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Random dot product graphs

B Consider a latent space Xy C R? such that for all
x,yeX; = x'yelo,1]

= Inner-product distribution F : Xy +— [0, 1]

B Random dot product graphs (RDPGs) are defined as follows:

iid.
Xi,...,Xn, ~ F,

Aij |Xi,Xj ~ Bernoulli(x:xj)

for 1 <i,j < N, where A;; = Aj; and A;; =0

B A particularly tractable latent position random graph model

= Vertex positions X = [x1,...,xy,] € RNoxd
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Estimation of latent positions

B Q: Given G from an RDPG, find the ‘best’ X = [x1,...,xn,]?
B MLE is well motivated but it is intractable for large N,

X1, = argmax H(X;'FX]‘)AU (1 — x; x;)L A
i<j

B Instead, let P;; = P ((i,5) € €) and define P = [P;;] € [0, 1]VoxNv
= The RDPG model specifies that P = XX
= Key: Observed A is a noisy realization of P

W Suggests a LS regression approach to find X s.t. XX ~ A

Xps = argmin ||XXT — A%
X
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Adjacency spectral embedding

B Since A is real and symmetric, can decompose it as A = UAU T

® U =[uy,...,uy,] is the orthogonal matrix of eigenvectors
o A =diag(A1,...,An,), with eigvenvalues A\y > ... > An,

B Define A = diag(\f, . .. ,)\j) and U = [ug,...,ug
B Best rank-d, positive semi-definite (PSD) approximation of A is UAUT
= Ajacency spectral embedding (ASE) is X = U’Alm since
A~ UAUT = UA’AY?07 = X 6X]
B Q: Is the solution unique? Nope, inner-products are rotation invariant

P=XWXW) =XX", WW' =1,

= RDPG embedding problem is identifiable modulo rotations
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Embedding an SBM graph
B Ex: SBM with N, = 1500, @ = 3 and mixing parameters
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B Sample adjacency A (left), XLSXIS (center), rows of X g (right)

B Use embeddings to bring to bear geometric methods of analysis
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Interpretability of the embeddings
B Ex: Zachary’s karate club graph with N, = 34, N, = 78 (left)

B Node embeddings (rows of X 1g) for d = 2 (right)
® Club’s administrator (: = 0) and instructor (7 = 33) are orthogonal
B Interpretability of embeddings a valuable asset for RDPGs
= Vector magnitudes indicate how well connected nodes are

= Vector angles indicate nodes’ affinity
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Streaming Graphs

B Goal: track the underlying model of a stream of graphs G

Ex 1: monitoring a wireless network
Ex 2: evolving social network

B Naive approach: estimate X; by finding the ASE for each A, separately
X Computationally expensive

X Challenging to align separate embeddings

B ASE does not account for the all-zero diagonal of A. Truly we want to solve

X € argmin |[Mo (A — XX T)|%
XERN xd

= M := 11" — I is a mask matrix, with zero-diagonal and ones everywhere else

Federico Larroca et al. e Tracking ASE

7/14



Gradient descent

B Let f: RYv*4 1 R be the objective function f(X) = |[[Mo (A — XX ")|%
= Non-convex w.r.t. X, convex w.r.t. P =XXT

B Gradient descent (GD) method (a.k.a. factorized GD or Procrustes flow)
Xt+1 :Xt—OéVf(Xt), t:071,2,...
= Step size & > 0 and Vf(X) =4 [Mo (XX — A)| X, for symmetric A and M

B Convergence: if X is close to the solution, iterations converge with linear rate to X

Proposition. There exist § > 0 and 0 < x < 1 such that, if | Xy — X||p < 8, then
d(X,,X) < k'd(Xo,X), forallt >0,

where d(X,X) := min |XW — X||2 accounts for the rotational ambiguity.
WeOdx
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Tracking via warm restarts

Idea: Update X, through GD initialized with the previous estimate X1

B Example:
® N, =6 Wi-Fi APs in a
Uruguayan school
® Hourly measurements over 4
weeks (655 graphs)
® AP 4 was moved at t =~ 310
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Our approach in context

Q Isn’t this the classic problem of recursively updating eigenvalues/vectors?
A Yes, but

X Computationally expensive except for specific types of changes (e.g. rank-1)
X Available methods accumulate error and/or still produce unaligned estimates

B Example: an SBM with two communities, at each ¢ a random node changes affiliation
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Varying number of nodes

B Dynamic graphs typically include deletions/additions of nodes
® Deletions are easy to handle, but additions?
B Assume a single node ¢ = N, + 1 is added
= The new A yq € {0, 1} Vv T1XNoF1 hag an extra row (column) ay, 1 € {0, 1}
= What about Xx, 417

B Reasonable approximation: project ay, i to the column space of X,
sproj - NOTM
XN, +1 = an,+1X{

with X2 the column-wise normalized version of X
v Simple and consistent as N, — 0o
v Preserves alignment
X Assumes embeddings do not change over time
X Error accumulates as new nodes are added in the finite N, regime
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Varying number of nodes

Idea: Update Xt+1 using GD where old nodes are initialized at X
and new ones at XPrJ
v/ Still simple and consistent as N, — 0o
v Preserves alignment
v Embeddings may change over time
v Constant error as new nodes are added in the finite N, regime
B Simple example:
® Gy = G100,0.1. We add new nodes that are also from an ER with p = 0.1

Evolution of [|X,X] — Pillr/ /i
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Real-world data

B G, consisting of:
® Nodes: national football teams
® (Weighted) edges: number of matches between years ¢ — 3 and ¢
B Start at t = 1930 (N, = 41) and finish at ¢ = 2015 (N,, = 222). We use a fixed d = 7.
® Example: Australia left the OFC and joined the AFC in 2005
® Plot: Asia and Oceania’s embeddings best 2-d approximation
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Concluding remarks

B ASE to estimate latent nodal positions in RDPGs = Non-convex matrix factorization

B Convergent, first-order gradient descent algorithm for refined formulation
= Scalable and fast computation of nodal representations

= Track dynamic network representations even when N, changes

B Future work
= Directed case implies constraints on the optimization problem

= Consistency, asymptotic normality, stability (N, — 00)

O https://github.com/git-artes/
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