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Introduction
@000

Fekete Problem

Position n points on the sphere S¢ € R9*!, so as to maximize the
product of the distances between pairs of points:

w1
H HWI'_ WJHv w2 .‘.‘
° by

1<i<j<n
wa
. .

w; € Sd C Rd+1.

‘o W5

® w3
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Fekete Problem

Position n points on the sphere S¢ € R9*!, so as to maximize the
product of the distances between pairs of points:

w1
H HWI'_ Wj”v w2 .‘.‘
° by

1<i<j<n
wa
. .

w; € Sd C Rd+1.

‘o W5

® w3

Equivalently: place the points to minimize the logarithmic energy

E|0g(W) = — Z log (HW,‘ — WJH2) , W& Sd C RIHL,
1<i<j<n
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Fekete problem: minimize the logarithmic energy on S¢:
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Fekete solutions (projected to the plane) are useful for initializing
homotopy algorithms. Even solutions up to a logarithmic factor.
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Why caring about this problem?

Fekete problem: minimize the logarithmic energy on S¢:

Ejog(w) := — Z log (||w; — WJ||2) . wjeS9cRrItL
1<i<j<n

Bezout Il - Shub and Smale (1993) [1]

Fekete solutions (projected to the plane) are useful for initializing
homotopy algorithms. Even solutions up to a logarithmic factor.

Smale's 7th problem for the next Century (1998) [4]

Give an “efficient” algorithm that, for each number of points n,
finds w € (52)" with optimal value up to a logarithmic factor:

Eiog(W) — Eigg < clog(n), for a universal constant c.
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What is known about Fekete problem

@ Optimal configurations known for few values of n and d.
@ In S2, optimals are known only for: n=2,3,4,5,6 and 12.

@ Optimal value known asymptotically, up to linear term [9]:

n> nlogn

1
in §2: E[gg:<2—|og2>2— 2 + Cn+o(n), C=2

o Any critical configuration satisfies: >/, w; = 0.
@ Has saddle-points [8, 10], and degenerate minima [11].

o Numerically: number of spurious local minima in S? increases
“dramatically” with n [2]; although none is known in S2.

@ Only one spurious local minima is known [8, 10]: n =6 in S3.
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Contributions and Approach

Contributions

@ Formulate critical confs. as solutions of a polynomial system.
e Formulation is useful for any sphere S¢.

@ For n < 6 points, and all sphere dimensions d, we:

e recover previously known results in a Unified Framework.
e find and classify all Critical Configurations, including unknown
Saddle.
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Contributions and Approach

Contributions

@ Formulate critical confs. as solutions of a polynomial system.
e Formulation is useful for any sphere S¢.

@ For n < 6 points, and all sphere dimensions d, we:

e recover previously known results in a Unified Framework.
e find and classify all Critical Configurations, including unknown
Saddle.

A

Approach

@ Determine the number of exact solutions m of the formulation.

@ Find as many solutions as possible, until we reach m.

€
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Removing Orthogonal Symmetry

Fog(w) =~ > log (|lwi — ;).
1<i<j<n

Energy is invariant under rotations of
the sphere.

This gives oo solutions (but we need
to count solutions).
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Removing Orthogonal Symmetry

Eiog(w) =~ Y log (|lwi —w[?).

1<i<j<n

Energy is invariant under rotations of
the sphere.

This gives oo solutions (but we need
to count solutions).

Change of variables

Instead of the w;, use dot products (“angles”) as variables:

xij = w; wj = cos(6;).

Rotations of a solution give the exact same solution (in the x;;).
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Equations in terms of dot products

Lagrange optimality conditions, expressed in the x; := w;” w;:
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Equations in terms of dot products

Lagrange optimality conditions, expressed in the x; := w;” w;:

(=1 — > w:o,w;&k.
J=lj#i

Introduce auxiliary variables zj;, and corresponding equations:

zj(1 —x;) = 1. (1)




Formulation
(o] le}

Equations in terms of dot products

Lagrange optimality conditions, expressed in the x; := w;” w;:

(n—Dxi— Y. S— =0 Vitk

Introduce auxiliary variables zj;, and corresponding equations:

zj(1 —x;) = 1. (1)

(D~ 3 (- x)z=0.¥i%k| ()

J=1j#i

Gives a polynomial expression, and ensures x;; # 1 (w; # w;).
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Equations in terms of dot products

Equations:

Z,'j(]. — X,'j) =1.

n

(n—l)xk,-— Z (Xk,'—ij)Z,'j:O, Vl#k

J=Lj#
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Equations in terms of dot products

Equations:

Z,'j(]. — X,'j) =1.

n

(n—l)xk,-— Z (Xk,'—ij)Z,'j:O, Vl#k

J=Lj#

Variables: xj;, zj, i < J.
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Equations in terms of dot products

Equations:

Z,'j(]. — X,'j) =1.

n

(n—l)xk,-— Z (Xk,'—ij)Z,'j:O, Vl#k

J=Lj#

Variables: xj;, zj, i < J.

Number of variables and equations

variables 2(5) 6 | 12|20 | 30| 42| 56
equations | n(3n—1)/2 | 12 | 22 | 35 | 51 | 70 | 92
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Number of solutions for n = 5 points (any sphere)

Grobner theory
@ Let / be the ideal generated by the polynomials of the system.

@ Given a Grobner basis of /, its Leading Monomials determine:

@ if the system has a finite number of solutions: dim(/) =0, and
@ in that case, the exact number of solutions: deg(/).

@ This counts solutions in C and counting multiplicities.
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Number of solutions for n = 5 points (any sphere)

Grobner theory
@ Let / be the ideal generated by the polynomials of the system.

@ Given a Grobner basis of /, its Leading Monomials determine:

@ if the system has a finite number of solutions: dim(/) =0, and
@ in that case, the exact number of solutions: deg(/).

@ This counts solutions in C and counting multiplicities.

dim(/) = 0 and deg(/) = 38 solutions.

Search for solutions, until we match the 38 existent.
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Finding solutions for n = 5 points (any sphere)

Easy to check that a particular critical
conf. for n =5 in S is 1:3:1.

Some permutations give different so-
lutions in Xx;;, but of same “kind".
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Finding solutions for n = 5 points (any sphere)

Easy to check that a particular critical
conf. for n =5 in S is 1:3:1.

Some permutations give different so-
lutions in Xx;;, but of same “kind".

o o
oW

Given a “kind” of solution: how many
permutations of the points w; give
different solutions in the variables x;;?

We find this number by trying all
possible n! permutations. J
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We can easily imagine other kind of solutions.

Equator 1:4 1:3:1
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Finding solutions for n = 5 points (any sphere)

We can easily imagine other kind of solutions.

Equator

1:4

The different permutations of each kind are:

Conf. Equator | 1:4 | 1:3:1 | 4-simplex | Found || Existent
#+ perms. 12 15 10 1 38 38
sphere st S2 s3




5 points
ooe

Finding solutions for n = 5 points (any sphere)

We can easily imagine other kind of solutions.

Equator 1:4

The different permutations of each kind are:

Conf. Equator | 1:4 | 1:3:1 | 4-simplex | Found || Existent
#+ perms. 12 15 10 1 38 38
sphere st S2 s3

Theorem (For n =5 points)

The only kind of critical configurations are the ones we imagined.
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Number of solutions for n = 6 (any sphere)

We find a Grobner base with GRevLex monomial order (msolve),
and then use it to determine the number of solutions (Macau/ayZ).J

n | dim/ | degl
6 0 938




6 points
[ eJelele]

Number of solutions for n = 6 (any sphere)

We find a Grobner base with GRevLex monomial order (msolve),
and then use it to determine the number of solutions (I\/Iacau/ay2).J

n | dim/ | degl
6 0 938

Next step: search for solutions until we match the existent 938. J
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Possible values of dot product for n = 6

“Imaginable” solutions are not enough: as we will see, there are
complex solutions. J
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Possible values of dot product for n = 6

“Imaginable” solutions are not enough: as we will see, there are
complex solutions. J

Approach to determine all the Other
solutions variables

@ Project solution set onto . ) e
. Critical Configurations

variable xs5. °

@ Gives possible values of xg5.

e Finding a Grobner base of
the ideal, with elimination
order that eliminates all
variables except xss.

Y
7 Variable x45
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Possible values of dot product for n = 6

Projected ideal is a PID:

I'N Qxas] = (p), some p.

Roots of generator p are
the possible values of xz5.

J

Generator Factor Roots
X45 0
(x45 + 1)2 -1
2x45 = 1 1/2
245 + 1 -1/2
(5x45 — 1)? 1/5
S5x45 + 1 -1/5
(5xa5 +7)* -7/5
(5x3; +1)° ils
5xZ, — 22x35 + 5 “i;“@
5xks + 2xy5 — 1 _1?/5
5x%, + 14x45 — 1 '“53‘/5
25x2 + 28345+ 19 %‘;\m
125x%, + 50x45 - 31 =54648
100x}, +95x3, — 21x2% — 22x45+10 4 complex
250x3; +110x3, — 21x%, — 19x45 +4 4 complex
400x} + 488x3, — 111x% — 196x45 + 67 4 complex
3xq5 + 1 -1/3
5x45 + 4 -4/5
10x45 — 1 1/10
25x45 — 1 1/25
25345 + 11 -11/25
-23/25

25x45 + 23



6 points

[e]ele] lo}

Solutions for each coordinate value of x5

For each factor p; of the
generator (each xs5 value)
O Add p; =0 to the
original system.
@ Find solutions of
simplified system, and
count permutations.

Configuration # perms Sphere
Equator 60 st
1:5 72 s?
141 15 s?
3:3 60+60 s?
Complex 1 90 S?
Complex 2 360 X
Real 1 15 s3
Real 2 45 S8
Real 3 60 S8
Real 4 10 S8
5-simplex ‘ 1 sS4 ‘
Found 848
Existent 938
Difference 938 - 848 = 90
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Solutions for each coordinate value of x5

For each factor Pi of the Configuration # perms Sphere
generator (each xs5 value) Equator 60 st
L 1:5 72 s?
o A(_jd_ pi =0 to the 1:4:1 15 s?
orlglnal system. 3:3 60460 S2
. . Complex 1 90 S?
(2] Elnd §(?Iut|ons of Complex2 260 @
simplified system, and Real 1 G 5
count permutations. Real 2 45 s3
Real 3 60 S8
Real 4 10 S8
‘ 5-simplex ‘ 1 ‘ sS4 ‘
Found 848
Existent 938
Difference 938 - 848 = 90

Complex 1 has multiplicity 2: +90. )

J
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Classification of real critical configurations (n = 6)

Configuration Ss!' s §3 st
Equator GM S S S
1:5 - S S S

1:4:1 - GM S S

3:3 (6) - S S S
Real 1 - - SM S
Real 2 - - S S
Real 3 - - S S
Real 4 - - GM S

5-simplex - - - GM
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Classification of real critical configurations (n = 6)

Configuration Ss!' s §3 st

Equator GM S S S

1:5 - S S S

1:4:1 - GM S S

3:3 (6) - S S S

Real 1 - - SM S

Real 2 - - S S

Real 3 - - S S

Real 4 - - GM S
5-simplex - - - GM

@ Global minima are classified comparing energy values.
@ Other configurations classified with Hessian of the Lagrangian.

@ It is known that problem does not admit local/global maxima.
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Conclusions and Future Work

@ Formulate critical configurations as polynomial system sols.

@ Obtain all critical configurations, and in particular all optimal
configurations, for n < 6, d > 1.

@ Give first exhaustive list of critical configurations and
classification for n = 6 in S2.
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Pros and Cons of our Approach

V" Unified framework (previous results are from different articles).

v Formulation useful for sphere S of any dimension d.
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x Relies on calculating Grobner basis in 2(’2’) vars.
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Conclusions and Future Work

@ Formulate critical configurations as polynomial system sols.

@ Obtain all critical configurations, and in particular all optimal
configurations, for n < 6, d > 1.

@ Give first exhaustive list of critical configurations and
classification for n = 6 in S2.

.

Pros and Cons of our Approach

V" Unified framework (previous results are from different articles).
v Formulation useful for sphere S of any dimension d.

x Relies on calculating Grobner basis in 2(’2’) vars.
v

@ prove optimal configuration for n = 7 (numerical candidate 3)

e “simplify” the system of equations, exploiting symmetries.

i = = =

A\
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msolve executions (n = 6 points)

AV X512 instructions, 20 threads, Xeon-Gold 6138.

GRevLex monomial order (msolve 0.73) - With null CM equations

msolve GB in Q reduced GB size
total time RAM | # pols | # mons
1 hour, 6 minutes | 37 GB | 2473 XX

Elimination order to project to xs5 (msolve 0.73)
msolve takes 10 hours and 190 GB of RAM.
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msolve executions (n = 6 points)

AV X512 instructions, 20 threads, Xeon-Gold 6138.

GRevLex monomial order (msolve 0.73) - With null CM equations

msolve GB in Q reduced GB size
total time RAM | # pols | # mons
1 hour, 6 minutes | 37 GB | 2473 XX

Elimination order to project to xs5 (msolve 0.73)
msolve takes 10 hours and 190 GB of RAM.

GRevLex without lifting GB to Q (msolve 0.90)

msolve GB reduced GB size

Null Center of Mass equations | total time RAM # pols | # mons
Yes 485 s 3.35 GB | 2473 | 2.133.497
No 433 s 3.36 GB | 2473 | 2.133.497
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Configurations for n = 6 points in S C R*

Optimal configuration: Real 4

Two equilateral triangles, each inscribed in a copy of S! lying in
orthogonal spaces.

v

The other configurations

@ Real 1 (SM): analogous to 1:4:1 of S2: it has the poles, and
then the optimal configuration for 4 points in the equatorial
sphere.

@ Real 3 (S): analogous to 1:5 of S2: it has a pole, and then the
optimal configuration for 5 points in the corresponding sphere.

@ Real 2 (S): no analogous on S2. Has 4 points on the Equator
of a sphere and the optimal configuration for 2 points in
another sphere. Line through these two points is orthogonal
to the plane of the 4 point Equator.

¢
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From x; to w;

Any solution in the variables w; has an associated solution
x;j = w; w;. Reciprocal is also true in C.

Theorem (Autonne-Takagi factorization [7, Corollary 2.6.6])

If X € C™" js symmetric, there is a unitary P € C"™", and a
non-negative diagonal matrix D € R"™", such that: X = PT DP.
Furthermore, the entries of D are the singular values of X.

If X € C"™" js symmetric with rank d, and ones on its diagonal,
there exists W € C9*", such that: X = WTW, ww; =1, V i.

v

As X is symmetric: X = PTDP. Take: W = \/BP; where
D € RY%" is the submatrix of D with positive singular values. [

™ = = =

v
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