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Random dot product graphs

n Consider a latent space Xd ⊂ Rd such that for all

x,y ∈ Xd ⇒ x>y ∈ [0, 1]

⇒ Inner-product distribution F : Xd 7→ [0, 1]

n Random dot product graphs (RDPGs) are defined as follows:

x1, . . . ,xNv

i.i.d.∼ F,

Aij

∣∣xi,xj ∼ Bernoulli(x>i xj)

for 1 ≤ i, j ≤ Nv, where Aij = Aji and Aii ≡ 0

n A particularly tractable latent position random graph model

⇒ Vertex positions X = [x1, . . . ,xNv
]> ∈ RNv×d

S. J. Young and E. R. Scheinerman, “Random dot product graph models for social networks,” WAW,

2007
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Estimation of latent positions

n Q: Given G from an RDPG, find the ‘best’ X = [x1, . . . ,xNv
]>?

n MLE is well motivated but it is intractable for large Nv

X̂ML = argmax
X

∏
i<j

(x>i xj)
Aij (1− x>i xj)

1−Aij

n Instead, let Pij = P ((i, j) ∈ E) and define P = [Pij ] ∈ [0, 1]Nv×Nv

⇒ The RDPG model specifies that P = XX>

⇒ Key: Observed A is a noisy realization of P (E [A] = P)

n Suggests a LS regression approach to find X s.t. XX> ≈ A

X̂LS = argmin
X

‖XX> −A‖2F

A. Athreya et al, “Statistical inference on random dot product graphs: A survey,” JMLR, 2018
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Adjacency spectral embedding

n Since A is real and symmetric, can decompose it as A = UΛU>

l U = [u1, . . . ,uNv ] is the orthogonal matrix of eigenvectors
l Λ = diag(λ1, . . . , λNv ), with eigvenvalues λ1 ≥ . . . ≥ λNv

n Define Λ̂ = diag(λ+1 , . . . , λ
+
d ) and Û = [u1, . . . ,ud] (λ+ := max(0, λ))

n Best rank-d, positive semi-definite (PSD) approximation of A is ÛΛ̂Û>

⇒ Ajacency spectral embedding (ASE) is X̂LS = ÛΛ̂
1/2

since

A ≈ ÛΛ̂Û> = ÛΛ̂
1/2

Λ̂
1/2

Û> = X̂LSX̂>LS

n Q: Is the solution unique? Nope, inner-products are rotation invariant

P = XW(XW)> = XX>, WW> = Id

⇒ RDPG embedding problem is identifiable modulo rotations
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Embedding an SBM graph
n Ex: SBM with Nv = 1500, Q = 3 and mixing parameters

α =

 1/3
1/3
1/3

 , Π =

 0.5 0.1 0.05
0.1 0.3 0.05
0.05 0.05 0.9



n Sample adjacency A (left), X̂LSX̂>LS (center), rows of X̂LS (right)

n Use embeddings to bring to bear geometric methods of analysis
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Interpretability of the embeddings
n Ex: Zachary’s karate club graph with Nv = 34, Ne = 78 (left)
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n Node embeddings (rows of X̂LS) for d = 2 (right)

l Club’s administrator (i = 0) and instructor (j = 33) are orthogonal

n Interpretability of embeddings a valuable asset for RDPGs

⇒ Vector magnitudes indicate how well connected nodes are

⇒ Vector angles indicate nodes’ affinity
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Streaming Graphs

n Goal: track the underlying model of a stream of graphs Gt

Ex 1: monitoring a wireless network
Ex 2: evolving social network

n Naive approach: estimate X̂t by finding the ASE for each At separately

7 Computationally expensive

7 Challenging to align separate embeddings

n ASE does not account for the all-zero diagonal of A. Truly we want to solve

X̂ ∈ argmin
X∈RN×d

‖M ◦ (A−XX>)‖2F

⇒ M := 11> − I is a mask matrix, with zero-diagonal and ones everywhere else
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Gradient descent
n Let f : RNv×d 7→ R be the objective function f(X) = ‖M ◦ (A−XX>)‖2F

⇒ Non-convex w.r.t. X, convex w.r.t. P = XX>

n Gradient descent (GD) method (a.k.a. factorized GD or Procrustes flow)

Xt+1 = Xt − α∇f(Xt), t = 0, 1, 2, . . .

⇒ Step size α > 0 and ∇f(X) = 4
[
M ◦ (XX> −A)

]
X, for symmetric A and M

n Convergence: if X0 is close to the solution, iterations converge with linear rate to X̂

Proposition. There exist δ > 0 and 0 < κ < 1 such that, if ‖X0 − X̂‖F ≤ δ, then

d(Xt, X̂) ≤ κtd(X0, X̂), for all t > 0,

where d(X, X̂) := min
W∈Od×d

‖XW − X̂‖2F accounts for the rotational ambiguity.

Y. Chi et al., “Nonconvex optimization meets low-rank matrix factorization: An overview,” TSP,

2019
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Tracking via warm restarts

Idea: Update X̂t through GD initialized with the previous estimate X̂t−1

n Example:

l Nv = 6 Wi-Fi APs in a
Uruguayan school

l Hourly measurements over 4
weeks (655 graphs)

l AP 4 was moved at t ≈ 310

M. Fiori et al., “Algorithmic Advances for the Adjacency Spectral Embedding,” EUSIPCO, 2022

Federico Larroca et al. • Tracking ASE 9/14



Our approach in context

Q Isn’t this the classic problem of recursively updating eigenvalues/vectors?

A Yes, but

7 Computationally expensive except for specific types of changes (e.g. rank-1)
7 Available methods accumulate error and/or still produce unaligned estimates

n Example: an SBM with two communities, at each t a random node changes affiliation
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M. Brand, “Fast low-rank modifications of the thin singular value decomposition,” Linear Algebra

and its Applications, 2006
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Varying number of nodes

n Dynamic graphs typically include deletions/additions of nodes

l Deletions are easy to handle, but additions?

n Assume a single node i = Nv + 1 is added

⇒ The new At+1 ∈ {0, 1}Nv+1×Nv+1 has an extra row (column) aNv+1 ∈ {0, 1}Nv

⇒ What about x̂Nv+1?

n Reasonable approximation: project aNv+1 to the column space of X̂t

x̂proj
Nv+1 = aNv+1X̂

norm
t

with X̂norm
t the column-wise normalized version of X̂t

3 Simple and consistent as Nv →∞
3 Preserves alignment
7 Assumes embeddings do not change over time
7 Error accumulates as new nodes are added in the finite Nv regime

K. Levin et al., “Out-of-sample extension of graph adjacency spectral embedding,” PMLR, 2018
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Varying number of nodes
Idea: Update X̂t+1 using GD where old nodes are initialized at x̂t

and new ones at x̂proj

3 Still simple and consistent as Nv →∞
3 Preserves alignment
3 Embeddings may change over time
3 Constant error as new nodes are added in the finite Nv regime

n Simple example:
l G0 = G100,0.1. We add new nodes that are also from an ER with p = 0.1
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Real-world data
n Gt consisting of:

l Nodes: national football teams
l (Weighted) edges: number of matches between years t− 3 and t

n Start at t = 1930 (Nv = 41) and finish at t = 2015 (Nv = 222). We use a fixed d = 7.
l Example: Australia left the OFC and joined the AFC in 2005
l Plot: Asia and Oceania’s embeddings best 2-d approximation
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Y. Li et al., “Networks of international football: Community structure, evolution and globalization of

the game,” Applied Network Science, 2022
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Concluding remarks

n ASE to estimate latent nodal positions in RDPGs ⇒ Non-convex matrix factorization

n Convergent, first-order gradient descent algorithm for refined formulation

⇒ Scalable and fast computation of nodal representations

⇒ Track dynamic network representations even when Nv changes

n Future work

⇒ Directed case implies constraints on the optimization problem

⇒ Consistency, asymptotic normality, stability (Nv →∞)

https://github.com/git-artes/
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