Caracterización de puntos críticos de Fekete mediante bases de Gröbner

Seminario de Álgebra del IMERL

24 de octubre de 2025

Matías Valdés

Trabajo conjunto con: Diego Armentano, Leandro Bentancur, Federico Carrasco, Marcelo Fiori y Mauricio Velasco.

Cronograma

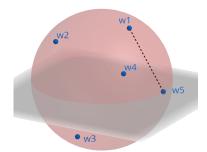
- Introducción a Fekete
- 2 Formulación de las Configuraciones Críticas
- Gröbner para contar soluciones
- 4 Cinco puntos
- Seis puntos
- 6 Software y Hardware utilizado
- Conclusiones y Trabajo Futuro

Problema de Fekete

Colocar n puntos en la superficie de la esfera $S^d \subset \mathbb{R}^{d+1}$, de forma de maximizar el producto de las distancias entre pares de puntos:

$$\prod_{1 \le i < j \le n} ||w_i - w_j||,$$

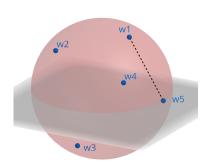
$$w_i \in S^d \subset \mathbb{R}^{d+1}.$$



Problema de Fekete

Colocar n puntos en la superficie de la esfera $S^d \subset \mathbb{R}^{d+1}$, de forma de maximizar el producto de las distancias entre pares de puntos:

$$\prod_{1 \leq i < j \leq n} \|w_i - w_j\|,$$
 $w_i \in \mathcal{S}^d \subset \mathbb{R}^{d+1}.$



Equivale a: colocar los puntos para minimizar la energía logarítmica

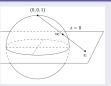
$$E_{\log}(w) := -\sum_{1 \leq i \leq n} \log \left(\|w_i - w_j\|^2 \right), \quad w_i \in S^d \subset \mathbb{R}^{d+1}.$$

Bezout III - Shub y Smale (1993) [1]

Soluciones de Fekete (proyectadas al plano) son útiles para inicializar algoritmos de homotopía (que permiten estimar raíces de polinomios numéricamente).

Bezout III - Shub y Smale (1993) [1]

Soluciones de Fekete (proyectadas al plano) son útiles para inicializar algoritmos de homotopía (que permiten estimar raíces de polinomios numéricamente).



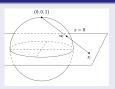
Problema 7 de la lista de problemas de Smale (1998) [4]

Dar un algoritmo "eficiente" que, para cada cantidad de puntos n, encuentre una configuración $\hat{w} \in (S^2)^n$ cuya energía sea "aproximadamente" igual a la energía óptima de Fekete:

$$E_{\log}(\hat{w}) - E_{\log}^* \le c \log(n)$$
, para una constante universal c.

Bezout III - Shub y Smale (1993) [1]

Soluciones de Fekete (proyectadas al plano) son útiles para inicializar algoritmos de homotopía (que permiten estimar raíces de polinomios numéricamente).



Problema 7 de la lista de problemas de Smale (1998) [4]

Dar un algoritmo "eficiente" que, para cada cantidad de puntos n, encuentre una configuración $\hat{w} \in (S^2)^n$ cuya energía sea "aproximadamente" igual a la energía óptima de Fekete:

$$E_{\log}(\hat{w}) - E_{\log}^* \le c \log(n)$$
, para una constante universal c .

Y porque nos gustan los problemas difíciles.

¿Qué se sabe del problema de Fekete?

- ullet Configuración óptima conocida para pocos valores de n y d.
- En S^2 , conf. óptima conocida sólo para: n = 2, 3, 4, 5, 6 y 12.
- Valor óptimo conocido asintóticamente, hasta factor lineal [9]:

in
$$S^2$$
: $E_{\log}^* = \left(\frac{1}{2} - \log 2\right) \frac{n^2}{2} - \frac{n \log n}{4} + Cn + o(n), C = ?$

- Toda configuración crítica satisface: $\sum_{i=1}^{n} w_i = \vec{0}$.
- Tiene puntos silla [8, 10], y mínimo local no global [11].
- Numéricamente: cantidad de mínimos locales no globales en S^2 crece "dramáticamente" con n [2]; aunque no se conoce ninguno en S^2 .
- Sólo se conoce un mínimo local no global [8, 10]: n = 6 en S^3 .

Contribuciones y Estrategia

Contribuciones

- Formular las configuraciones críticas de Fekete como soluciones de un sistema de ecuaciones polinomiales.
- Formulación útil para esfera S^d de cualquier dimensión.
- Para $n \le 6$ puntos, y esfera de cualquier dimensión d:
 - recuperamos resultados conocidos con un enfoque unificado.
 - encontramos y clasificamos todas las configuraciones críticas, incluido un punto silla que era desconocido.

Contribuciones y Estrategia

Contribuciones

- Formular las configuraciones críticas de Fekete como soluciones de un sistema de ecuaciones polinomiales.
- Formulación útil para esfera S^d de cualquier dimensión.
- Para $n \le 6$ puntos, y esfera de cualquier dimensión d:
 - recuperamos resultados conocidos con un enfoque unificado.
 - encontramos y clasificamos todas las configuraciones críticas, incluido un punto silla que era desconocido.

Estrategia

- Determinar la cantidad de soluciones *m* del sistema de polinomios (cantidad de configuraciones críticas).
- Encontrar tantas soluciones como podamos, hasta llegar a m.

Configuraciones Críticas (candidatas a ser óptimas)

Problema de Fekete: minimizar la energía logarítmica en S^d

$$E_{\log}(w) := -\sum_{1 \leq i \leq j \leq n} \log (\|w_i - w_j\|^2), \quad \|w_k\|^2 = 1, \ w_k \in \mathbb{R}^{d+1}.$$

Configuraciones Críticas (candidatas a ser óptimas)

Problema de Fekete: minimizar la energía logarítmica en S^d

$$E_{\log}(w) := -\sum_{1 \le i \le j \le n} \log (\|w_i - w_j\|^2), \quad \|w_k\|^2 = 1, \ w_k \in \mathbb{R}^{d+1}.$$

Lagrangeano asociado al problema

$$L(w, \lambda) := -\sum_{1 \le i \le j \le n} \log (\|w_i - w_j\|^2) + \sum_{k=1}^n \lambda_k (\|w_k\|^2 - 1).$$

Configuraciones Críticas (candidatas a ser óptimas)

Problema de Fekete: minimizar la energía logarítmica en S^d

$$E_{\log}(w) := -\sum_{1 \leq i < j \leq n} \log (\|w_i - w_j\|^2), \quad \|w_k\|^2 = 1, \ w_k \in \mathbb{R}^{d+1}.$$

Lagrangeano asociado al problema

$$L(w, \lambda) := -\sum_{1 \leq i < j \leq n} \log (\|w_i - w_j\|^2) + \sum_{k=1}^n \lambda_k (\|w_k\|^2 - 1).$$

Condiciones de optimalidad de Lagrange

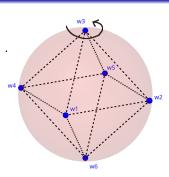
$$\left\{ \begin{array}{l} \nabla_{w_i} L = \vec{0}, \\ \|w_i\|^2 = 1, \end{array} \forall \ i \Leftrightarrow (n-1) \ w_i - \sum_{j=1, j \neq i}^n \frac{w_i - w_j}{\|w_i - w_j\|^2} = 0, \ \forall \ i. \end{array} \right.$$

Eliminando Simetría Ortogonal

$$E_{\log}(w) := -\sum_{1 \leq i < j \leq n} \log \left(\|w_i - w_j\|^2 \right).$$

Energía es invariante mediante rotaciones de la esfera.

Esto da ∞ soluciones en las w_i (pero necesitamos contar soluciones).

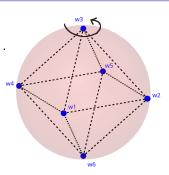


Eliminando Simetría Ortogonal

$$E_{\log}(w) := -\sum_{1 \le i < j \le n} \log (\|w_i - w_j\|^2).$$

Energía es invariante mediante rotaciones de la esfera.

Esto da ∞ soluciones en las w_i (pero necesitamos contar soluciones).



Cambio de variables

En lugar de $w_i \in \mathbb{R}^{d+1}$, usamos producto interno ("ángulos") como variable:

$$x_{ij} := w_i^T w_j = \cos(\theta_{ij}).$$

Rotaciones de una solución dan la misma solución (en los x_{ii}).

Ecuaciones en términos del producto interno

Condiciones de optimalidad de Lagrange, expresadas en los $x_{ij} := w_i^T w_j$ (previo producto interno con w_k en cada ecuación):

$$(n-1)x_{ki} - \sum_{j=1, j\neq i}^{n} \frac{x_{ki} - x_{kj}}{1 - x_{ij}} = 0, \ \forall \ i \neq k.$$

Ecuaciones en términos del producto interno

Condiciones de optimalidad de Lagrange, expresadas en los $x_{ij} := w_i^T w_j$ (previo producto interno con w_k en cada ecuación):

$$(n-1)x_{ki} - \sum_{i=1, i\neq i}^{n} \frac{x_{ki} - x_{kj}}{1 - x_{ij}} = 0, \ \forall \ i \neq k.$$

Introducimos variables auxiliares z_{ij} , y las ecuaciones que las definen:

$$\left| \mathbf{z}_{ij}(1-\mathbf{x}_{ij}) = 1. \right| \tag{1}$$

Ecuaciones en términos del producto interno

Condiciones de optimalidad de Lagrange, expresadas en los $x_{ij} := w_i^T w_j$ (previo producto interno con w_k en cada ecuación):

$$(n-1)x_{ki} - \sum_{j=1, j\neq i}^{n} \frac{x_{ki} - x_{kj}}{1 - x_{ij}} = 0, \ \forall \ i \neq k.$$

Introducimos variables auxiliares z_{ij} , y las ecuaciones que las definen:

$$z_{ij}(1-x_{ij})=1. (1)$$

$$(n-1)x_{ki} - \sum_{j=1, j \neq i}^{n} (x_{ki} - x_{kj})z_{ij} = 0, \ \forall \ i \neq k.$$
 (2)

Expresión es polinomial, y con puntos distintos: $x_{ij} \neq 1$ ($w_i \neq w_j$).

Ecuaciones:

$$z_{ij}(1-x_{ij})=1$$

$$\overline{z_{ij}(1-x_{ij})=1}, \quad \overline{(n-1)x_{ki}-\sum_{j=1,j\neq i}^{n}(x_{ki}-x_{kj})z_{ij}=0, \ \forall \ i\neq k.}$$

Ecuaciones:

$$z_{ij}(1-x_{ij})=1$$

$$\overline{z_{ij}(1-x_{ij})=1}$$
, $(n-1)x_{ki}-\sum_{i=1,i\neq i}^{n}(x_{ki}-x_{kj})z_{ij}=0, \ \forall \ i\neq k.$

Variables: x_{ij} , z_{ij} , i < j.

Ecuaciones:

$$z_{ij}(1-x_{ij})=1$$

$$\overline{z_{ij}(1-x_{ij})=1}$$
, $(n-1)x_{ki}-\sum_{j=1,j\neq i}^{n}(x_{ki}-x_{kj})z_{ij}=0, \ \forall \ i\neq k.$

Variables: x_{ij} , z_{ij} , i < j.

Cantidad de variables y ecuaciones

	n	3	4	5	6	7	8
variables	$2\binom{n}{2}$	6	12	20	30	42	56
ecuaciones	n(3n-1)/2	12	22	35	51	70	92

Ecuaciones:

$$z_{ij}(1-x_{ij})=1$$

$$\overline{z_{ij}(1-x_{ij})=1}$$
, $(n-1)x_{ki}-\sum_{j=1,j\neq i}^{n}(x_{ki}-x_{kj})z_{ij}=0, \ \forall \ i\neq k.$

Variables: x_{ij} , z_{ij} , i < j.

Cantidad de variables y ecuaciones

	n	3	4	5	6	7	8
variables	$2\binom{n}{2}$	6	12	20	30	42	56
ecuaciones	n(3n-1)/2	12	22	35	51	70	92

Estrategia (para hallar todas las configuraciones críticas)

- Calcular la cantidad de soluciones m del sistema.
- Encontrar soluciones hasta llegar a m.

Consideremos el siguiente sistema de ecuaciones polinomiales:

$$\begin{cases} x+y+z=3\\ x^2+y^2+z^2=5\\ x^3+y^3+z^3=7 \end{cases}, (x,y,z) \in \mathbb{C}^3.$$

Consideremos el siguiente sistema de ecuaciones polinomiales:

$$\begin{cases} x+y+z=3\\ x^2+y^2+z^2=5\\ x^3+y^3+z^3=7 \end{cases}, (x,y,z) \in \mathbb{C}^3.$$

El ideal generado por los polinomios es:

$$I = (x + y + z - 3, x^{2} + y^{2} + z^{2} - 5, x^{3} + y^{3} + z^{3} - 7).$$

Consideremos el siguiente sistema de ecuaciones polinomiales:

$$\begin{cases} x+y+z=3\\ x^2+y^2+z^2=5\\ x^3+y^3+z^3=7 \end{cases}, (x,y,z) \in \mathbb{C}^3.$$

El ideal generado por los polinomios es:

$$I = (x + y + z - 3, x^{2} + y^{2} + z^{2} - 5, x^{3} + y^{3} + z^{3} - 7).$$

Una base de Gröbner G de I es otro generador de I, que tiene propiedades "buenas":

$$G = \{g_1, \dots, g_m\}, \quad (G) = I.$$

Consideremos el siguiente sistema de ecuaciones polinomiales:

$$\begin{cases} x+y+z=3\\ x^2+y^2+z^2=5\\ x^3+y^3+z^3=7 \end{cases}, (x,y,z) \in \mathbb{C}^3.$$

El ideal generado por los polinomios es:

$$I = (x + y + z - 3, x^{2} + y^{2} + z^{2} - 5, x^{3} + y^{3} + z^{3} - 7).$$

Una base de Gröbner G de I es otro generador de I, que tiene propiedades "buenas":

$$G = \{g_1, \ldots, g_m\}, \quad (G) = I.$$

Análogo a escalerizar un sistema de ecuaciones lineales (revela propiedades, como la existencia y cantidad de soluciones).

En 1965 Bruno Buchberger publica sus tesis doctoral, con:

- un criterio para determinar si un conjunto es base de Gröbner,
- ② un algoritmo para calcular una base de Gröbner, a partir de un conjunto generador cualquiera (finito).

En 1965 Bruno Buchberger publica sus tesis doctoral, con:

- un criterio para determinar si un conjunto es base de Gröbner,
- ② un algoritmo para calcular una base de Gröbner, a partir de un conjunto generador cualquiera (finito).

Aplicando este algoritmo al sistema del ejemplo (con Macaulay2):

```
R = QQ[x,y,z];
I = ideal(x+y+z-3, x^2+y^2+z^2-5, x^3+y^3+z^3-7);
G = gens gb I;
```

En 1965 Bruno Buchberger publica sus tesis doctoral, con:

- un criterio para determinar si un conjunto es base de Gröbner,
- ② un algoritmo para calcular una base de Gröbner, a partir de un conjunto generador cualquiera (finito).

Aplicando este algoritmo al sistema del ejemplo (con Macaulay2):

```
R = QQ[x,y,z];
I = ideal(x+y+z-3, x^2+y^2+z^2-5, x^3+y^3+z^3-7);
G = gens gb I;
```

Obtenemos:

$$G = \{x + y + z - 3, y^2 + yz + z^2 - 3y - 3z + 2, 3z^3 - 9z^2 + 6z + 2\}.$$

En 1965 Bruno Buchberger publica sus tesis doctoral, con:

- un criterio para determinar si un conjunto es base de Gröbner,
- ② un algoritmo para calcular una base de Gröbner, a partir de un conjunto generador cualquiera (finito).

Aplicando este algoritmo al sistema del ejemplo (con Macaulay2):

R = QQ[x,y,z];
I = ideal(x+y+z-3,
$$x^2+y^2+z^2-5$$
, $x^3+y^3+z^3-7$);
G = gens gb I;

Obtenemos:

$$G = \{x + y + z - 3, y^2 + yz + z^2 - 3y - 3z + 2, 3z^3 - 9z^2 + 6z + 2\}.$$

¿Y entonces?... ¿qué hacemos?

Theorem

Sea G base de Gröbner de $I=(f_1,\ldots,f_k)$. El sistema $f_1=0,\ldots,f_k=0$ tiene una cantidad finita de soluciones, sii: para cada variable x_i , G tiene algún polinomio con "Monomio Líder" de la forma $x_i^{m_i}$ ($m_i \geq 0$).

Theorem

Sea G base de Gröbner de $I=(f_1,\ldots,f_k)$. El sistema $f_1=0,\ldots,f_k=0$ tiene una cantidad finita de soluciones, sii: para cada variable x_i , G tiene algún polinomio con "Monomio Líder" de la forma $x_i^{m_i}$ ($m_i \geq 0$).

En nuestro ejemplo, una base de Gröbner es:

$$G = \{x + y + z - 3, y^2 + yz + z^2 - 3y - 3z + 2, 3z^3 - 9z^2 + 6z + 2\}.$$

Theorem

Sea G base de Gröbner de $I=(f_1,\ldots,f_k)$. El sistema $f_1=0,\ldots,f_k=0$ tiene una cantidad finita de soluciones, sii: para cada variable x_i , G tiene algún polinomio con "Monomio Líder" de la forma $x_i^{m_i}$ ($m_i \geq 0$).

En nuestro ejemplo, una base de Gröbner es:

$$G = \{x + y + z - 3, y^2 + yz + z^2 - 3y - 3z + 2, 3z^3 - 9z^2 + 6z + 2\}.$$

Cada variable aparece **sola** como potencia en el Monomio Líder de algún polinomio.

¿El conjunto de soluciones es finito?

Theorem

Sea G base de Gröbner de $I=(f_1,\ldots,f_k)$. El sistema $f_1=0,\ldots,f_k=0$ tiene una cantidad finita de soluciones, sii: para cada variable x_i , G tiene algún polinomio con "Monomio Líder" de la forma $x_i^{m_i}$ ($m_i \geq 0$).

En nuestro ejemplo, una base de Gröbner es:

$$G = \{x + y + z - 3, y^2 + yz + z^2 - 3y - 3z + 2, 3z^3 - 9z^2 + 6z + 2\}.$$

Cada variable aparece **sola** como potencia en el Monomio Líder de algún polinomio. Por lo tanto, el conjunto de soluciones es finito.

Theorem

Sea $f_1 = 0, \ldots, f_k = 0$ con finitas soluciones y G base de Gröbner del sistema. La cantidad de soluciones (en \mathbb{C}^n y contando multiplicidad), es la cantidad de monomios (del anillo) que no son múltiplo de los Monomios Líder de G.

Theorem

Sea $f_1 = 0, \ldots, f_k = 0$ con finitas soluciones y G base de Gröbner del sistema. La cantidad de soluciones (en \mathbb{C}^n y contando multiplicidad), es la cantidad de monomios (del anillo) que no son múltiplo de los Monomios Líder de G.

En el ejemplo, una base de Gröbner es:

$$G = \{x + y + z - 3, y^2 + yz + z^2 - 3y - 3z + 2, 3z^3 - 9z^2 + 6z + 2\}.$$

Theorem

Sea $f_1 = 0, \ldots, f_k = 0$ con finitas soluciones y G base de Gröbner del sistema. La cantidad de soluciones (en \mathbb{C}^n y contando multiplicidad), es la cantidad de monomios (del anillo) que no son múltiplo de los Monomios Líder de G.

En el ejemplo, una base de Gröbner es:

$$G = \{x + y + z - 3, y^2 + yz + z^2 - 3y - 3z + 2, 3z^3 - 9z^2 + 6z + 2\}.$$

Monomios que no son múltiplo de ningún Monomio Líder de G: $\{1, y, z, z^2, yz, yz^2\}$.

Theorem

Sea $f_1 = 0, \ldots, f_k = 0$ con finitas soluciones y G base de Gröbner del sistema. La cantidad de soluciones (en \mathbb{C}^n y contando multiplicidad), es la cantidad de monomios (del anillo) que no son múltiplo de los Monomios Líder de G.

En el ejemplo, una base de Gröbner es:

$$G = \{x + y + z - 3, y^2 + yz + z^2 - 3y - 3z + 2, 3z^3 - 9z^2 + 6z + 2\}.$$

Monomios que no son múltiplo de ningún Monomio Líder de G: $\{1, y, z, z^2, yz, yz^2\}$. Sistema tiene exactamente 6 soluciones (en \mathbb{C}^3 y contando multiplicidad).

Theorem

Sea $f_1=0,\ldots,f_k=0$ con finitas soluciones y G base de Gröbner del sistema. La cantidad de soluciones (en \mathbb{C}^n y contando multiplicidad), es la cantidad de monomios (del anillo) que no son múltiplo de los Monomios Líder de G.

En el ejemplo, una base de Gröbner es:

$$G = \{x + y + z - 3, y^2 + yz + z^2 - 3y - 3z + 2, 3z^3 - 9z^2 + 6z + 2\}.$$

Monomios que no son múltiplo de ningún Monomio Líder de G: $\{1, y, z, z^2, yz, yz^2\}$. Sistema tiene exactamente 6 soluciones (en \mathbb{C}^3 y contando multiplicidad).

No fue necesario hallar las soluciones (resolver el sistema).

Volvemos a las ecuaciones de Fekete:

$$z_{ij}(1-x_{ij})=1$$

$$\overline{z_{ij}(1-x_{ij})=1}$$
, $(n-1)x_{ki}-\sum_{i=1}^{n}(x_{ki}-x_{kj})z_{ij}=0, \ \forall \ i\neq k.$

Volvemos a las ecuaciones de Fekete:

$$z_{ij}(1-x_{ij})=1$$

$$\overline{z_{ij}(1-x_{ij})=1}$$
, $(n-1)x_{ki}-\sum_{j=1,j\neq i}^{n}(x_{ki}-x_{kj})z_{ij}=0, \ \forall \ i\neq k.$

Para n = 5, a partir de una base de Gröbn<u>er, se obtiene:</u>

el sistema tiene 38 soluciones (en \mathbb{C} y contando multiplicidad).

Volvemos a las ecuaciones de Fekete:

$$z_{ij}(1-x_{ij})=1$$

$$\overline{z_{ij}(1-x_{ij})=1}$$
, $(n-1)x_{ki}-\sum_{j=1,j\neq i}^{n}(x_{ki}-x_{kj})z_{ij}=0, \ \forall \ i\neq k.$

Para n = 5, a partir de una base de Gröbn<u>er, se obtiene:</u>

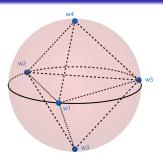
el sistema tiene 38 soluciones (en \mathbb{C} y contando multiplicidad).

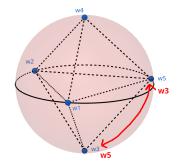
Siguiente paso

Buscar soluciones del sistema, hasta obtener las 38 existentes.

Sencillo verificar que una de las configuraciones críticas en S^2 es la 1:3:1.

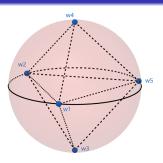
Algunas de sus permutaciones dan otra solución en x_{ij} , aunque del mismo "tipo".

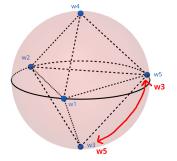




Sencillo verificar que una de las configuraciones críticas en S^2 es la 1:3:1.

Algunas de sus permutaciones dan otra solución en x_{ij} , aunque del mismo "tipo".

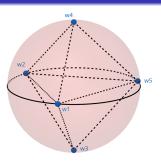


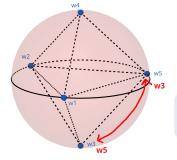


Dado un "tipo" de solución: ¿cuántas permutaciones de los w_i dan soluciones distintas en las variables x_{ii} ?

Sencillo verificar que una de las configuraciones críticas en S^2 es la 1:3:1.

Algunas de sus permutaciones dan otra solución en x_{ij} , aunque del mismo "tipo".

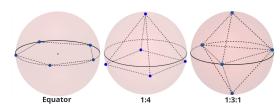




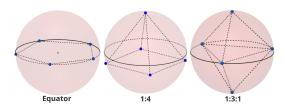
Dado un "tipo" de solución: ¿cuántas permutaciones de los w_i dan soluciones distintas en las variables x_{ii} ?

Respondemos probando las *n*! permutaciones posibles.

Es sencillo imaginar otro tipo de soluciones.



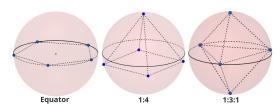
Es sencillo imaginar otro tipo de soluciones.



La cantidad de permutaciones distintas de cada tipo son:

Conf.	Ecuador	1:4	1:3:1	4-simplex	Halladas	Existen
\neq perms.	12	15	10	1	38	38
esfera	S^1		S^2	S^3		✓

Es sencillo imaginar otro tipo de soluciones.



La cantidad de permutaciones distintas de cada tipo son:

Conf.	Ecuador	1:4	1:3:1	4-simplex	Halladas	Existen
\neq perms.	12	15	10	1	38	38
esfera	S^1		S^2	S^3		✓

Theorem (Para n = 5 puntos)

El único tipo de configuraciones críticas son las que imaginamos.

Para n = 6, calculamos una base de Gröbner y obtenemos: el sistema tiene 938 soluciones (en \mathbb{C} y contando multiplicidad).

Para n = 6, calculamos una base de Gröbner y obtenemos: el sistema tiene 938 soluciones (en \mathbb{C} y contando multiplicidad).

Cálculo de la base de Gröbner con msolve (con 20 procesadores)

- Tiempo: 1 hora y 6 minutos.
- Memoria RAM: 37 GB.
- Cantidad de polinomios de la base: 2473.
- Cantidad de monomios de la base: 2.133.497

Para n = 6, calculamos una base de Gröbner y obtenemos:

el sistema tiene 938 soluciones (en \mathbb{C} y contando multiplicidad).

Cálculo de la base de Gröbner con msolve (con 20 procesadores)

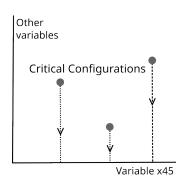
- Tiempo: 1 hora y 6 minutos.
- Memoria RAM: 37 GB.
- Cantidad de polinomios de la base: 2473.
- Cantidad de monomios de la base: 2.133.497

Siguiente paso:

buscar soluciones hasta llegar a las 938 que existen.

Soluciones "Imaginables" no son suficientes: como veremos, existen soluciones complejas.

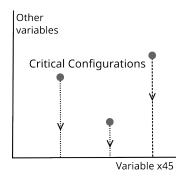
Soluciones "Imaginables" no son suficientes: como veremos, existen soluciones complejas.



Método para obtener todas las soluciones

- Proyectar el conjunto de soluciones en la variable x₄₅.
- Da posibles valores de x_{45} .

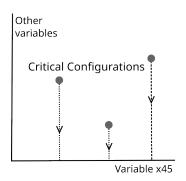
Soluciones "Imaginables" no son suficientes: como veremos, existen soluciones complejas.



Método para obtener todas las soluciones

- Proyectar el conjunto de soluciones en la variable x₄₅.
- Da posibles valores de x_{45} .
- Se hace calculando base de Gröbner del ideal, con orden monomial que elimine todas las variables, excepto x₄₅.

Soluciones "Imaginables" no son suficientes: como veremos, existen soluciones complejas.



Método para obtener todas las soluciones

- Proyectar el conjunto de soluciones en la variable x₄₅.
- Da posibles valores de x_{45} .
- Se hace calculando base de Gröbner del ideal, con orden monomial que elimine todas las variables, excepto x₄₅.
- Requiere 10 horas y 190 GB de RAM (vs. 1 hora y 37 GB si se usa orden Grevlex).

Ideal proyectado es generado por un único polinomio (PID):

$$I \cap \mathbb{Q}[x_{45}] = (p)$$
, algún p .

Ideal proyectado es generado por un único polinomio (PID):

$$I \cap \mathbb{Q}[x_{45}] = (p)$$
, algún p .

Raíces de p son los posibles valores de x_{45} .

Ideal proyectado es generado por un único polinomio (PID):

$$I \cap \mathbb{Q}[x_{45}] = (p)$$
, algún p .

Raíces de p son los posibles valores de x_{45} .

Generador p de grado 42

```
\begin{array}{l} p = \\ 2861022949218750000000000x^{42} + \\ 28276443481445312500000000x^{41} + \\ \dots - 23238606766480x^2 \\ + 391378248800x \end{array}
```

Ideal proyectado es generado por un único polinomio (PID):

$$I \cap \mathbb{Q}[x_{45}] = (p)$$
, algún p .

Raíces de p son los posibles valores de x_{45} .

Generador *p* de grado 42

 $\begin{array}{l} p = \\ 2861022949218750000000000x^{42} + \\ 28276443481445312500000000x^{41} + \\ \dots - 23238606766480x^2 \\ + 391378248800x \end{array}$

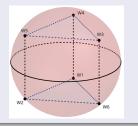
Factorizamos p en \mathbb{Q} , usando Macaulay2.

Generator Factor	Roots
x_{45}	0
$(x_{45}+1)^2$	-1
$2x_{45}-1$	1/2
$2x_{45} + 1$	-1/2
$(5x_{45}-1)^2$	1/5
$5x_{45} + 1$	-1/5
$(5x_{45}+7)^2$	-7/5
$(5x_{45}^2 + 1)^2$	$\pm \frac{i}{\sqrt{5}}$
5.2 00 5	$\frac{\sqrt{5}}{11\pm4\sqrt{6}}$
$5x_{45}^2 - 22x_{45} + 5$	
$5x_{45}^2 + 2x_{45} - 1$	$\frac{-1\pm\sqrt{6}}{5}$
$5x_{45}^2 + 14x_{45} - 1$	$\frac{-7\pm3\sqrt{6}}{5}$
$25x_{45}^2 + 28x_{45} + 19$	$\frac{-14\pm i3\sqrt{31}}{25}$
$125x_{45}^2 + 50x_{45} - 31$ $100x_{45}^4 + 95x_{45}^3 - 21x_{45}^2 - 22x_{45} + 10$	$\frac{-5\pm6\sqrt{5}}{25}$
$100x_{45}^4 + 95x_{45}^3 - 21x_{45}^2 - 22x_{45} + 10$	4 complex
$250x_{45}^{43} + 110x_{45}^{33} - 21x_{45}^{22} - 19x_{45} + 4$	4 complex
$400x_{45}^4 + 488x_{45}^3 - 111x_{45}^2 - 196x_{45} + 67$	4 complex
$3x_{45} + 1$	-1/3
$5x_{45} + 4$	-4/5
$10x_{45} - 1$	1/10
$25x_{45}-1$	1/25
$25x_{45} + 11$	-11/25
$25x_{45} + 23$	-23/25

Soluciones para cada valor de la coordenada x_{45}

Para cada factor p_i del generador (cada valor x_{45})

- Agregar $p_i = 0$ al sistema original.
- Encontrar soluciones del sistema simplificado, y contar sus permutaciones.

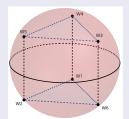


Configuración	# perms	Esfera
Ecuador	60	S^1
1:5	72	<i>S</i> ²
1:4:1	15	<i>S</i> ²
3:3	60+60	<i>S</i> ²
Complex 1	90	<i>S</i> ²
Complex 2	360	<i>S</i> ²
Real 1	15	<i>S</i> ³
Real 2	45	<i>S</i> ³
Real 3	60	<i>S</i> ³
Real 4	10	<i>S</i> ³
5-simplex	1	S ⁴
Halladas	848	
Existen	938	
Differencia	938 - 848 = 90	×

Soluciones para cada valor de la coordenada x_{45}

Para cada factor p_i del generador (cada valor x_{45})

- Agregar $p_i = 0$ al sistema original.
- Encontrar soluciones del sistema simplificado, y contar sus permutaciones.



Configuración	# perms	Esfera
Ecuador	60	S^1
1:5	72	<i>S</i> ²
1:4:1	15	<i>S</i> ²
3:3	60+60	<i>S</i> ²
Complex 1	90	<i>S</i> ²
Complex 2	360	<i>S</i> ²
Real 1	15	<i>S</i> ³
Real 2	45	<i>S</i> ³
Real 3	60	<i>S</i> ³
Real 4	10	<i>S</i> ³
5-simplex	1	S ⁴
Halladas	848	
Existen	938	
Differencia	938 - 848 = 90	×

Complex 1 tiene multiplicidad 2: +90.

Clasificación de configuraciones críticas **reales** (n = 6)

Configuration	S^1	S^2	S^3	S^4
Equator	GM	S	S	S
1:5	-	S	S	S
1:4:1	-	GM	S	S
$3:3(\sqrt{6})$	-	S	S	S
Real 1	-	-	SM	S
Real 2	-	-	S	S
Real 3	-	-	S	S
Real 4	-	-	GM	S
5-simplex	-	-	-	GM

Clasificación de configuraciones críticas **reales** (n = 6)

Configuration	S^1	S^2	S^3	S^4
Equator	GM	S	S	S
1:5	-	S	S	S
1:4:1	-	GM	S	S
$3:3(\sqrt{6})$	-	S	S	S
Real 1	-	-	SM	S
Real 2	-	-	S	S
Real 3	-	-	S	S
Real 4	-	-	GM	S
5-simplex	-	-	-	GM

- Mínimo global se clasifica comparando valores de energía.
- Las configuraciones restantes se clasifican con la Hessiana del Lagrangiano.
- Se sabe que el problema no admite máximo local/global.

Software y Hardware utilizado

msolve: implementa algoritmo F4 (Faugère, 1999).

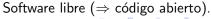
Figure: Jean-Charles Faugère

F4: variante de algoritmo Buchberger, con álgebra lineal.

Figure: Buchberger (2005)

Macaulay2, creado por Daniel Grayson (Illinois Urbana) y Michael Stillman (Cornell) en 1993.

```
Last login: Fri Aug. 9 20:52:57 2024 from 179.25.187.189
                            * Para instalar cualquier software en su home como por ejemplo minicondo
                             y sus env se debe solicitar un trabajo interactivo
 current degree of pairs selected + Consulte la ayuda antes de contactar: https://www.cluster.uy/ayuda
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
                Isomorphism, LLLBases, MinimalPrimes, OnlineLookup
                PrimaryDecomposition, ReesAlgebra, Saturation, TangentCone
i1 : R = 00[x.v]
o1 : PolynomialRing
i2 : I = ideal(3*x+5*y^3, y^2*x)
o2 = ideal (5y + 3x, x*y )
o2 : Ideal of R
```



Contribuciones

- Configuraciones críticas como solución de sistema polinomial.
- Todas las confs. críticas, y en particular las óptimas, para $n \le 6$, $d \ge 1$.
- Para n = 6 en S^2 : primera lista exhaustiva de configuraciones críticas y su clasificación.

Contribuciones

- Configuraciones críticas como solución de sistema polinomial.
- ullet Todas las confs. críticas, y en particular las óptimas, para $n \leq 6$, $d \geq 1$.
- Para n = 6 en S^2 : primera lista exhaustiva de configuraciones críticas y su clasificación.

Ventajas y Desventajas

- ✓ Enfoque Unificado.
- \checkmark Formulación útil para esfera S^d de cualquier dimensión d.

Contribuciones

- Configuraciones críticas como solución de sistema polinomial.
- ullet Todas las confs. críticas, y en particular las óptimas, para $n \leq 6$, $d \geq 1$.
- Para n = 6 en S^2 : primera lista exhaustiva de configuraciones críticas y su clasificación.

Ventajas y Desventajas

- ✓ Enfoque Unificado.
- \checkmark Formulación útil para esfera S^d de cualquier dimensión d.
- \times Requiere calcular bases de Gröbner en $2\binom{n}{2}$ variables.

Contribuciones

- Configuraciones críticas como solución de sistema polinomial.
- Todas las confs. críticas, y en particular las óptimas, para $n \le 6$, $d \ge 1$.
- Para n = 6 en S^2 : primera lista exhaustiva de configuraciones críticas y su clasificación.

Ventajas y Desventajas

- ✓ Enfoque Unificado.
- ✓ Formulación útil para esfera S^d de cualquier dimensión d.
- × Requiere calcular bases de Gröbner en $2\binom{n}{2}$ variables.

Trabajo futuro

- Hallar configuración óptima para 7 puntos (∃ candidata)
- Determinar si formulación tiene finitas soluciones para n > 6.
- "simplificar" el sistema de ecuaciones, explotando simetrías.

Gracias por su atención

Código y presentación

http://www.github.com/matiasvd

Agradecimientos

- Cluster.UY por la infraestructura de hardware.
- ANII y CAP por becas de doctorado.
- Grupo de *msolve*, *Macaulay2* y *SymPy* por su excelente trabajo.

Referencias

- Shub and Smale (1993). Complexity of bezout's theorem: iii. Condition number and packing. Journal of complexity.
- [2] Rakhmanov, Saff, Zhou (1995). Electrons on the sphere. In Computational Methods and Function Theory.
- [3] Kolushov, Yudin (1997). Extremal dispositions of points on the sphere. Analysis Mathematica.
- [4] Smale, Stephen (1998). Mathematical problems for the next century. The mathematical intelligencer.
- [5] J.C. Faugère (1999). A new efficient algorithm for computing Gröbner bases (F4). Journal of pure and applied algebra.
- [6] Dragnev, Legg, Townsend (2002). Discrete logarithmic energy on the sphere. Pacific journal of mathematics.
- [7] Horn, Johnson (2013). Matrix analysis. (2nd ed.). Cambridge university press.
- [8] Dragnev (2016). Log-optimal configurations on the sphere. In Modern trends in constructive function theory.
- Bétermin, Sandier (2018). Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere.
- [10] Dragnev, Musin (2023). Log-optimal (d+2)-configurations in d-dimensions. Trans. AMS.
- [11] Constantineau, et. al (2023). Determination of stable branches of relative equilibria of the *N*-vortex problem on the sphere.

msolve executions (n = 6 points)

AVX512 instructions, 20 threads, Xeon-Gold 6138.

GRevLex monomial order (msolve 0.73) - With null CM equations

msolve GB in	reduced GB size		
total time	RAM	# pols	# mons
1 hour, 6 minutes	37 GB	2473	XX

Elimination order to project to x_{45} (msolve 0.73)

msolve takes 10 hours and 190 GB of RAM.

GRevLex without lifting GB to \mathbb{Q} (msolve 0.90)

	msolve GB		reduced GB size	
Null Center of Mass equations	total time	RAM	# pols	# mons
Yes	485 s	3.35 GB	2473	2.133.497
No	433 s	3.36 GB	2473	2.133.497

Configurations for n = 6 points in $S^3 \subset \mathbb{R}^4$

Optimal configuration: Real 4

Two equilateral triangles, each inscribed in a copy of S^1 lying in orthogonal spaces.

The other configurations

- Real 1 (SM): analogous to 1:4:1 of S^2 : it has the poles, and then the optimal configuration for 4 points in the equatorial sphere.
- Real 3 (S): analogous to 1:5 of S^2 : it has a pole, and then the optimal configuration for 5 points in the corresponding sphere.
- Real 2 (S): no analogous on S². Has 4 points on the Equator of a sphere and the optimal configuration for 2 points in another sphere. Line through these two points is orthogonal to the plane of the 4 point Equator.

From x_{ij} to w_i

Any solution in the variables w_i has an associated solution $x_{ij} = w_i^T w_j$. Reciprocal is also true in \mathbb{C} .

Theorem (Autonne-Takagi factorization [7, Corollary 2.6.6])

If $X \in \mathbb{C}^{n \times n}$ is symmetric, there is a unitary $P \in \mathbb{C}^{n \times n}$, and a non-negative diagonal matrix $D \in \mathbb{R}^{n \times n}$, such that: $X = P^T DP$. Furthermore, the entries of D are the singular values of X.

Corollary

If $X \in \mathbb{C}^{n \times n}$ is symmetric with rank d, and ones on its diagonal, there exists $W \in \mathbb{C}^{d \times n}$, such that: $X = W^T W$, $w_i^T w_i = 1$, $\forall i$.

Proof.

As X is symmetric: $X = P^T DP$. Take: $W = \sqrt{\hat{D}P}$; where $\hat{D} \in \mathbb{R}^{d \times n}$ is the submatrix of D with positive singular values.