvector of the resulting graph), and then we impose it as the
vector c in model (2.3). It turns out that even with a technique not specialized
for centrality estimation, this combination outperforms both the joint model (2.2)
and the PC-Algorithm.

We compare the three mentioned models on networks with p = 100 nodes for
several values of k, ranging from 20 to 70. For each value of k, we randomly
generated ten networks and simulated data X. We then reconstructed the graph
using the three techniques and averaged the edge rate over the ten runs. The
parameter λ2 was obtained via cross validation. Figure 2.5 shows how the model
imposing centrality can improve the other ones without any external information.

Transferring centrality

In several situations, one may have some information about the topology of the
graph to infer, mainly based on other data/graphs known to be similar. For
instance, dynamic networks are a good example where one may have some (maybe
abundant) old data from the network at a past time T1, some (maybe scarce) new
data at time T2, and know that the network topology is similar at the different
times. This may be the case of financial, climate, or any time-series data. Outside
of temporal varying networks, this topological transfer may be useful when we
have two graphs of the same kind (say biological networks), which are expected
to share some properties, and lots of data is available for the first network but
very few samples for the second network are known. We would like to transfer
our inferred centrality-based topological knowledge from the first network into the
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(a) G1/G2 differ in 32 edges.
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(b) G1/G2 differ in 36 edges.

Figure 2.6: True positive edge rate when estimating the network G2 vs amount of data. In
blue, the basic joint model using only X2, in red using the concatenation of X1 and X2, and
in black the model (2.3) using only X2 with centrality estimated from X1 as prior.

second one, and by that improving the network estimation from limited data.
For these examples, we have an unknown graph G1 corresponding to a k1 × p

data matrix X1, which we assume is enough to reasonably estimate G1, and an
unknown graph G2 with a k2 × p data matrix X2 (with k2 � k1). Using X2 only
might not be enough to obtain a proper estimate of G2, and considering the whole
data together (concatenation of X1 and X2) might be an artificial mixture or too
strong and lead to basically reconstructing G1. What we really want to do is to
transfer some high-level structure of G1 into G2, e.g., just the underlying centrality
of G1 is transferred to G2.

In what follows, we show the comparison of inferring the network G2 using only
the data X2 in the joint model (2.2); the concatenation of X1 and X2 in the joint
model (2.2); and finally the centrality estimated from X1, imposed in model (2.3),
along with data X2. We fixed the networks size to p = 100 and the size of data
for G1 to k1 = 200. Given a graph G1, we construct G2 by randomly changing a
certain number of edges (32 and 36 edges in Figure 2.6). For k2 from 35 to 60, we
generate data X2, and we then infer G2 with the methods described above. We
averaged over 10 runs.

As it can be observed in Figure 2.6, the performance of the model including the
centrality estimated from X1 is better than the performance of the classical model,
both when using just the data X2 and the concatenated data X1|X2. Therefore,
we can discard the old data X1 and keep only the structure (centrality) and still
be able to infer a more accurate version of G2.

2.2.7 Experiments on real data
International stock market data

The stock market is a very complicated system, with lots of time-dependent un-
derlying relationships. In this example we show how the centrality constraint can
help to understand these relationships with limited data on times of crisis and
times of stability.
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Figure 2.7: Countries network learned with the centrality model.

97-99 07-09 09-12
LS 2.7 3.5 14.4
Model (2.2) 2.5 0.9 4.0
Model (2.3) 1.9 0.6 2.4

Table 2.1. Mean square error (×10−3) for the different models.

We use the daily closing values (πk) of some relevant stock market indices
from U.S., Canada, Australia, Japan, Hong Kong, U.K., Germany, France, Italy,
Switzerland, Netherlands, Austria, Spain, Belgium, Finland, Portugal, Ireland,
and Greece. We consider 2 time periods containing a crisis, 5/2007-5/2009 and
5/2009-5/2012, each of which was divided into a “pre-crisis” period, and two more
sets (training and testing) covering the actual crisis period. We also consider the
relatively stable period 6/1997-6/1999, where the division into these three subsets
was made arbitrarily. Using as data the return between two consecutive trading
days, defined as 100 log( πk

πk−1
), we first learned the centrality from the “pre-crisis”

period, and we then learned three models with the training sets: a classical least-
squares regression (LS), the joint regression model (2.2), and the centrality model
(2.3) with the estimated eigenvector. For each learned model B we computed the
“prediction” accuracy ||Xtest−XtestB||2F in order to evaluate whether the inclusion
of the topology improves the estimation. The results are presented in Table 2.1,
illustrating how the topology helps to infer a better model, both in stable and
highly changing periods. Additionally, Figure 2.7 shows a graph learned with the
model (2.3) using the 2009-2012 training data. The discovered relationships make
sense, and we can easily identify geographic or socio-economic connections.

Motif detection in Escherichia Coli

Along this section and the following one, we use as base graph the actual genetic
regulation network of the E. coli. This graph contains ≈ 400 nodes, but for
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practical issues we selected the sub-graph of all nodes with degree > 1. This
sub-graph GE contains 186 nodes and 40 feedforward loop motifs.

For the number of samples k varying from 30 to 120, we simulated data X
from GE and reconstructed the graph using the joint model (2.2) and the iterative
method (2.4). We then compared the resulting networks to the original one, both in
true positive edge rate (recall that this analysis is sufficient since the total number
of edges is made constant), and number of motifs correctly detected. The numerical
results are shown in Figure 2.8, where it can be seen that model (2.4) correctly
detect more motifs, with better TP vs FP motif rate, and without detriment of
the true positive edge rate.
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Figure 2.8: Comparison of model (2.2) (dashed) with proposed model (2.4) (solid) for the E.
coli network. Left: TP edge rate. Middle: TP motif rate (motifs correctly detected over the
total number of motifs in GE). Right: Positive predictive value (motifs correctly detected over
the total number of motifs in the inferred graph).

Centrality + motif detection

The simplicity of the proposed models allows to combine them with other ex-
isting network estimation extensions. We now show the performance of the two
models here presented combined (centrality and motifs constraints), tested on the
Escherichia coli network.

We first estimate the centrality from the data, as in Section 2.2.6. Let us
assume that we know which ones are the two most central nodes (genes).1 This
information can be used to modify the centrality value for these two nodes, by re-
placing them by the two highest centrality values typical of scale-free networks [74].
For the fixed network GE , we simulated data of different sizes k and reconstructed
the graph with the model (2.2) and with the combination of models (2.3) and
(2.4). Again, we compared the TP edge rates, the percentage of motifs detected,
and the TP/FP motifs rate. Numerical results are shown in Figure 2.9, where it
can be seen that, in addition to the motif detection improvement, now the edge
rate is also better. Figure 2.10 shows the obtained graphs for a specific run.

1In this case, it is well known that crp is the most central node (gene), followed by fnr.
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Figure 2.9: Comparison of model (2.2) (dashed) with the combination of models (2.3) and
(2.4) (solid) for the E. coli network. The combination of the proposed extensions is capable
of detecting more motifs while also improving the accuracy of the detected edges. Left: TP
edge rate. Middle: TP motif rate. Right: Positive predictive value.

Figure 2.10: Comparison of graphs for the E. coli network with k = 80. Original network,
inferred with model (2.2) and with the combination of (2.3) and (2.4). Note how the combined
model is able to better capture the underlying network topology, as quantitative shown in Figure
2.9. Correctly detected motifs are highlighted.

2.2.8 Conclusions of the section and future work
We proposed two extensions to `1 penalized models for precision matrix (network)
estimation. The first one incorporates topological information to the optimiza-
tion, allowing to control the graph centrality. We showed how this model is able
to capture the imposed structure when the centrality is provided as prior informa-
tion, and we also showed how it can improve the performance of the basic joint
regression model even when there is no such external information. The second
extension favors the appearance of triangles, allowing to better detect motifs in
genetic regulatory networks. We combined both models for a better estimation of
the Escherichia coli GRN.

There are several other graph-topological properties that may provide impor-
tant information, making it interesting to study which kind of structure can be
added to the optimization problem. An algorithm for estimating with high pre-
cision the centrality directly from the data would be a great complement to the
methods here presented. It is also important to find a model which exploits all the
prior information about GRN, including other motifs not explored in this work.
Finally, the exploitation of the methods here developed for `1-graphs, is the subject
of future research.
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2.3 Collaborative Graph Inference
Section summary

As mentioned in the introduction, graphical models are a very useful tool
to describe and understand natural phenomena, from gene expression and brain
networks to climate change and social interactions. In many cases, the data is
multimodal. For example, one may want to build one network from several fMRI
(functional magnetic resonance imaging) studies from different subjects, or com-
bine different data modalities (as fMRI and questionnaires) for several subjects.
To this end, in this section we combine the graph inference techniques with con-
straints from the sparse modeling community, which have been proven succesfull
for collaborative filtering, classification and reconstruction tasks. We then derive
an iterative shrinkage thresholding algorithm for solving the proposed optimiza-
tion problem. Finally, the framework is validated with synthetic data and real
fMRI data, showing the advantages of combining different modalities in order to
infer the underlying network structure.

2.3.1 Problem formulation
The estimation of the inverse of the covariance matrix, also known as precision
matrix, is a very important problem with applications in a large number of fields.
The covariance selection problem consists in identifying the zero pattern of the
precision matrix, which is of particular interest for analyzing dependencies between
random variables. When the dimension of the problem is too large, or obtaining
observations of the random variable is expensive, the resulting inference problem
is ill-conditioned, and therefore prior information must be incorporated in order to
stabilize the solution. This path was already taken in the previous section, where
we assumed sparsity in the objective graph (leading to `1 penalty terms) and prior
topological knowledge. In what follows, we keep the sparsity assumption, and we
add a collaborative prior, in order to jointly estimate several networks sharing
some structure, aiming to tackle a collaborative inference of brain connections
from fMRI data.

The use of graph inference methods to analyze brain connectivity from fMRI
data has been growing in the last few years, with very impressive results both
from a modeling point of view, as well as algorithmic, in the sense of fast and
scalable methods [56, 93]. The nature of this application makes the use of prior
information a requirement: the amount of voxels measured by the equipment is
extremely large, but the person cannot be inside the acquisition equipment for too
long, and therefore the number of measurements is limited. However, there is a
lot of information that could be used to tackle this problem effectively: on the one
hand, the spatial dependency between measurements in voxels near to each other,
which is usually taken into account by grouping voxels in regions according to their
anatomical structure, and on the other hand, the similarity of brain connectivity
patterns between different subjects.

As in the previous section, let X = (X1 . . . Xp) be a p-dimensional multivariate
normal distributed variable, X ∼ N (0,Σ), and C = Σ−1 its concentration or
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precision matrix. Then two coordinates Xi and Xj are conditionally independent
given the other variables if and only if C(i, j) = 0. This property motivates the
representation of the conditional dependency structure in terms of a graphical
model.

Let us recall the two basic approaches that have been developed for estimating
the structure of the graphical model when a sparse structure is assumed, and have
been proved successful specially when working with a few data points. First, the
regression approach [80]

min
B
||X−XB||2F + λ1||B||`1 , s.t. B symmetric, Bii = 0 ∀ i, (2.5)

and the maximum likelihood, also called Graphical Lasso [10]:

max
Θ�0

log det Θ− tr(SΘ)− λ||Θ||`1 , (2.6)

where S is the empirical covariance matrix and ||Θ||`1 =
∑

i,j |Θij |.
Let us suppose now that we have n data matrices Xh, h = 1 . . . n, which may

come from different distributions, but such that the dependency graphs of all of
them share the same structure, at least approximately. Then, the goal is to infer
n covariance matrices, but such that they (roughly) share the non-zero pattern.
If we are only interested in the structure of the networks, a näıve approach could
be to concatenate all the data matrices together, and run one of the techniques
mentioned above to infer one graph. However, the mix of data from different
distributions would lead to a poor estimation of the inverse covariance matrix.
Additionally, we lose the possibility of estimating one matrix per dataset, which
could be of interest for the analysis.

A more suitable approach is to keep all the individual estimators for each
inverse covariance matrix, and incorporate one regularizer promoting that all these
matrices share the same support. The corresponding regularization term comes
from the Group Lasso [100], described in the beginning of this section.

Let us describe the particular use of the Group Lasso for formulation (2.6),
being the extension to the other formulation completely analogous. In this case,
we group all the entries (i, j) of the matrices Θh, and form an n−dimensional
vector whose l2 norm will be penalized in the objective optimization function.
This way, the sum of penalty terms for all groups promotes sparsity, in the sense
that only a few groups will be active (and so each matrix Θh will be sparse), but
once a group is active, the corresponding n coefficients (the (i, j) entries for all
Θh) will be all non-zero in general. The optimization problem to solve is then

max
Θ1,Θ2,...,Θn�0

∑
h

log det Θh −
∑
h

tr(ShΘh)− λ
∑
i,j

||
(
Θ1
ij ,Θ

2
ij , . . . ,Θ

n
ij

)
||2 .

(2.7)

This problem is still convex, and we have adapted the ISTA algorithm [82].
The code is available in www.fing.edu.uy/~mfiori.
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2.3.2 Synthetic data examples
In this section the model and algorithm are assessed with two different experiments:
in the first one we show how the performance of the grouped methodology improves
as the number of groups grows, and we also compare it with concatenating the
data instead of the grouping approach. In the second one we show that this
methodology is able to mix different kinds of data (e.g. Gaussian and discrete).

For the first experiment, we randomly generated six precision matrices with
the same support (but different non-zero values), for p = 60. For each matrix we
simulated Gaussian data Xh ∈ k × p for k = 30. Figure 2.11 (left) shows how the
performance of the model (2.7) improves with the number of considered groups,
and how the concatenation degrades the performance. In solid black line, estima-
tion using only one dataset (X1). Below it (dashed black), using the concatenation
of different subsets. Above it, using the grouped methodology with: 2, 3, 4, 5 and
6 groups (blue and red).
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Figure 2.11: True Positives vs False Positives on detected edges of the true graph. Left:
comparison for several groups. Right: Discrete and Gaussian data. In dashed blue, using only
gaussian data X, in dashed black using only discrete data Y, and in solid black using the
grouped methodology.

For the second experiment, we generated a Gaussian Graphical Model and a
Discrete Graphical model, sharing the same zero-pattern of the inverse covariance
matrix, and simulated data from both of them, X and Y respectively. Figure 2.11
(right) shows the performance when inferring the zero-pattern only from X, only
from Y, and with the combination of both via the optimization problem (2.7).

2.3.3 Application to fMRI data
Here we show how this collaborative learning can help to build brain networks for
different groups of subjects. For an fMRI study of 155 subjects, we split the dataset
into 105 for training and 50 for testing (data from http://www.haririlab.com/

brain.php). With the training we built one network for males (AM) and another
one for females (AF), using the grouped methodology (2.7). Then, for each subject
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in the testing set, we built the brain network from the fMRI data, and classified as
male of female according to the closest graph adjacency matrix (AM or AF). To
compare the performance, we also classified each subject with a nearest neighbor
criteria with respect to all the subjects in the training set. The results are shown
in Table 2.2, where it can be observed that when building one coherent network
for each gender, the classification improves significantly.

NN Grouped/NN
Classification Performance 60% 80%

Table 2.2. Comparison of classification results for individual and collaborative brain network
estimation.

2.4 Estimation of Dynamic Mobility Graphs
Section summary

The interest in problems related to graph inference has been increasing sig-
nificantly during the last decade. However, the vast majority of the problems
addressed are either static, or systems where changes in one node are immediately
reflected in other nodes. In this section we address the problem of mobility graph
estimation, when the available dataset has an asynchronous and time-variant na-
ture. More specifically, let us suppose that we are given the number of people at dif-
ferent physical locations at every time. Assume that these people are moving from
one location to another, but the travel duration depends on the origin/destination
pair, and we cannot observe these transitions between locations. The goal is to
infer the mobility pattern of the subjects from these observational data. The prob-
lem is very ill-posed, since several combination of paths might explain a certain
observation. We present a formulation for this problem consisting on an optimiza-
tion of a cost function having a fitting term to explain the observations with the
dynamics of the system, and a sparsity-promoting penalty term, in order to select
the paths actually used. The formulation is tested on two publicly available real
datasets on US aviation and NY city taxi traffic, showing the importance of the
problem and the applicability of the proposed framework.

2.4.1 Problem description
The significant growth of available data, both in quantity and diversity, has mo-
tivated an increased interest in problems related with graph inference or network
estimation, from gene regulatory networks and brain connectivity graphs using
fMRI data to social networks and micro-blog data.

Several graph inference algorithms have been recently introduced [9,58,66,73,
80,101], showing that sparse models provide useful formulation for addressing the
problem, and introducing a significant number of applications. For instance, in [7]
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the authors study the problem of inferring the “online news” network topology
and dynamics from the spread of blog posts and news articles. Other common
applications are the estimation of brain connectivity from fMRI data [93], or gene
regulatory networks from micro-array data [80], and the selection of questions from
a large and correlated questionnaire [21].

However, all these works address the network inference problem either for
static graphs, or for graphs that exhibit very particular dynamics, i.e., where the
interactions between nodes are instantaneous, and once the information arrives
to a certain node, it gets “infected,” meaning that the node cannot go back to
its previous state. This is the case, for instance, of social networks or blogs and
micro-blogs data.

In the present work, we study the problem of estimating the mobility pattern
of entities in a more general setting. Let us assume that we can count the number
of entities at different sites along time. For example, we may know how many
people are on each track of a subway station connecting several lines, at every
time. The goal is to infer the general mobility pattern within the station, to infer
how connections are taken by the passengers.

The main difference with the other graph inference problems previously men-
tioned is its dynamic aspect: in this problem, the time it takes to go from one site
to another depends on the sites and is unknown. This simple modification adds
a whole layer of complexity to the problem, rendering it very challenging. To the
best of our knowledge, this problem is here studied for the first time.

If the time to go from one site to another is the same for all paths and the
movements are all synchronized, then this (much easier) problem can be thought
as a Markov model, and estimation of the transition matrix is well studied. If, on
the other hand, we have two observations of the number of people at each site, but
accompanied by tracking information (meaning that we know, for example, that
one person was at site i and then, in the following observation, at site j), then
the estimation of the mobility matrix is straightforward. This approach is used for
instance for income mobility estimation [45].

The variability of the time spent in each path, as well as the asynchronous
component, make this hard problem unique. There are several problems falling
in the category of the formulation presented in this section. For instance, let us
suppose that we know how many airplanes are at each airport at every time, and
we want to infer the routes between the airports, and with what frequency an
airplane takes one of the paths.

As described throughout this section, this problem is extremely ill-conditioned
in general, since there might be several ways to explain certain observations. Thus,
the selection of the right type of regularizers plays a critical role, even more so
than in other related formulations.

The rest of the section is organized as follows. In Section 2.4.2, we present the
problem formulation; in Section 2.4.3, we propose an optimization algorithm for
addressing it . Experimental results with real data are presented in Section 2.4.4,
and final remarks are provided in Section 2.4.5.
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2.4.2 Problem formulation
Let us suppose that we are observing entities moving through different sites over
time. Here the entities may be, for example, people, airplanes or cars, and the
sites may be physical locations such as train stations, airports, or regions in a city.
Given n such sites, we observe (exactly or approximately) the number of entities
in each site, at discretized time intervals t = 1, . . . , T . Our goal is to infer, from
this information, the mobility pattern of the entities.

This problem, although simple to describe, presents several difficulties. First,
we cannot observe an entity while it is moving from one site to another. If an
entity is traveling from site i to site j with a travel time d, we can only observe it
as an aggregate in node i at time t, and then in node j at time t+d: in the interval
(t, t + d), the entity becomes unobservable. Additionally, these travel times are
unknown, and they might depend on the path and also on the particular entity
itself. On the other hand, each movement might have several possible explanations
(i.e., there are many ways of traveling from site i to site j); these uncertainties make
the problem ill-posed in general. These difficulties render this problem extremely
hard and challenging.

We will formally model the desired mobility pattern of the entities as a graph
of transitions between n nodes, where each node corresponds to a site. We first
represent the given/observed information as an n×T matrix U, where the entry uit
contains the number of entities at node i during time interval t.In order to capture
the described mobility problem, we augment the graph with n(n− 1) extra nodes,
that model the transition between every (ordered) pair of original nodes. Observe
that each transition node is associated with a directed path (say, from node i to
node j), and represents an “in transit” site where the entities virtually stay for the
travel duration between node i and node j. Of course, the number of entities in
each transition node is not directly observable. We refer to the observable nodes
as original and the unobservable transition nodes as transition nodes.

Notice that any prior knowledge about the routing topology of the system
would allow to remove transition nodes, simplifying the problem. In the general
case, all n(n− 1) paths are eligible a priori.

Transitions from one node to another are modeled stochastically. An entity
present in node i at a given time can either stay at the same site i with probability
ai, or choose an outgoing path k, connecting the node i with one of the remaining
n−1 nodes, with probability qk. The probability dk of staying in the transition node
k models the travel duration from i to j. See Figure 2.12 for a visual representation
og these quantities.

Thus, for each transition node, linking original nodes i and j, we have the
following associated unknowns: (1) the probability of going from i to j, (2) the
probability of staying in the transition node, and (3) the amount of entities at the
transition node at each time interval.

These unknowns are globally represented by a vector q with n(n− 1) entries,
containing the probabilities of going from one original node to another (i.e., the
probability of going from one original node to the transition node associated with
that path); a vector d with n(n−1) entries, containing the probabilities of staying
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j i

qk

dk

1− dk

aj ai

Figure 2.12: Example graph of the formulation. The big nodes (in light green) are the original
nodes, where we can observe the number of entities at every time. The smaller nodes (in light
pink) are the transition nodes, which represent the “in transit” state, and are not observable.

in the corresponding transition node; and a n(n− 1)× T matrix V containing the
number of entities at each transition node (or path) at each time.

Each one of the n(n− 1) entries of these unknowns (q, d and the rows of V)
are associated with an ordered pair of the original nodes. We order these variables
according to the destination node first, and then according to the source node (i.e.,
co-lexicographic order).

Additionally, we have an n dimensional vector a, with the probability of staying
at each original node.

The knowledge of the matrix V would already give plenty of information about
the mobility pattern, since it contains, for instance, the active and non-active
paths. Vectors q and d complement this information, showing which are the most
transited paths, as well as timing information.

Notation. Since the dynamics of the system is the principal element of the
proposed formulation, let us summarize the notation for time-shifted versions of
the main matrices.

We denote by U2 and U1 the n×(T−1) matrices formed by taking the original
matrix U and removing the first and the last column respectively.

In the same way, we denote by V2 and V1 the n(n−1)×(T−1) matrices formed
by taking the matrix V and removing the first and the last column respectively.

As aforementioned, each entry of vectors q and d is associated with a path, and
therefore each index corresponds to an ordered pair (i, j). The entries are ordered
in co-lexicographic order (i.e., first using destination node j and then origin node
i). Since we need information of the mobility from the original nodes to the paths
(or transition nodes), and also from the paths to the original nodes, we need to
be able to re-order these variables according to the source node (i.e., lexicographic
order). Therefore, we denote by P the permutation matrix such that Pq is in
lexicographic order.

Additionally, in order to obtain the number of entities arriving to a certain node
i, we have to add up all the entities arriving from the paths having destination
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node i. To do so, we construct an n× n(n− 1) matrix M, having n− 1 ones per
row. In the first row, the ones are in the first block of n−1 columns, in the second
row they are in the following block of n− 1 columns (meaning starting at column
n) and so on:

M =



1 · · · 1︸ ︷︷ ︸
n−1

0
1 · · · 1︸ ︷︷ ︸

n−1
. . .

0 1 · · · 1︸ ︷︷ ︸
n−1


︸ ︷︷ ︸

n(n−1)

.

This way, since q, d, and V are in co-lexicographic order, by left multiplying
by M, we are adding up through all the transition nodes with the same destination
node.

In what follows, we present two complementary formulations for the described
problem, leading to the results presented in Section 2.4.4.

Joint (a,q,d,V) formulation
The first formulation contemplates the effects of all the unknowns, in the sense
described above.

In order to simplify the explanation of the equations governing the system
dynamics, which lead to the complete formulation here presented, let us begin by
analyzing a single node in particular at certain time.

The number of entities at node i at a given time t+ 1 is equal to the number
of entities that were at node i at time t and stayed, plus the number of entities
that were traveling towards node i and arrived at time t+ 1. This is

ui,t+1 = aiui,t +
∑
j

(1− dk)vk,t,

where ai is the probability of staying (fraction of entities staying) at node i, and
k indexes the transition node associated with the path j → i. Hence, vk,t is the
number of entities on their way from i to j at time t, and 1− dk is the probability
of leaving the transition node and arriving to j.

This can be re-written for all nodes and for all time intervals, in the matrix
form

U2 = AU1 + M(I−D)V1, (2.8)

where A and D are diagonal matrices with the elements of a and d in the diagonal,
respectively, and I is the identity matrix.

In a similar way, we can describe the number of entities at every transition
node at each time. The number of entities at the transition node k at a given
time t+ 1 is equal to the number of entities that were at that path at time t and
stayed (have not arrived to destiny yet), plus the number of entities entering the
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transition node from the corresponding node i. Now, the same matrix M used to
add up all the paths going to one given node, is now used to replicate each value
of U n − 1 times, in order to distribute it to all the paths starting at that node.
Then, the matrix P is used to reorder the resulting matrix. An equation similar
to (2.8) can then be stated

V2 = DV1 + QPMTU1, (2.9)

where Q is a diagonal matrix with the elements of q in the diagonal.

We can now introduce a fitting function, to be minimized, that penalizes devi-
ations from the model given by (2.8) and (2.9). A suitable choice is, for example,

f(a,q,d,V) =
1

2
‖AU1 + M(I−D)V1 −U2‖2F

+
1

2
‖DV1 + QPMTU1 −V2‖2F .

(2.10)

Let us now add several constraints and priors which help to better solve this ill-
posed problem.

First, there are several constraints related to the nature of the unknowns.
Namely, the variables a, q, and d are vectors representing probabilities, so each
entry of these three unknowns must be in [0, 1]. The matrix V contains the number
of entities in each path, so it must be vk,t ≥ 0 for all k, t. In addition, for each
node the probabilities associated with outgoing edges should add up one. For
the transition nodes, this is trivial since there is only one outgoing edge, so in
this formulation the probabilities are dk and 1 − dk. For the original nodes, the
probability of staying in the node ai plus the probability of leaving to any path
(given by qk) should add up one. This can be written, for all the nodes, as:

a + MPq = 1,

where 1 is a vector of ones. Here the vector a can be written in terms of q as
a = 1 −MPq, and therefore this constraint can be directly incorporated in the
formulation, making f depend only on the other unknowns: f(q,d,V).

The last constraint is related to the total number of entities in the system. We
assume that the number of entities is constant over time, and therefore each column
of U plus the corresponding column of V must be constant. This assumption can
be easily removed by adding or subtracting the number of entities entering or
leaving the system at each time; it is reasonable to assume that this number can
be observed in practice.

Note that the function f in (2.10) is biconvex (the variables d and V are
multiplying each other), and all the constraints are convex sets. A common way to
address the minimization of a biconvex function is to alternatively fix one variable
and solve for the other (V and (q,d) in this case).

Additionally, as mentioned above, some solutions are indistinguishable from
each other, making the problem extremely ill-posed. In the mathematical formu-
lation, this can be observed in the matrix M, which basically combines n− 1 rows
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into one. Therefore, additional prior information is still needed to regularize this
inverse problem.

A very reasonable assumption is that not every original node is connected to
all the others (meaning that the graph is not complete), but on the contrary, that
most of the paths are unused (non-existent in the physical world). This can be
incorporated to the formulation by means of a sparsity promoting norm, such as
`0 or `1, used as a penalty term for the unknowns we want to sparsify.

Moreover, observe that if a certain entry of q is non-zero, this means that
the corresponding path is active. Thus, the corresponding entry of d and row
of V should be also active. On the contrary, if a path is inactive, then all the
corresponding entries of q, d, and V should be zero. This suggest a group lasso
type of approach [100], which is known to promote either active or inactive groups.
In this case, we consider n(n− 1) groups (one per transition node), formed by the
corresponding entry of q, of d, and the complete corresponding row of V.

This group Lasso approach has both effects at the same time: promoting a
sparse number of active paths, and enforcing that if a path is inactive, then all the
corresponding variables should be zero.

Then, the resulting formulation is

min
q≥0,d≥0,V≥0
UT 1+VT 1=N1

f(q,d,V) + λ

n(n−1)∑
k=1

‖wk‖2, (2.11)

where N is the total number of entities, λ is a parameter controlling the sparsity
of the solution, and wk is the k − th row of the matrix W, formed by taking the
k − th row of matrix V concatenated with qk and dk.

The second term is the `1 norm of the vector containing the norms of the rows
of W, which is the convex relaxation of the `0 pseudo-norm of that vector (this `0
pseudo-norm counts the number of active rows). We would actually like to solve
the problem with the `0 pseudo-norm, but this problem is known to be NP, so
this convex relaxation is generally used instead. This `0 − `1 relaxation has been
studied, and under some conditions, the solutions of the problems coincide [34].
However, in many situations, the `1 relaxation is not enough to enforce sparsity
(solve the original `0 problem), and an iterative reweighted `1 or `2 minimization
scheme is used [29]. That is, one computes the solution of the `1 or `2 relaxed
problem, then uses the obtained solution vector to compute weights for each entry,
and iteratively computes new solutions using those weights in the penalty term.
This last approach is the one used in this section.

Since this problem is non-convex, a good initialization of the optimization is
crucial. In the next section, we provide an independent formulation to estimate
V, and use it as initialization for the optimization (2.11).

Estimation of V

We present here an alternative analysis of the system dynamics, based solely in
matrices U and V, in order to obtain an estimate of V to use as starting point for
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the formulation in (2.11). However, this problem is interesting by itself, since the
matrix V already contains very useful information, as discussed above.

Let us first focus in the path going from node i to node j, and let us assume
it is indexed by k. Suppose an entity is in node i at time t, and decides to go to
node j trough the associated transition node k. Then, the difference between ui,t
and ui,t+1 is the entity who left. On the other hand, the difference between vk,t
and vk,t+1 is that very same entity who entered the path k (although this is not
observable). The same will happen at time t + d when the entity arrives to node
j.

Now, let A and B be two (unknown) n(n − 1) × (T − 1) matrices such that
ak,t contains the number of entities leaving the transition node k at time t (and
therefore arriving at the associated original node j at time t+1), and bk,t contains
the number of entities leaving the original node i at time t (and therefore entering
the transition node k at time t+ 1).

From the previous description, we have that bk,t − ak,t = vk,t+1 − vk,t, and
hence

B−A = V2 −V1.

Thus, V can be reconstructed from A and B, as the row cumulative sum of B−A.
This can be compactly written as

V = (B−A)C, (2.12)

where C is the upper triangular matrix with ones in every entry above the main
diagonal, including the diagonal itself.

A similar analysis leads to a relationship including U, A and B. Namely,
adding up all the entities entering a certain node and subtracting all the entities
who left that node, we obtain the difference ui,t+1 − ui,t. This is:

U2 −U1 = MA−MPTB. (2.13)

We look for two matrices A and B, having non-negative elements and satisfy-
ing (2.13). The constraint from (2.13) can be enforced by using a penalty function,
for instance, ‖U2 −U1 −MA + MPTB‖2F .

Since all entries in matrix V must be non-negative, from (2.12), we can impose
the constraint directly in terms of A and B. Namely, (B−A)C ≥ 0.

As with the previous general formulation, this problem is ill-conditioned. Again,
this can be noted by observing the role of the matrix M. Nevertheless, there is
prior information that can be included in order to make the problem better condi-
tioned. First, the rows of both A and B correspond to paths or transition nodes,
and therefore these rows should be jointly active or inactive, also promoting that
a low number of rows is simultaneously active. This is achieved by the group lasso
penalty as discussed in the previous section. However, in this case, given that the
unknowns are modeling the differential component of U and V, it is also reason-
able to ask for each row in particular to be sparse, since we are assuming that
there are some time intervals where there is no entity entering a particular node.
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This leads to the hierarchical lasso formulation [86], where a group lasso penalty
is used to select only a few active groups, but also an `1 (or `0) penalty to promote
sparsity inside each group as well.

Then, A and B are estimated by

{A∗,B∗} = argmin
A≥0,B≥0,
(B−A)C≥0

‖U2 −U1 −MA + MPTB‖2F

+λ2

n(n−1)∑
k=1

‖[A B]k‖2 + λ1‖[A B]‖1,
(2.14)

where [A B] is the horizontal concatenation of A and B, and [A B]k is its k − th
row. Once again, to further promote sparsity we used an iterative reweighted
approach.

After solving (2.14), the matrix V is computed as V = (B∗ −A∗)C and used
as initialization for the general formulation presented in Section 2.4.2.

2.4.3 Optimization
The optimization of both formulations is standard but not trivial, since there are
several components contributing to the difficulty of the minimization such as non-
smoothness, constraints, and non-convexity. Let us emphasize that the novelty
of this work does not reside in the optimization, but on the presentation of the
problem and its formal formulation.

Let us start with the first formulation in (2.11). Since f is biconvex, we proceed
by alternating minimization over V and (q,d), with the other variable fixed.

For each subproblem, the constraint UT1 + VT1 = N1 is added to the opti-
mization by means of the augmented Lagrangian method, which consists in adding
a smooth term (or two terms that can be combined into one, as done here) with
a new auxiliary variable h. For instance, when q and d are fixed, the problem to
solve is

min
V≥0

f(q,d,V) + λ

n(n−1)∑
k=1

‖wk‖2 +
µ

2
‖UT1 + VT1 − N1 + h‖2F , (2.15)

where µ is a parameter which does not affect the convergence, and it was set to
µ = 2 in the experiments.

The procedure is iterative. At each iteration l, the objective function in (2.15)
is minimized, and then the auxiliary variable is updated as hl+1 = hl + UT1 +
VT1−N1.

At each iteration, the minimization of the non-smooth function in (2.15) is
solved by standard techniques, consisting of gradient descent combined with the
vector soft-thresholding operator (for more details, see [86,98]).

The optimization for (q,d) with V fixed is completely analogous.
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The optimization of the second formulation (2.14) is very similar. The non-
negativity constraint can be added in a similar way as the previous one [76],
and the minimization of the subproblem, which now has two non-smooth terms
(the hierarchical lasso), admits also a very simple methodology with the same
computational complexity as the group lasso [86].

2.4.4 Experimental results
We now present experimental results with two publicly available datasets contain-
ing real transportation data. The first one collects all the internal flights in the
United States in a given month, and the second one contains all the taxi trips in
New York in 2013.

Airports routes

Suppose that we are given the number of airplanes at a given set of airports at
every time, is it possible to recover the airplane routes and the trip durations? As
mentioned in Section 2.4.1, this is an interesting and challenging problem.

We apply the proposed formulation to the analysis of a dataset containing all
the US internal flights from 1987 to 2014.2 We analyze the most recent available
month (which is November 2014), then select 11 important airports in the US, and
finally considered all the airplanes which have departed from or landed in any of
those airports during that month. The reduced number of airports is not due to
theoretical limitations of the proposed formulation, and only follows computational
power constraints.

The selected airports are: Dallas/Fort Worth International Airport (DFW),
Chicago O’Hare International Airport (ORD), Miami International Airport (MIA),
Los Angeles International Airport (LAX), John F. Kennedy International Airport
(JFK), LaGuardia Airport (LGA), Boston Logan International Airport (BOS),
San Francisco International Airport (SFO), Ronald Reagan Washington National
Airport (DCA), McCarran International Airport (LAS), and San Diego Interna-
tional Airport (SAN).

Since every airplane has a unique identifier (the Tail Number), it can be tracked
to determine at which airport it was at every time, or if it was flying (i.e., present
in no airport). With this information, and dividing the complete month into 15
minutes intervals,3 we construct the matrix U and the ground truth matrix V.

Using as input the matrix U, we estimated V using the formulation in (2.14),
and then used it as starting point for the formulation (2.11). The results are shown
in Figure 2.13.

The inferred graph is very similar to the ground truth graph at first sight.
Although some edges disappeared, and some other routes appeared, the general

2Dataset publicly available at https://catalog.data.gov/dataset/airline-on-

time-performance-and-causes-of-flight-delays
3Notice that the intervals are quite long, considering that, according to Wikipedia,

there were 81 and 71 landings/takeoffs per hour in JFK and LGA in 2010, respectively.
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2.4. Estimation of Dynamic Mobility Graphs

Figure 2.13: Results of the graph estimation for the airplane routes dataset. Above: ground
truth. Below: inferred network. The color indicates the probability qk of the corresponding
path.

topology of the network is recovered. Also, it can be observed that the main
circuits also have high probability in the estimated network: for instance, flights
from LAX to JFK and the way back.

Since the two airports in New York are very close to each other in the figure, it
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cannot be observed, but there are no edges between LGA and JFK in the estimated
graph (and of course neither in the ground truth graph). The same happens with
the airports of San Diego and Los Angeles.

New York taxis
A very interesting dataset has been recently released, containing all the trips of
New York yellow taxis during 2013.4 The dataset consists of millions of records,
each record corresponding to a certain trip. Each record contains (among other
information) the vehicle identifier, the pickup and dropoff date and times, trip
time in seconds, and the GPS coordinates of the pickup and dropoff locations.

We chose to limit the data to the trips within Manhattan, and we divided it
into the 10 regions showed in Figure 2.14.

Figure 2.14: Selected regions of Manhattan.

The experiments described below were carried out with the data corresponding
to one day, from 8:00am to 9:00pm, dividing the time interval into intervals of one
minute.

Let us suppose that we can observe the taxis location only when they are
picking up or dropping off a passenger, which is actually the available data, as

4Data publicly available at http://chriswhong.com/open-data/foil_nyc_taxi/
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described above. However, we will only make use of this information, forgetting
which point is a pick up or a drop off, the taxi identifier, and the trip time. All this
information will be used as ground truth, in order to compare the results obtained
by estimating the mobility pattern solely from the described data: time and GPS
coordinates for the pickup and drop off locations.

For each time interval, we compute the number of taxis picking up or dropping
off a passenger at every zone, in order to construct the matrix U, and then we run
the presented algorithms with a slight modification, since this dataset is special
in the following sense: the movement is permanent at every zone, there are taxis
picking up or dropping off passengers at every time. And also any path, from any
zone to another, is physically possible (unlike the airport data for instance, where
there might be no route from one airport to another).

These features significantly increase the difficulty of the problem. For example,
a solution where every taxi stays at one the zone, making trips between zones less
common, is a local minimum of (2.11). Obviously, this is an undesirable outcome.
To correct this artifacts, we added a term to penalize the `2 norm of vector a
(due to the constraint, the penalty term is written in terms of 1 −MPq), which
contains the loop probabilities. This penalization does not add any difficulty, and
the optimization is virtually the same.

The results are shown in Figure 2.15. The ground truth graph is computed
with the complete dataset (taking into account which taxi went from which to
which region) by simply counting the number of trips between regions, and then
computing directly the probability. The inferred mobility pattern is very similar
to the ground truth. The estimated graph has some extra arrows, but with the
exception of one of them, the width of the arrows is the thinnest in the figure,
which means that the associated probability is not significant.

In some cases where a path is present in both graphs, the width of the arrow
may differ. However, the general “large scale” pattern is the same: most of the
trips are from one region to an adjacent region (observe that the formulation does
not include any geographical information, nor any relation between the regions).

In order to compare directly the results, we also include a radar plot of the
ground truth and inferred probabilities, shown in Figure 2.16.

2.4.5 Conclusions of the section and future work
In this section we introduced a framework to address the problem of mobility
graph estimation, when only counting information on some nodes is available, the
movements are asynchronous, and the time it takes to an entity to go from one site
to another depends on the origin and destination. Due to these characteristics,
this is a very challenging problem.

We introduced the problem, and presented a formulation based on the dynam-
ics of the system, and a probabilistic approach on the behavior of the entities. The
proposed formulation leads to an optimization problem. In this problem, the cost
function to be minimized incorporates a data fidelity term, and a penalty term
to regularize the solution and avoid ill-posedness, promoting at the same time
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Figure 2.15: Results of the graph inference for the New York taxis dataset. Left: ground truth.
Right: inferred graph. The width of the arrows is proportional to the probability qk of the
corresponding path.

sparsity and coherence between the unknowns.

Since the fitting term of this formulation is non-convex, a smart initialization
is needed in order to converge to a good local minimum. We propose a second
formulation, based only on the mobility and counting information, without taking
into account the probabilistic part. This formulation lies on a differential analysis
of the events, and also makes use of sparsity promoting terms in order to obtain a
reasonable solution of this ill-posed problem.

We solved the proposed optimization problem for two real datatets, which are
publicly available: the New York taxis dataset, and the domestic US flights. The
results show that the general topology of the mobility pattern can be recovered,
and therefore the system can be analyzed from this inferred network. This suggests
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Ground truth probabilites
Inferred probabilities

Figure 2.16: Radar plot of the probabilities (vector q) for the New York traffic dataset. In red,
the ground truth probabilities, and in blue, the estimated probabilities.

that this is a promising line of work for a very interesting and challenging problem,
which can be further improved.

On the other hand, several related applications arise from the presentation of
this problem. For instance, given a system, it would be interesting to analyze its
mobility network at different times of the day, therefore being able to distinguish
between several patterns of behavior.

Another interesting extension is to detect outliers: when the system is sta-
ble and the mobility pattern is already learned, a suspicious behavior might be
reflected in a sudden increase of the cost function.
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Chapter 3

Graph Matching Algorithms

3.1 Introduction
Recently, the problem of matching two graphs has received attention from several
scientific communities: from signal processing, computer vision and computer sci-
ence, to pure mathematics, researchers are using graph matching for important
applications, creating new algorithms to solve the problem, and finding more the-
oretical connections and guarantees for correct recovery of some graph matching
methods.

The applications range from pattern recognition [14, 19], computer vision [23,
99,104], and machine learning [27,57], to neuro-biology [95], among others.

The particular interest in this problem, both algorithmic and theoretical, comes
from its inherent complexity. The cost of searching among all the possible per-
mutations grows exponentially with the number of nodes, and hence becomes in-
tractable even for small graphs. Polynomial time algorithms are known only for a
few classes of graphs (e.g., trees [88,90]; planar graphs [55]; and graphs with some
particular spectral properties [1, 43]), and therefore the general graph matching
problem is still a significant challenge.

This chapter is deals with graph matching algorithms. In Section 3.2 we present
a technique based on ideas borrowed from the sparse modeling community, more
specifically the Group Lasso. This way, we formulate the graph matching problem
trying to match the supports of the adjacency matrices, instead of a general average
error cost.

In Section 3.3 we first state a theorem about the success probability of some
common relaxations, and then we present an exhaustive experimental analysis of
several methods, including a new combination of algorithm-initialization that is
motivated by the theorem.
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3.2 Robust Multimodal Graph Matching
Section summary

Graph matching is a challenging problem with very important applications in
a wide range of fields, from image and video analysis to biological and biomedical
problems. We propose a robust graph matching algorithm inspired in sparsity-
related techniques. We cast the problem, resembling group or collaborative spar-
sity formulations, as a non-smooth convex optimization problem that can be ef-
ficiently solved using augmented Lagrangian techniques. The method can deal
with weighted or unweighted graphs, as well as multimodal data, where different
graphs represent different types of data. The proposed approach is also naturally
integrated with collaborative graph inference techniques, solving general network
inference problems where the observed variables, possibly coming from different
modalities, are not in correspondence. The algorithm is tested and compared with
state-of-the-art graph matching techniques in both synthetic and real graphs. We
also present results on multimodal graphs and applications to collaborative in-
ference of brain connectivity from alignment-free functional magnetic resonance
imaging (fMRI) data. The code is publicly available.

3.2.1 Introduction
Problems related to graph isomorphisms have been an important and enjoyable
challenge for the scientific community for a long time. The graph isomorphism
problem itself consists in determining whether two given graphs are isomorphic
or not, that is, if there exists an edge preserving bijection between the vertex
sets of the graphs. This problem is also very interesting from the computational
complexity point of view, since its complexity level is still unsolved: it is one of
the few problems in NP not yet classified as P nor NP-complete [25]. The graph
isomorphism problem is contained in the (harder) graph matching problem, which
consists in finding the exact isomorphism between two graphs. Graph matching
is therefore a very challenging problem which has several applications, e.g., in
the pattern recognition and computer vision areas. In this section we address
the problem of (potentially multimodal) graph matching when the graphs are not
exactly isomorphic. This is by far the most common scenario in real applications,
since the graphs to be compared are the result of a measuring or description
process, which is naturally affected by noise.

Given two graphs GA and GB with p vertices, which we will characterize in
terms of their p × p adjacency matrices A and B, the graph matching problem
consists in finding a correspondence between the nodes of GA and GB minimizing
some matching error. In terms of the adjacency matrices, this corresponds to
finding a matrix P in the set of permutation matrices P, such that it minimizes
some distance between A and PBPT . A common choice is the Frobenius norm
||A − PBPT ||2F , where ||M||2F =

∑
ij M2

ij . The graph matching problem can be
then stated as

min
P∈P
||A−PBPT ||2F = min

P∈P
||AP−PB||2F . (3.1)
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The combinatorial nature of the permutation search makes this problem NP in
general, although polynomial algorithms have been developed for a few special
types of graphs, like trees or planar graphs for example [25].

There are several and diverse techniques addressing the graph matching prob-
lem, including spectral methods [92] and problem relaxations [4, 95, 102]. A good
review of the most common approaches can be found in [25]. In this section we
focus on relaxation techniques for solving an approximate version of the problem.
Maybe the simplest one is to relax the feasible set (the permutation matrices)
to its convex hull, the set of doubly stochastic matrices D, which consist of the
matrices with non-negative entries such that each row and column sum up one:
D = {M ∈ Rp×p : Mij ≥ 0,M1 = 1,MT1 = 1}, 1 being the p-dimensional vector
of ones. The relaxed version of the problem is

P̂ = arg min
P∈D
||AP−PB||2F ,

which is a convex problem, though the result is a doubly stochastic matrix instead
of a permutation. The final node correspondence is obtained as the closest per-
mutation matrix to P̂: P∗ = arg minP∈P ||P− P̂||2F , which is a linear assignment
problem that can be solved in O(p3) by the Hungarian algorithm [62]. However,
this last step lacks any guarantee about the graph matching problem itself. This
approach will be referred to as QCP for quadratic convex problem.

One of the newest approximate methods is the PATH algorithm in [102], which
combines this convex relaxation with a concave relaxation. Another new technique
is the FAQ method in [95], which solves a relaxed version of the Quadratic Assign-
ment Problem. We compare the method here proposed to all these techniques in
the experimental section.

The main contributions of this section are two-fold. Firstly, we propose a new
and versatile formulation for the graph matching problem which is more robust to
noise and can naturally manage multimodal data. The technique, which we call
GLAG for Group lasso graph matching, is inspired by the recent works on sparse
modeling, and in particular group and collaborative sparse coding. We present
several experimental evaluations to back up these claims. Secondly, this proposed
formulation fits very naturally into the alignment-free collaborative network infer-
ence problem, where we collaborative exploit non-aligned (possibly multimodal)
data to infer the underlying common network, making this application never ad-
dressed before to the best of our knowledge. We assess this with experiments using
real fMRI data.

The rest of this section is organized as follows. In Section 3.2.2 we present the
proposed graph matching formulation, and we show how to solve the optimization
problem in Section 3.2.3. The joint collaborative network and permutation learning
application is described in Section 3.2.4. Experimental results are presented in
Section 3.2.5, and we conclude in Section 3.2.10.
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3.2.2 Graph matching formulation
We consider the problem of matching two graphs that are not necessarily perfectly
isomorphic. We will assume the following model: Assume that we have a noise
free graph characterized by an adjacency matrix T. Then we want to match two
graphs with adjacency matrices A = T + OA and B = PT

o TPo + OB, where OA

and OB have a sparse number of non-zero elements of arbitrary magnitude. This
realistic model is often used in experimental settings, e.g., [102].

In this context, the QCP formulation tends to find a doubly stochastic matrix
P which minimizes the “average error” between AP and PB. However, these spu-
rious mismatching edges can be thought of as outliers, so we would want a metric
promoting that AP and PB share the same active set (non zero entries repre-
senting edges), with the exception of some sparse entries. This can be formulated
in terms of the group Lasso penalization [100]. In short, the group Lasso takes
a set of groups of coefficients and promotes that only some of these groups are
active, while the others remain zero. Moreover, the usual behavior is that when
a group is active, all the coefficients in the group are non-zero. In this particular
graph matching application, we form p2 groups, one per matrix entry (i, j), each
one consisting of the 2-dimensional vector

(
(AP)ij , (PB)ij

)
. The proposed cost

function is then the sum of the l2 norms of the groups:

f(P ) =
∑
i,j

∣∣∣∣((AP)ij , (PB)ij
)∣∣∣∣

2
. (3.2)

Ideally we would like to solve the graph matching problem by finding the minimum
of f over the set of permutation matrices P. Of course this formulation is still
computationally intractable, so we solve the relaxed version, changing P by its
convex hull D, resulting in the convex problem

P̃ = arg min
P∈D

f(P). (3.3)

As with the Frobenius formulation, the final step simply finds the closest permu-
tation matrix to P̃.

Let us analyze the case when A and B are the adjacency matrices of two
isomorphic undirected unweighted graphs with e edges and no self-loops. Since
the graphs are isomorphic, there exist a permutation matrix Po such that A =
PoBPT

o .

Lemma 1. Under the conditions stated above, the minimum value of the optimiza-
tion problem (3.3) is 2

√
2e and it is reached by Po, although the solution is not

unique in general. Moreover, any solution P of problem (3.3) satisfies AP = PB.

Proof: Let (a)k denote all the p2 entries of AP, and (b)k all the entries of PB.

Then f(P) can be re-written as f(P) =
∑

k

√
a2
k + b2k .

Observing that
√
a2 + b2 ≥

√
2

2 (a+ b), we have

f(P ) =
∑
k

√
a2
k + b2k ≥

∑
k

√
2

2
(ak + bk) . (3.4)
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Now, since P is doubly stochastic, the sum of all the entries of AP is equal to the
sum of all the entries of A, which is two times the number of edges. Therefore∑

k ak =
∑

k bk = 2e and f(P) ≥ 2
√

2e.

The equality in (3.4) holds if and only if ak = bk for all k, which means that
AP = PB. In particular, this is true for the permutation Po, which completes
the proof of all the statements. �

This Lemma shows that the fact that the weights in A and B are not compared
in magnitude does not affect the matching performance when the two graphs are
isomorphic and have equal weights. On the other hand, this property places a fun-
damental role when moving away from this setting. Indeed, since the group lasso
tends to set complete groups to zero, and the actual value of the non-zero coeffi-
cients is less important, this allows to group very dissimilar coefficients together,
if that would result in fewer active groups. This is even more evident when using
the l∞ norm instead of the l2 norm of the groups, and the optimization remains
very similar to the one presented below. Moreover, the formulation remains valid
when both graphs come from different modalities, a fundamental property when
for example addressing alignment-free collaborative graph inference as presented
in Section 3.2.4 (the elegance with which this graph matching formulation fits into
such problem will be further stressed there). In contrast, the Frobenious-based
approaches mentioned in the introduction are very susceptible to differences in
edge magnitudes and not appropriate for multimodal matching1.

3.2.3 Optimization
The proposed minimization problem (3.3) is convex but non-differentiable. Here
we use an efficient variant of the Alternating Direction Method of Multipliers
(ADMM) [15]. The idea is to write the optimization problem as an equivalent
artificially constrained problem, using two new variables α,β ∈ Rp×p:

min
P∈D

∑
i,j

||
(
αij ,βij

)
||2 s.t. α = AP, β = PB. (3.5)

The ADMOM method generates a sequence which converges to the minimum of
the augmented Lagrangian of the problem:

L(P,α,β,U,V) =
∑
i,j

||
(
αij ,βij

)
||2 +

c

2
||α−AP + U||2 +

c

2
||β −PB + V||2 ,

where U and V are related to the Lagrange multipliers and c is a fixed constant.

The decoupling produced by the new artificial variables allows to update their
values one at a time, minimizing the augmented Lagrangian L. We first update
the pair (α,β) while keeping fixed (P,U,V); then we minimize for P; and finally
update U and V, as described next in Algorithm 1.

1If both graphs are binary and we limit to permutation matrices (for which there are
no algorithms known to find the solution in polynomial time), then the minimizers of (2)
and (1) are the same (Vince Lyzinski, personal communication).
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Input : Adjacency matrices A,B, c > 0.
Output: Permutation matrix P∗

Initialize U = 0, V = 0, P = 1
p1

T1

while stopping criterion is not satisfied do
(αt+1,βt+1) =
arg minα,β

∑
i,j ||

(
αij ,βij

)
||2 + c

2 ||α−APt+Ut||2F + c
2 ||β−PtB+Vt||2F

Pt+1 = arg minP∈D
1
2 ||α

t+1 −AP + Ut||2F + 1
2 ||β

t+1 −PB + Vt||2F
Ut+1 = Ut +αt+1 −APt+1

Vt+1 = Vt + βt+1 −Pt+1B
end

P∗ = argminQ∈P ||Q−P||2F
Algorithm 1: Robust graph matching algorithm. See text for implemen-
tation details of each step.

The first subproblem is decomposable into p2 scalar problems (one for each
matrix entry),

min
αij ,βij

||
(
αij ,βij

)
||2 +

c

2
(αij − (APt)ij + Ut

ij)
2 +

c

2
(βij − (PtB)ij + Vt

ij)
2.

From the optimality conditions on the subgradient of this subproblem, it can be
seen that this can be solved in closed form by means of the well know vector

soft-thresholding operator [100]: Sv(b, λ) =
[
1− λ

||b||2

]
+

b .

The second subproblem is a minimization of a convex differentiable function
over a convex set, so general solvers can be chosen for this task. For instance, a
projected gradient descent method can be used. However, this would require to
compute several projections onto D per iteration, which is one of the computation-
ally most expensive steps. Nevertheless, we can choose to solve a linearized version
of the problem while keeping the convergence guarantees of the algorithm [64]. In
this case, the linear approximation of the first term is:

1

2
||αt+1 −AP + Ut||2F ≈

1

2
||αt+1 −APk + Ut||2F + 〈gk,P−Pk〉+ 1

2τ
||P−Pk||2F ,

where gk = −AT(αt+1 + Ut−APk) is the gradient of the linearized term, 〈·, ·〉 is
the usual inner product of matrices, and τ is any constant such that τ < 1

ρ(ATA)
,

with ρ(·) being the spectral norm.
The second term can be linearized analogously, so the minimization of the

second step becomes

min
P∈D

1

2
||P−

(
Pk + τAT(αt+1 + Ut −APk)

)︸ ︷︷ ︸
fixed matrix C

||2F+
1

2
||P−

(
Pk + τ(βt+1 + Vt −PkB)BT

)︸ ︷︷ ︸
fixed matrix D

||2F

which is simply the projection of the matrix 1
2(C + D) over D.

Summarizing, each iteration consists of p2 vector thresholdings when solving for
(α,β), one projection over D when solving for P, and two matrix multiplications
for the update of U and V. The code is publicly available at www.fing.edu.uy/

~mfiori.
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3.2. Robust Multimodal Graph Matching

3.2.4 Application to joint graph inference of not pre-aligned data
Estimating the inverse covariance matrix is a very active field of research. In par-
ticular the inference of the support of this matrix, since the non-zero entries have
information about the conditional dependence between variables. In numerous ap-
plications, this matrix is known to be sparse, and in this regard the graphical Lasso
has proven to be a good estimator for the inverse covariance matrix [40,101] (also
for non-Gaussian data [66]). Assume that we have a p-dimensional multivariate
normal distributed variable X ∼ N (0,Σ); let X ∈ Rk×p be a data matrix contain-
ing k independent observations of X, and S its empirical covariance matrix. The
graphical Lasso estimator for Σ−1 is the matrix Θ which solves the optimization
problem

min
Θ�0

tr(SΘ)− log det Θ + λ
∑
i,j

|Θij | , (3.6)

which corresponds to the maximum likelihood estimator for Σ−1 with an l1 regu-
larization.

Collaborative network inference has gained a lot of attention in the last years
[22], specially with fMRI data, e.g., [93]. This problem consist of estimating two
(or more) matrices Σ−1

A and Σ−1
B from data matrices XA and XB as above, with

the additional prior information that the inverse covariance matrices share the
same support. The joint estimation of ΘA and ΘB is performed by solving

min
ΘA�0,ΘB�0

tr(SAΘA)−log det ΘA+tr(SBΘB)−log det ΘB+λ
∑
i,j

∣∣∣∣(ΘA
ij ,Θ

B
ij

)
||2 ,

(3.7)
where the first four terms correspond to the maximum likelihood estimators for
ΘA,ΘB, and the last term is the group Lasso penalty which promotes that ΘA

and ΘB have the same active set.
This formulation relies on the limiting underlying assumption that the vari-

ables in both datasets (the columns of XA and XB) are in correspondence, i.e., the
graphs determined by the adjacency matrices ΘA and ΘB are aligned. However,
this is in general not the case in practice. Motivated by the formulation presented
in Section 3.2.2, we propose to overcome this limitation by incorporating a permu-
tation matrix into the optimization problem, and jointly learn it on the estimation
process. The proposed optimization problem is then given by

min
ΘA,ΘB�0

P∈P

tr(SAΘA)−log det ΘA+tr(SBΘB)−log det ΘB+λ
∑
i,j

∣∣∣∣((ΘAP)ij , (PΘB)ij
)
||2.

(3.8)
Even after the relaxation of the constraint P ∈ P to P ∈ D, the joint minimization
of (3.8) over (ΘA,ΘB) and P is a non-convex problem. However it is convex when
minimized only over (ΘA,ΘB) or P leaving the other fixed. Problem (3.8) can
be then minimized using a block-coordinate descent type of approach, iteratively
minimizing over (ΘA,ΘB) and P.

The first subproblem (solving (3.8) with P fixed) is a very simple variant
of (3.7), which can be solved very efficiently by means of iterative thresholding
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algorithms [38]. In the second subproblem, since (ΘA,ΘB) are fixed, the only term
to minimize is the last one, which corresponds to the graph matching formulation
presented in Section 3.2.2.

3.2.5 Experimental results
We now present the performance of our algorithm and compare it with the most
recent techniques in several scenarios including synthetic and real graphs, mul-
timodal data, and fMRI experiments. In the cases where there is a “ground
truth,” the performance is measured in terms of the matching error, defined as
||Ao −PBoP

T||2F , where P is the obtained permutation matrix and (Ao,Bo) are
the original adjacency matrices.

3.2.6 Graph matching: Synthetic graphs
We focus here in the traditional graph matching problem of undirected weighted
graphs, both with and without noise. More precisely, let Ao be the adjacency
matrix of a random weighted graph and Bo a permuted version of it, generated
with a random permutation matrix Po, i.e., Bo = PT

o AoPo. We then add a certain
number N of random edges to Ao with the same weight distribution as the original
weights, and another N random edges to Bo, and from these noisy versions we
try to recover the original matching (or any matching between Ao and Bo, since
it may not be unique).

We show the results using three different techniques for the generation of the
graphs: the Erdős-Rényi model [35], the model by [11] for scale-free graphs, and
graphs with a given degree distribution generated with the BTER algorithm [83].
These models are representative of a wide range of real-world graphs [74]. In the
case of the BTER algorithm, the degree distribution was generated according to
a geometric law, that is: Prob(degree = t) = (1− e−µ)eµt.

We compared the performance of our algorithm with the technique by [102]
(referred to as PATH), the FAQ method described in [95], and the QCP approach.

Figure 3.1 shows the matching error as a function of the noise level for graphs
with p = 100 nodes (top row), and for p = 150 nodes (bottom row). The number
of edges varies between 200 and 400 for graphs with 100 nodes, and between 300
and 600 for graphs with 150 nodes, depending on the model. The performance is
averaged over 100 runs. This figure shows that our method is more stable, and
consistently outperforms the other methods (considered state-of-the-art), specially
for noise levels in the low range (for large noise levels, is not clear what a “true”
matching is, and in addition the sparsity hypothesis is no longer valid).

3.2.7 Graph matching: Real graphs
We now present similar experiments to those in the previous section but with
real graphs. We use the C. elegans connectome. Caenorhabditis elegans is an
extensively studied roundworm, whose somatic nervous system consists of 279
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(a) Erdős-Rényi graphs
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(b) Erdős-Rényi graphs
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(d) Scale-free graphs
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Figure 3.1: Matching error for synthetic graphs with p = 100 nodes (left column) and p = 150
nodes (right column). In solid black our proposed GLAG algorithm, in long-dashed blue the
PATH algorithm, in short-dashed red the FAQ method, and in dotted black the QCP.

neurons that make synapses with other neurons. The two types of connections
(chemical and electrical) between these 279 neurons have been mapped [94], and
their corresponding adjacency matrices, Ac and Ae, are publicly available.

We match both the chemical and the electrical connection graphs against noisy
artificially permuted versions of them. The permuted graphs are constructed fol-
lowing the same procedure used in Section 3.2.6 for synthetic graphs. The weights
of the added noise follow the same distribution as the original weights. The results
are shown in Figure 3.2. These results suggest that from the prior art, the PATH
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algorithm is more suitable for the electrical connection network, while the FAQ
algorithm works better for the chemical one. Our method outperforms both of
them for both types of connections.
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(a) Electrical connection graph
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(b) Chemical connection graph

Figure 3.2: Matching error for the C. elegans connectome, averaged over 50 runs. In solid
black our proposed GLAG algorithm, in long-dashed blue the PATH algorithm, and in short-
dashed red the FAQ method. Note that in the chemical connection graph, the matching error
of our algorithm is zero until noise levels of ≈ 50.

3.2.8 Multimodal graph matching
One of the advantages of the proposed approach is its capability to deal with
multimodal data. As discussed in Section 3.2.2, the group Lasso type of penalty
promotes the supports of AP and PB to be identical, almost independently of
the actual values of the entries. This allows to match weighted graphs where the
weights may follow completely different probability distributions. This is com-
monly the case when dealing with multimodal data: when a network is measured
using significantly different modalities, one expects the underlying connections to
be the same but no relation can be assumed between the actual weights of these
connections. This is even the case for example for fMRI data when measured
with different instruments. In what follows, we evaluate the performance of the
proposed method in two examples of multimodal graph matching.

We first generate an auxiliary binary random graph Ab and a permuted version
Bb = PT

o AbPo. Then, we assign weights to the graphs according to distributions
pA and pB (that will be specified for each experiment), thus obtaining the weighted
graphs A and B. We then add noise consisting of spurious weighted edges follow-
ing the same distribution as the original graphs (i.e., pA for A and pB for B).
Finally, we run all four graph matching methods to recover the permutation. The
matching error is measured in the unweighted graphs as ||Ab − PBbP

T ||F . Note
that while this metric might not be appropriate for the optimization stage when
considering multimodal data, it is appropriate for the actual error evaluation, mea-
suring mismatches. Comparing with the original permutation matrix may not be
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3.2. Robust Multimodal Graph Matching

very informative since there is no guarantee that the matrix is unique, even for
the original noise-free data.

Figures 3.3a and 3.3b show the comparison when the weights in both graphs
are Gaussian distributed, but with different means and variances. Figures 3.3c
and 3.3d show the performances when the weights of A are Gaussian distributed,
and the ones of B follow a uniform distribution. See captions for details. These
results confirm the intuition described above, showing that our method is more
suitable for multimodal graphs, specially in the low range of noise.
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(b) Scale-free graphs
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(c) Erdős-Rényi graphs
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(d) Scale-free graphs

Figure 3.3: Matching error for multimodal graphs with p = 100 nodes. In (a) and (b), weights
in A are N (1, 0.4) and weights in B are N (4, 1). In (c) and (d), weights in A are N (1, 0.4)
and weights in B are uniform in [1, 2]. In solid black our proposed GLAG algorithm, in long-
dashed blue the PATH algorithm, in short-dashed red the FAQ method, and in dotted black
the QCP.

3.2.9 Collaborative inference
In this last experiment, we illustrate the application of the permuted collaborative
graph inference presented in Section 3.2.4 with real resting-state fMRI data, pub-
licly available [77]. We consider here test-retest studies, that is, the same subject
undergoing resting-state fMRI in two different sessions separated by a break. Each
session consists of almost 10 minutes of data, acquired with a sampling period of
0.645s, producing about 900 samples per study. The CC200 atlas [28] was used to
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extract the time-series for the ≈ 200 regions of interest (ROIs), resulting in two
data matrices XA,XB ∈ R900×200, corresponding to test and retest respectively.

To illustrate the potential of the proposed framework, we show that using only
part of the data in XA and part of the data in a permuted version of XB, we
are able to infer a connectivity matrix almost as accurately as using the whole
data. Working with permuted data is very important in this application in order
to handle possible miss-alignments to the atlas.

Since there is no ground truth for the connectivity, and as mentioned before the
collaborative setting (3.7) has already been proven successful, we take as ground
truth the result of the collaborative inference using the empirical covariance ma-
trices of XA and XB, denoted by SA and SB. The result of this collaborative
inference procedure are the two inverse covariance matrices ΘA

GT and ΘB
GT . In

short, the gold standard built for this experiment is found by solving (obtained
with the entire data)

min
ΘA�0,ΘB�0

tr(SAΘA)−log det ΘA+tr(SBΘB)−log det ΘB+λ
∑
i,j

∣∣∣∣(ΘA
ij ,Θ

B
ij

)
||2 .

Now, let XA
H be the first 550 samples of XA, and XB

H the first 550 samples of
XB, which correspond to a little less than 6 minutes of study. We compute the
empirical covariance matrices SAH and SBH of these data matrices, and we artificially

permute the second one: S̃
B
H = PT

o SBHPo. With these two matrices SAH and S̃
B
H

we run the algorithm described in Section 3.2.4, which alternately computes the
inverse covariance matrices ΘA

H and ΘB
H and the matching P between them.

We compare this approach against the computation of the inverse covariance
matrix using only one of the studies. Let ΘA

s and ΘB
s be the results of the graphical

Lasso (3.6) using SA and SB:

ΘK
s = argmin

Θ�0
tr(SKΘ)− log det Θ + λ

∑
i,j

|Θij | , for K = {A,B}.

This experiment is repeated for 5 subjects in the database. The errors ||ΘA
GT −

ΘA
s ||F and ||ΘA

GT −ΘA
H ||F are shown in Figure 3.4. The errors for ΘB are very

similar. Using less than 6 minutes of each study, with the variables not pre-
aligned, the permuted collaborative inference procedure proposed in Section 3.2.4
outperforms the classical graphical Lasso using the full 10 minutes of study.

3.2.10 Conclusions
We have presented a new formulation for the graph matching problem, and pro-
posed an optimization algorithm for minimizing the corresponding cost function.
The reported results show its suitability for the graph matching problem of weighted
graphs, outperforming previous state-of-the-art methods, both in synthetic and
real graphs. Since in the problem formulation the weights of the graphs are not
compared explicitly, the method can deal with multimodal data, outperforming
the other compared methods. In addition, the proposed formulation naturally
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Figure 3.4: Inverse covariance matrix estimation for fMRI data. In blue, error using one
complete 10 minutes study: ||ΘA

GT −ΘA
s ||F . In red, error ||ΘA

GT −ΘA
H ||F with collaborative

inference using about 6 minutes of each study, but solving for the unknown node permutations
at the same time.

fits into the pre-alignment-free collaborative network inference framework, where
the permutation is estimated together with the underlying common network, with
promising preliminary results in applications with real data.

3.3 Comparison of Existing Methods With a New One
Section summary

The first part of Chapter 4 is mainly dedicated to prove a theorem connect-
ing the graph matching problem with some relaxations, and giving optimistic and
pessimistic results for these relaxations. These theoretical results, which are also
stated in this section, suggest that initializing the indefinite algorithm with the
convex optimum might yield improved practical performance. Indeed, experimen-
tal results illuminate and corroborate these theoretical findings, demonstrating
that excellent results are achieved in both benchmark and real data problems by
amalgamating the two approaches.

3.3.1 Theoretical and experimental framework
Our theoretical results will be set in the context of correlated random (simple)
Bernoulli graphs, which can be used to model many real-data scenarios. Random
Bernoulli graphs are the most general edge independent random graphs, and con-
tain many important random graph families including Erdős-Rényi and the widely
used stochastic block model of [54].

The random Bernoulli graphs are defined as follows. Given n ∈ Z+, a real num-
ber ρ ∈ [0, 1], and a symmetric, hollow matrix Λ ∈ [0, 1]n×n, define E := {{i, j} :
i ∈ [n], j ∈ [n], i 6= j}, where [n] := {1, 2, . . . , n}. Two random graphs with re-
spective n × n adjacency matrices A and B are ρ-correlated Bernoulli(Λ) dis-
tributed if, for all {i, j} ∈ E , the random variables (matrix entries) Ai,j ,Bi,j

are Bernoulli(Λi,j) distributed, and all of these random variables are collectively
independent except that, for each {i, j} ∈ E , the Pearson product-moment corre-
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lation coefficient for Ai,j ,Bi,j is ρ. It is straightforward to show that the pa-
rameters n, ρ, and Λ completely specify the random graph pair distribution,
and the distribution may be achieved by first, for all {i, j} ∈ E , having Bij ∼
Bernoulli(Λi,j) independently drawn and then, conditioning on B, have Ai,j ∼
Bernoulli ((1− ρ)Λi,j + ρBi,j) independently drawn. While ρ = 1 would imply the
graphs are isomorphic, this model allows for a natural vertex alignment (namely
the identity function) for ρ < 1, i.e. when the graphs are not necessarily isomor-
phic.

Let us consider a sequence of correlated random Bernoulli graphs for n =
1, 2, 3, . . . , where Λ is a function of n. When we say that a sequence of events,
{Em}∞m=1, holds almost always we mean that almost surely it happens that the
events in the sequence occur for all but finitely many m.

The following theorem, which is proved in the next chapter, explores the trade-
off between tractability and correctness when relaxing the graph matching prob-
lem.

Theorem 3.1. Suppose A and B are adjacency matrices for ρ-correlated Bernoulli(Λ)
graphs, and there is an α ∈ (0, 1/2) such that Λi,j ∈ [α, 1 − α] for all i 6= j. Let
P∗ ∈ P, and denote A′ := P∗AP∗T.
a) If (1− α)(1− ρ) < 1/2, then it almost always holds that

arg min
D∈D
−〈A′D,DB〉 = arg min

P∈P
‖A′ −PBPT ‖F = {P∗}.

b) If the between graph correlation ρ < 1, then it almost always holds that P∗ 6∈
arg minD∈D ‖A′D−DB‖F .

On one hand, we have an optimistic result (Theorem 3.1, part a)) about an
indefinite relaxation of the graph matching problem. However, since the objective
function is nonconvex, there is no efficient algorithm known to exactly solve this
relaxation. On the other hand, Theorem 3.1, part b), is a pessimistic result about a
commonly used efficiently solvable convex relaxation, which almost always provides
an incorrect/non-permutation solution.

After solving (approximately or exactly) the relaxed problem, the solution is
commonly projected to the nearest permutation matrix. We have not theoretically
addressed this projection step yet. It might be that, even though the solution in D
is not the correct permutation, it is very close to it, and the projection step fixes
this. We will show numerically that this is not the case.

We next present simulations that corroborate and illuminate the presented
theoretical results, address the projection step, and provide intuition and practical
considerations for solving the graph matching problem. Our simulated graphs have
n = 150 vertices and follow the Bernoulli model described above, where the entries
of the matrix Λ are i.i.d. uniformly distributed in [α, 1− α] with α = 0.1. In each
simulation, we run 100 Monte Carlo replicates for each value of ρ. Note that given
this α value, the threshold ρ in order to fulfill the hypothesis of the first part of
Theorem 3.1 (namely that (1− α)(1− ρ) < 1/2) is ρ = 0.44. As in Theorem 3.1,
for a fixed P ∗ ∈ P, we let A′ := P∗AP∗T, so that the correct vertex alignment
between A′ and B is provided by the permutation matrix P∗.
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Table 3.1. Notation

Notation Algorithm used Ref.

D∗ ∈ argminD∈D‖A′D−DB‖2
F F-W algorithm [46],

run to convergence [102]
Pc = projecting D∗ to Π Hungarian algorithm [62]
FAQ:P∗ FAQ init. at P∗ [95]
FAQ:D∗ FAQ init. at D∗ [95]
FAQ:J FAQ init. at J [95]

We then highlight the applicability of our theory and simulations in a series of
real data examples. In the first set of experiments, we match three pairs of graphs
with known latent alignment functions. We then explore the applicability of our
theory in matching graphs without a pre-specified latent alignment. Specifically,
we match 16 benchmark problems (those used in [95, 102]) from the QAPLIB
library of [18]. See Section 3.3.3 for more detail. As expected by the theory, in all
of our examples a smartly initialized local minimum of the indefinite relaxation
achieves best performance.

We summarize the notation we employ in Table 3.1. To find D∗, we employ
the F-W algorithm ([46, 102]), run to convergence, to exactly solve the convex
relaxation. We also use the Hungarian algorithm ([62]) to compute Pc, the pro-
jection of D∗ to P. To find a local minimum of minD∈D −〈A′D,DB〉, we use the
FAQ algorithm of [95]. We use FAQ:P∗, FAQ:D∗, and FAQ:J to denote the FAQ
algorithm initialized at P∗, D∗, and J := 1 · 1T /n (the barycenter of D). We
compare our results to the GLAG and PATH algorithms, implemented with off-
the-shelf code provided by the algorithms’ authors. We restrict our focus to these
algorithms (indeed, there are a multitude of graph matching algorithms present
in the literature) as these are the prominent relaxation algorithms; i.e., they all
first relax the graph matching problem, solve the relaxation, and then project the
solution onto Π.

3.3.2 On the convex relaxed graph matching problem
Theorem 3.1, part b, states that we cannot, in general, expect D∗ = P∗. However,
D∗ is often projected onto Π, which could potentially recover P∗. Unfortunately,
this projection step suffers from the same problems as rounding steps in many inte-
ger programming solvers, namely that the distance from the best interior solution
to the best feasible solution is not well understood.

In Figure 3.5, we plot ‖A′D∗ − D∗B‖2F versus the correlation between the
random graphs, with 100 replicates per value of ρ. Each experiment produces
a pair of dots, either a red/blue pair or a green/grey pair. The energy levels
corresponding to the red/green dots correspond to ‖A′D∗ − D∗B‖2F , while the
energies corresponding to the blue/grey dots correspond ‖A′Pc − PcB‖2F . The
colors indicate whether Pc was (green/grey pair) or was not (red/blue pair) P∗.
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The effect of projecting on mismatch energy
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Figure 3.5: For ρ ∈ [0.1, 1], we plot ‖A′D∗ − D∗B‖2F (red /green) and ‖A′Pc − PcB‖2F
(blue/gray). Red/blue dots correspond to simulations where Pc 6= P∗, and grey/green dots to
Pc = P∗. Black dots correspond to ‖A′P∗−P∗B‖2F . For each ρ, we ran 100 MC replicates.

The black dots correspond to the values of ‖A′P∗ −P∗B‖2F .

Note that, for correlations ρ < 1, D∗ 6= P∗, as expected from Theorem 3.1,
part b. Also note that, even for correlations greater than ρ = 0.44, we note
Pc 6= P∗ after projecting to the closest permutation matrix, even though with
high probability P ∗ is the solution to the unrelaxed problem.

We note the large gap between the pre/post projection energy levels when the
algorithm fails/succeeds in recovering P ∗, the fast decay in this energy (around
ρ ≈ 0.8 in Figure 3.5), and the fact that the value for ‖A′P ∗ − P ∗B‖2F can be
easily predicted from the correlation value. These together suggest that ‖A′Pc −
PcB‖2F −‖A′D∗−D∗B‖2F can be used a posteriori to assess whether or not graph
matching recovered P∗. This is especially true if ρ is known or can be estimated.

How far is D∗ from P∗? When the graphs are isomorphic (i.e., ρ = 1 in our
setting), then for a large class of graphs, with certain spectral constraints, then P∗

is the unique solution of the convex relaxed graph matching problem [1]. Indeed,
in Figure 3.5, when ρ = 1 we see that P∗ = D∗ as expected. On the other hand,
we know from Theorem 3.1, part b that if ρ < 1, it is often the case that D∗ 6= P∗.
We may think that, via a continuity argument, if the correlation ρ is very close to
one, then D∗ will be very close to P∗, and Pc will probably recover P∗.

We empirically explore this phenomena in Figure 3.6. For ρ ∈ [0.1, 1], with
100 MC replicates for each ρ, we plot the (Frobenius) distances from D∗ to Pc (in
blue), from D∗ to P∗ (in red), and from D∗ to a uniformly random permutation
in Π (in black). Note that all three distances are very similar for ρ < 0.8, implying
that D∗ is very close to the barycenter and far from the boundary of D. With this
in mind, it is not surprising that the projection fails to recover P∗ for ρ < 0.8 in
Figure 3.5, as at the barycenter, the projection onto Π is uniformly random.

For very high correlation values (ρ > 0.9), the distances to Pc and to P∗

sharply decrease, and the distance to a random permutation sharply increases.
This suggests that at these high correlation levels D∗ moves away from the barycen-
ter and towards P∗. Indeed, in Figure 3.5 we see for ρ > 0.9 that P∗ is the closest
permutation to D∗, and is typically recovered by the projection step.
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Figure 3.6: Distance from D∗ to Pc (in blue), to P∗ (in red), and to a random permutation
(in black). For each value of ρ, we ran 100 MC replicates.

3.3.3 On indefinite relaxed graph matching problem
The continuous problem one would like to solve, minD∈D −〈A′D,DB〉 (since its
optimum is P ∗ with high probability), is indefinite. One option is to look for a local
minimum of the objective function, as done in the FAQ algorithm of [95]. The FAQ
algorithm uses F-W methodology ([46]) to find a local minimum of −〈A′D,DB〉.
Not surprisingly (as there are many local minima), the performance of the al-
gorithm is heavily dependent on the initialization. Below we study the effect of
initializing the algorithm at the non-informative barycenter, at D∗ (a principled
starting point), and at P∗. We then compare performance of the different FAQ
initializations to the PATH algorithm [102] and to the GLAG algorithm [39].

The GLAG algorithm presents an alternate formulation of the graph matching
problem. The algorithm convexly relaxes the alternate formulation, solves the
relaxation and projects it onto Π. As demonstrated in [39], the algorithm’s main
advantage is in matching weighted graphs and multimodal graphs. The PATH
algorithm begins by finding D∗, and then solves a sequence of concave and convex
problems in order to improve the solution. The PATH algorithm can be viewed as
an alternative way of projecting D∗ onto Π. Together with FAQ, these algorithms
achieve the current best performance in matching a large variety of graphs (see
[39], [95], [102]). However, we note that GLAG and PATH often have significantly
longer running times than FAQ (even if computing D∗ for FAQ:D∗); see [70,95].

Figure 3.7 shows the success rate of the graph matching methodologies in re-
covering P∗. The vertical dashed red line at ρ = 0.44 corresponds to the threshold
in Theorem 3.1 part a (above which P∗ is optimal whp) for the parameters used
in these experiments, and the solid lines correspond to the performance of the
different methods: from left to right in gray, FAQ:P∗, FAQ:D∗, FAQ:J; in black,
the success rate of Pc; the performance of GLAG and PATH are plotted in blue
and red respectively.

Observe that, when initializing with P∗, the fact that FAQ succeeds in recov-
ering P∗ means that P∗ is a local minimum, and the algorithm did not move from
the initial point. From the theoretical results, this was expected for ρ > 0.44, and
the experimental results show that this is also often true for smaller values of ρ.
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Success rate for different methods and initializations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Correlation ρ

S
u

cc
es

s
ra

te

Figure 3.7: Success rate in recovering P∗. In gray, FAQ starting at, from left to right, P∗,
D∗, and J; in black, Pc; in red, PATH; in blue, GLAG. For each ρ, we ran 100 MC replicates.
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Figure 3.8: Average run time for FAQ:D∗ (note that this does not include the time to find
D∗) and FAQ:J in gray; finding Pc (first finding D∗) in black; PATH in red; and GLAG in
blue. For each ρ, we average over 100 MC replicates. Note that the runtime of PATH drop
precipitously at ρ = 0.6, which corresponds to the performance increase in Figure 3.7.

However, this only means that P∗ is a local minimum, and the function could have
a different global minimum. On the other hand, for very loosely correlated graphs
(ρ < 0.3), P∗ is not even a local minimum.

The difference in the performance illustrated by the gray lines indicates that the
resultant graph matching solution can be improved by using D∗ as an initialization
to find a local minimum of the indefinite relaxed problem. We see in the figure
that FAQ:D∗ achieves best performance, while being computationally less intensive
than PATH and GLAG, see Figure 3.8 for the runtime result. This amalgam of the
convex and indefinite methodologies (initialize indefinite with the convex solution)
is an important tool for obtaining solutions to graph matching problems, providing
a computationally tractable algorithm with state-of-the-art performance.

However, for all the algorithms there is still room for improvement. In these
experiments, for ρ ∈ [0.44, 0.7] theory guarantees that with high probability the
global minimum of the indefinite problem is P∗, and we cannot find it with the
available methods.

When FAQ:D∗ fails to recover P∗, how close is the objective function at
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Local and global minima of the indefinite relaxation
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Figure 3.9: Value of−〈A′D,DB〉 for D = P∗ (black) and for the output of FAQ:D∗ (red/blue
indicating failure/success in recovering the true permutation). For each ρ, we ran 100 MC
replicates.

the obtained local minima to the objective function at P∗? Figure 3.9 shows
−〈A′D,DB〉 for the true permutation, P∗, and for the pre-projection doubly
stochastic local minimum found by FAQ:D∗. For 0.35 < ρ < 0.75, the state-of-
the-art algorithm not only fails to recover the correct bijection, but also the value
of the objective function is relatively far from the optimal one. There is a tran-
sition (around ρ ≈ 0.75) where the algorithm moves from getting a wrong local
minimum to obtaining P∗ (without projection!). For low values of ρ, the objective
function values are very close, suggesting that both P∗ and the pre-projection
FAQ solution are far from the true global minima. At ρ ≈ 0.3, we see a separation
between the two objective function values (agreeing with the findings in Figure
3.7). As ρ > 0.44, we expect that P∗ is the global minima and the pre-projection
FAQ solution is far from P∗ until the phase transition at ρ ≈ 0.75.

Real data experiments

We further demonstrate the applicability of our theory in a series of real data
examples. First we match three pairs of graphs where a latent alignment is known.
We further compare different graph matching approaches on a set of 16 benchmark
problems (those used in [95, 102]) from the QAPLIB QAP library of [18], where
no latent alignment is known a priori. Across all of our examples, an intelligently
initialized local solution of the indefinite relaxation achieves best performance.

Our first example is from human connectomics. For 45 healthy patients, we
have DT-MRI scans from one of two different medical centers: 21 patients scanned
(twice) at the Kennedy Krieger Institute (KKI), and 24 patients scanned (once)
at the Nathan Kline Institute (NKI) (all data available at http://openconnecto.
me/data/public/MR/MIGRAINE_v1_0/). Each scan is identically processed via the
MIGRAINE pipeline of [53] yielding a 70 vertex weighted symmetric graph. In the
graphs, vertices correspond to regions in the Desikan brain atlas, which provides
the latent alignment of the vertices. Edge weights count the number of neural fiber
bundles connecting the regions. We first average the graphs within each medical
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Table 3.2. ‖A′P − PB‖F for the P given by each algorithm together with the number of
vertices correctly matched (ncorr.) in real data experiments

Algorithm KKI-NKI Wiki. C. elegans

Truth ‖A′P−PB‖F 82892.87 189.35 155.00
ncorr. 70 1381 253

Convex relax. ‖A′P−PB‖F 104941.16 225.27 153.38
ncorr. 41 97 2

GLAG ‖A′P−PB‖F 104721.97 219.98 145.53
ncorr. 36 181 4

PATH ‖A′P−PB‖F 165626.63 252.55 158.60
ncorr. 1 1 1

FAQ:J ‖A′P−PB‖F 93895.21 205.28 127.55
ncorr. 38 30 1

FAQ:D∗ ‖A′P−PB‖F 83642.64 192.11 127.50
ncorr. 63 477 5

center and then match the averaged graphs across centers.

For our second example, the graphs consist of the two-hop neighborhoods of
the “Algebraic Geometry” page in the French and English Wikipedia graphs. The
1382 vertices correspond to Wikipedia pages with (undirected) edges representing
hyperlinks between the pages. Page subject provides the latent alignment function,
and to make the graphs of commensurate size we match the intersection graphs.

Lastly, we match the chemical and electrical connectomes of the C. elegans
worm. The connectomes consist of 253 vertices, each representing a specific neuron
(the same neuron in each graph). Weighted edges representing the strength of the
(electrical or chemical) connection between neurons. Additionally, the electrical
graph is directed while the chemical graph is not.

The results of these experiments are summarized in Table 3.2. In each example,
the computationally inexpensive FAQ:D∗ procedure achieves the best performance
compared to the more computationally expensive GLAG and PATH procedures.
This reinforces the theoretical and simulation results presented earlier, and again
points to the practical utility of our amalgamated approach. While there is a
canonical alignment in each example, the results point to the potential use of
our proposed procedure (FAQ:D∗) for measuring the strength of this alignment,
i.e., measuring the strength of the correlation between the graphs. If the graphs
are strongly aligned, as in the KKI-NKI example, the performance of FAQ:D∗

will be close to the truth and a large portion of the latent alignment with be
recovered. As the alignment is weaker, FAQ:D∗ will perform even better than the
true alignment, and the true alignment will be poorly recovered, as we see in the
C. elegans example.

What implications do our results have in graph matching problems without a
natural latent alignment? To test this, we matched 16 particularly difficult ex-
amples from the QAPLIB library of [18]. We choose these particular examples,
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Table 3.3. ‖A′P − PB‖2F for the different tested algorithms on 16 benchmark examples of
the QAPLIB library.

QAP OPT Convex rel. GLAG PATH
Non-Convex. Initialization:
Barycenter Convex sol

chr12c 11156 21142 61430 18048 13088 13610
chr15a 9896 41208 78296 19086 29018 16776
chr15c 9504 47164 82452 16206 11936 18182
chr20b 2298 9912 13728 5560 2764 3712
chr22b 6194 10898 21970 8500 8774 7332
esc16b 292 314 320 300 314 292
rou12 235528 283422 353998 256320 254336 254302
rou15 354210 413384 521882 391270 371458 368606
rou20 725522 843842 1019622 778284 759838 754122
tai10a 135028 175986 218604 152534 157954 149560
tai15a 388214 459480 544304 419224 397376 397926
tai17a 491812 606834 708754 530978 520754 516492
tai20a 703482 810816 1015832 753712 736140 756834
tai30a 1818146 2089724 2329604 1903872 1908814 1858494
tai35a 2422002 2859448 3083180 2555110 2531558 2524586
tai40a 3139370 3727402 4001224 3281830 3237014 3299304

because they were previously used in [95,102] to assess and demonstrate the effec-
tiveness of their respective matching procedures. Results are summarized in Table
3.3. We see that in every example, the indefinite relaxation (suitably initialized)
obtains the best possible result. Although there is no latent alignment here, if we
view the best possible alignment as the “true” alignment here, then this is indeed
suggested by our theory and simulations. As the FAQ procedure is computation-
ally fast (even initializing FAQ at both J and D∗ is often comparatively faster than
GLAG and PATH; see [95] and [70]), these results further point to the applica-
bility of our theory. Once again, theory suggests, and experiments confirm, that
approximately solving the indefinite relaxation yields the best matching results.

3.3.4 Other random graph models
While the random Bernoulli graph model is the most general edge-independent
random graph model, in this section we present analogous experiments for a wider
variety of edge-dependent random graph models. For these models, we are un-
aware of a simple way to exploit pairwise edge correlation in the generation of
these graphs, as was present in Section 4.2.1. Here, to simulate aligned non-
isomorphic random graphs, we proceed as follows. We generate a graph G1 from
the appropriate underlying distribution, and then model G2 as an errorful version
of G1; i.e., for each edge in G1, we randomly flip the edge (i.e., bit-flip from 0 7→ 1
or 1 7→ 0) independently with probability p ∈ [0, 1]. We then graph match G1

and G2, and we plot the performance of the algorithms in recovering the latent
alignment function across a range of values of p.
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Matching performance for power law graphs
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Figure 3.10: Success rate in recovering P∗ for 150 vertex power law graphs with β = 2 for: In
gray, from right to left, FAQ:P∗, FAQ:D∗, and FAQ:J; in black, Pc; in red, PATH; in blue,
GLAG. For each value of the bit-flip parameter p, we ran 100 MC replicates.

We first evaluate the performance of our algorithms on power law random
graphs [11]; these graphs have a degree distribution that follows a power law, i.e.,
the proportion of vertices of degree d is proportional to d−β for some constant
β > 0. These graphs have been used to model many real data networks, from the
Internet [3, 36], to social and biological networks [51], to name a few. In general,
these graphs have only a few vertices with high degree, and the great majority of
the vertices have relatively low degree.

Figure 3.10 shows the performance comparison for the methods analyzed above:
FAQ:P∗, FAQ:D∗, FAQ:J, Pc, PATH, and GLAG. For a range of p ∈ [0, 1], we
generated a 150 vertex power law graph with β = 2, and subsequently graph
matched this graph and its errorful version. For each p, we have 100 MC repli-
cates. As with the random Bernoulli graphs, we see from Figure 3.10 that the true
permutation is a local minimum of the non-convex formulation for a wide range
of flipping probabilities (p ≤ 0.3), implying that in this range of p, G1 and G2

share significant common structure. Across all values of p < 0.5, FAQ:P∗ out-
performs all other algorithms considered (with FAQ:D∗ being second best across
this range). This echoes the results of Sections (3.3.2)–(3.3.3), and suggests an
analogue of Theorem 3.1 may hold in the power law setting. We are presently
investigating this.

We next evaluate the performance of our algorithms on graphs with bounded
maximum degree (also called bounded valence graphs). These graphs have been
extensively studied in the literature, and for bounded valence graphs, the graph
isomorphism problem is in P [68]. For the experiments in this paper we generate
a random graph from the model in [8] with maximum degree equal to 4, and
vary the graph order from 50 to 350 vertices. Figure 3.11 shows the comparison
of the different techniques and initializations for these graphs, across a range of
bit-flipping parameters p ∈ [0, 1].

It can be observed that even for isomorphic graphs (p = 0), all but FAQ:P∗

fail to perfectly recover the true alignment. We did not see this phenomena in
the other random graph models, and this can be explained as follows. It is a well
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Success rates for bounded degree graphs
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Figure 3.11: Success rate in recovering P∗ for bounded degree graphs (max degree 4). In gray,
from right to left, FAQ:P∗, FAQ:D∗, and FAQ:J; in black, Pc; in red, PATH; in blue, GLAG.
For each probability we ran 100 MC replicates.

known fact that convex relaxations fail for regular graphs [43], and also that the
bounded degree model tends to generate almost regular graphs [61]. Therefore,
even without flipped edges, the graph matching problem with the original graphs
is very ill-conditioned for relaxation techniques. Nevertheless, the true alignment
is a local minimum of the non-convex formulation for a wide range of values of
p (shown by FAQ:P∗ performing perfectly over a range of p in Figure 3.11). We
again note that FAQ:D∗ outperforms Pc, PATH and GLAG across all graph sizes
and bit-flip parameters p. This suggests that a variant of Theorem 3.1 may also
hold for bounded valence graphs as well, and we are presently exploring this.

We did not include experiments with any random graph models that are highly
regular and symmetric (for example, mesh graphs). Symmetry and regularity
have two effects on the graph matching problem. Firstly, it is well known that
Pc 6= P∗ for non-isomorphic regular graphs (indeed, J is a solution of the convex
relaxed graph matching problem). Secondly, the symmetry of these graphs means
that there are potentially several isomorphisms between a graph and its vertex
permuted analogue. Hence, any flipped edge could make permutations other than
P∗ into the minima of the graph matching problem.

3.3.5 Directed graphs
All the theory developed above is proven in the undirected graph setting (i.e., A
and B are assumed symmetric). However, directed graphs are common in nu-
merous applications. Figure 3.12 repeats the analysis of Figure 3.7 with directed
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graphs, all other simulation parameters being unchanged. The PATH algorithm is
not shown in this new figure because it is designed for undirected graphs, and its
performance for directed graphs is very poor. Recall that in Figure 3.7, i.e., in the
undirected setting, FAQ:J performed significantly worse than Pc. In Figure 3.12,
i.e., the directed setting, we note that the performance of FAQ:J outperforms Pc

over a range of ρ ∈ [0.4, 0.7]. As in the undirected case, we again see significant
performance improvement (over FAQ:J, Pc, and GLAG) when starting FAQ from
D∗ (the convex solution). Indeed, we suspect that a directed analogue of Theorem
3.1 holds, which would explain the performance increase achieved by the noncon-
vex relaxation over Pc. Here, we note that the setting for the remainder of the
examples considered is the undirected graphs setting.

3.3.6 Seeded graphs
In some applications it is common to have some a priori information about partial
vertex correspondences, and seeded graph matching includes these known partial
matchings as constraints in the optimization (see [1, 44, 71]). However, seeds do
more than just reducing the number of unknowns in the alignment of the vertices.
Even a few seeds can dramatically increase graph matching performance, and (in
the ρ-correlated Erdős-Rényi setting) a logarithmic (in n) number of seeds contain
enough signal in their seed–to–nonseed adjacency structure to a.s. perfectly align
two graphs [71]. Also, as shown in the deterministic graph setting in [1], very often
D∗ is closer to P∗.

In Figure 3.13, the graphs are generated from the ρ-correlated random Bernoulli
model with random Λ (entrywise uniform over [0.1, 0.9]). We run the Frank-Wolfe
method (modified to incorporate the seeds) to solve the convex relaxed graph
matching problem, and the method in [44, 71] to approximately solve the non-
convex relaxation, starting from J, D∗, and P∗. Note that with seeds, perfect
matching is achieved even below the theoretical bound on ρ provided in Theorem
1 (for ensuring P∗ is the global minimizer). This provides a potential way to im-
prove the theoretical bound on ρ in Theorem 3.1, and the extension of Theorem 1
for graphs with seeds is the subject of future research.

With the exception of the nonconvex relaxation starting from P∗, each of the
different FAQ initializations and the convex formulation all see significantly im-
proved performance as the number of seeds increases. We also observe that the
nonconvex relaxation seems to benefit much more from seeds than the convex re-
laxation. Indeed, when comparing the performance with no seeds, the Pc performs
better than FAQ:J. However, with just five seeds, this behavior is inverted. Also
of note, in cases when seeding returns the correct permutation, we’ve empirically
observed that merely initializing the FAQ algorithm with the seeded start, and not
enforcing the seeding constraint, also yields the correct permutation as its solution
(not shown).

Figure 3.14 shows the running time (to obtain a solution) when starting from
D∗ for the nonconvex relaxation, using different numbers of seeds. For a fixed seed
level, the running time is remarkably stable across ρ when FAQ does not recover
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Figure 3.12: Success rate for directed graphs. We plot Pc (black), the GLAG method (blue),
and the nonconvex relaxation starting from different points in green, from right to left: FAQ:J,
FAQ:D∗, FAQ:P∗.
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Figure 3.13: Success rate of different methods using seeds. We plot Pc (top left), FAQ:J (top
right), FAQ:D∗ (bottom left), and FAQ:P∗ (bottom right). For each method, the number of
seeds increases from right to left: 0 (black), 5 (green), 10 (blue) and 15 (red) seeds. Note
that more seeds increases the success rate across the board.

the true permutation. On the other hand, when FAQ does recover the correct
permutation, the algorithm runs significantly faster than when it fails to recover
the truth. This suggests that, across all seed levels, the running time might, by
itself, be a good indicator of whether the algorithm succeeded in recovering the
underlying correspondence or not. Also note that as seeds increase, the overall
speed of convergence of the algorithm decreases and, unsurprisingly, the correct
permutation is obtained for lower correlation levels.
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Figure 3.14: Running time for the nonconvex relaxation when starting from D∗, for different
number of seeds. A red “x” indicates the algorithm failed to recover P∗, and a black “o”
indicates it succeeded. In each, the algorithm was run to termination at discovery of a local
min.

3.3.7 Features
Features are additional information that can be utilized to improve performance
in graph matching methods, and often these features are manifested as additional
vertex characteristics besides the connections with other vertices. For instance, in
social networks we may have have a complete profile of a person in addition to
his/her social connections.

We demonstrate the utility of using features with the nonconvex relaxation,
the standard convex relaxation and the GLAG method, duely modified to include
the features into the optimization. Namely, the new objective function to min-
imize is λF (P) + (1 − λ)trace(CTP), where F (P) is the original cost function
(−〈AP,PB〉 in the nonconvex setting, ‖AP − PB‖2F for the convex relaxation
and

∑
i,j ‖([AP]i,j , [PB]i,j)‖2 for the GLAG method), the matrix C codes the fea-

tures fitness cost, and the parameter λ balances the trade-off between pure graph
matching and fit in the features domain. For each of the matching methodologies,
the optimization is very similar to the original featureless version.

For the experiments, we generate ρ-correlated Bernoulli graphs as before, and
in addition we generate a Gaussian random vector (zero mean, unit variance) of 5
features for each node of one graph, forming a 5×n matrix of features; we permute
that matrix according to P∗ to align new features vectors with the nodes of the
second graph. Lastly, additive zero-mean Gaussian noise with a range of variance
values is added to each feature matrix independently. If for each vertex v ∈ [n]

the resulting noisy feature for Gi, i = 1, 2, is x
(i)
v , then the entries of C are defined

to be Cv,w = ‖x(1)
v − x(2)

w ‖2, for v, w ∈ [n]. Lastly, we set λ = 0.5.
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Figure 3.15: Success rate of different methods using features: Pc (in black), GLAG (in blue),
FAQ:D∗ (in red), and FAQ:P∗ (in green). For each method, the noise level (variance of the
Gaussian random noise) increases from left to right: 0.3, 0.5, and 0.7. In dashed lines, we
show the success of the same methods without features.

Figure 3.15 shows the behavior of the methods when using features for differ-
ent levels of noise in the feature matrix. Even for highly noisy features (recalling
that both feature matrices are contaminated with noise), this external information
still helps in the graph matching problem. For all noise levels, all three methods
improve their performance with the addition of features, and of course, the im-
provement is greater when the noise level decreases. Note that, as before, FAQ
outperforms both Pc and GLAG across all noise levels. It is also worth noting
that for low noise, FAQ:D∗ performs comparably to FAQ:P∗, which we did not
observe in the seeded (or unseeded) setting.

Even for modestly errorful features, including these features improves down-
stream matching performance versus the setting without features. This points to
the utility of high fidelity features in the matching task. Indeed, given that the
state-of-the-art graph matching algorithms may not achieve the optimal matching
for even modestly correlated graphs, the use of external information like seeds and
features can be critical.
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Chapter 4

Graph Matching Theory

4.1 Introduction

The graph matching problem (aligning a pair of graphs to minimize their edge dis-
agreements) has several interesting aspects: algorithms, applications, and theory.
In the previous chapter we presented methods and applications of the graph match-
ing problem, and we left some theoretical questions unanswered. In this chapter
we tackle some of these open questions, both from probabilistic and deterministic
perspectives.

For several applications, it is usual to model the graphs with certain prob-
abilistic distributions, in order to better analyze or draw conclusions about the
system. In Section 4.2 we address the graph matching problem from this proba-
bilistic setting. The graph distribution used along this section is the most general
edge independent model. Under this model, given two correlated random graphs,
we prove some probability success results for two graph matching relaxations.
Namely, the classical convex relaxation, and the non-convex relaxation described
in [95].

In Section 4.3 we address some open problems in graph matching from a de-
terministic approach, and we also present some related results of graph theory in
general. More specifically, as stated in Chapter 1, the graph matching problem is
closely related to the graph isomorphism problem, and hence to the automorphism
group of graphs.

The results proven in Section 4.3 are related to the spectral decomposition of
the adjacency matrix. Indeed, we prove that certain conditions on the spectrum
of the adjacency matrix are sufficient to guarantee the equivalence of the graph
matching problem and its convex relaxation. Moreover, we provide an interpreta-
tion of these spectral conditions, we also prove other related results, and finally
we state a conjecture, leaving open questions about the connection between the
symmetry of a graph and the spectrum of its adjacency matrix.
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4.2 Probabilistic Results for Graph Matching
Section summary

Graph matching has received wide-spread attention from both theoretical and
applied communities over the past several decades, including combinatorics, com-
puter vision, and connectomics. Its attention can be partially attributed to its
computational difficulty. Although many heuristics have previously been proposed
in the literature to approximately solve graph matching, very few have any the-
oretical support for their performance. A common technique is to relax the dis-
crete problem to a continuous problem, therefore enabling practitioners to bring
gradient-descent-type algorithms to bear. We prove that an indefinite relaxation
(when solved exactly) almost always discovers the optimal permutation, while a
common convex relaxation almost always fails to discover the optimal permuta-
tion. These theoretical results suggest that initializing the indefinite algorithm
with the convex optimum might yield improved practical performance.

4.2.1 Introduction
Several problems related to the isomorphism and matching of graphs have been
an important and enjoyable challenge for the scientific community for a long time,
with applications in pattern recognition (see, for example, [14,19]), computer vision
(see, for example, [23, 99, 104]), and machine learning (see, for example, [27, 57]),
to name a few. Given two graphs, the graph isomorphism problem consists of
determining whether these graphs are isomorphic or not, that is, if there exists a
bijection between the vertex sets of the graphs which exactly preserves the vertex
adjacency. The graph isomorphism problem is very challenging from a computa-
tional complexity point of view. Indeed, its complexity is still unresolved: it is not
currently classified as NP-complete or P [50]. The graph isomorphism problem
is a special case of the (harder) graph matching problem. The graph matching
problem consists of finding the exact isomorphism between two graphs if it ex-
ists, or, in general, finding the bijection between the vertex sets that minimizes
the number of adjacency disagreements. Graph matching is a very challenging
and well-studied problem in the literature with applications in such diverse fields
as pattern recognition, computer vision, neuroscience, etc. (see [25]). Although
polynomial-time algorithms for solving the graph matching problem are known for
certain classes of graphs (e.g., trees [88, 90]; planar graphs [55]; and graphs with
some spectral properties [1, 43]), there are no known polynomial-time algorithms
for solving the general case. Indeed, in its most general form, the graph matching
problem is equivalent to the NP-hard quadratic assignment problem.

Formally, for any two graphs on n vertices with respective n × n adjacency
matrices A and B, the graph matching problem is to minimize ‖A − PBPT ‖F
over all P ∈ P, where P denotes the set of n×n permutation matrices, and ‖·‖F is
the Froebenius matrix norm (other graph matching objectives have been proposed
in the literature as well, this being a common one). Note that for any permutation
matrix P, 1

2‖A − PBPT ‖2F = 1
2‖AP − PB‖2F counts the number of adjacency

disagreements induced by the vertex bijection corresponding to P.
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An equivalent formulation of the graph matching problem is to minimize
−〈AP,PB〉 over all P ∈ P, where 〈·, ·〉 is the Euclidean inner product, i.e., for
all C,D ∈ Rn×n, 〈C,D〉 := trace(CTD). This can be seen by expanding, for any
P ∈ P,

‖A−PBPT‖2F = ‖AP−PB‖2F
= ‖A‖2F + ‖B‖2F − 2〈AP,PB〉,

and noting that ‖A‖2F and ‖B‖2F are constants for the optimization problem over
P ∈ P.

Let D denote the set of n × n doubly stochastic matrices, i.e., nonnegative
matrices with row and column sums each equal to 1. We define the convex re-
laxed graph matching problem to be minimizing ‖AD − DB‖2F over all D ∈ D,
and we define the indefinite relaxed graph matching problem to be minimizing
−〈AD,DB〉 over all D ∈ D. Unlike the graph matching problem, which is an
integer programming problem, these relaxed graph matching problems are each
continuous optimization problems with a quadratic objective function subject to
affine constraints. Since the quadratic objective ‖AD −DB‖2F is also convex in
the variables D (it is a composition of a convex function and a linear function),
there is a polynomial-time algorithm for exactly solving the convex relaxed graph
matching problem (see [52]). However, −〈AD,DB〉 is not convex (in fact, the
Hessian has trace zero and is therefore indefinite), and nonconvex quadratic pro-
gramming is (in general) NP-hard. Nonetheless the indefinite relaxation can be
efficiently approximately solved with Frank-Wolfe (F-W) methodology [46,95].

It is natural to ask how the (possibly different) solutions to these relaxed for-
mulations relate to the solution of the original graph matching problem. Our main
theoretical result, Theorem 4.1, proves, under mild conditions, that convex relaxed
graph matching (which is tractable) almost always yields the wrong matching, and
indefinite relaxed graph matching (which is intractable) almost always yields the
correct matching.

In light of graph matching complexity results (see for example [1, 6, 79]), it is
unsurprising that the convex relaxation can fail to recover the true permutation.
In our main theorem, we take this a step further and provide an answer from a
probabilistic point of view, showing almost sure failure of the convex relaxation
for a very rich and general family of graphs. This paints a sharp contrast to the
(surprising) almost sure correctness of the solution of the indefinite relaxation.
We further illustrate that our theory gives rise to a new state-of-the-art matching
strategy.

Correlated random Bernoulli graphs
Our theoretical results will be set in the context of correlated random (simple)
Bernoulli graphs,1 which can be used to model many real-data scenarios. Random
Bernoulli graphs are the most general edge independent random graphs, and con-
tain many important random graph families including Erdős-Rényi and the widely

1Also known as inhomogeneous random graphs in [17].
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used stochastic block model of [54] (in the stochastic block model, Λ is a block
constant matrix, with the number of diagonal blocks representing the number of
communities in the network). Stochastic block models, in particular, have been
extensively used to model networks with inherent community structure (see, for
example, [2, 75, 78, 85]). As this model is a submodel of the random Bernoulli
graph model used here, our main theorem (Theorem 4.1) extends to stochastic
block models immediately, making it of highly practical relevance.

These graphs are defined as follows. Given n ∈ Z+, a real number ρ ∈ [0, 1],
and a symmetric, hollow matrix Λ ∈ [0, 1]n×n, define E := {{i, j} : i ∈ [n], j ∈
[n], i 6= j}, where [n] := {1, 2, . . . , n}. Two random graphs with respective n × n
adjacency matrices A and B are ρ-correlated Bernoulli(Λ) distributed if, for all
{i, j} ∈ E , the random variables (matrix entries) Ai,j ,Bi,j are Bernoulli(Λi,j)
distributed, and all of these random variables are collectively independent except
that, for each {i, j} ∈ E , the Pearson product-moment correlation coefficient for
Ai,j ,Bi,j is ρ. It is straightforward to show that the parameters n, ρ, and Λ
completely specify the random graph pair distribution, and the distribution may
be achieved by first, for all {i, j} ∈ E , having Bij ∼ Bernoulli(Λi,j) independently
drawn and then, conditioning on B, have Ai,j ∼ Bernoulli ((1− ρ)Λi,j + ρBi,j)
independently drawn. While ρ = 1 would imply the graphs are isomorphic, this
model allows for a natural vertex alignment (namely the identity function) for
ρ < 1, i.e. when the graphs are not necessarily isomorphic.

4.2.2 The main result
We will consider a sequence of correlated random Bernoulli graphs for n = 1, 2, 3, . . . ,
where Λ is a function of n. When we say that a sequence of events, {Em}∞m=1,
holds almost always we mean that almost surely it happens that the events in the
sequence occur for all but finitely many m.

Theorem 4.1. Suppose A and B are adjacency matrices for ρ-correlated Bernoulli(Λ)
graphs, and there is an α ∈ (0, 1/2) such that Λi,j ∈ [α, 1 − α] for all i 6= j. Let
P∗ ∈ P, and denote A′ := P∗AP∗T.
a) If (1− α)(1− ρ) < 1/2, then it almost always holds that

arg min
D∈D
−〈A′D,DB〉 = arg min

P∈P
‖A′ −PBPT‖F = {P∗}.

b) If the between graph correlation ρ < 1, then it almost always holds that P∗ 6∈
arg minD∈D ‖A′D−DB‖F .

This theorem states that: (part a) the unique solution of the indefinite relax-
ation almost always is the correct permutation matrix, while (part b) the correct
permutation is almost always not a solution of the commonly used convex rela-
tion. Moreover, as shown in Section 3.3, the convex relaxation can lead to a doubly
stochastic matrix that is not even in the Voronoi cell of the true permutation. In
this case, the convex optimum is closest to an incorrect permutation, hence the cor-
rect permutation will not be recovered by projecting the doubly stochastic solution
back onto P.

74



4.2. Probabilistic Results for Graph Matching

In the above, ρ and α are fixed. However, the proofs follow mutatis mutandis
if ρ and α are allowed to vary with n. If there exist constants c1, c2 > 0 such that
α ≥ c1

√
(log n)/n and 1/2 − c2

√
(log n)/n ≥ (1 − ρ)(1 − α), then Theorem 4.1,

part a will hold. Note that α ≥ c1

√
(log n)/n also guarantees the corresponding

graphs are almost always connected. For the analogous result for part b, let us
first define σ(i) = 1

n−1

∑
k 6=i Λki(1 − Λki). If there exists an i ∈ [n] such that

1− 3
2σ(i)

√
(8 log n)/n > ρ, then the results of Theorem 4.1, part b hold as proven

below.

Isomorphic versus ρ-correlated graphs
There are numerous algorithms available in the literature for (approximately) solv-
ing the graph isomorphism problem (see, for example, [26,37]), as well as for (ap-
proximately) solving the subgraph isomorphism problem (see, for example, [91]).
All of the graph matching algorithms we explore herein can be used for the graph
isomorphism problem as well.

We emphasize that the ρ-correlated random graph model extends our random
graphs beyond isomorphic graph pairs; indeed ρ-correlated graphs G1 and G2 will
almost surely have on the order of [α, 1−α]ρn2 edge-wise disagreements. As such,
these graphs are a.s. not isomorphic. In this setting, the goal of graph matching is
to align the vertices across graphs whilst simultaneously preserving the adjacency
structure as best possible across graphs. However, this model does preserve a very
important feature of isomorphic graphs: namely the presence of a latent alignment
function (the identity function in the ρ-correlated model).

We note here that in the ρ-correlated Bernoulli(Λ) model, both G1 and G2 are
marginally Bernoulli(Λ) random graphs, which is amenable to theoretical analysis.
We note here that real data experiments across a large variety of data sets (see
Section 3.3.3) and simulated experiments across a variety of robust random graph
settings (see Section 3.3.4) also both support the result of Theorem 4.1. Indeed,
we suspect that an analogue of Theorem 4.1 holds over a much broader class of
random graphs, and we are presently investigating this extension.

4.2.3 Proof of Theorem 4.1, part a
Without loss of generality, let P∗ = I. We will first sketch the main argument
of the proof, and then we will spend the remainder of the section filling in all
necessary details of the proof. The proof will proceed as follows. Almost always,
−〈A,B〉 < −〈AQ,PB〉 for any P, Q ∈ P such that either P 6= I or Q 6= I. To
accomplish this, we count the entrywise disagreements between AQ and PB in
two steps (of course, this is the same as the number of entrywise disagreements
between A and PBQT). We first count the entrywise disagreements between B
and PBQT (Lemma 4), and then count the additional disagreements induced by
realizing A conditioning on B. Almost always, this two step realization will result
in more errors than simply realizing A directly from B without permuting the
vertex labels (Lemma 5). This establishes −〈A,B〉 < −〈AQ,PB〉, and Theorem
4.1, part a is a consequence of the Birkhoff-von Neumann theorem.
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We begin with two lemmas used to prove Theorem 4.1. First, Lemma 2 is
adapted from [5], presented here as a variation of the form found in [59, Prop.
3.2]. This lemma lets us tightly estimate the number of disagreements between B
and PBQT, which we do in Lemma 4.

Lemma 2. For any integer N > 0 and constant α ∈ (0, 1
2), suppose that the

random variable X is a function of at most N independent Bernoulli random
variables, each with Bernoulli parameter in the interval [α, 1 − α]. Suppose that
changing the value of any one of the Bernoulli random variables (and keeping all
of the others fixed) changes the value of X by at most γ. Then for any t such that
0 ≤ t <

√
α(1− α)γN , it holds that P [|X − EX| > t] ≤ 2 · exp{−t2/(γ2N)}.

The next result, Lemma 3, is a special case of the classical Hoeffding inequality
(see, for example, [24]), which we use to tightly bound the number of additional
entrywise disagreements between AQ and PB when we realize A conditioning on
B.

Lemma 3. Let N1 and N2 be positive integers, and q1 and q2 be real numbers in
[0, 1]. If X1 ∼ Binomial(N1, q1) and X2 ∼ Binomial(N2, q2) are independent, then
for any t ≥ 0 it holds that

P
[∣∣∣X1 +X2 − E

(
X1 +X2

)∣∣∣ ≥ t] ≤ 2 · exp

{
−2t2

N1 +N2

}
.

Setting notation for the next lemmas, let n be given. Let P denote the set of n×
n permutation matrices. Just for now, fix any P,Q ∈ P such that they are not
both the identity matrix, and let τ, ω be their respective associated permutations
on [n]; i.e. for all i, j ∈ [n] it holds that τ(i) = j precisely when Pi,j = 1 and, for
all i, j ∈ [n], it holds that ω(i) = j precisely when Qi,j = 1. It will be useful to
define the following sets:

∆ := {(i, j) ∈ [n]× [n] : τ(i) 6= i or ω(j) 6= j},
∆t := {(i, j) ∈ ∆ : τ(i) = j and ω(j) = i},
∆d := {(i, j) ∈ ∆ : i = j or τ(i) = ω(j)},
∆τ := {(i, j) ∈ [n]× [n] : τ(i) 6= i},
∆ω := {(i, j) ∈ [n]× [n] : ω(j) 6= j}.

If we define m to be the maximum of |{i ∈ [n] : τ(i) 6= i}| and |{j ∈ [n] : ω(j) 6= j}|,
then it follows that mn ≤ |∆| ≤ 2mn. This is clear from noting that ∆ω,∆τ ⊆
∆ ⊆ ∆τ ∪ ∆ω. Also, |∆t| ≤ m, since for (i, j) ∈ ∆t it is necessary that τ(i) 6= i
and ω(j) 6= j. Lastly, |∆d| ≤ 4m, since

∆d ⊆ {(i, i) ∈ ∆} ∪ {(i, j) ∈ ∆ : i 6= j, τ(i) = ω(j)},

and |{(i, i) ∈ ∆}| ≤ 2m, and |{(i, j) ∈ ∆ : i 6= j, τ(i) = ω(j)}| ≤ 2m.
We make the following assumption in all that follows:

Assumption 1: Suppose that Λ ∈ [0, 1]n×n is a symmetric, hollow matrix, there

76



4.2. Probabilistic Results for Graph Matching

is a real number ρ ∈ [0, 1], and there is a constant α ∈ (0, 1/2) such that Λi,j ∈
[α, 1−α] for all i 6= j, and (1−α)(1−ρ) < 1/2. Further, let A, B be the adjacency
matrices of two random ρ-correlated Bernoulli(Λ) graphs.

Define the (random) set

Θ′ := {(i, j) ∈∆ : i 6=j, and Bi,j 6= Bτ(i),ω(j)}.

Note that |Θ′| counts the entrywise disagreements induced within the off-diagonal
part of B by τ and ω.

Lemma 4. Under Assumption 1, if n is sufficiently large then

P
(
|Θ′| 6∈ [αmn/3, 2mn]

)
≤ 2e−α

2mn/128.

Proof of Lemma 4: For any (i, j) ∈ ∆, note that (Bi,j − Bτ(i),ω(j))
2 has a

Bernoulli distribution; if (i, j) ∈ ∆t∪∆d, then the Bernoulli parameter is either 0 or
is in the interval [α, 1−α], and if (i, j) ∈ ∆\(∆t∪∆d), then the Bernoulli parameter
is Λi,j(1−Λτ(i),ω(j)) + (1−Λi,j)Λτ(i),ω(j), and this Bernoulli parameter is in the
interval [α, 1− α] since it is a convex combination of values in this interval. Now,
|Θ′| =

∑
(i,j)∈∆,i 6=j(Bi,j − Bτ(i),ω(j))

2, so we obtain that α (|∆| − |∆t| − |∆d|) ≤
E(|Θ′|) ≤ (1− α)|∆|, and thus

αm(n− 5) ≤ E(|Θ′|) ≤ 2(1− α)mn. (4.1)

Next we apply Lemma 2, since |Θ′| is a function of the at-most N := 2mn
Bernoulli random variables {Bi,j}(i,j)∈∆:i 6=j , which as a set (noting that Bi,j = Bj,i

is counted at most once for each {i, j}) are independent, each with Bernoulli
parameter in [α, 1 − α]. Furthermore, changing the value of any one of these
random variable would change |Θ′| by at most γ := 4, thus Lemma 2 can be
applied and, for the choice of t := α

2mn, we obtain that

P
[∣∣|Θ′| − E(|Θ′|)

∣∣ > αmn/2
]
≤ 2e−α

2mn/128. (4.2)

Lemma 4 follows from (4.1) and (4.2), since

P
[∣∣|Θ′| − E(|Θ′|)

∣∣ > αmn/2
]

= P
[
|Θ′| /∈

[
E(|Θ′|)− αmn/2,E(|Θ′|) + αmn/2

]]
≥ P

[
|Θ′| /∈ [αm(n− 5)− αmn/2, 2(1− α)mn+ αmn/2]

]
≥ P

[
|Θ′| /∈ [αm(n− 5)− αmn/2, 2mn]

]
,

and 5αmn/6 ≤ αm(n− 5) when n is sufficiently large (e.g. n ≥ 30). �
With the above bound on the number of (non-diagonal) entrywise disagree-

ments between B and PBQT, we next count the number of additional disagree-
ments introduced by realizing A conditioning on B. In Lemma 5, we prove that
this two step realization will almost always result in more entrywise errors than
simply realizing A from B without permuting the vertex labels.

Lemma 5. Under Assumption 1, it almost always holds that, for all P,Q ∈ P
such that either P 6= I or Q 6= I, ‖A−PBQT‖F > ‖A−B‖F .
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Proof of Lemma 5: Just for now, let us fix any P,Q ∈ P such that either P 6= I
or Q 6= I, and say τ and ω are their respective associated permutations on [n]. Let
∆ and Θ′ be defined as before. For every (i, j) ∈ ∆, a combinatorial argument,
combined with A and B being binary valued, yields (where for an event C, 1C is
the indicator random variable for the event C)

1Ai,j 6=Bi,j
+ 1Bi,j 6=Bτ(i),ω(j)

= (4.3)

1Ai,j 6=Bτ(i),ω(j)
+ 2 · 1Ai,j 6=Bi,j & Bi,j 6=Bτ(i),ω(j)

.

Note that

‖A−PBQT‖2F =
∑
i,j

(Ai,j−Bτ(i),ω(j))
2 =
∑
i,j

1Ai,j 6=Bτ(i),ω(j)

‖A−B‖2F =
∑
i,j

(Ai,j−Bi,j)
2 =
∑
i,j

1Ai,j 6=Bi,j
.

Summing Eq. (4.3) over the relevant indices then yields that

‖A−PBQT‖2F − ‖A−B‖2F = |Θ| − 2|Γ|, (4.4)

where the sets Θ and Γ are defined as

Θ := {(i, j) ∈ [n]× [n] : Bi,j 6= Bτ(i),ω(j)} ⊆ ∆,

Γ := {(i, j) ∈ Θ : Ai,j 6= Bi,j}.

Now, partition Θ into sets Θ1, Θ2, Θd, and partition Γ into sets Γ1, Γ2 where

Θ1 := {(i, j) ∈ Θ : i 6= j and (j, i) 6∈ Θ},
Θ2 := {(i, j) ∈ Θ : i 6= j and (j, i) ∈ Θ},
Θd := {(i, j) ∈ Θ : i = j},
Γ1 := {(i, j) ∈ Θ1 : Ai,j 6= Bi,j},
Γ2 := {(i, j) ∈ Θ2 : Ai,j 6= Bi,j}.

Note that all (i, j) such that i = j are not in Γ. Also note that Θ′ ⊆ Θ can be
partitioned into the disjoint union Θ′ = Θ1 ∪Θ2.

Equation (4.4) implies

|Γ1|+ |Γ2| < (|Θ1|+|Θ2|)/2⇒ |Γ| < |Θ|/2⇒
‖A−B‖2F < ‖A−PBQT‖2F .

In particular, {
‖A−B‖F ≥ ‖A−PBQT‖F

}
⇒{

|Γ1|+ |Γ2| ≥ (|Θ1|+ |Θ2|)/2 = |Θ′|/2
}
. (4.5)

Now, conditioning on B (hence, conditioning on Θ′), we have, for all i 6= j,
that (see Section 4.2.1), Ai,j ∼ Bernoulli ((1− ρ)Λi,j + ρBi,j) . Thus 1Ai,j 6=Bi,j
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has a Bernoulli distribution with parameter bounded above by (1 − α)(1 − ρ).
Thus, |Γ1| is stochastically dominated by a Binomial(|Θ1|, (1− α)(1− ρ)) random
variable, and the independent random variable |Γ2| is stochastically dominated by
a Binomial(|Θ2|, (1− α)(1− ρ)) random variable. An application of Lemma 3 with
N1 := |Θ1|, N2 := |Θ2|, q1 = q2 := (1−α)(1−ρ), and t :=

(
1
2 − (1− α)(1− ρ)

)
|Θ′|,

yields (recall that we are conditioning on B here)

P
[
|Γ1|+ |Γ2| ≥ |Θ′|/2

]
=P
[
|Γ1|+|Γ2|−(1−α)(1−ρ)|Θ′|≥

(
1/2−(1−α)(1−ρ)

)
|Θ′|

]
≤ 2exp

{
−2 (1/2− (1− α)(1− ρ))2 |Θ′|2

|Θ1|+ |Θ2|

}

≤ 2exp

{
−2
(

1/2− (1− α)(1− ρ)
)2
|Θ′|

}
. (4.6)

No longer conditioning (broadly) on B, Lemma 4, equations (4.5) and (4.6), and
(1− α)(1− ρ) < 1

2 , imply that

P
[
‖A−PBQT‖F ≤ ‖A−B‖F

]
≤ P

(
|Θ′| 6∈

[
αmn/3, 2mn

])
+ P

[
|Γ1|+ |Γ2| ≥

1

2
|Θ′|

∣∣∣ |Θ′| ∈ [α
3
mn, 2mn

]]
≤ 4 exp

{
−min

{
α2

128
,
2α

3

(
1

2
− (1− α)(1− ρ)

)2}
mn

}
. (4.7)

Until this point, P and Q—and their associated permutations τ and ω—have
been fixed. Now, for each m ∈ [n], defineHm to be the event that ‖A−PBQT‖F ≤
‖A−B‖F for any P,Q ∈ P with the property that their associated permutations
τ, ω are such that the maximum of |{i ∈ [n] : τ(i) 6= i}| and |{j ∈ [n] : ω(j) 6= j}|
is exactly m. There are at most

(
n
m

)
m!
(
n
m

)
m! ≤ n2m such permutation pairs.

By (4.7), for every m ∈ [n], setting

c1 = min{α2/128, 2α(1/2− (1− α)(1− ρ))2/3},

we have P(Hm) ≤ n2m · 4 exp {−c1mn} ≤ exp{−c2n}, for some positive constant
c2 (the last inequality holding when n is large enough). Thus, for sufficiently large
n, P(∪nm=1Hm) ≤ n · exp{−c2n} decays exponentially in n, and is thus finitely
summable over n = 1, 2, 3, . . .. Lemma 5 follows from the Borel-Cantelli Lemma.
�
Proof of Theorem 4.1, part a: By Lemma 5, it almost always follows that for
every P,Q ∈ P not both the identity, 〈AQ,PB〉 < 〈A,B〉. By the Birkhoff-von
Neuman Theorem, D is the convex hull of P, i.e., for every D ∈ D, there exists
constants {aD,P }P∈P such that D =

∑
P∈P aD,PP and

∑
P∈P aD,P = 1. Thus, if
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D is not the identity matrix, then almost always

〈AD,DB〉 =
∑
P∈P

∑
Q∈P

aD,PaD,Q〈AQ,PB〉

<
∑
P∈P

∑
Q∈P

aD,PaD,Q〈A,B〉 = 〈A,B〉,

and almost always argminD∈D − 〈AD,DB〉 = {I}. �

4.2.4 Proof of Theorem 4.1, part b
The proof will proceed as follows: we will use Lemma 6 to prove that the identity
is almost always not a KKT (Karush-Kuhn-Tucker) point of the relaxed graph
matching problem. Since the relaxed graph matching problem is a constrained
optimization problem with convex feasible region and affine constraints, this is
sufficient for the proof of Theorem 4.1, part b.

First, we state Lemma 6, a variant of Hoeffding’s inequality, which we use to
prove Theorem 4.1, part b.

Lemma 6. Let N be a positive integer. Suppose that the random variable X is
the sum of N independent random variables, each with mean 0 and each taking
values in the real interval [−1, 1]. Then for any t ≥ 0, it holds that

P[|X| ≥ t] ≤ 2 · e
−t2
2N .

Again, without loss of generality, we may assume P∗ = I. We first note that
the convex relaxed graph matching problem can be written as

min ‖AD−DB‖2F , (4.8)

s.t. D1 = 1, (4.9)

1TD = 1T , (4.10)

D ≥ 0, (4.11)

where (4.8) is a convex function (of D) subject to affine constraints (4.9)-(4.11)
(i.e., D ∈ D). It follows that if I is the global (or local) optimizer of the convex
relaxed graph matching problem, then I must be a KKT (Karush-Kuhn-Tucker)
point (see, for example, [12, Chapter 4]).

The gradient of ‖AD−DB‖2F (as a function of D) is

∇(D) := 2(ATAD + DBBT −ATDB−ADBT).

Hence, a D̂ satisfying (4.9)-(4.11) (i.e., D̂ is primal feasible) is a KKT point if it
satisfies

∇(D̂) + µ+ µ′ − ν = 0, (4.12)
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where µ, µ′, and ν are dual variables as follows:

µ :=


µ1 µ1 · · · µ1

µ2 µ2 · · · µ2
...

...
. . .

...
µn µn · · · µn

 ∈ Rn×n,

noting that the dual variables µ1, µ2, . . . , µn are not restricted. They correspond
to the equality primal constraints (4.9) that the row-sums of a primal feasible D
are all one;

µ′ :=


µ′1 µ′2 · · · µ′n
µ′1 µ′2 · · · µ′n
...

...
. . .

...
µ′1 µ′2 · · · µ′n

 ∈ Rn×n,

noting that the dual variables µ′1, µ
′
2, . . . , µ

′
n are not restricted. They correspond

to the equality primal constraints (4.10) that the column-sums of a primal feasible
D are all one;

ν :=


0 ν1,2 · · · ν1,n

ν2,1 0 · · · ν2,n
...

...
. . .

...
νn,1 νn,2 · · · 0

 ∈ Rn×n,

noting that the dual variables νi,j are restricted to be nonnegative. They cor-
respond to the inequality primal constraints (4.11) that the entries of a primal
feasible D be nonnegative. Complementary slackness further constrains the νi,j ,

requiring that D̂i,jνi,j = 0 for all i, j.
At the identity matrix I, the gradient ∇(I), denoted ∇, simplifies to ∇ =

[∇i,j ] = 2A2 + 2B2 − 4AB ∈ Rn×n; and I being a KKT point is equivalent to:

∇ + µ+ µ′ − ν = 0, (4.13)

where µ, µ′, and ν are as specified above. At the identity matrix, complimentary
slackness translates to having ν1,1 = ν2,2 = · · · = νn,n = 0.

Now, for Equation (4.13) to hold, it is necessary that there exist µ1, µ2, µ
′
1, µ
′
2

such that
∇1,1 + µ1 + µ′1 = 0, (4.14)

∇2,2 + µ2 + µ′2 = 0, (4.15)

∇1,2 + µ1 + µ′2 ≥ 0, (4.16)

∇2,1 + µ2 + µ′1 ≥ 0. (4.17)

Adding equations (4.16), (4.17) and subtracting equations (4.14), (4.15), we obtain
∇1,2 +∇2,1 ≥ ∇1,1 +∇2,2. (4.18)

Note that 1
2∇ + 1

2∇
T = 2(A −B)T (A −B), hence Equation (4.18) is equivalent

to (where X := (A−B)T (A−B))

2[X]1,2 ≥ [X]1,1 + [X]2,2. (4.19)
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Next, referring back to the joint distribution of A and B (see Section 4.2.1), we
have, for all i 6= j,

P
[
Ai,j = 0, Bi,j = 1

]
= P

[
Ai,j = 1, Bi,j = 0

]
= (1− ρ)Λi,j(1−Λi,j).

Now, since

[X]1,1 + [X]2,2 =
∑
i 6=1

(Ai,1 −Bi,1)2 +
∑
i 6=2

(Ai,2 −Bi,2)2,

is the sum of (n − 1) + (n − 1) Bernoulli random variables which are collectively
independent—besides the two of them which are equal, namely (A12 −B12)2 and
(A21 −B21)2—we have that [X]1,1 + [X]2,2 is stochastically greater than or equal
to a Binomial

(
2n− 3, 2(1− ρ)α(1− α)

)
random variable. Also note that

[X]1,2 =
∑
i 6=1,2

(Ai,1 −Bi,1)(Ai,2 −Bi,2)

is the sum of n−2 independent random variables (namely, the (Ai,1−Bi,1)(Ai,2−
Bi,2)’s) each with mean 0 and each taking on values in {−1, 0, 1}. Applying Lemma
3 and Lemma 6, respectively, to X11 + X22 and to X12, with t := (2n − 3)2(1 −
ρ)α(1− α)/4, yields

P
(
2[X]1,2 ≥ [X]1,1 + [X]2,2

)
≤ P

(
2[X]1,2 ≥ 2t

)
+ P

(
[X]1,1 + [X]2,2 ≤ 2t

)
≤ 2 · e

−2t2

2n−3 + 2 · e
−t2

2(n−2) ≤ e−cn,

for some positive constant c (the last inequality holds when n is large enough).
Hence the probability that Equation (4.19) holds is seen to decay exponentially in
n, and is finitely summable over n = 1, 2, 3, . . .. Therefore, by the Borel-Cantelli
Lemma we have that almost always Equation (4.19) does not hold. Theorem
4.1, part b is now shown, since Equation (4.19) is a necessary condition for I ∈
arg minD∈D ‖AD−DB‖2F . �

4.2.5 On correlation testing after graph matching
If two graphs are not (or very weakly) correlated, it might not be useful to match
them. After running a graph matching algorithm and obtaining a permutation
matrix, we would like to determine whether the graphs are significantly correlated
or not. If they were not, then the graph matching result might not be informative.

Let us consider here two ρ-correlated Erdős-Rényi graphs, with n vertices each
and parameter (link probability) p, and let us also consider the statistic Tn :=
minP∈P ‖A−PBPT‖2F . Also define

cn(α) :=

(
4

(
n

2

)
p(1− p)

[(
n+

1

2

)
log n− n+ 1 + logα

])1/2

.

The following result allows us to decide whether the graphs were correlated from
the statistic Tn.
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Theorem 4.2. With notation as above, for any α > 0,
a) If ρ = 0, then P (Tn ≤ 4

(
n
2

)
p(1− p)− 2cn(α)) ≤ α.

b) If there exists a constant c > 0 such that if ρ ≥ c
√

logn
n , then for all but finitely

many n, it holds

P

(
Tn ≥ 4

(
n

2

)
p(1− p)− 2cn(α)

)
≤ exp

{
− (1 + o(1))

n

2
log n

}
.

This provides an implementable test of whether or not two graphs are signifi-
cantly correlated. Estimate p via p̂ and Tn via T̂n. If T̂n > 4

(
n
2

)
p̂(1− p̂)− 2cn(α),

then the correlation is insignificant. We experimentally illustrate this in the fol-
lowing section.

Proof. Part a) For the present, fix P ∈ Π(n). If ρ = 0,

||A−PBPT||2F /2 ∼ Bin

((
n

2

)
, 2p(1− p)

)
.

With a simple application of Hoeffding’s inequality (see Theorem 3.3 of [24] for
example) we have that

PH0

(
||A−PBPT||2F ≤ 4

(
n

2

)
p(1− p)− 2cn(α)

)
≤ exp

{
− cn(α)2

4
(
n
2

)
p(1− p)

}

= exp

{
−
[
(n+

1

2
) log n− n+ 1 + logα

]}
A simple subadditivity bound combined with Sterling’s formula yields

PH0

(
Tn ≤ 4

(
n

2

)
p(1− p)− 2cn(α)

)
≤ n! exp

{
−
[
(n+

1

2
) log n− n+ 1 + logα

]}
≤ e
√
n
(n
e

)n
exp

{
−
[
(n+

1

2
) log n− n+ 1 + logα

]}
= exp

{
−
[
(n+

1

2
) log n− n+ 1 + logα

]
+ 1 +

1

2
log n+ n log n− n

}
= α,

as desired.

Part b) In [71], the authors proved that for a suitably chosen constant c′, if ρ ≥
c′
√

logn
n then

argmax
P∈Π(n)

||AP−PB||2F = {P∗}a.s.

where P∗ is the permutation matrix corresponding to the true but unknown align-

ment of the vertices. Therefore if ρ satisfies ρ ≥ c′
√

logn
n , then for all but finitely

many n,

Tn/2 ∼ Bin
((n

2

)
, 2p(1− p)(1− ρ)

)
.
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Therefore for all but finitely many n, again applying Hoeffding’s inequality, we
have that (where c is a constant satisfying c > c′ ∨ 3/

√
p(1− p))

P
(
Tn ≥ 4

(
n

2

)
p(1− p)− 2cn(α)

∣∣∣∣ρ ≥ c
√

log n

n

)
= P

(
Tn ≥ 4

(
n

2

)
p(1− p)(1− ρ) + 4

(
n

2

)
p(1− p)ρ− 2cn(α)

∣∣∣∣ρ ≥ c
√

log n

n

)

≤ exp

{
−

[
2
(
n
2

)
p(1− p)ρ− cn(α)

]2
2
(
2
(
n
2

)
p(1− p)(1− ρ) +

[
2
(
n
2

)
p(1− p)ρ− cn(α)

]
/3
)}

≤ exp

{
−
[
2
(
n
2

)
p(1− p)ρ− (1 + o(1))2n3/2

√
p(1− p) log n

]2
(1 + o(1))2n2p(1− p)

}

≤ exp

{
−
[
(1 + o(1))n3/2

√
p(1− p) log n

]2
(1 + o(1))2n2p(1− p)

}

= exp

{
−(1 + o(1))

1

2
n log n

}
.

as desired

We want to reinforce the importance of these two theorems. We demonstrated
the validity (or more properly, invalidity) of a popular convex relaxation method
in graph matching. The second theorem provides, for the first time, an explicit
tool to verify if two graphs are correlated enough for a matching of the graphs to
be informative.
Testing the correlation levels of two graphs

Theorem 4.2 provides an implementable test of whether or not two graphs are
significantly correlated. Estimate p via p̂ and Tn via T̂n. If T̂n > 4

(
n
2

)
p̂(1 − p̂) −

2cn(α), then the correlation is insignificant. This a posteriori test may provide
insight into how much credence to put into the matching; indeed, if the correlation
is insignificant, then the matching is less informative. For the following experiment,
the graphs follow the correlated ER(5000,0.1) model. For each one of the different
correlation values, we generated 20 pairs of graphs, and the energy ‖A −B‖2F is
plotted in Figure 4.1. The horizontal line corresponds to the value in the statement
of Theorem 4.2, namely, 4

(
n
2

)
p(1− p)− 2cn(α), for several values of α in (0, 1) (as

cn(α) is a lower order term, these lines are very close to each other and only one
horizontal line can be seen in the figure). As it can be observed, when the value
of Tn is above the threshold in red, the graphs are poorly correlated. As an aside
note, the behavior of Tn seems to be linear with ρ.
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Figure 4.1: Value of the statistic Tn: 20 runs for each correlation (black dots), and solid black
lines for maximum and minimum values over all runs. Threshold in Theorem 4.2 in dashed
red.

4.3 Deterministic Results for Graph Matching
Problems related to graph matching and isomorphisms are very important both
from a theoretical and practical perspective, with applications ranging from image
and video analysis to biological and biomedical problems. The graph matching
problem is challenging from a computational point of view, and therefore different
relaxations are commonly used. Although common relaxations techniques tend to
work well for matching perfectly isomorphic graphs, it is not yet fully understood
under which conditions the relaxed problem is guaranteed to obtain the correct
answer.

In this paper we prove that the graph matching problem and its most com-
mon convex relaxation, where the matching domain of permutation matrices is
substituted with its convex hull of doubly-stochastic matrices, are equivalent for a
certain class of graphs, such equivalence being based on spectral properties of the
corresponding adjacency matrices. We also derive results about the automorphism
group of a graph, and provide fundamental spectral properties of the adjacency
matrix.

4.3.1 Introduction
The theoretical and computational aspects behind graph isomorphisms and graph
matching have been a great challenge for the scientific community for a long time.
Maybe the easiest problem to state from this category is the graph isomorphism
problem, which consists in determining whether two given graphs are isomorphic
or not, that is, if there exists a bijection between the vertex sets of the graphs,
preserving the edge structure. Besides the theoretical analysis, the graph isomor-
phism problem is also very interesting from the computational complexity point
of view, since its complexity class is still unsolved: it is one of the few problems in
NP not yet classified as P nor NP-complete [25].

The concept of graph automorphism, and its related properties, is closely con-
nected to the graph isomorphism problem. An automorphism of a graph is a
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mapping from its vertex set onto itself, preserving the connectivity structure. The
set of automorphisms forms a group under the composition operation. Of course,
the identity map is always an automorphism, and when this is the only element
in the group, we say that the graph has a trivial automorphism group. From the
computational complexity point of view, computing the automorphism group is at
least as difficult as solving the graph isomorphism problem.

The last problem we wish to discuss here is the so-called graph matching prob-
lem, which consists in finding an isomorphism between two graphs, and it is there-
fore harder than the graph isomorphism problem. Specifically, let GA and GB be
two graphs with n vertices, and let A and B be their corresponding adjacency
matrices. A common statement of the graph matching problem is to find the cor-
respondence between the nodes of GA and GB which minimizes some matching
error. In terms of the corresponding adjacency matrices A and B, which encode
the graph connectivity, this corresponds to finding a matrix P in the set of permu-
tation matrices P, such that it minimizes a given distance between A and PBPT.
A common choice is the Frobenius norm ||A − PBPT||2F , and then the graph
matching problem can be formally stated as

min
P∈P
||A−PBPT||2F = min

P∈P
||AP−PB||2F . (P1)

Although polynomial algorithms have been developed for a few special types
of graphs, like trees or planar graphs for example [25], the combinatorial nature
of the permutation search makes this problem NP in general. As such, there are
several and diverse techniques addressing the graph matching problem, including
spectral methods [92] and relaxations techniques [39,95,102].

In this paper we focus on a particular and very common relaxation technique,
which consists in relaxing the feasible set (the set of permutation matrices) to its
convex hull. By virtue of the Birkhoff-von Neuman theorem, the convex hull of
P is the set of doubly stochastic matrices D = {M ∈ Rn×n : Mij ≥ 0,M1 =
1,MT1 = 1}, that is, the set of matrices with non-negative entries such that each
row and column sum up to one.

The relaxed version of the problem is then

P̂ = arg min
P∈D
||AP−PB||2F , (P2)

which is a convex problem. However, the resulting P̂ is a doubly stochastic matrix
and not necessarily a permutation matrix, or in general the solution to (P1).

Indeed, since the feasible set of problem (P2) is the convex hull of the feasible set
of problem (P1), every solution of the first problem is also a solution of the relaxed
graph matching problem. A very important question is under which hypothesis
the solution set of these two problems (P1) and (P2) coincide. It is easy to see
that, if there are two permutation matrices that solve the graph matching problem,
then every matrix on the straight line joining them is a solution of problem (P2),
since this problem is convex. Therefore, the least that one should ask for these two
problems to be equivalent is for the solution of (P1) to be unique. When the two
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graphs are isomorphic, this is equivalent to asking for the automorphism group of
the graphs to be the trivial group.

A probabilistic analysis of this equivalence between the original and the re-
laxed graph matching problems is provided in Section 4.2. Basically, we proved
that, when two graph are correlated (but not necessarily isomorphic), then the
unique solution of a non-convex relaxation is almost always the correct permuta-
tion matrix; while on the other hand, the underlying alignment is almost always
not a solution of the commonly used convex relaxation, where the permutation set
is replaced by the doubly-stochastic set as above.

On the other hand, in [1] the authors prove the equivalence of the original
graph matching problem and a relaxed version for a particular kind of graphs
which they call friendly, based on spectral properties. In this work, we extend
these results, proving the (deterministic) equivalence for a larger set of graphs,
and also shedding light on some new spectral graph properties.

4.3.2 Main result
In this section, we consider two isomorphic graphs GA and GB with n vertices
each, and adjacency matrices A and B respectively. Let Po ∈ P be the per-
mutation matrix associated to the isomorphism between the two graphs, that is,
B = PoAPT

o .

Since the graphs considered here are isomorphic, then the minimum (either
over D or P) of ‖AP − PB‖2F is zero, and it is achieved (at least) at Po. Both
problems can be then re-stated as solving the set of linear equations AP = PB
over P ∈ P or P ∈ D.

Now, consider that by the simple change of variables Q = PPo. Then for any
solution P to the relaxed problem (P2), it holds that

AP = PB⇐⇒ AP = PPoAPT
o ⇐⇒ APPo = PPoA⇐⇒ AQ = QA. (4.20)

Note that the change of variables is a multiplication by a permutation matrix,
and hence the set of doubly stochastic matrices is invariant under this mapping.
Therefore, any solution to AQ = QA over Q ∈ D leads, via the change of variables,
to a solution of AP = PB with P ∈ D. This allows us to state the equivalency
between both problems (P1) and (P2) using only one of the adjacency matrices.
Specifically, the problem AQ = QA with Q ∈ D has a trivial solution Q = I,
which corresponds to the solution Po of the problem AP = PB with P ∈ D.
Then the matrix Po will be the unique solution of problem (P2) if and only if the
identity is the unique solution of AQ = QA with Q ∈ D.

Now, since A is a symmetric matrix, we can consider its spectral decomposition
A = UDUT, where D is a diagonal matrix containing the eigenvalues and U is
an orthonormal matrix containing the eigenvectors as columns, denoted as ui, for
i = 1 . . . n.

The main result of [1] states that if A has no repeated eigenvalues, and no
eigenvector ui is perpendicular to the vector of ones 1, then problems (P1) and
(P2) are equivalent. This is illustrated in Figure 4.2, where some graph properties
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are represented. Here asymmetric means that the authomorphism group of the
graph is trivial, simple spectrum means that the adjacency matrix has no repeated
eigenvalues, non-orthogonal to 1 means that no eigenvector ui verifies uTt 1 = 0,
and the regular circle contains regular graphs, i.e., graphs such that each vertex
has the same number of neighbors. The intersection of simple spectrum and non-
orthogonal to 1 graphs is what the authors of [1] call friendly graphs, and they
prove the equivalence of problems (P1) and (P2) for this class.

Simple spectrumR
eg

ular

Asym
metr

ic

N
on-orthogonal to 1

Friendly

Figure 4.2: Graph classes and equivalence of problems (P1) and (P2). Graphs with trivial
authomorphism group are represented in the asymmetric set (we know that graphs for which
(P1) and (P2) are equivalent are inside this set), graphs whose adjacency matrices have no
repeated eigenvalues are represented as the simple spectrum set, non-orthogonal to 1 means
that no eigenvector ui verifies uTt 1 = 0, and the regular circle contains regular graphs. Graphs
in the intersection of simple spectrum and non-orthogonal to 1 are called friendly graphs, and
here the equivalence of problems (P1) and (P2) holds [1]. These problems are not equivalent
for regular graphs. A key question addressed in this work is how far we can extend the green
zone of equivalence inside the asymmetric set.

As observed above, a necessary condition for problems (P1) and (P2) to be
equivalent, is for the automorphism group of the graph to be the trivial group.
However, this condition is not sufficient. Take for instance a regular graph, and

denote by J the barycenter of the set of doubly stochastic matrices, J =
1

n
11T .

Hence, it is very easy to see that, if A is the adjacency matrix of a regular graph,
then AJ = JA. Therefore, there is a solution to problem (P2) which is not a per-
mutation matrix. Since there are regular graphs with trivial automorphism group
(like the Frucht graph [49] for instance), then this condition cannot be sufficient.
In Figure 4.2, this is represented with the small red circle, which intersects both
the asymmetric and simple spectrum sets (see Section 4.3.6 for examples of graphs
in each intersection). In summary, we can hope for problems (P1) and (P2) to be
equivalent inside the asymmetric set minus the regular graphs. So far, we know
from [1] that this is true for friendly graphs, being this until now the largest known
class for which the relaxation is equivalent to the original problem.

The next theorems extend the set where these problems are equivalent to a
larger set of graphs. Theorem 4.4 is stronger than Theorem 4.3, but we include
both proofs for the sake of clarity, since both have pedagogic value.
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Theorem 4.3. If A has no repeated eigenvalues (simple spectrum), and there are
k eigenvectors ui such that uTi 1 = 0, each one of these vectors having at least
2k + 1 nonzero entries, then problems (P1) and (P2) are equivalent.

Proof. We want to prove that the identity is the unique solution to the problem
AQ = QA for Q ∈ D. Let us write the equality AQ = QA in terms of the
eigenvector decomposition of A:

AQ = QA⇔ UDUTQ = QUDUT ⇔
UTUDUTQU = UTQUDUTU⇔ DUTQU = UTQUD.

Now, let us denote by F the new unknown matrix F = UTQU. The problem
can be now stated as

DF = FD , UFUT ∈ D, (PF )

and we now want to prove that F = I is the unique solution of this last problem.
It is easy to see that, since D is diagonal with no repeated entries in the

diagonal, then F has to be diagonal as well in order to commute with D.
Let us write the conditions for UFUT to be in D:

c1) UFUT1 = 1,

c2) UFTUT1 = 1,

c3)
(
UFUT

)
i,j
≥ 0 , ∀ i, j.

Since F is diagonal, and in particular F = FT, then the first two conditions
are redundant, and one of them can be eliminated. Left-multiplying the first
condition by UT, we obtain FUT1 = UT1, and calling v = UT1, condition c1)
can be written as Fv = v.

Without loss of generality, we can assume that the k eigenvectors ui satisfying
uTi 1 = 0 are the first k columns in U. Therefore, vi = 0 for i = 1 . . . k, and vi 6= 0
for i = k+1 . . . n. As F is diagonal, the equations Fv = v can be easily written as
Fi,ivi = vi. When vi 6= 0, the only way for this equation to hold is when Fi,i = 1.
This means that Fi,i = 1 for i = k+ 1 . . . n, and this is sufficient to guarantee that
the first two conditions hold.

For analyzing the third condition, let us decompose the matrix product using
that F is a diagonal matrix with Fi,i = 1 for i = k + 1 . . . n:

UFUT =
n∑
i=1

uiFi,iu
T
i =

k∑
i=1

uiFi,iu
T
i +

n∑
i=k+1

uiu
T
i .

We can now add and subtract
∑k

i=1 uiu
T
i , leading to

UFUT =
k∑
i=1

ui(Fi,i − 1)uTi +
n∑
i=1

uiu
T
i = I +

k∑
i=1

ui(Fi,i − 1)uTi .
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Let us denote by L =
∑k

i=1(1− Fi,i)uiu
T
i , and therefore UFUT = I− L.

Observe that the matrix L satisfies L1 = 0, since every vector ui participating
in the sum satisfies uTi 1 = 0; and note also that all the elements in the diagonal are
Lj,j ≥ 0, otherwise the corresponding entry of UFUT would be (UFUT )j,j > 1,
violating the doubly stochastic condition.

Now, let us assume that there is a solution F to problem (PF ) different from
the identity, and let us analyze the corresponding L matrix trying to find a con-
tradiction. The condition c3) dictates that (I − L)i,j ≥ 0 for all i, j, therefore
the L matrix has no positive elements off the diagonal. On the other hand, since
F is diagonal and we have assumed F 6= I, then at least one of the values Fi,i

(i ≤ k) is different from 1. The corresponding eigenvector ui, which has at least
2k + 1 non-zero elements by hypothesis, will be actually used in the summation
constructing L, and therefore this guarantees that at least 2k + 1 elements in the
diagonal of L are strictly positive.

Considering then the following just described properties for the L matrix:

� L1 = 0,

� Li,j ≤ 0 for all i 6= j,

� Li,i ≥ 0 for all i = 1 . . . n,

� L = LT .

we can associate an undirected graph GL such that L is its Laplacian matrix.2

Moreover, since at least 2k + 1 diagonal elements of L are non-zero (and strictly
positive), at least 2k + 1 elements off the diagonal are non-zero (and strictly neg-
ative), since each row has to add up zero.

Now, each off diagonal element of the laplacian matrix L corresponds to an edge
of the graph GL. Since the matrix L is symmetric, the graph GL is undirected,
and each edge appears twice in the Laplacian matrix. Since there are at least
2k+ 1 non-zero elements off the diagonal of L, the auxiliary graph GL has at least⌊

2k + 1

2

⌋
= k+ 1 edges. It is easy to see that, if the number of edges is e ≥ k+ 1,

then the auxiliary graph GL has at most C ≤ n− (k + 1) connected components.

Remembering that the number of connected components C is given by the
multiplicity of the 0 eigenvalue of the Laplacian matrix L, then the rank of L has
to be at least rank(L) = n− C ≥ k + 1.

However, by construction, L is the sum of k rank-one matrices, and therefore
rank(L) ≤ k, which is a contradiction. This proves that the only solution to
problem (PF ) is the identity, concluding the proof of the theorem.

2Given a graph with adjacency matrix M, its Laplacian matrix is defined as L =
S−M, where S is the degree matrix, i.e., a matrix having the degree of each node in the
corresponding diagonal element, and zeros elsewhere.
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This proof, and therefore the class of equivalence between problems (P1) and
(P2), can be further extended by noting that we originally asked for every eigen-
vector orthogonal to 1 to have at least 2k + 1 non-zero elements, but in the proof
we only used this fact for one of these eigenvectors. It might be the case, for
instance, that only one of the elements Fi,i is different from one, and therefore the
matrix L has rank one. In this case, it would be sufficient to ask for the corre-
sponding eigenvector to have at least 3 non-zero elements. The problem is that
we do not know in advance which or how many of the eigenvectors will be used in
the summation to construct the L matrix. However, it is possible to weaken the
hypothesis as shown next.

Let us consider all the k eigenvectors satisfying uTi 1 = 0, and sort them ac-
cording to the number of non-zero elements, such that |u1|0 ≤ |u2|0 ≤ · · · ≤ |uk|0,
where | · |0 is the `0 pseudo-norm, which counts the non-zero elements of a vector.

Theorem 4.4. If A has no repeated eigenvalues, and there are k eigenvectors ui
such that uTi 1 = 0, sorted as above and satisfying |ui|0 ≥ 2i + 1, then problems
(P1) and (P2) are equivalent.

Proof. This proof follows exactly the same procedure as the previous one, with
minor changes.

Let us assume, as before, that there is a solution F 6= I to problem (PF ). In
order to fulfill condition c1), the last n− k diagonal elements of F have to be one,
i.e., Fi,i = 1 for i = k + 1, . . . n. For the first k diagonal elements, there might be
some 0 values. Let M be the greatest index of the eigenvectors actually used in
the sum, meaning M = max{i ∈ 1 . . . k : Fi,i 6= 0}.

We can then write

L =
M∑
i=1

(1− Fi,i)uiu
T
i .

Since |uM |0 ≥ 2M + 1, the auxiliary graph GL has at least M + 1 edges.
Therefore the number of connected components satisfies C ≤ n − (M + 1), and
hence rank(L) ≥ M + 1. The contradiction, as before, comes from the fact that
L is the sum of M rank one matrices, concluding the proof.

As noted above, a necessary condition for the problems (P1) and (P2) to be
equivalent is for the automorphism group of GA to be the trivial group. Therefore,
we have the following corollary:

Corollary 4.5. If A has no repeated eigenvalues, and there are k eigenvectors
ui such that uTi 1 = 0, sorted according to their `0 norm as above, and satisfying
|ui|0 ≥ 2i+ 1, then the automorphism group of the corresponding graph GA is the
trivial group.

4.3.3 Interpretation and additional results
It is clear that the spectral decomposition of an adjacency matrix provides a lot
of information about the automorphism group of a graph, and the graph match-
ing problem itself. However, very little is known about how the eigenvalues and
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eigenvectors of the adjacency matrix affect the graph properties. In this section,
we discuss some links between these two fields, paying particular attention to the
equivalence of problems (P1) and (P2), and also discussing more general novel
properties.

As noted in the previous section, asymmetry of a graph is a necessary condi-
tion for problems (P1) and (P2) to be equivalent, although is not sufficient, with
asymmetric regular graphs serving as counter-examples (see red region in Figure
4.2). It is interesting to note that regular graphs have the vector 1 as an eigenvec-
tor, and since the adjacency matrix is symmetric, its eigenvectors are orthogonal
to each other, therefore there are n − 1 eigenvectors satisfying uTi 1 = 0. Hence,
the condition asked in [1] is violated not only by one eigenvector, but by n− 1 of
them.

Besides this observation, it is not clear the interpretation of the non existence
of eingenvectors perpendicular to 1.

Let us focus now on the properties of eigenvectors orthogonal to 1 with re-
stricted support, as in the statement of Theorem 4.3.

4.3.4 The simplest case: one eigenvector u such that uT1 = 0

Let us assume here that A is the adjacency matrix of a graph GA with no repeated
eigenvalues and only one eigevector u satisfying uT1 = 0. Now, if this vector u has
strictly more than two non-zero entries, i.e., |u|0 > 2, then this graph falls into the
hypothesis of Theorem 4.3. Therefore, the graph has trivial automorphism group,
and if GB is an isomorphic graph, problems (P1) and (P2) are equivalent.

Since the sum of the entries of u is zero, the only remaining case is when u has
exactly two non-zero elements. Assuming that the eigenvectors are normalized,
the eigenvector u is of the form

u =

(
0, . . . , 0,

1√
2
, 0, . . . , 0,

−1√
2
, 0, . . . , 0

)
.

Let s and t be the indices of the non-zero coefficients. Since u is an eigenvalue,
then we have Au = λu. Now, denoting by As and At the columns of A at
positions s and t respectively, and taking into account the particular structure of
u, the product Au is simply the difference between these two columns: Au =
1√
2

(As −At) = λu. Therefore, columns As and At are identical, except for the

coordinates s and t. This means that the nodes corresponding to indices s and t
have exactly the same connectivity pattern with the rest of the nodes in the graph.

Consider now the rest of the involved entries (nodes). Let Ã be the 2 × 2
sub-matrix formed by entries (s, s), (s, t), (t, s) and (t, t) of matrix A, and let

w =
(

1√
2
, −1√

2

)
. We have then Ãw = λw. It is easy to see that, since the entries

in Ã are either 1 or 0, then only three values of λ are possible: −1, 0 and 1,
corresponding to the following situations:

� λ = −1: the matrix is Ã =

(
0 1
1 0

)
, therefore nodes s and t are connected
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and they have no loops;

� λ = 0: the matrix is either Ã =

(
1 1
1 1

)
or Ã =

(
0 0
0 0

)
. Therefore, nodes

s and t are either connected and both have loops, or not connected without
loops;

� λ = 1: the matrix is Ã =

(
1 0
0 1

)
, therefore nodes s and t are not connected

and both of them have loops.

Taking into account that nodes s and t have the same connectivity pattern
with the rest of the graph, in any of the situations listed above, nodes s and t
are interchangeable, meaning that there exists a non trivial automorphism of the
graph GA, namely, the automorphism which permutes nodes s and t, and leaves
the rest of the nodes unchanged. Therefore, for graphs with the corresponding
adjacency matrix having a single eigenvector orthogonal to the unity vector, and
this eigenvector having exactly two non-zero entries, problems (P1) and (P2) are
not equivalent. The problems are equivalent if the eigenvector has more than two
non-zero entries.

4.3.5 The general case
Let us further analyze the relationship between the group of automorphisms of a
graph and the eigenvectors of its adjacency matrix, now considering a more general
case in terms of the non-zero elements of the eigenvectors.

First, observe that if the matrix A has simple spectrum, then each element of
the automorphism group has order two, with the exception of the identity (this
result appears in [16] and [67]):

Lemma 4.6. If A has no repeated eigenvalues and P is a permutation matrix
such that
AP = PA, then P2 = I.

Proof. In order to prove this, let u be an eigenvector of A associated with the
eigenvalue λ. Then, APu = PAu = Pλu = λPu. Therefore, the vector Pu is
an eigenvector associated with the eigenvalue λ as well. Since every eigenspace
has dimension 1, and the multiplication by the permutation matrix preserves the
norm, then necessarily Pu = ±u, and hence P2u = u. Since this is true for every
eigenvector u in the basis, then P2 = I.

We are now able to prove the following.

Proposition 4.7. If A has no repeated eigenvalues, and the group of automor-
phisms of GA is non trivial, then there exist a set of k eigenvectors ui satisfying
uTi 1 = 0, each one of them having at most 2k non-zero entries.
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Proof. Let P 6= I be a permutation matrix, corresponding to a non-trivial auto-
morphism of GA. As observed above, since A has simple spectrum, then P2 = I.
Since the permutation has order two, we can re-arrange the order of the nodes in
such a way that the resulting permutation matrix P is block diagonal as follows

P =



0 1 0
1 0

. . .

0 1
1 0

1
. . .

0 1


.

As in the previous section, consider the eigen-decomposition A = UDUT,
which transforms the problem AP = PA into DF = FD, where the new unknown
matrix F is defined as F = UTPU, or equivalently, P = UFUT. As before, since
A has no repeated eigenvalues, F is necessarily diagonal, and therefore P = UFUT

is one possible eigen-decomposition of P.

Now, the matrix U of normalized eigenvectors of A is unique, up to changes of
sign in each column. This is not true for P, since it has repeated eigenvalues. How-
ever, any orthogonal eigen-decomposition of P can be obtained as an orthogonal
transformation (rotation and/or symmetries) of U.

Given that P is block-diagonal, one possible eigen-decomposition can be ob-
tained by combining the eigen-decompositions of each block. The lower part of
P is an identity block, and hence all eigenvalues are equal to 1, with canonical
eigenvectors. The rest are 2× 2 blocks with the following decomposition:

(
0 1
1 0

)
=

( −1√
2

1√
2

1√
2

1√
2

)(
−1 0
0 1

)( −1√
2

1√
2

1√
2

1√
2

)
.

Therefore, a plausible eigendecomposition for P is P = VEVT, with:

E =



−1 0
1

. . .

−1
1

1
. . .

0 1


, V =



−1√
2

1√
2

0
1√
2

1√
2

. . .
−1√

2
1√
2

1√
2

1√
2

1
. . .

0 1


.
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Since the columns of both U and V are possible basis of the eigenvalues of P,
the matrix U can be thought as an orthogonal transformation of V that leaves
invariant the eigenspaces S−1 and S1 (eigenspaces of P associated with eigenvalues
−1 and 1 respectively). Observe that the eigenspace S−1 is composed by vectors
orthogonal to 1, and therefore, in the orthogonal transformation from V to U, the
whole subspace S−1 will be mapped to a subspace orthogonal to 1. Let k be the
dimension of the subspace S−1, and let us denote by Ũ the set of the k eigenvectors
of A (columns of U) corresponding to the eigenspace S−1 after the linear mapping.
These columns of U, as argued above, are orthogonal to 1. Analogously, let Ṽ be
formed by the columns of V associated with the eigenvalue −1, so the columns of
Ṽ are a basis of S−1.

Given that we assumed P 6= I, there is at least one 2 × 2 non identity block
like the one described above, and therefore k ≥ 1. Since S−1 is invariant under the
orthogonal transformation, then the mapping of this subspace can be written as
linear combinations of the elements of the basis, this is, Ũ = ṼT, where T is an
orthogonal matrix. Since, according to the previous description, Ṽ has the form

Ṽ =
1√
2



−1 0 . . . 0
1 0 . . . 0
0 −1 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . −1
0 0 . . . 1
...

...
...


︸ ︷︷ ︸

k columns

,

then Ũ is conformed by k vectors with 2k non-zero entries at most. Moreover,
each one of these vectors has an even number of non-zero entries.

We have simulated millions of Erdős-Rényi graphs, and obtained have empir-
ical evidence suggesting that there is always a subset of these k vectors formed
by r vectors with exactly 2r non-zero entries each, in the same location, which
correspond to the 2r nodes which are permuted in the automorphism (see the ex-
amples in the appendix). However, the arguments used in the previous proof are
not sufficient to formally prove this.

On the other hand, the empirical evidence also suggests that a converse of this
last statement may be true. We formulate then the following conjecture.

Conjecture 4.8. If A has no repeated eigenvalues, and there exist a set of r
eigenvectors ui satisfying uTi 1 = 0, each one of them with exactly 2r non-zero
entries, in the same location, then the group of automorphisms of GA is not trivial.
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We know that this is true for k = 1, Section 4.3.4. The proof for the general
case, as well as other relations between spectral properties and the automorphism
group, are part of future work.

4.3.6 Graph examples
Figure 4.2 shows different sets of graphs according to the relevant characteristics
for this paper, principally about eigenvectors and eigenvalues. For instance, the
class of graphs where theorems 4.3 and 4.4 apply lays on the intersection of asym-
metric and simple spectrum graphs, but outside the non-orthogonal to 1 set. It is
important therefore to show that there exist graphs in this subset, and in general
that each subset in the diagram is not empty.

As mentioned above, the Frucht graph [49], illustrated in Figure 4.3 (left),
serves as an example of regular graphs with trivial automorphism group and simple
spectrum. The regular graph in Figure 4.3 (right) also has trivial automorphism
group, but the adjacency matrix has repeated eigenvalues.

Figure 4.3: Regular graphs with trivial automorphism group. Left: the Frucht graph, with
simple spectrum. Right: a regular asymmetric graph with repeated eigenvalues.

The graph of Figure 4.4 is an example of a graph with simple spectrum, but
where there is an eigenvector u such that uT1 = 0, and therefore this is not a
friendly graph. This eigenvector has 4 non-zero elements, and hence Theorem 4.3
applies. As a consequence, for any isomorphic graph, problems (P1) and (P2) are
equivalent, and in particular the automorphism group of this graph is trivial. Since
the graph is not friendly, the results of [1] do not hold for this graph.

Figure 4.4: A non-friendly graph, with simple spectrum but one eigenvector orthogonal to 1.
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The graph in Figure 4.5 has simple spectrum but non-trivial automorphism
group. Indeed, it has two eigenvectors u1 and u2 orthogonal to 1, each one with
four non-zero elements. Namely, the eigenvectors are

u1 =

(
1

2
,
1

2
,
−1

2
,
−1

2
, 0, 0, 0, 0

)
and

u2 =

(
1

2
,
−1

2
,
1

2
,
−1

2
, 0, 0, 0, 0

)
.

Illustrating the Conjecture 4.8, the first four coordinates of the eigenvectors
correspond to the four red nodes of the graph. The non-trivial automorphism
consist on permuting the two lower nodes between themselves, and the two upper
nodes between themselves, as it can be clearly seen in the figure. Of course,
theorems 4.3 and 4.4 do not apply for this graph.

Figure 4.5: A graph with simple spectrum but non-trivial automorphism group.

The following two graphs, illustrated in Figure 4.6, have trivial automorphism
group and both have repeated eigenvalues. The first one has one eigenvector
orthogonal to 1, while the second one has no eigenvector u satisfying uT1 = 0.

Finally, Figure 4.7 shows the same diagram as in Figure 4.2, but with examples
of graphs inside each intersection, demonstrating that none of these subsets is
empty.

4.3.7 Conclusion
We have addressed the equivalence of the graph matching problem with its most
common convex relaxation, generalizing the results in [1], and extending the anal-
ysis to graph automorphism properties.

Theorem 4.3 and the stronger version, Theorem 4.4, state conditions on the
spectral properties of the adjacency matrix of a graph in order for the graph
matching problem and the convex relaxation to be equivalent. Specifically, if the
adjacency matrix has simple spectrum, and the eigenvectors orthogonal to vector
1 have enough non-zero entries, then the equivalence between the two problems
holds. This gives also a set of easily verifiable conditions implying that the auto-
morphism group of a graph is trivial.
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Figure 4.6: Asymmetric graphs with repeated eigenvalues, with (left) and without (right)
eigenvectors orthogonal to 1.

Simple spectrum

R
eg

ular

Asym
metr

ic

N
on-orthogonal to 1

Friendly

Figure 4.7: Examples of graphs in each class.

The extension of the set where problems (P1) and (P2) are known to be equiv-
alent, due to these new results, is shown in Figure 4.8.

In addition to the main theorems, we provided evidence that these particular
eigenvectors, orthogonal to 1, contain critical information about the symmetries
of the graph, specially in their non-zero entries.

During the last decades, important theory was developed on eigenvalues and
eigenvectors of the Laplacian matrix of a graph, with very important theoretic
results, which brought important applications. The new results here presented
shed light on some spectral properties of the adjacency matrix, and leave open some
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Figure 4.8: Regions where problems (P1) and (P2) are known to be equivalent (green) and
non-equivalent (red). Outside the asymmetric set and inside the regular set, the problems are
known to be non-equivalent. Problems are equivalent for friendly graphs [1], and in the green
zone 1 by virtue of the theorems proved in Section 4.3.2. The zone 2 consists of non-regular
asymmetric graphs with simple spectrum, but not satisfying the conditions of theorems 4.3 or
4.4; although this subset might be nonempty, since we could not find examples of graphs in
this zone.

other questions about the link between these properties and the automorphisms
of the graph.
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Conclusions

In this thesis we addressed several problems related to graphs, including new al-
gorithms, applications, and theory.

The set of problems tackled in this manuscript can be grouped into two general
classes: graph inference problems and graph matching problems.

In Chapter 2 we proposed several algorithms and applications of network es-
timation. First, we proposed three extensions to `1 penalized models for graph
inference. The first one incorporates topological information to the optimization,
allowing to control the graph centrality. We showed how this model can be used to
improve the performance of the basic estimation method even when there is no such
external information. The second extension favors the appearance of triangles, al-
lowing to better detect motifs in genetic regulatory networks. We combined both
models for a better estimation of the Escherichia coli genetic regulatory network.
Finally, we presented a collaborative model capable of jointly estimating several
networks, supposed to share a common structure, and we applied this model to
fMRI brain connectivity estimation.

There are several other graph-topological properties that may provide impor-
tant information, making it interesting to study which kind of structure can be
used to guide the optimization problem. On the other hand, the collaborative infer-
ence of graphs can be also complemented with other extensions. In particular, an
interesting next step would be to collaboratively infer brain connectivity networks
of two groups of people, but trying to maximize and spot the main differences
between them. This could be used for instance to detect unusual brain activity
for some groups, like drug addicts or people suffering from some neuro-biological
illness

In the last section of Chapter 2 we presented a mobility graph estimation prob-
lem, when only counting information on some nodes is available, the movements
are asynchronous, and the time it takes to an entity to go from one site to another
depends on the origin and destination, and is unknown. We introduced a for-
mulation based on the dynamics of the system, and we derived its corresponding
optimization problem, which was tested for two publicly available real datatets:
the New York taxis dataset, and the domestic US flights. The results show that
the general topology of the mobility pattern can be recovered, and therefore the
system can be analyzed from this inferred network.

Since as far as we know this is the first formulation of this problem, there is a
lot of room for improvement, which is part of the future work, as well as different
extensions and applications, like analyzing a mobility network at different times



Conclusions

of the day to detect patterns of behavior, or detecting outliers in the behavior.
In Chapter 3 we presented methods for graph matching problems. First, we in-

troduced a new formulation for the graph matching problem, inspired by ideas from
the sparse modeling community. Since in the problem formulation the weights of
the graphs are not compared explicitly, the method can deal with multimodal
data, outperforming the other state-of-the-art methods that are used here for
comparison. In addition, the proposed formulation naturally fits into the pre-
alignment-free collaborative network inference framework, where the permutation
is estimated together with the underlying common network, with promising pre-
liminary results in applications with real data.

In the last section of the chapter, we presented an exhaustive experimental
analysis of several graph matching techniques, including a new method inspired
by theoretical results that we derived in Chapter 4. The experimental results
further emphasize the trade-off between tractability and correctness in relaxing the
graph matching problem, with real data experiments and simulations in non edge-
independent random graph models suggesting that the theory could be extended
to more general random graph settings.

The last chapter is focused on theoretical analyses of the graph matching prob-
lem. In the first part, we presented theoretical results showing the surprising fact
that the indefinite relaxation (if solved exactly) yields the optimal solution to the
graph matching problem with high probability, under mild conditions. Conversely,
we also present a novel result which states that the popular convex relaxation of
graph matching almost always fails to find the correct (and optimal) permutation.
In spite of the apparently negative statements presented here, these results have
an immediate practical implication: the usefulness of intelligently initializing the
indefinite matching algorithm to obtain a good approximate solution of the indef-
inite problem, as demonstrated in Chapter 3. The extension of these theoretical
results to more general random graph settings will be the subject of the future
work.

Finally, in Section 4.3 we studied the equivalence of the graph matching prob-
lem with its most common convex relaxation from a deterministic point of view.
The main theorem of this section establishes conditions on the spectral proper-
ties of the adjacency matrix of a graph under which the graph matching problem
and its convex relaxation are equivalent. This gives also a set of easily verifiable
conditions implying that the automorphism group of a graph is trivial.

In addition to the consequences for graph matching problems, we provided
evidence that the eigenvectors of the adjacency matrix which are orthogonal to
1, contain significant information about the symmetries of the graph, specially in
their non-zero entries.

Several questions and conjectures were raised along this section, mainly about
the link between these spectral properties and the automorphisms of the graph,
or the graph matching problem itself. We expect to be able to further understand
these connections in the future.
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