

CHARACTERIZATION OF LOGARITHMIC FEKETE CRITICAL CONFIGURATIONS OF AT MOST SIX POINTS IN ALL DIMENSIONS

Diego Armentano, Leandro Bentancur, Federico Carrasco, Marcelo Fiori, Matías Valdés and Mauricio Velasco
Universidad de la República, Uruguay

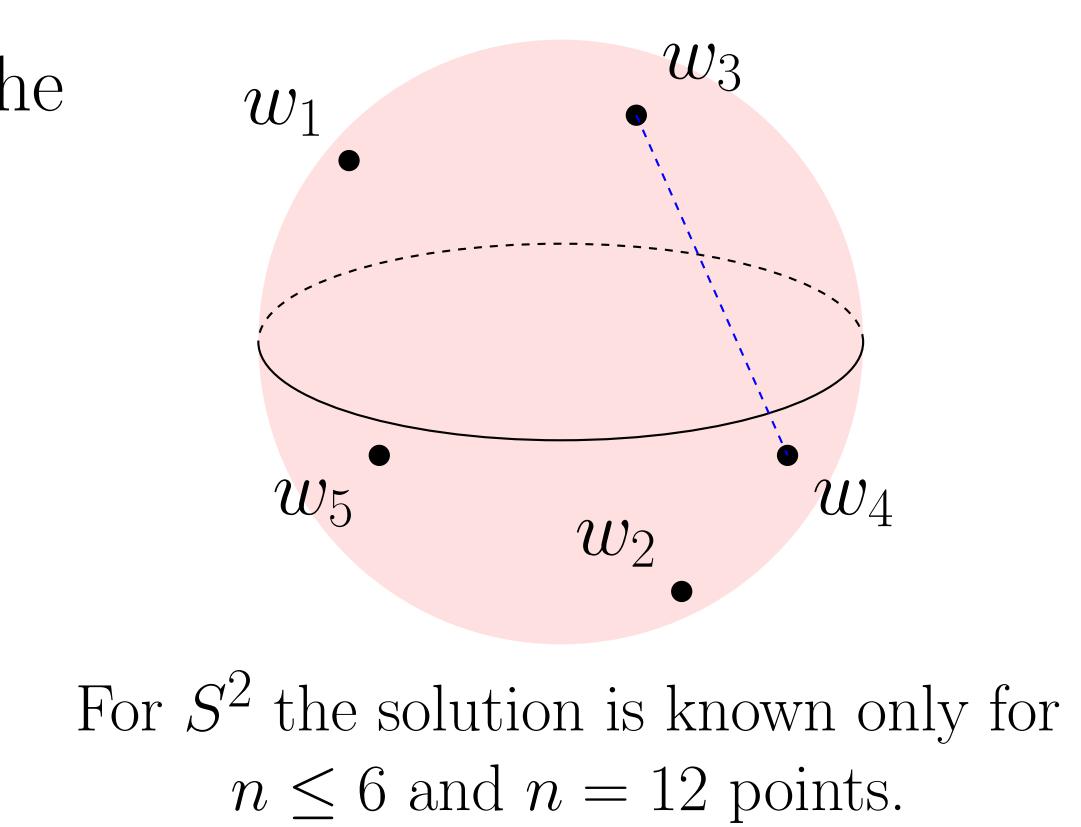
FEKETE PROBLEM

Place n points on the surface of a sphere to maximize the product of euclidean distances between points:

$$\prod_{1 \leq i < j \leq n} \|w_i - w_j\|$$

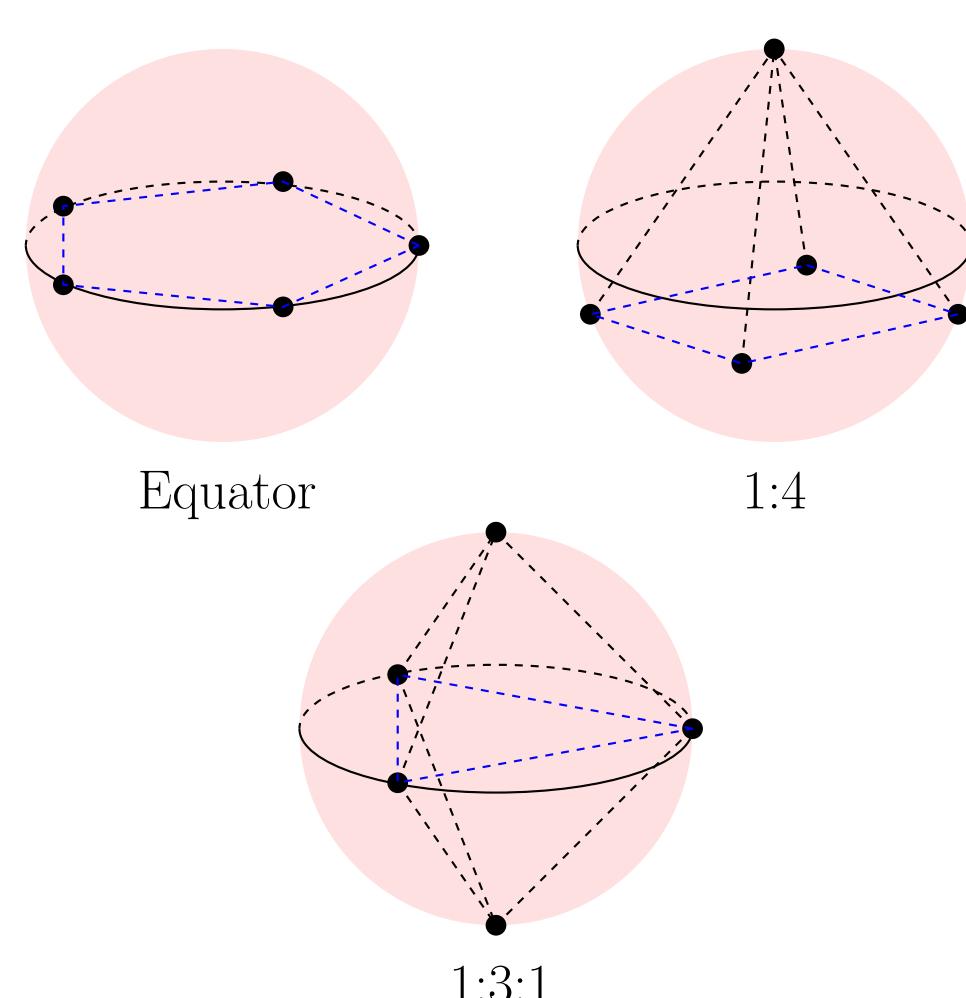
Equivalently: minimize the logarithmic energy

$$E_{\log}(w) := - \sum_{1 \leq i < j \leq n} \log (\|w_i - w_j\|)$$



For S^2 the solution is known only for $n \leq 6$ and $n = 12$ points.

FIVE POINTS



- Existant solutions (Gröbner): 38.
- Found (proposed): 4 “kind” of solutions, with a total of 38 different permutations.

Configuration	Equator	1:4	1:3:1	4-simplex	Total
\neq permutations sphere	12	15	10	1	38

Theorem: the only kind of critical configurations are the ones we proposed

CONTRIBUTIONS

- Formulate critical configurations as solutions of a polynomial system
- Formulation is useful for any sphere $S^d \subseteq \mathbb{R}^{d+1}$
- For $n \leq 6$ points, and all sphere dimensions d :
 - recover previously known results in a unified framework
 - find and classify all critical configurations, including an unknown saddle
- $n = 7$ points in S^2 : if global minimum has dipole, it is the configuration 1:5:1

APPROACH

- Determine the number of solutions m of the polynomial system (using Gröbner bases)
- Find as many solutions as possible, until we reach m

POLYNOMIAL SYSTEM

CRITICAL CONFIGURATIONS

Lagrangean of the problem:

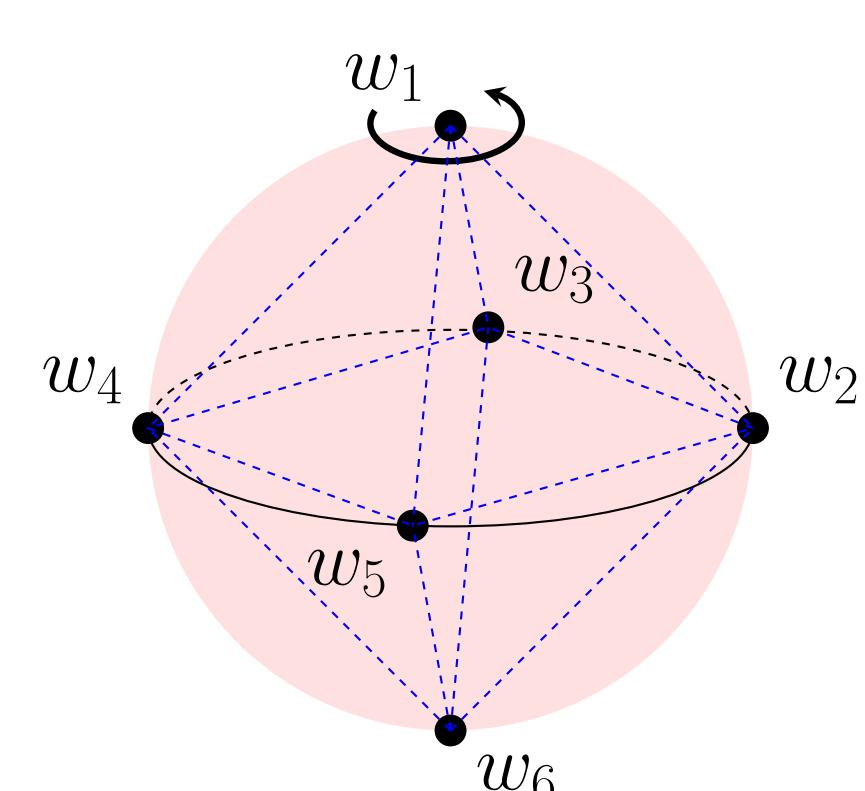
$$L(w, \lambda) := - \sum_{1 \leq i < j \leq n} \log (\|w_i - w_j\|^2) + \sum_{k=1}^n \lambda_k (\|w_k\|^2 - 1).$$

Optimality conditions:

$$\nabla_{w_i} L = \vec{0}, \quad \|w_i\|^2 = 1 \Leftrightarrow (n-1) w_i - \sum_{j=1, j \neq i}^n \frac{2(w_i - w_j)}{\|w_i - w_j\|^2} = 0, \quad \forall i.$$

REMOVING ORTHOGONAL SYMMETRY

- Energy is invariant under rotations $\Rightarrow \infty$ solutions in variables w_i (but we need to count them)
- Use dot product (“angle”) as variable: $x_{ij} := w_i^T w_j = \cos(\theta_{ij})$
- Now rotations give the same solution (in the x_{ij}).



POLYNOMIAL EQUATIONS IN TERMS OF DOT PRODUCTS

$$(n-1) x_{ki} - \sum_{j=1, j \neq i}^n (x_{ki} - x_{kj}) z_{ij} = 0, \quad \forall i \neq k, \quad z_{ij}(1 - x_{ij}) = 1.$$

	n	3	4	5	6	7	8
variables (x_{ij}, z_{ij})	$2 \binom{n}{2}$	6	12	20	30	42	56
equations	$n(3n-1)/2$	12	22	35	51	70	92

NUMBER OF SOLUTIONS USING GRÖBNER BASIS

Theorem (standard result): Let G be a Gröbner basis of an ideal $I = (f_1, \dots, f_k)$ of the polynomial ring $\mathbb{Q}[x_1, \dots, x_n]$.

1. The system $f_1 = 0, \dots, f_k = 0$ has a **finite number of solutions**, iff: for each variable x_i , G has a polynomial with Leading Monomial $x_i^{m_i}$, for some $m_i \geq 0$.
2. In this case, the **exact number of solutions** (in \mathbb{C}^n and with multiplicities), is the number of the ring monomials not multiple of the Leading Monomials of G .

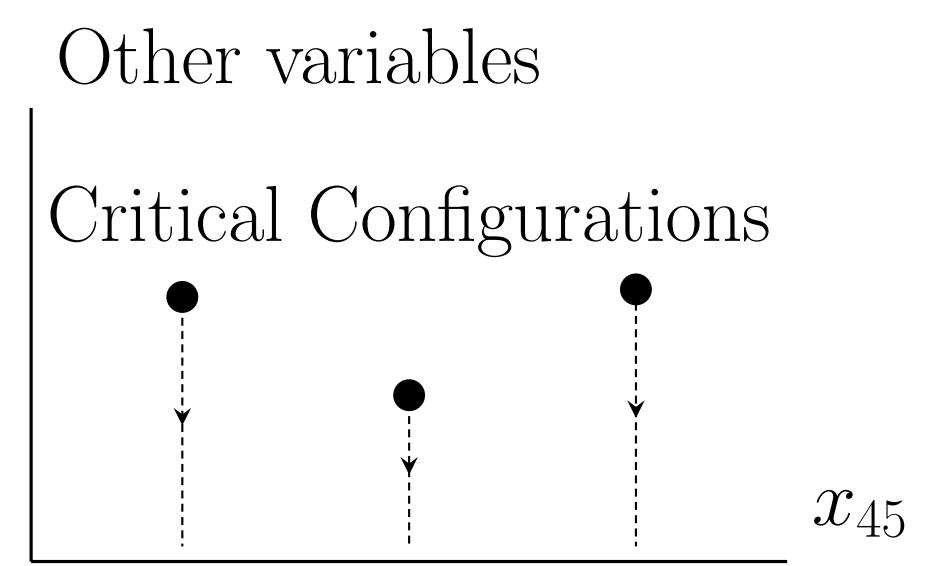
SIX POINTS (Imagination is not enough)

EXISTENT SOLUTIONS

- 938 solutions, including multiplicities (using Leading Monomials of Gröbner basis).
- Now we need to find as many as 938 solutions.
- We split the polynomial system into disjoint cases, one for each value of x_{45} .

POSSIBLE VALUES OF DOT PRODUCT x_{45}

- Project solution set onto variable x_{45} .
- How? Gröbner base of $I \cap \mathbb{Q}[x_{45}]$, using elimination order. This is a PID: $\exists h / I \cap \mathbb{Q}[x_{45}] = (h)$.
- Roots of h are the possible values of x_{45} .



$$h(x_{45}) = x_{45}(x_{45} + 1)^2(2x_{45} - 1) \dots (400x_{45}^4 + 488x_{45}^3 - 111x_{45}^2 - 196x_{45} + 67)$$

degree 42, 21 real roots, 16 complex roots

SOLUTIONS FOR EACH VALUE OF x_{45}

For each factor h_i : add $h_i = 0$ to the original system, and find solutions of simplified system

Found solutions: 848 - **Existent:** 938

Difference: 938 - 848 = 90

Complex 1 has multiplicity 2: +90 ✓

We found all possible critical configurations

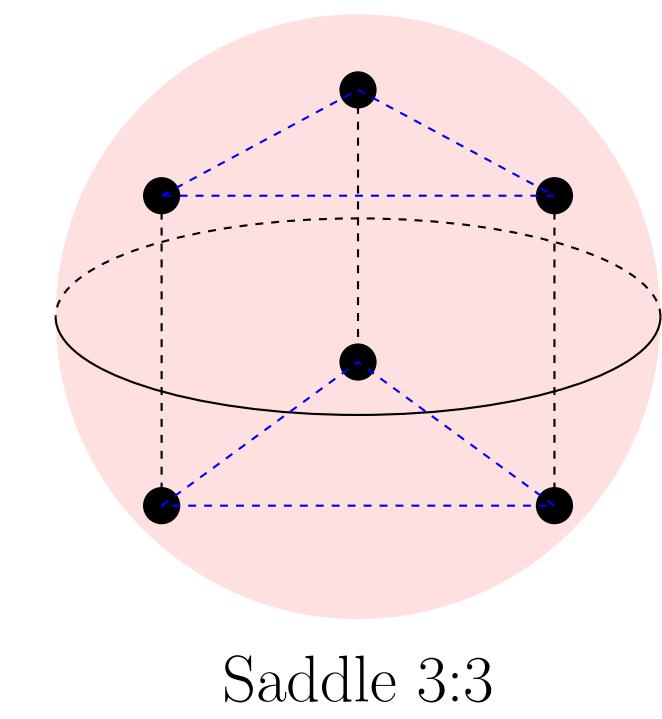
Configuration	# permutations	Sphere
Equator	60	S^1
1:5	72	S^2
1:4:1	15	
3:3	60+60	
Complex 1	90	
Complex 2	360	
Real 1	15	S^3
Real 2	45	
Real 3	60	
Real 4	10	
5-simplex	1	S^4
Total	848	

CLASSIFICATION OF CRITICAL CONFIGURATIONS

Configuration	S^1	S^2	S^3	S^4
Equator	GM	S	S	S
1:5	-	S	S	S
1:4:1	-	GM	S	S
3:3 ($\sqrt{6}$)	-	S	S	S
Real 1	-	-	SM	S
Real 2	-	-	S	S
Real 3	-	-	S	S
Real 4	-	-	GM	S
5-simplex	-	-	-	GM

Saddle (S); Spurious Minima (SM).

- Lowest Energy \Rightarrow Global Minima (GM)
- Other configurations are classified with Hessian of Lagrangian.

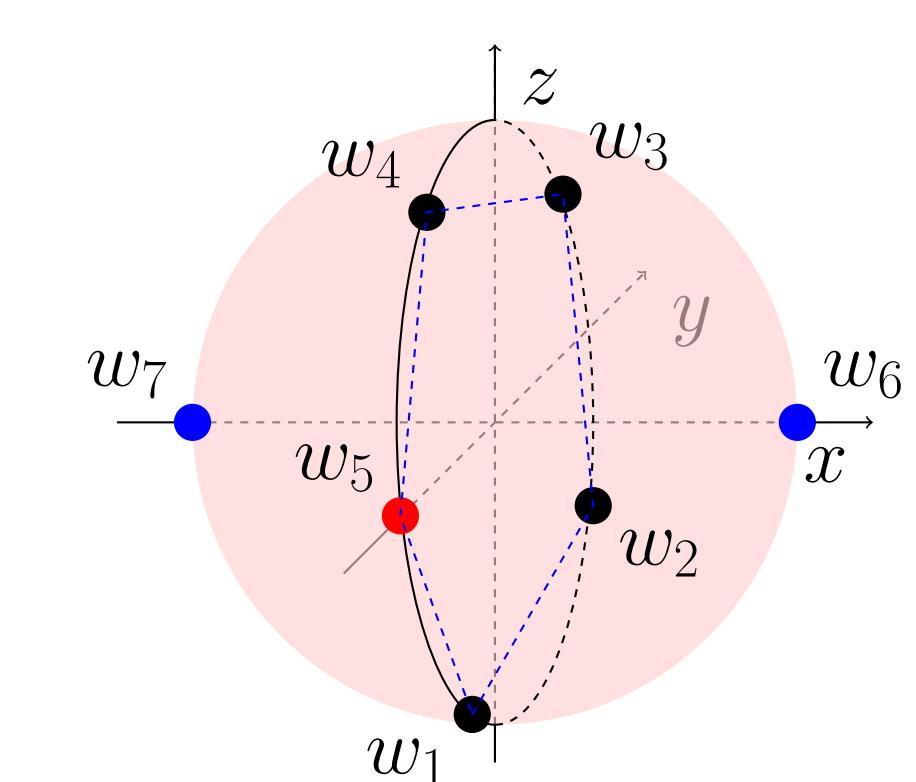


SEVEN POINTS (Resources are not enough)

Configuration 1:5:1 is the conjectured global minima

Theorem: If the global minima in S^2 has a dipole, then it is the configuration 1:5:1.

Proof: Fix two points forming a dipole. We are now able to find a Gröbner basis and count the number of solutions. These are 48, which matches the number of permutations of the critical configuration 1:5:1: $48 = 2 \times 4!$.



UNIVERSIDAD
DE LA REPÚBLICA
URUGUAY

ACKNOWLEDGEMENTS: Cluster.UY for the hardware infrastructure; ANII and CAP for PhD grants; *msolve*, *Macaulay2* and *SymPy* developers for their great work.

- Andreev (1996). An extremal property of the icosahedron. ($n = 12, S^2$)
- Kolushov, Yudin (1997). Extremal dispositions of points on the sphere. ($n = 6, S^2$)
- Dragnev, Legg, Townsend (2002). Discrete logarithmic energy on the sphere. ($n = 5, S^2$)
- Dragnev (2016). Log-optimal configurations on the sphere. ($n = 6, S^3$)

