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FEKETE PROBLEM FIVE POINTS

e Eixistent solutions (Grébner): 38.

Place n points on the surface of a sphere to maximize the AR
. . . . e U i R S LS . «,: y : :
product of euclidean distances between points: 2y T e Found (proposed): 4 “kind” of solutions, with a total
N of 38 different permutations.
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Ist<y=n ; Configuration |Equator 1:4 1:3:1 4-simplex Total

Equivalently: minimize the logarithmic energy £ permutations 12 151 10 1 38
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Blog(w) = — E log (||w; — wj]]) sphere S S S

For S the solution is known only for ,, - N |
n < 6 and n = 12 points. Theorem: the only kind of critical configurations

are the ones we proposed

1<i<y<n

CONTRIBUTIONS

e Formulate critical configurations as solutions of a SIX POINTS (Imagination is not enough)
polynomial system

APPROACH
¢ Determine the number of EXISTENT SOLUTIONS

solutions m of the polynomial
—recover previously known results in a unified system (using Grobner bases)

framework

e Formulation is useful for any sphere S¢ C R¢*!

e For n < 6 points, and all sphere dimensions d:
e 938 solutions, including multiplicities (using Leading Monomials of Grébner basis).

e Now we need to find as many as 938 solutions.
e 'ind as many solutions as

possible, until we reach m e We split the polynomial system into disjoint cases, one for each value of 5.

—find and classify all critical configurations, includ-
ing an unknown saddle

POSSIBLE VALUES OF DOT PRODUCT x5

en = 7 points in S% if global minimum has dipole,

it is the configuration 1:5:1 Other variables

e Project solution set onto variable xys.

e How? Groébner base of I N Q[xys], using elimination |Critical Configurations

order. Thisis a PID: 3 h / I NQlzys] = (h). ? ’

; .

e Roots of h are the possible values of 5. ¥

POLYNOMIAL SYSTEM

L 45

CRITICAL CONFIGURATIONS

Lagrangean of the problem:

h(45) = Ta5(xa5 + 1)? (2245 — 1) ... (400235 + 488z3; — 111x7; — 196245 + 67)

degree 42, 21 real roots, 16 complex roots

Lw, ) i=— > log ([lwi —wil*) + > e (Jlwel* = 1) SOLUTIONS FOR EACH VALUE OF z,;
1<i<j<n k=1 - , .
: : - . onfiguration| # permutations Sphere
Optimality conditions: ) For each factor h;: add h; = 0 to the original Eqil?gmf Sg gi
Vol = 0, [lwilP=1< (n—1)w — Z ’2’(@0@ — ”LU|]‘)2 —0, Vi system, and find solutions of simplified system 1;%1 601560
jot g 10T Found solutions: 848 - Existent: 938 Complex 1 90
Difference: 938 - 848 = 90 Complex 2 360 3
REMOVING ORTHOGONAL SYMMETRY E‘%‘B E o
Complex 1 has multiplicity 2: +90 v/ Real 3 60
w‘ "o 9 Real 4 10
e 'mergy is invariant under rotations =- oo solutions We found all possible critical configurations 5-simplex 1 S
in variables w; (but we need to count them) S fotal 548
e Use dot product (“angle”) as variable: CLASSIFICATION OF CRITICAL CONFIGURATIONS
;= w!lw; = cos(6;;) Configuration  §!  §¢ &5 s o Lowest Energy = Global Minima (GM)
e Now rotations give the same solution (in the x;;). Equator GM S S S e Other configurations are classified with
' Hessian of Lagrangian.
W 1:5 - S S S
1:4:1 - GM S S
POLYNOMIAL EQUATIONS IN TERMS OF DOT PRODUCTS 3:3 (Vo) - S S S *
" Real 1 - - SM S
, Real 2 - - S S
(7?, — 1) Ly — Z (33]% — kaj)zi]’ — O, V1 7& /'C, sz(l — ZIZZ']') = 1. Real 3 _ _ S S
j=1,j#1 Real 4 - - GM S - o
imolex ] ] ] L ——
o 31415 6178 5-simple | N GM
variables (z;;, 2;;) 2(%) 6 12/20/30 4256 Saddle (5); Spurious Minima (SM). Saddle 3:3
equations

NUMBER OF SOLUTIONS USING GROBNER BASIS

. | Configuration 1:5:1 is the conjectured global minima
Theorem (standard result): Let G be a Grobner basis of an ideal I = (f1,..., fi) of the

polynomial ring Q[z1, . . ., x,). Theorem: If the global minima in S? has a dipole, then it
is the configuration 1:5:1.

Proof: Fix two points forming a dipole. We are now able
to find a Grobner basis and count the number of solutions.

These are 48, which matches the number of permutations
of the critical configuration 1:5:1: 48 = 2 x 4!

1. The system f; =0,..., fr = 0 has a finite number of solutions, iff: for each variable
z;, G has a polynomial with Leading Monomial ;" for some m; > 0.

2. In this case, the exact number of solutions (in C" and with multiplicities), is the number
of the ring monomials not multiple of the Leading Monomials of G.
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