
Functional programming and didactics of
computational sciences

Sylvia da Rosa, Manuela Cabezas, Marcos Viera, and Federico Gómez

1 Instituto de Computación, Facultad de Ingeniería, Universidad de la República.
{darosa, mviera, fgfrois}@fing.edu.uy

2 Facultad de Educación, Universidad de la Empresa. {mcabezas}@ude.edu.uy

Abstract. The benefits of using multiple representation forms as a
strategy to teach domains-specific topics and support a deeper, more
abstract understanding of difficult content are well known in mathe-
matics and science education. In this paper, we argue that additional
benefits can be derived from multimodel strategies, where the didactic
focus is placed on the relationship and interaction between mathemat-
ical and computational models, and that these are necessary for the
discipline-specific knowledge domains of science education in the compu-
tational age. We propose a didactic model for teaching science (Physics,
Chemistry, Biology) from knowledge and strategies applied in the math-
ematical and computational modelling process of real (Physics, Chem-
istry, Biology) phenomena/problems. We describe the development of
the model through an example of Physics, and present one more exam-
ple of applying the didactic model in Chemistry. For implementing the
computational model, the pure functional programming language Mate-
Fun was used. The language was designed by researchers at the Institute
of Computing (InCo) of the Faculty of Engineering (FING) UDELAR
and is aimed at learning mathematical functions.

Keywords: Computational Model · Didactic Sequences · Functional
Programming.

1 Introduction

The benefits of using multiple representation forms as a strategy to teach domains-
specific topics and support a deeper, more abstract understanding of difficult
content are well known in mathematics and science education. In physics, for
example, the authors in [11] point out that "Many concepts, processes or re-
lations can be comprehended much more quickly when some kind of picture
is provided because pictures are able to show at once what would take much
longer to be described with words or demonstration experiments. Furthermore,
students are able to visualize the rather abstract contents of physics topics being
taught such as with the block and tackle. Moreover, when using multiple sources
of information, learners are able to choose those sources with which they prefer
to learn, in this case the real tackle or the pictures."

2 S. da Rosa et al.

In mathematics, for example, students may explore the relationship between
variables, through a graph, a table, or an equation. According to [8], much re-
search on mathematical representation is devoted to the study of discipline-
specific content such as numbers, fractions or algebra, functions and graphs, etc.
These studies look at how students navigate and interact with representations in
order to get a deeper mathematical understanding. Students may, for example,
use one representation in order to explore another.

There are, thus, discipline-specific strategies for how representations may
impact learning and where multiple representations help students discern un-
derlying ideas or concepts that may otherwise be difficult to grasp.

In this paper, we argue that the same benefits can be derived from multi
model strategies, where the didactic focus is placed on the relationship and in-
teraction between mathematical and computational models (and their multiple
representations), and that these are necessary for the discipline-specific knowl-
edge domains of science education in the computational age.

In other words, we propose a didactic model for teaching science (Physics,
Chemistry, Biology) from knowledge and strategies applied in the mathemati-
cal and computational modelling process of real (Physics, Chemistry, Biology)
phenomena/problems.

We describe the development of the model and theory-base for the intro-
duction of a set of computing concepts as a cross-subject competency in upper
secondary courses in sciences through an example of Physics, see Section 2.1
and present one more example of applying the didactic model in Chemistry, see
Section 2.2. It is worth mentioned that we have had the opportunity to put the
model in practice in more examples from different subjects in upper secondary
courses in sciences, for example, Astronomy, Mathematics and Informatics. Some
preliminary conclusions are presented in Section 5.

The didactic model was designed and put into practice through a research
project titled: "The Paradigm of Computational Sciences and Education", car-
ried out in the period 2021-2023, by researchers of education and informatics,
and High School teachers of Physics, Chemistry and Astronomy.

The research problem was defined in the project through a problematisation
of the introduction of Computer Science as a basic science in education. Through
the cycles of analysing, planning and testing didactic sequences for specific con-
tents, certain critical areas were identified, tested, modified and modelled. In
particular, notions of both mathematical and computational models and the
relationship between them emerged both as a teaching problem and a poten-
tial didactic model. As these were made explicit in the process, teachers and
researchers could identify which elements of computing play a relevant role in
each didactic sequence and imply a more reflective use of the computer. In this
sense we agree with other authors, for example [1, 5, 20], about the potential of
fundamental ideas to group the central and far-reaching concepts of informat-
ics, allowing also to distinguish between knowledge, competences, and skills in
different approaches. The resulting didactic model organises teaching of com-

Functional programming and didactics of computational sciences 3

putational modelling of a phenomena or problem by bringing to the forefront
mainly two fundamental ideas:

1. Algorithms interact with data to solve algorithmic problems (mathematical
model).

2. Programs implement algorithms and data in a form that can be executed on
a computer (computational model).

For implementing the computational model, the pure functional program-
ming language MateFun was used. The language was designed by researchers at
the Institute of Computing (InCo) of the Faculty of Engineering (FING) UDE-
LAR and is aimed at learning mathematical functions [17, 18]. Therefore, its
syntax was designed to be minimal and as close as possible to the notation used
in mathematics. The idea is that the familiar notation would allow mathemat-
ics and other teachers learn the language rather quickly, as well as highlight
its relationship with the underlying mathematical concepts, to be discerned by
students. Its design began in 2017 and its didactic applications in mathematics
courses date back to 2018. From 2021, MateFun was introduced in projects on
the teaching of other scientific disciplines, proving to be an especially appropriate
language, given that mathematics is the language of science. MateFun’s features
make it easy to develop the competence of computational modeling of problems,
based on mathematical models of their solutions. In this way, teachers of each
scientific discipline can introduce their students to basic concepts of computing
and reduce the gap between their classroom practices and the paradigm of com-
putational sciences where scientific work is based on three fundamental pillars:
computing, theory and experimentation [12].

The MateFun language can be accessed through a web integrated program-
ming environment3 that allows program management, programming, program
execution, and visualisation of graphics, figures, and animations.

2 Computational sciences in the classroom

We locate our work within the didactics of informatics, where we have been
developing ’close-to-practice’ research projects [21], aiming to connect profes-
sional knowledge and research through teacher-researcher collaborations in di-
dactic analysis and modelling [3]. As part of the didactic analysis following the
methodology that we adopted in the project4, described in detail in the first
example below, all teachers participated in the design of a didactic sequence for
the selected topic in their curriculum unit.

2.1 An example of physics

For physics, the process began, and evolved through the following problem:
3 https://www.fing.edu.uy/proyectos/matefun/#/en/login
4 "The Paradigm of Computational Sciences and Education", see Section 1

https://www.fing.edu.uy/proyectos/matefun/#/en/login

4 S. da Rosa et al.

How can we calculate and represent the electric field created by any pos-
itive charge q at a point located at any distance d from the given charge?

This problem served as the focal point for analysis as to where each step of
abstraction, generalisation and verification could and should be.

At a certain point, teachers and researches agreed that the problem as it is
formulated in the statement covers two problems: calculating the value of the
electric field and representing the vector that it generates at a point located any
distance d from the given charge.

For the first problem, physics teachers calculated the real value for several
cases and implicitly converting the units, using the formulas in Figure 1. The
units are provided by the Coulomb constant k that, according to the Interna-
tional System of Units, uses the Coulomb charge unit (C), the unit of meters for
the distance and the Newton (N) unit for force.

Only when the physics teachers entered in conversation with the informatics
researchers did it become clear that this was an issue, since from a computational
perspective, the data and the conversion of units have to be explicitly expressed
as data structures and algorithms. At this point, one core element of the model
arose: each physics data item must be expressed as an n tuple of the real value
and the corresponding units. If we call UCharge and UDistance to the units
of charge and distance respectively, the statement becomes:

How can we calculate and represent the electric field created by any posi-
tive charge (q, UCharge) at a point at any distance (d, UDistance) from
the given charge?

(a) Equation (b) Constant

Fig. 1: The equation calculates the electric field E produced by a charge q at a
point located a distance r from the charge.

The problem question was thus reformulated, as teachers worked to express the
problem as an algorithmic problem, that is, specify the input and output data
sets as defined in [9]. Several cases used by physics’ teachers determined a set
of input data of the form ((charge, units), (distance, units)), and for each of
them, the output data (electric field, units) were calculated using the equation
of the Figure 1. The sets are shown in the first and third columns of Table 1.
The conversion of units is not included in the table, but for each case the units

Functional programming and didactics of computational sciences 5

were converted accordingly, worked with the students on the whiteboard and
then designing a general function and a program as shown in Figure 2.

From the equations to a function solving the general problem: Table 1
shows how the repetition of solving several specific cases groups the input data
in the set that forms the first column of the table and the output data in the
set of the third column. Each specific case is solved with the equation, where
the operations are the same for all cases. This repetition of the operations on
the elements of the input data set to generate the output data set makes it
possible to naturally introduce the solution of the general case, where the set
of equations is transformed into the function, that is, the algorithm. The last
row of the table expresses the first step to the mathematical model: a function
that for any pair (charge, distance) returns the corresponding element of the
output data set (the electric field with its units). The next step is to define it as
a mathematical function, not included for reasons of space, but which is similar
to the function defined in MateFun starting from line 17 of the Figure 3.

Mathematical modelling plays a clarifying role in the process of understand-
ing the problem and a solution. Using a strong typed programming language as
MateFun, the relationship between the two models (mathematical and compu-
tational) becomes straightforward.

Table 1: From equations to function
input data algorithm output data
((3,NanoCoulomb), (2,Cm)) equation (67500,Newton,Coulomb)
((3,NanoCoulomb), (0.3 Mts)) equation (300,Newton,Coulomb)
((10,MicroCoulomb), (1, Mts)) equation (90000,Newton,Coulomb)
((5,MicroCoulomb), (10,Cm)) equation (4500000,Newton,Coulomb)
((0.5, Coulomb), (800, Cm)) equation (70312500,Newton,Coulomb)
. . . equation . . .
for all (charge, distance) function (EField, Units)

From function to program: Although a mathematical function expresses the
general solution of a problem, the strength of computing in science education is
revealed in all its magnitude when the algorithm is transformed into a program
that can be executed by a computer for several cases. The process of computa-
tional modelling has a great impact, both for teachers and students, where they
can experience their solutions in action [15]. A program in MateFun is a list of
definitions of sets and functions. Figure 2 shows the definitions of the data
types for the units of charge, distance and force (they can be expanded with
new units) and the MateFun functions to convert the units. Figure 3 shows the
electrical constant defined as a function that has no input data (empty domain)
and that returns a real value in Newton and Coulomb. The same figure shows the

6 S. da Rosa et al.

1 set UCharge = { Coulomb , MicroCoulomb , NanoCoulomb }
2 set UDistance = { Km, Mts , Miles , Cm }
3 set UForce = { Newton }
4 convertUnitCharge :: R X UCharge -> R X UCharge
5 convertUnitCharge (c,u)
6 = { (c * 1e-9, Coulomb) if u == NanoCoulomb
7 { (c * 1e-6, Coulomb) if u == MicroCoulomb
8 { (c, Coulomb)
9 convertUnitDistance :: R X UDistance -> R X UDistance

10 convertUnitDistance (d,u)
11 = { (d * 0.01, Mts) if u == Cm
12 { (d * 1000, Mts) if u == Km
13 { (d * 1609.34 , Mts) if u == Miles
14 { (d, Mts)

Fig. 2: Definitions of data types for charge, distance and force units. Definitions
of unit conversion functions.

definition of the function electricField that computationally models the solution
of the problem of calculating the electric field produce by a charge in a point
situated a certain distance from the charge (first sub problem, see Section 2.1).
The problem of representing the vector of the electric field at a point located
at a distance d from the charge (see Section 2.1) was analysed with the same
methodology used in the first problem, that is, solving several points for specific
distances and a charge of 3 NanoCoulomb, and then constructing a general so-
lution, where the points are elements of a list. Figure 4 shows the definition in
MateFun of the function to draw the vectors (omitting the auxiliary functions)
and the expression to apply the function to a charge of 3 NanoCoulomb at a
scale of 0.0001, and to the list [(2,0),(1,1),(0,2.5),(-1,-1)] of the coordinates of
the points on the plane. Two relevant issues arose here: the need to use a scale
to represent the electric charge and to determine that the points were located in
the plane. Discussing these issues, made evident and experiential ideas about the
need for rigour in computational modelling, that had not yet been fully assim-
ilated by the physics teachers up until the final stage of the didactic modelling
process. At the same time, the issues brought by physics’ teachers cast to light
some important ideas for the computer science researches about how to improve
the MateFun language: including a physics library where teachers can easily use
predefined functions to write their expressions.

Figure 5 shows the graphical representation on the left side and the expres-
sion executed on the right side of the MateFun environment. It is worth noting
that in the case where the charge is negative, the same expression is used with
the negative value and the result is that the direction of the electric field vectors
points towards the charge. The teaching sequences were put into practice in
the classes, which were filmed for later analysis. The analysis of the first results

Functional programming and didactics of computational sciences 7

15 constElec :: () -> (R X UForce X UDistance X UCharge)
16 constElec () = (9000000000 , Newton , Mts , Coulomb)
17 elecField :: ((R X UCharge) X (R X UDistance)) -> (R X

UForce X UCharge)
18 elecField (charge , distance) = (constElec ()!1 * charge1

!1 / (distance1 !1 * distance1 !1), Newton , Coulomb)
19 where charge1 = convertUnitCharge (charge)
20 distance1 = convertUnitDistance (

distance)
21 {- Test
22 >electricField ((3, NanoCoulomb), (2,Cm))
23 (67500 , Newton ,Coulomb)
24 >
25 -}

Fig. 3: Definitions of the Coulomb constant and the electric field function.

26 drawField :: (R X TCharge) X R X (R X R)* -> Fig
27 drawField (charge ,scal ,pts) = draw(charge , pts ,

calcDestinations(pts ,ds ,calcFields(charge ,scal ,ds)))
28 where ds = calcDistances(pts)
29 {- Test
30 Elecfield >drawField ((3, NanoCoulomb) ,0.0001 ,[(2 ,0) ,(1,1)

,(0,2.5) ,(-1,-1)])
31 -}
32

Fig. 4: MateFun function for the graphic representation of the electric field.

allowed us to develop a didactic model with the objective of introducing stu-
dents’ learning about effective computational models and its relationship with
mathematical models. Further improvements no worked in these instructional
instances are included in the Section 4 and in Section 5 we present some criteria
of the analysis and some results of the collected data.

This year we had had the opportunity of applying the model in three in-
structional instances of three hours and a half each. Four groups of students and
teachers of Chemistry, Astronomy, Physics and Visual Communication partici-
pated in the activities that were organized and supported by PEDECIBA and
ANEP5.

5 PEDECIBA(Programa de Desarrollo de las Ciencias Básicas
https://www.pedeciba.edu.uy/en/) ANEP (Adminsitración Nacional de Edu-
cación Pública https://www.anep.edu.uy/).

8 S. da Rosa et al.

Fig. 5: Graphical representation of electric field vectors in MateFun environment.

Each group presented the final work in a common event that took place in
November 8th, to an audience of researchers in informatics and education and
High School teachers.

In the following Section we describe the work done with the Chemistry group.

2.2 An example of chemistry

Due to time constraints, the basic tools for using MateFun were introduced
in the first hour of the first instructional instance. The implementation of the
functions was introduced as they were defined mathematically, making explicit
the concepts that are usually implicit. For example, describing the domain and
co domain of functions as the Cartesian product between R and the sets of units.

First instructional instance. The teacher of Chemistry brought the following
statement of a problem that she had been worked with the students:

Commercial nitric acid has a concentration of 69%m-m and a density of
1.42 g/mL. Calculate its concentration expressed in g/L and its molarity.

As in the example of Physics, the core element of the model arose: each chemistry
data item must be expressed as an n tuple of the real value and the correspond-
ing units. The sets of units are described in the Figure 6 and the statement
formulated as an algorithmic problem is:

Given a quantity in grams of solute in grams of a solution, and the
density of the solution in grams per milliliter, return the concentration
of the solution expressed in grams per liter and its molarity in moles per
liter.

For designing a solution, the problem is divided into two sub problems: 1) cal-
culating the concentration and 2) calculating the molarity.

Functional programming and didactics of computational sciences 9

In the first instructional instance the first sub problem was analyzed an solved
as follows: for the concentration of the solution in grams per liter we need to
know what volume is the grams of solution, that is, to convert from mass to
volume (that is why the density that relates both things is input data). That is
to say, "given a quantity in grams of the solution (input data) and the density
of the solution in grams per milliliters (input data), return the volume of the
solution in milliliters". Once the volume in milliliters is calculated, a simple
rule of three gives the requested concentration in liters (output data of the sub
problem). The solution in MateFun is shown in the Figure 6.

33 {- We define the sets of units -}
34 set UVol = { Liter , Milliliters }
35 set UMass = { Grams , Milligrams }
36 set UMolWeight = { GramsPerMole }
37 set UMoles = { Moles }
38 set UMolarity = { MolesPerLiter }
39 {- Program: We define the function to solve the

subproblem using the density formula. -}
40 getVolInML :: (R X UMass) X (R X UMass X UVol) -> R X

UVol
41 getVolInML (mass , dens) = (mass!1 / dens!1 , Milliliters

)
42 concentrationInLiters :: (R X uMass) X (R X UMass) X (R

X UMass X UVol) -> (R X UMass X UVol)
43 concentrationInLiters (gramsSolution , gramsSolute , dens)

= (gramsSolute !1 * 1000 / volu!1 , Grams , Liter)
44 where volu = getVolInML (

gramsSolution ,dens)

Fig. 6: Calculating concentration in liters

Second instructional instance For the second sub problem the input data is
the mass in grams of the solution, the mass in grams of the solute, its molecular
weight and its density, and the output data is the molarity of the solution (nitric
acid). The formula for the molarity is shown in the Figure 8, where the number
of moles is calculated using the atomic mass taken from the periodic table of
chemical elements.

Third instructional instance According to our model, once a solution is
obtained and testing, it should be analized to find aspects that can be improved,
for instance from the point of view of getting a more compact and efficient code.
In this case, we encourage students to pay attention to the fact that the local

10 S. da Rosa et al.

definition of the variable ’volu’ using the function ’getVolInML’ is used in both
sub problems. They are encouraged to define a function that takes the grams of
solution, the grams of solute, the density in grams per milliliter of the solution
(input data), the molecular weight of the solute (data taken from the periodic
table of chemical elements) and returns a pair with the concentration of the
solution in grams per liter (sub problem 1) and the molarity of the solution in
moles per liter (sub problem 2). In this way, the variable volu is defined once
and used in both sub programs. The program is described in the Figure 9 The
volume of the solution is calculated with the getVolInML function of the first
sub problem and multiplied by 1000 to obtain the volume in liters. The program
is described in Figure 7.

45 {- Functions to calculate the number of moles of solute
(in moles) and the molarity. -}

46 numberMoles :: (R X UMass) X (R X UMolWeight) -> R X
UMoles

47 numberMoles (massSolute , molWeight) = (massSolute !1 /
molWeight!1, Moles)

48 molarity :: (R X UMass) X (R X UMass) X (R X UMolWeight)
X (R X UMass X UVol) -> (R X UMolarity)

49 molarity (massSolution , massSolute , molWeight , dens) = (
m!1 / (volu !1/1000) , MolesPerLiter)

50 where m = numberMoles (massSolute ,
molWeight)

51 volu = getVolInML(massSolution ,
dens)

52 {- Concrete case:
53 molarity ((100, Grams), (69, Grams) ,(63, GramsPerMole)

,(1.42,Grams ,Milliliters))
54 (15.5524 , MolesPerLiter)
55 -}

Fig. 7: Calculating the molarity

3 Related work

There is a great deal of consensus about the fact that Computer Science Educa-
tion (CSE) is becoming more and more relevant and that most other sciences use
digital technology to present their concepts and elaborate information (simula-
tion of physical phenomena, DNA sequencing and analysis, or manipulation of
abstract geometrical objects, and so on). However, the relationship between CSE
and science education is interpreted in different ways. In this section, we refer to

Functional programming and didactics of computational sciences 11

(a) Molarity Formula

(b) Number of Moles

Fig. 8: Formulas for the second chemistry sub problem.

two that we compare with our approach. One of them is the one that covers works
that support the need to introduce Computational Thinking (CT) in science ed-
ucation [2,10], in the understanding that the skills of a computer scientist can be
transferred to problem solving in other domains, an idea introduced by [13]. This
approach is being abandoned, as no evidence has been found that such a trans-
fer is possible. The other approach is to consider CT as a set of skills, such as
abstraction, decomposition, etc., that arise when solving algorithmic problems,
bypassing the stage of implementing solutions in a programming language. This
vision had great resonance from the initial definition of Wing that introduces
the idea that CT can be developed from the domain of general competences and
without the use of the computer [10]. This approach to basic computing presents
low entry requirements, which allows teachers, professors, and students to have
their first approaches to computing, without having to handle too many com-
puting concepts and without requiring prior programming knowledge [7]. The
academic community has expressed concern for years about the way in which this
limited vision reduces computing to a few basic components, which, in addition
to being common to all sciences, obfuscate the algorithm-machine relationship
that is the basis of computing as a discipline [5, 14].

The other approach to science education in the digital age is to use different
software specialized in certain disciplines, such as GeoGebra in mathematics. In
these cases, the introduction of computer science concepts in science education
is not addressed either, since most of the programs are provided by the tools
and the focus is on visualization and simulation.

On the other hand, Physics VPython Open Source in Physics6 uses VPython
a language that requires certain knowledge of imperative programming but is
disconnected from the mathematical model of the solutions; for instance, it does
not require indicating the signature of functions.

6 see for example https://matterandinteractions.org/wp-
content/uploads/2016/07/Chapter1-InteractionsandMotion.pdf

12 S. da Rosa et al.

56 {- Function that solves the main problem by returning a
pair with the solution of the each subproblem -}

57 concentrationMolarity :: (R X UMass) X (R X UMass) X (R
X UMass X UVol) X (R X UMolWeight) -> ((R X UMass X UVol
) X (R X UMolarity))

58 concentrationMolarity (gramsSolution , gramsSolute , dens ,
molWeight) = ((gramsSolute !1 * 1000 / volu!1 , Grams ,

Liter) , (mols!1 / (volu !1/1000) , MolesPerLiter))
59 where mols = numberMoles (gramsSolute

, molWeight)
60 volu = getVolInML(gramsSolution

, dens)
61 {- Test of the first sub program for the specific case:
62 >concentrationMolarity ((100 , Grams), (69, Grams), (1.42,

Grams , Milliliters), (63, GramsPerMole))!1
63 (979.8000 , Grams ,Liter)
64 Chemistry >
65 {- Test of the second sub program for the specific case

:
66 >concentrationMolarity ((100 , Grams), (69, Grams), (1.42,

Grams , Milliliters), (63, GramsPerMole))!2
67 (15.5524 , MolesPerLiter)
68 Chemistry >
69 -}

Fig. 9: Solving both parts of a problem from chemistry

Finally, we note that there are contributions of Functional Programming to
science education, especially in Mathematics (for example "Discrete mathematics
using a computer" by Cordelia Hall and John O’Donnell) and in Physics (for
example "Physics and Functional Programming" by Scott N. Walck).

Although all the approaches mentioned are valuable, we would like to high-
light some strengths of our didactic model: firstly, it arises from the joint work
of education professionals (teachers), researchers in specific didactics, and re-
searchers in computer science (see Section 1, based on the analysis of problems
and exercises brought by teachers. Secondly, the functional programming lan-
guage MateFun was specially designed to explain the relationship between the
mathematical modelling of problems and computational modelling of their so-
lutions, with a simple syntax that is easily accessible to teachers and students
through the web environment. Finally, the didactic model is based on theoretical
rationale: the fundamental ideas of computing [1, 3, 20] and an epistemological
model on the construction of knowledge about data structures, algorithms and
programs, which we have developed over the years [16,19].

Functional programming and didactics of computational sciences 13

4 Further work

As mentioned in Section 2.2, once a primary solution is written and executed,
the students are encouraged to analyse it and discuss ways of obtaining more
compact code and/or more general and efficient programs. This stage requires
spending more time with students and teachers. We are designing teaching ma-
terials and planning workshops to be held next year in different educational
institutions throughout the country. An important part will be a more detailed
study of MateFun and the analysis of programs that can be improved. As an ex-
ample we include in the Figure 10 a new solution of the physic problem described
in Section 2.1.

As mentioned in 2.1 we are implementing MateFun libraries for the different
scientific disciplines to facilitate teachers’ work. For instance, the constants, the
functions to unit conversion, the periodic table of chemistry elements will be
include in the libraries.

5 Conclusions

In [6], page 159, the authors describe how the development of computer science
produced a paradigm shift that enabled many new scientific discoveries. Scien-
tists in all fields have found that computer science brings a new method of doing
science, that is added to the classic methods of theory and experiment. In ed-
ucation, in the best cases, some basic concepts and rules for mainly imperative
programming are introduced and that in science education, computer science is
generally absent or it is reduced to using some digital tools.

The authors affirm that education efforts are necessary to diminish the gap
between scientific work in the new paradigm and what students are taught in
classrooms, in all educational levels. We agree with authors’ opinions and add
that the gap is specially serous in High School, where teachers practice is usually
disconnected from research.

Internationally, we have seen efforts that greatly expanded the computer edu-
cation curriculum to encompass multiple areas and key computing competencies.
In 2022, for example, the European Commission (EC) published the report: ’In-
formatics education at school in Europe’ which provides a comprehensive com-
parative analysis of Computer Science Education (CSE) as its own discipline in
primary and secondary education in thirty-nine education systems [4].

In its analysis of the integration of computing in different education sys-
tems, the authors review various frameworks with diverse learning objectives
and then operationalise ten competency areas. These ten areas ’aim to capture
the recurrent content in existing competency frameworks and therefore provide
a general understanding of the possible content of informatics subjects’ (see page
42 of [4]. The Eurydice report provided us with the following definition: ’Com-
putational modelling and simulation help people to represent and understand
complex processes and phenomena. Computational models and simulations are
used, modified, and created to analyse, identify patterns, and answer questions
of real phenomena and hypothetical scenarios’.

14 S. da Rosa et al.

We propose a didactic model for teaching science from knowledge and strate-
gies applied in the mathematical and computational modelling process of real
phenomena/problems. We describe the development of the model for the intro-
duction of a set of computing concepts as a cross-subject competency in upper
secondary courses in sciences through an example of Physics, see Section 2.1
and present one more example of applying the didactic model in Chemistry, see
Section 2.2.

The choice of a functional programming language as MateFun facilitate the
task by allowing the mathematical model to be implemented computationally
in a direct way, which also coincides with the introduction of the fundamental
ideas numbered in Section 1. For instance, formulating the statement as an
algorithmic problem forces us to pay attention to the input and output data
and structure them as n tuples, which is traditionally treated implicitly, but in a
computational model must be explicitly implemented. MateFun’s features make
it easy to develop the competence of computational modelling of problems, based
on mathematical models of their solutions. An example of the contribution to
education is Matefun’s simple syntax that requires defining functions including
domain and co domain (like almost all functional programming languages and
unlike others).

We have experienced that students find it a motivating complement to go
through the stages of our teaching model. At the event to present the final works
mentioned at the end of 2.1, it was surprising that in just three instructional
instances they were able to achieve solutions that, although they could be im-
proved, showed the first steps towards developing modelling skills for problems
in different scientific disciplines.

References

1. Bell, T., Tymann, P., Yehudai, A.: The big ideas in computer science for k-12
curricula. Bulletin of EATCS, 1(124). (2018)

2. C., O., M., T.S.: Computational thinking in introductory physics. The Physics
Teacher 58(4) pp. 247–251 (2020)

3. Cabezas, M., da Rosa, S.: Modelado didático para ideas fundamentales en com-
putación. Proceedings of The 51 SADIO Conference, Simposio Argentino de Edu-
cación en Informática (SAEI 2022) (2022)

4. Commission, E., Education, E., Agency, C.E.: Informatics education at
school in europe. https://eurydice.eacea.ec.europa.eu/publications/
informatics-education-school-europe (2022)

5. Denning, P., Tedre, M.: Shifting Identities in Computing: From a Useful Tool to a
New Method and Theory of Science. In Hannes Werthner and Frank van Harme-
len, Eds. Informatics in the Future, Proceedings of the 11th European Computer
Science Summit (2015)

6. Denning, P., Tedre, M.: Computational Thinking. Cambridge, MA : The MIT Press
(2019)

7. Denning, P., Tedre, M.: Computational thinking: A disciplinary perspective. Infor-
matics in Education. 20(3), 361–390 (2021). https://doi.org/10.15388/infedu.
2021.21

https://eurydice.eacea.ec.europa.eu/publications/informatics-education-school-europe
https://eurydice.eacea.ec.europa.eu/publications/informatics-education-school-europe
https://doi.org/10.15388/infedu.2021.21
https://doi.org/10.15388/infedu.2021.21
https://doi.org/10.15388/infedu.2021.21
https://doi.org/10.15388/infedu.2021.21

Functional programming and didactics of computational sciences 15

8. G., G.: Mathematical representations. In book: En-
cyclopedia of Mathematics Education. Available from:
https://www.researchgate.net/publication/289514617_Mathematical_Representations
[accessed Nov 13 2024]. (2014)

9. Harel, D., Feldman, Y.: Algorithmics - The Spirit of Computing. Addison-Wesley
Publishers Limited 1987, 1992, Pearson Education Limited 2004 (2004)

10. Lodi, M., Martini, S.: Computational thinking, between papert and wing. Science
& Education volume, 30 pp. 883—-908 (2021)

11. M., O., A., S., E., F.: Chapter 1: Multiple Representations in Physics and Science
Education – Why Should We Use Them? In Springer International Publishing. D.F.
Treagust et al. (eds.), Multiple Representations in Physics Education, Models and
Modeling in Science Education Vol. 10 (2017)

12. M., R., F., W., D., K., A., S., T., L.: Research advances by using interoperable e-
science infrastructures. Cluster Computing 12(4), DOI 10.1007/s10586-009-0102-2
pp. 357–372 (2009)

13. Papert, S.: Mindstorms: children, computers, and powerful ideas.
Basic Books, Inc. New York, NY; 1980. ISBN:0-465-04627-4
http://dl.acm.org/citation.cfm?id=1095592 (1980)

14. da Rosa, S.: Piaget and computational thinking. CSERC ’18: Proceedings of the
7th Computer Science Education Research Conference pp. 44–50 (2018)

15. da Rosa, S., Viera, M., García-Garland, J.: A case of teaching practice founded on
a theoretical model. Lecture Notes in Computer Science 12518 from proceedings
of the International Conference on Informatics in School: Situation, Evaluation,
Problems pp. 146–157 (2020)

16. da Rosa, S., Viera, M., García-Garland, J.: A case of teaching practice founded on a
theoretical model. Proceedings of The 13th International Conference on Informatics
in Schools (2020)

17. da Rosa, S., Viera, M., García-Garland, J.: Mathematics and matefun, a natural
way to introduce programming into school. (2020)

18. da Rosa, S., Viera, M., García-Garland, J.: Training teachers in informatics: a
central problem in science education. Proceedings of The 50 SADIO Conference,
Simposio Argentino de Educación en Informática (SAEI) (2020)

19. da Rosa, S., Gómez, F.: The construction of knowledge about programs. Proceed-
ings of PPIG 2022 - 33rd Annual Workshop p. 1–8 (2022)

20. Schwill, A.: Computer science education based on fundamental ideas. Proceedings
of the IFIP TC3 WG3.1/3.5 joint working conference on Information technology:
supporting change through teacher education pp. 285–291 (1997)

21. Wyse, D., Brown, C., Oliver, S. & Poblete, X.: Education research and educa-
tional practice: The qualities of a close relationship. British Educational Research
Journal, 47(6) pp. 1466–1489 (1993)

16 S. da Rosa et al.

70 set UCharge = { Coulomb , MicroCoulomb , NanoCoulomb }
71 set UDistance = { Km, Mts , Miles , Cm }
72 set UForce = { Newton }
73 set Charge = { c in R X UCharge }
74 set Distance = { d in R X UDistance }
75 set Force = { f in R X UForce }
76 convertUnitCharge :: UCharge X UCharge -> R
77 convertUnitCharge (ci,cf)
78 = { 1e-9 if (ci == NanoCoulomb , cf == Coulomb)
79 { 1e-6 if (ci == MicroCoulomb , cf == Coulomb)
80 { 1e9 if (ci == Coulomb , cf ==

NanoCoulomb)
81 { 1e6 if (ci == Coulomb , cf ==

MicroCoulomb)
82 { 1e3 if (ci == MicroCoulomb , cf ==

NanoCoulomb)
83 { 1e-3 if (ci == NanoCoulomb , cf ==

MicroCoulomb)
84 { 1
85 convertCharge :: Charge X UCharge -> Charge
86 convertCharge (c,u) = (c!1 * convertUnitCharge(c!2,u), u

)
87 convertUnitDistance :: UDistance X UDistance -> R
88 convertUnitDistance (di , df)
89 = { 1e3 if (di == Km , df == Mts)
90 { 1e-3 if (di == Mts , df == Km)
91 { 1609.34 if (di == Miles , df == Mts)
92 { 6.2137e-4 if (di == Mts , df == Miles)
93 { 1e5 if (di == Km, df == Cm)
94 { 1e-5 if (di == Cm, df == Km)
95 { 1e2 if (di == Mts , df == Cm)
96 { 1e-2 if (di == Cm, df == Mts)
97 { 160934 if (di == Miles , df == Cm)
98 { 6.2137e-6 if (di == Cm , df == Miles)
99 { 1

100 convertDistance :: Distance X UDistance -> Distance
101 convertDistance (d,u) = (d!1 * convertUnitDistance(d!2,u

), u)
102 k :: () -> R X UForce X UDistance X UCharge
103 k () = (8.9875e9 , Newton , Mts , Coulomb)
104 set ElectricField = { e in R X UForce X UCharge }
105 computeElectricField :: Charge X Distance ->

ElectricField
106 computeElectricField (q, r) = ((k()!1 * qn!1) / (rn!1 ^

2), k()!2, k()!4)
107 where
108 qn = convertCharge(q, k()!4)
109 rn = convertDistance(r, k()!3)
110

Fig. 10: A more compact and general function for compute the electric field.

	Functional programming and didactics of computational sciences

