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Fekete Problem

Position n points on the sphere Sd ⊂ Rd+1, so as to maximize the
product of the distances between pairs of points:

∏
1≤i<j≤n

∥wi − wj∥,

wi ∈ Sd ⊂ Rd+1.

Equivalently: place the points to minimize the logarithmic energy

Elog(w) := −
∑

1≤i<j≤n

log
(
∥wi − wj∥2

)
, wi ∈ Sd ⊂ Rd+1.
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Why caring about this problem?

Fekete problem: minimize the logarithmic energy on Sd :

Elog(w) := −
∑

1≤i<j≤n

log
(
∥wi − wj∥2

)
, wi ∈ Sd ⊂ Rd+1.

Bezout III - Shub and Smale (1993) [1]

Fekete solutions (projected to the plane) are useful for initializing
homotopy algorithms. Even solutions up to a logarithmic factor.

Smale’s 7th problem for the next Century (1998) [4]

Give an “efficient” algorithm that, for each number of points n,
finds ŵ ∈ (S2)n with optimal value up to a logarithmic factor:

Elog(ŵ)− E ∗
log ≤ c log(n), for a universal constant c.
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What is known about Fekete problem

Optimal configurations known for few values of n and d .

In S2, optimals are known only for: n = 2, 3, 4, 5, 6 and 12.

Optimal value known asymptotically, up to linear term [9]:

in S2: E ∗
log =

(
1

2
− log 2

)
n2

2
− n log n

4
+ Cn + o(n), C =?

Any critical configuration satisfies:
∑n

i=1 wi = 0⃗.

Has saddle-points [8, 10], and degenerate minima [11].

Numerically: number of spurious local minima in S2 increases
“dramatically” with n [2]; although none is known in S2.

Only one spurious local minima is known [8, 10]: n = 6 in S3.
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Contributions and Approach

Contributions

Formulate critical confs. as solutions of a polynomial system.

Formulation is useful for any sphere Sd .

For n ≤ 6 points, and all sphere dimensions d , we:

recover previously known results in a Unified Framework.
find and classify all Critical Configurations, including unknown
Saddle.

Approach

Determine the number of exact solutions m of the formulation.

Find as many solutions as possible, until we reach m.
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Removing Orthogonal Symmetry

Elog(w) := −
∑

1≤i<j≤n

log
(
∥wi − wj∥2

)
.

Energy is invariant under rotations of
the sphere.

This gives ∞ solutions (but we need
to count solutions).

Change of variables

Instead of the wi , use dot products (“angles”) as variables:

xij := wT
i wj = cos(θij).

Rotations of a solution give the exact same solution (in the xij).
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Equations in terms of dot products

Lagrange optimality conditions, expressed in the xij := wT
i wj :

(n − 1) xki −
n∑

j=1,j ̸=i

xki − xkj
1− xij

= 0, ∀ i ̸= k.

Introduce auxiliary variables zij , and corresponding equations:

zij(1− xij) = 1. (1)

(n − 1) xki −
n∑

j=1,j ̸=i

(xki − xkj)zij = 0, ∀ i ̸= k. (2)

Gives a polynomial expression, and ensures xij ̸= 1 (wi ̸= wj).
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Equations in terms of dot products

Equations:

zij(1− xij) = 1.

(n − 1) xki −
n∑

j=1,j ̸=i

(xki − xkj)zij = 0, ∀ i ̸= k.

Variables: xij , zij , i < j .

Number of variables and equations

n 3 4 5 6 7 8

variables 2
(n
2

)
6 12 20 30 42 56

equations n(3n − 1)/2 12 22 35 51 70 92
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Number of solutions for n = 5 points (any sphere)

Gröbner theory

Let I be the ideal generated by the polynomials of the system.

Given a Gröbner basis of I , its Leading Monomials determine:
1 if the system has a finite number of solutions: dim(I ) = 0, and
2 in that case, the exact number of solutions: deg(I ).

This counts solutions in C and counting multiplicities.

For n = 5

dim(I ) = 0 and deg(I ) = 38 solutions.

Next step

Search for solutions, until we match the 38 existent.
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Finding solutions for n = 5 points (any sphere)

Easy to check that a particular critical
conf. for n = 5 in S2 is 1:3:1.

Some permutations give different so-
lutions in xij , but of same “kind”.

Given a “kind” of solution: how many
permutations of the points wi give
different solutions in the variables xij?

We find this number by trying all
possible n! permutations.
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Finding solutions for n = 5 points (any sphere)

We can easily imagine other kind of solutions.

The different permutations of each kind are:

Conf. Equator 1:4 1:3:1 4-simplex Found Existent

̸= perms. 12 15 10 1 38 38

sphere S1 S2 S3

Theorem (For n = 5 points)

The only kind of critical configurations are the ones we imagined.
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Number of solutions for n = 6 (any sphere)

We find a Gröbner base with GRevLex monomial order (msolve),
and then use it to determine the number of solutions (Macaulay2).

n dim I deg I

6 0 938

Next step: search for solutions until we match the existent 938.



Introduction Formulation 5 points 6 points Conclusions

Number of solutions for n = 6 (any sphere)
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Possible values of dot product for n = 6

“Imaginable” solutions are not enough: as we will see, there are
complex solutions.

Approach to determine all the
solutions

Project solution set onto
variable x45.

Gives possible values of x45.

Finding a Gröbner base of
the ideal, with elimination
order that eliminates all
variables except x45.



Introduction Formulation 5 points 6 points Conclusions

Possible values of dot product for n = 6

“Imaginable” solutions are not enough: as we will see, there are
complex solutions.

Approach to determine all the
solutions

Project solution set onto
variable x45.

Gives possible values of x45.

Finding a Gröbner base of
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Possible values of dot product for n = 6

Projected ideal is a PID:

I ∩Q[x45] = (p), some p.

Roots of generator p are
the possible values of x45.
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Solutions for each coordinate value of x45

For each factor pi of the
generator (each x45 value)

1 Add pi = 0 to the
original system.

2 Find solutions of
simplified system, and
count permutations.

Configuration # perms Sphere

Equator 60 S1

1:5 72 S2

1:4:1 15 S2

3:3 60+60 S2

Complex 1 90 S2

Complex 2 360 S2

Real 1 15 S3

Real 2 45 S3

Real 3 60 S3

Real 4 10 S3

5-simplex 1 S4

Found 848

Existent 938

Difference 938 - 848 = 90

Complex 1 has multiplicity 2: +90.
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Classification of real critical configurations (n = 6)

Global minima are classified comparing energy values.

Other configurations classified with Hessian of the Lagrangian.

It is known that problem does not admit local/global maxima.
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Conclusions and Future Work

Formulate critical configurations as polynomial system sols.

Obtain all critical configurations, and in particular all optimal
configurations, for n ≤ 6, d ≥ 1.

Give first exhaustive list of critical configurations and
classification for n = 6 in S2.

Pros and Cons of our Approach

✓ Unified framework (previous results are from different articles).

✓ Formulation useful for sphere Sd of any dimension d .

× Relies on calculating Gröbner basis in 2
(n
2

)
vars.

Future Work

prove optimal configuration for n = 7 (numerical candidate ∃)
“simplify” the system of equations, exploiting symmetries.
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(n
2

)
vars.

Future Work

prove optimal configuration for n = 7 (numerical candidate ∃)
“simplify” the system of equations, exploiting symmetries.



Introduction Formulation 5 points 6 points Conclusions

Conclusions and Future Work

Formulate critical configurations as polynomial system sols.

Obtain all critical configurations, and in particular all optimal
configurations, for n ≤ 6, d ≥ 1.

Give first exhaustive list of critical configurations and
classification for n = 6 in S2.

Pros and Cons of our Approach

✓ Unified framework (previous results are from different articles).

✓ Formulation useful for sphere Sd of any dimension d .

× Relies on calculating Gröbner basis in 2
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msolve executions (n = 6 points)

AVX512 instructions, 20 threads, Xeon-Gold 6138.

GRevLex monomial order (msolve 0.73) - With null CM equations

msolve GB in Q reduced GB size

total time RAM # pols # mons

1 hour, 6 minutes 37 GB 2473 xx

Elimination order to project to x45 (msolve 0.73)

msolve takes 10 hours and 190 GB of RAM.

GRevLex without lifting GB to Q (msolve 0.90)

msolve GB reduced GB size

Null Center of Mass equations total time RAM # pols # mons

Yes 485 s 3.35 GB 2473 2.133.497

No 433 s 3.36 GB 2473 2.133.497
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Configurations for n = 6 points in S3 ⊂ R4

Optimal configuration: Real 4

Two equilateral triangles, each inscribed in a copy of S1 lying in
orthogonal spaces.

The other configurations

Real 1 (SM): analogous to 1:4:1 of S2: it has the poles, and
then the optimal configuration for 4 points in the equatorial
sphere.

Real 3 (S): analogous to 1:5 of S2: it has a pole, and then the
optimal configuration for 5 points in the corresponding sphere.

Real 2 (S): no analogous on S2. Has 4 points on the Equator
of a sphere and the optimal configuration for 2 points in
another sphere. Line through these two points is orthogonal
to the plane of the 4 point Equator.
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From xij to wi

Any solution in the variables wi has an associated solution
xij = wT

i wj . Reciprocal is also true in C.

Theorem (Autonne-Takagi factorization [7, Corollary 2.6.6])

If X ∈ Cn×n is symmetric, there is a unitary P ∈ Cn×n, and a
non-negative diagonal matrix D ∈ Rn×n, such that: X = PTDP.
Furthermore, the entries of D are the singular values of X .

Corollary

If X ∈ Cn×n is symmetric with rank d, and ones on its diagonal,
there exists W ∈ Cd×n, such that: X = W TW, wT

i wi = 1, ∀ i .

Proof.

As X is symmetric: X = PTDP. Take: W =
√

D̂P; where
D̂ ∈ Rd×n is the submatrix of D with positive singular values.
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