
Shortcut Fusion of Monadic Programs

Cecilia Manzino1, Alberto Pardo2

1 Facultad de Ciencias Exactas, Ingenierı́a y Agrimensura
Universidad Nacional de Rosario, Argentina

2Instituto de Computación, Facultad de Ingenierı́a
Universidad de la Reṕublica, Montevideo, Uruguay

ceciliam@fceia.unr.edu.ar, pardo@fing.edu.uy

Abstract. Functional programs often combine separate parts of the program
using intermediate data structures for communicating results. Programs so de-
fined are easier to understand and maintain, but suffer from inefficiency prob-
lems due to the generation of those data structures. In response to this problem-
atic, some program transformation techniques have been studied with the aim to
eliminate the intermediate data structures that arise in function compositions.
One of these techniques is known as shortcut fusion. This technique has usually
been studied in the context of purely functional programs. In this work we pro-
pose an extension of shortcut fusion that is able to eliminate intermediate data
structures generated in the presence of monadic effects. The extension to be
presented can be uniformly defined for a wide class of data types and monads.

1. Introduction
Functional programs often combine separate parts of the program using intermediate data
structures for communicating results. Programs so defined have many benefits, such as
clarity, modularity, and maintainability, but suffer from inefficiencies caused by the gen-
eration of those data structures. In response to this problematic, some program transfor-
mation techniques have been developed aiming at the elimination of the intermediate data
structures. One of these techniques, known as shortcut fusion (or shortcut deforestation)
[Gill et al. 1993], has mainly been studied in the context of purely functional programs.

The aim of this paper is the proposal of an extension of shortcut fusion for programs with
monadic effects. The goal is to achieve fusion of monadic programs, maintaining the
global effects. Like standard deforestation, we will be interested in eliminating the inter-
mediate data structures generated in function compositions, but with the difference that
now those intermediate structures are produced as the result of monadic computations.
An important feature of the extension to be presented is that it is generic, in the sense that
it is given by a uniform, single definition that can then be instantiated to a wide class of
data types and monads.

This work has strong connections with previous work on fusion techniques for recur-
sion schemes for programs with effects [Pardo 2001, Pardo 2005]. The main difference
is that in the present work we adopt a shortcut fusion approach based on parametricity
properties of polymorphic functions, known in functional programming as free theorems
[Wadler 1989]. The results of this paper were preliminary presented in [Manzino 2005].
Throughout we will use Haskell notation, assuming a cpo semantics (in terms of pointed
cpos), but without the presence of theseq function [Johann and Voigtländer 2004].

The paper is organized as follows. We start in Section 2 with a review of the concept of
shortcut fusion. In Section 3, by means of specific examples, we show the extension of
shortcut fusion to programs with effects. The generic constructions that give rise to the
specific program schemes and laws presented in Sections 2 and 3 are developed in Sec-
tion 4; a proof of the monadic shortcut fusion law is also presented. Section 5 summarizes
related work, and Section 6 concludes the paper.

2. Shortcut fusion

Shortcut fusion [Gill et al. 1993] is a program transformation technique originally pro-
posed for lists, but that can be defined for other datatypes as well. Given a function com-
positionc ◦ p, the idea of shortcut fusion is to eliminate the intermediate data structure
produced byp (theproducer) and consumed byc (theconsumer) by a suitable combina-
tion of their definitions. We analyse the case of lists and arithmetic expressions.

Lists Shortcut fusion requires the consumer to be given by a structural recursive definition
that treats all elements of a list in a uniform manner. This is captured by a recursion
scheme called fold:1

foldL :: (b, a → b → b)→ [a]→ b

foldL (nil , cons) [] = nil

foldL (nil , cons) (a : as) = cons a (foldL (nil , cons) as)

A fold is a function that traverses the input list and replaces the occurrences of the list
constructors[] and (:) by nil and cons, respectively. For example,foldL (nil , cons)
applied to the list1 : 2 : 3 : [] returns the expressioncons 1 (cons 2 (cons 3 nil)).

The producer, on the other hand, is required to be able to show that the list constructors
can be abstracted from the process that generates the intermediate list. This is expressed
by a function calledbuild :

buildL :: (∀ b . (b, a → b → b)→ b)→ [a]

buildL g = g ([], (:))

For example, the list1 : 2 : 3 : [] can be written asbuildL (λ(n, c)→ c 1 (c 2 (c 3 n))).

With the forms required to the producer and the consumer it is now possible to state the
following fusion law, known asshortcut fusion.

Law 1 (fold/build for lists)

foldL (nil , cons) (buildL g) = g (nil , cons)

The intuition behind this law is the following: sinceg explicitly exhibits that the inter-
mediate list generation relies on the constructors[] and (:), and those constructors are
immediately replaced bynil andcons by the fold, then the final result corresponds tog
applied directly tonil andcons.

To see an example, consider the following definition of factorial:

1The fold for lists is known asfoldr in the functional programming jargon [Bird 1998].

fact n = product (down n)

product :: [Int]→ Int

product [] = 1

product (a : as) = a ∗ product as

down :: Int → [Int]

down 0 = []

down n = n : down (n − 1)

Givenn, we first compute the list of numbers betweenn and1 and then calculate their
product. However, as we all know, it is not necessary to produce an intermediate list to
compute factorial. The listless definition can be obtained by shortcut fusion. To do so we
need to express theproduct anddown in terms offold andbuild , respectively.

product = foldL (1, (∗))

down n = buildL (gdown n)

where gdown 0 (nil , cons) = nil

gdown n (nil , cons) = cons n (gdown (n − 1) (nil , cons))

By applying Law 1 we obtainfact n = gdown n (1, (∗)), which corresponds to the usual
definition of factorial:fact 0 = 1 andfact n = n ∗ fact (n − 1).

Arithmetic expressions Consider a datatype for simple arithmetic expressions formed
by numerals and addition.

data Exp = Num Int | Add Exp Exp

The fold and build functions for this datatype are defined as follows:

foldE :: (Int → a, a → a → a)→ Exp → a

foldE (num, add) (Num n) = num n

foldE (num, add) (Add e e ′) = add (foldE (num, add) e) (foldE (num, add) e ′)

buildE :: (∀ a . (Int → a, a → a → a)→ a)→ Exp

buildE g = g (Num,Add)

Law 2 (fold/build for expressions)

foldE (num, add) (buildE g) = g (num, add)

3. Monadic shortcut fusion
In functional programming, monads are a powerful mechanism to structure programs that
produce effects, such as exceptions, state, or input/output [Wadler 1995]. Amonadis
usually presented as a triple formed by a type constructorm, a polymorphic function
return and a polymorphic operator(>>=) (often calledbind), such that certain laws are
satisfied [Wadler 1995]. In Haskell, a monad can be defined in terms of a class:

class Monad m where

return :: a → m a

(>>=) :: m a → (a → m b)→ m b

(>>) :: m a → m b → m b

m >>m ′ = m >>= λ → m ′

With the aim at improving readability of monadic programs, Haskell provides a special
syntax called thedo notation. It is defined by the following translation rules:

do {x ← m;m ′} = m >>= λx → do {m ′}
do {m;m ′} = m >> do {m ′}

do {m } = m

Associated with every monad it is possible to define a map function, which together with
the type constructorm satisfies to be a functor in the sense we will define in Section 4.

mmap :: Monad m ⇒ (a → b)→ (m a → m b)

mmap f m = do {a ← m; return (f a)}

Before introducing a law corresponding to monadic shortcut fusion, we first analyse what
happens when we consider compositions of effectful functions. After that we present a
fusion law that considers a restricted form of monadic compositions in which only the
function that generates the intermediate data structure may produce an effect, while the
consumer is purely functional. The conception of this law has strong connections with
similar laws developed for monadic recursion schemes like the monadic versions of fold
and hylomorphism [Pardo 2001, Pardo 2005].

3.1. Fusion of effectful functions

Computations ordering is what makes effectful functions more difficult to be fused. In
fact, the main difference with fusion of pure programs is that, when fusing two monadic
functions, we must ensure the preservation of the order in which monadic computa-
tions are performed. Like in the case of purely functional programs, fusion laws for
monadic programs rely on the representation of the involved functions in terms of recur-
sion schemes and the properties those representations require to make fusion possible. For
example, when the monadic versions of fold and hylomorphism [Pardo 2001, Pardo 2005]
are used as representation, a strong condition to the monad, namely, commutativity, is re-
quired in order to make fusion possible. A monad is said to becommutativeif the order in
which computations are performed is irrelevant. The essential property is the following:
do {a ← m; b ← m ′; return (a, b)} = do {b ← m ′; a ← m; return (a, b)}. Cases
like the state reader (also known as the environment monad) or the identity monad are
commutative, while monads like state or IO are not.

We analyze examples on lists and binary trees; the case on trees will raise the necessity
of a commutativity condition for the monad.

Lists Consider the following composition of two effectful functions:

displaySeq :: Show a ⇒ [IO a]→ IO ()

displaySeq ms = do {xs ← sequence ms ; display xs }

sequence :: [IO a]→ IO [a]

sequence [] = return []

sequence (m : ms) = do {x ← m; xs ← sequence ms ; return (x : xs)}

display :: Show a ⇒ [a]→ IO ()

display [] = return ()

display (x : xs) = do {display xs ; putStr (show x)}

put x = do {putStr (show x); return x }

The sequence function executes a list of IO computations from left-to-right, collecting
their results in a list, whiledisplay prints the elements of a list in reverse order. For
example, when applied to the list[put 1, put 2, put 3], displaySeq produces the string
"123321" in the standard output.

A definition ofdisplaySeq that avoids the generation of the intermediate list can be derived
by case analysis. Two cases have to be considered:

displaySeq [] = return ()

displaySeq (m : ms) = do {x ← m; displaySeq ms ; putStr (show x)}

In this case fusion succeeds because the computations are in a “suitable” order. This situa-
tion can be captured by the following shortcut fusion law, presented by Meijer and Jeuring
[Meijer and Jeuring 1995], which is associated to a recursion scheme called monadic fold.

Law 3 (mfold/mbuild for lists)

do {as ← mbuildL g ;mfoldL (mnil ,mcons) as } = g (mnil ,mcons)

where

mfoldL :: Monad m ⇒ (m b, a → b → m b)→ [a]→ m b

mfoldL (mnil ,mcons) [] = mnil

mfoldL (mnil ,mcons) (a : as) = do {y ← mfoldL (mnil ,mcons) as ;mcons a y }

mbuildL :: Monad m ⇒ (∀ b . (m b, a → b → m b)→ m b)→ m [a]

mbuildL g = g (return [], λa as → return (a : as))

By writing sequence anddisplay in terms ofmbuildL andmfoldL, respectively, we arrive
at the same recursive definition ofdisplaySeq shown before.

Trees Now, we present a similar example on trees but that requires the monad to be
commutative.

data Tree a = Leaf a | Join (Tree a) (Tree a)

displaySeqT :: Show a ⇒ Tree (IO a)→ IO ()

displaySeqT ms = do {t ← seqT ms ; displayT t }

seqT :: Tree (IO a)→ IO (Tree a)

seqT (Leaf m) = do {a ← m; return (Leaf a)}

seqT (Join ml mr) = do { l ← seqT ml ; r ← seqT mr ; return (Join l r)}

displayT :: Show a ⇒ Tree a → IO ()

displayT (Leaf a) = putStr (show a)

displayT (Join l r) = do {displayT l ; displayT r }

TheseqT function executes from left-to-right the IO computations stored in the leaves of a
tree, whiledisplayT prints the elements that result from those computations. For example,
when applied to the treeJoin (Leaf (put 1)) (Join (Leaf (put 2)) (Leaf (put 3))),
displaySeqT produces the string"123123" in the standard output.

In this case, we would like to eliminate the intermediate tree that is generated byseqT and
consumed bydisplayT . Like for lists, we proceed by case analysis.

displaySeqT (Leaf m) = do {a ← m; putStr (show a)}

However, in the case of a join node:

displaySeqT (Join ml mr)

= do { l ← seqT ml ; r ← seqT mr ; displayT l ; displayT r }

We get stuck at this point as it is not possible to reorder the terms in the do-expression so
that to introduce a recursive call todisplaySeqT (a change in the order of the IO compu-
tations would produce a different output).

Taking a slightly different approach, Chitil [Chitil 2000] and Ghani and Johann
[Ghani and Johann 2008] give a shortcut fusion law that permits fusion of effect-
ful functions without requiring commutativity of the monad. The law presented in
[Ghani and Johann 2008] is related with the shortcut fusion law to be introduced next.

3.2. Fusion with pure functions

Now we focus our attention on a restricted form of compositions involving effects. Con-
cretely, we will consider compositions between a monadic producerp and the lifting of
a fold: do {t ← p x ; return (fold h t)}. These are compositions where the effect is
produced by the first function and only propagated by the second one. We introduce a
shortcut fusion law for this kind of monadic compositions by means of specific examples.

Lists Consider the following composition:

sumSeq :: Num a ⇒ [IO a]→ IO a

sumSeq ms = do {xs ← sequence ms ; return (sum xs)}

sum :: Num a ⇒ [a]→ a

sum [] = 0

sum (a : as) = a + sum as

For example, when applied to the list[put 1, put 2, put 3], sumSeq returns a computation
that yields6 as result and prints the string"123" in the standard output. A recursive
definition can be derived forsumSeq :

sumSeq [] = return 0

sumSeq (m : ms) = do {x ← m; y ← sumSeq ms ; return (x + y)}

In this case, we can observe that fusion simply performs the substitution of the intermedi-
ate list constructors by corresponding actions in functionsum. That is, it is a substitution
between purely functional objects; no effects are involved.

This transformation can be captured by a shortcut fusion law associated with fold where
we have to reflect the fact that the producer may be an effectful function and that the
consumer (a fold) must appear lifted.

Law 4 (fold/mbuild for lists)

do {as ← mbuildL g ; return (foldL (nil , cons) as)} = g (nil , cons)

where

mbuildL :: Monad m ⇒ (∀ b . (b, a → b → b)→ m b)→ m [a]

mbuildL g = g ([], (:))

The recursive definition ofsumSeq can then be obtained by first writingsum and
sequence in terms of fold and the monadic build, respectively, and then applying Law 4.

sum = foldL (0, (+))

sequence ms = mbuildL (gseq ms)

where

gseq [] (n, c) = return n

gseq (m : ms) (n, c) = do {x ← m; y ← gseq ms (n, c); return (c x y)}

Parsing Shortcut fusion is well suited to be used in the context of monadic parsers
[Hutton and Meijer 1998]. A parser usually returns an abstract syntax tree which is then
consumed by another function that performs the semantic actions. Using shortcut fusion,
we show how these two phases can be merged together. To illustrate this, we present a
simple parser that recognizes natural numbers. We adopt the usual definition of the parser
monad (see [Hutton and Meijer 1998] for more details):

newtype Parser a = P (String → [(a, String)])

instance Monad Parser where

return a = P (λcs → [(a, cs)])

p >>= f = P (λcs → concat [parse (f a) cs ′ | (a, cs ′)← parse p cs])

parse :: Parser a → String → [(a, String)]

parse (P p) = p

pzero :: Parser a

pzero = P (λcs → [])

(⊕) :: Parser a → Parser a → Parser a

(P p)⊕ (P q) = P (λcs → case p cs ++ q cs of

[] → []

(x : xs)→ [x])

item :: Parser Char

item = P (λcs → case cs of

"" → []

(c : cs)→ [(c, cs)])

Alternatives are represented by a deterministic choice operator(⊕), which returns at most
one result. The parserpzero is a parser that always fails. Theitem parser returns the first
character in the input string.

Suppose we want to parse a string formed by digits and return a list containing their integer
conversion. For example, given the string"123" the parser returns the list[1,2,3] .

digits :: Parser [Int]

digits = do {d ← digit ; ds ← digits ; return (d : ds)} ⊕ return []

digit :: Parser Int

digit = do {c ← item; if isDigit c then return (ord c − ord ’0’) else pzero}

isDigit c = (c > ’0’) ∧ (c 6 ’9’)

We want to test whether the number represented by the list of digits is divisible by 3, but
without computing the number itself. It is well known that a number is divisible by 3 if
the sum of its digits is also divisible by 3.

sumDigits :: Parser Int

sumDigits = do {ds ← digits ; return (sum ds)}

divby3 :: Parser Bool

divby3 = do {n ← sumDigits ; return (n ‘mod ‘ 3 == 0)}

Sincedigits can be written as a monadic build,

digits = mbuildL gdig

where gdig (nil , cons)

= do {d ← digit ; ds ← gdig (nil , cons); return (cons d ds)}
⊕ return nil

andsum is a fold, we can apply Law 4, obtaining the following monolithic definition:

sumDigits = do {d ← digit ; y ← sumDigits ; return (d + y)} ⊕ return 0

Arithmetic Expressions Let us now consider a parser for arithmetic expressions. The
parser takes a string containing an arithmetic expression and returns an abstract syntax
tree of typeExp. For example, given the string"1+2+3" the parser returns the term
Add (Num 1) (Add (Num 2) (Num 3)).

expression :: Parser Exp

expression = do {n ← number ; plusop;

e ← expression; return (Add (Num n) e)}
⊕ do {n ← number ; return (Num n)}

number :: Parser Int

number = do {(n, p)← numpow10 ; return n }

numpow10 :: Parser (Int , Int)

numpow10 = do {d ← digit ; (n, p)← numpow10 ; return (d ∗ p + n, 10 ∗ p)}
⊕ return (0, 1)

plusop :: Parser ()

plusop = do {c ← item; if c == ’+’ then return () else pzero}

Given an arithmetic expression, we want to evaluate it.

evalexp :: Parser Int

evalexp = do {e ← expression; return (eval e)}

eval :: Exp → Int

eval (Num n) = n

eval (Add e e ′) = eval e + eval e ′

Functionevalexp generates an intermediate expression that we would like to eliminate
with fusion. The monadic shortcut fusion law in this case is the following:

Law 5 (fold/mbuild for expressions)
do {e ← mbuildE g ; return (foldE (num, add) e)} = g (num, add)

where

mbuildE :: Monad m ⇒ (∀ a . (Int → a, a → a → a)→ m a)→ m Exp

mbuildE g = g (Num,Add)

Now, if we writeeval andexpression in terms of fold and build, respectively:

eval = foldE (id , (+))

expression = mbuildE gexp

where gexp (num, add)

= do {n ← number ; plusop;

e ← gexp (num, add); return (add (num n) e)}
⊕ do {n ← number ; return (num n)}

we can apply shortcut fusion (Law 5) toevalexp, obtaining the following definition:

evalexp = do {n ← number ; plusop; z ← evalexp; return (n + z)}
⊕ do {n ← number ; return n }

4. Shortcut fusion, generically
In this section, we show that the instances offold , build , and shortcut fusion presented in
the previous sections correspond to generic definitions valid for a wide class of datatypes.

4.1. Data types
The structure of datatypes can be captured using the concept of afunctor. A functor
consists of a type constructorF and a functionmapF :: (a → b)→ (F a → F b), which
preserves identities and compositions:mapF id = id andmapF (f ◦ g) = mapF f ◦
mapF g . A standard example of a functor is that formed by the list type constructor and
the well-knownmap function.

Semantically, recursive datatypes are understood as least fixed points of functors. That is,
given a datatype declaration it is possible to derive a functorF such that the datatype is
the least solution to the equationτ ∼= Fτ . We writeµF to denote the type corresponding
to the least solution. The isomorphism betweenµF andF µF is provided by two strict
functionsinF :: F µF → µF andoutF :: µF → F µF , inverses of each other. Function
inF packs the constructors of the datatype whileoutF the destructors (for more details
see e.g [Abramsky and Jung 1994, Gibbons 2002]).

For example, for the datatype of expressions we can derive a functorE such that:

data E a = FNum Int | FAdd a a

mapE :: (a → b)→ E a → E b

mapE f (FNum n) = FNum n

mapE f (FAdd a a ′) = FAdd (f a) (f a ′)

In this case,µE = Exp and

inE :: E Exp → Exp

inE (FNum n) = Num n

inE (FAdd e e ′) = Add e e ′

outE :: Exp → E Exp

outE (Num n) = FNum n

outE (Add e e ′) = FAdd e e ′

In the case of lists, the structure is captured by a bifunctorL (a functor on two variables)
because of the presence of the type paremeter. That is,µ(La) = [a].

data L a b = FNil | FCons a b

mapL :: (a → c)→ (b → d)→ L a b → L c d

mapL f g FNil = FNil

mapL f g (FCons a b) = FCons (f a) (g b)

4.2. Fold
LetF be a functor that captures the structure of a datatype. Given a functionh ::F a → a,
fold [Gibbons 2002] is defined as the least functionfoldF h :: µF → a such that:

foldF h ◦ inF = h ◦ F (foldF h)

A function h :: F a → a is called anF -algebra. For example, an algebra corresponding
to the functorE is a functionh :: E a → a of the form:

h (FNum n) = num n

h (FAdd a a ′) = add a a ′

with num :: Int → a andadd :: a → a → a. In the specific instance of fold for the
Exp datatype we wrote an algebrah simply as a pair(num, add). For the list datatype
we did something similar, in the fold for lists we wrote an algebrah ::L a b → b as a pair
(nil , cons). The same can be applied to any other inductive datatype.

An F -homomorphismbetween two algebrash :: F a → a andk :: F b → b is a function
f :: a → b between the carriers that commutes with the operations. This is specified by
the conditionf ◦ h = k ◦ F f . Notice that fold is a homomorphism between the algebras
inF andh.

4.3. Shortcut fusion

Given a functorF , we can define a corresponding build operator:

buildF :: (∀ a . (F a → a)→ a)→ µF

buildF g = g inF

Together withfold , build enjoys the following fusion law [Takano and Meijer 1995],
which is an instance of a free theorem [Wadler 1989].

Law 6 (fold/build) For strict h,2

foldF h (buildF g) = g h

4.4. Monadic shortcut fusion

The shortcut fusion law for monadic programs can be obtained as a special case of an ex-
tended form of shortcut fusion that captures the case when the intermediate data structure
is generated as part of another structure given by a functor. To state that law it is necessary
to introduce an extended form of build. Given a functorF (signature of a datatype) and
another functorN , we define:

buildF,N :: (∀ a . (F a → a)→ N a)→ N µF

buildF,N g = g inF

WhenN is a monad we obtain a monadic build,

mbuildF :: Monad m ⇒ (∀ a . (F a → a)→ m a)→ m µF

mbuildF g = g inF

2The strictness condition onh was not mentioned in the concrete instances of the law shown in Section 2
because a function defined by pattern matching is strict. That was the case of the algebras for expressions
and lists considered in those instances.

On the other hand, the standardbuildF is obtained by considering the identity functor.

Law 7 (extended fold/build) For strict h and strictness preservingN ,

mapN (foldF h) (buildF,N g) = g h

Proof The free theorem associated withg ’s type states that, for all typesb andb ′, algebras
ϕ :: F b → b andψ :: F b ′ → b ′, and strict functionf :: b → b ′, the following holds
f ◦ ϕ = ψ ◦mapF f ⇒ mapN f (g ϕ) = g ψ. By consideringf = foldF h, ϕ = inF

andψ = h, we getmapN (foldF h) (g inF) = g h, because, again, the premise of
the implication holds by definition of fold. Finally, we apply the definition ofbuildF,N

to obtain the law. The strictness onh is necessary for instantiation: if the algebrah is
strict, then so isfoldF h, and we can instantiatef with foldF h. The strictness-preserving
assumption on the functor means thatmapN preserves strict functions, i.e., iff is strict,
then so ismapN f . This condition is necessary for stating the free theorem itself, and
therefore it is inherited by the instantiation. 2

Monadic shortcut fusion is then obtained from this law by considering the functor associ-
ated with a monadm and by unfolding the correspondingmmap function:

Law 8 (fold/mbuild) For strict h and strictness preservingmmap,

do {t ← mbuildF g ; return (foldF h t)} = g h

5. Related work

In [Pardo 2001, Pardo 2005], fusion laws for monadic versions of some recursion schemes
(fold, unfold and hylomorphism) are presented. It is simple to see that so-calledacid rain
laws (a kind of fusion laws) associated with monadic folds and hylomorphisms are par-
ticular cases of monadic shortcut fusion. This is something that should not be surprising
if we take into account that corresponding laws for purely functional versions of the same
operators can be expressed in terms of standard shortcut fusion [Takano and Meijer 1995].
Let us consider, for example, the generic definition of monadic fold:

mfoldF :: Monad m ⇒ (F a → m a)→ µF → m a

mfoldF h = h • F̂ (mfoldF h) ◦ outF

where(f • g) x = do {y ← f x ; g y }, for monadic functionsf andg , andF̂ f =
distF ◦ mapF f , for monadic functionf , such thatdistF :: F (m a) → m (F a)
distributives the functor over the monad (see e.g. [Pardo 2005]). Consider the following
acid rain law associated with monadic fold: Forτ :: ∀ a . (F a → a) → (G a → m a),
stricth and strictness-preservingmmap,

do {t ′ ← mfoldG (τ inF) t ; return (foldF h t ′)} = mfoldG (τ h) t

If we definegmfold t ϕ = mfoldG (τ ϕ) t , thenmfoldG (τ inF) t = gmfold t inF =
mbuildF (gmfold t), and therefore the acid rain law reduces to monadic shortcut fusion.
For the acid rain law associated with monadic hylomorphism the situation is the same.

Chitil’s PhD thesis [Chitil 2000] presents a generalized shortcut fusion law for the list case
that is able to fuse effectful functions. We recall that law by giving its generic definition.
Let q :: ∀ a . (F a → a)→ (a → b)→ c andh :: F b → b. Then,

q inF (foldF h) = q h id

To see an example, consider again the functiondisplaySeqT . If we define,

q (leaf , join) f = λms → do {t ← gseqT ms (leaf , join); f t }

gseqT (Leaf m) (leaf , join) = do {a ← m; return (leaf a)}
gseqT (Join ml mr) (leaf , join) = do { l ← gseqT ml (leaf , join);

r ← gseqT mr (leaf , join); return (join l r)}

displayT = foldT (putStr ◦ show , λml mr → do {ml ;mr })

foldT :: (a → b, b → b → b)→ Tree a → b

foldT (leaf , join) (Leaf a) = leaf a

foldT (leaf , join) (Join l r) = join (foldT (leaf , join) l) (foldT (leaf , join) r)

then,

displaySeqT ms

= do {t ← seqT ms ; displayT t }
= q (Leaf , Join) (displayT t) ms

= q (putStr ◦ show , λml mr → do {ml ;mr }) id ms

= do {m ← gseqT (putStr ◦ show , λml mr → do {ml ;mr }) ms ;m }

Observe that the obtained expression is formed by a function that returns a computation
that yields computations as result, such that, the outer computation produces the effects
of the producer (seqT), while the inner computations produce the effects of the consumer
(displayT). By inlining f = gseqT (putStr ◦ show , λml mr → do {ml ;mr }) we get a
clear picture of the generated computation.

f (Leaf m) = do {a ← m; return (putStr (show a))}
f (Join ml mr) = do {ml ′ ← f ml ;mr ′ ← f mr ; return (do {ml ′;mr ′})}

At the same time to us, but independently, Ghani and Johann [Ghani and Johann 2008]
presented a shortcut fusion law that is able to fuse compositions of effectful programs.
Like our monadic shortcut fusion law, their fusion law is also based on extended shortcut
fusion (Law 7). The crucial difference with ours is that they consider a fold with monadic
carrier as consumer. The law is the following: For strict h,

do {t ← mbuildF g ; foldF h t } = do {m ← g h;m }
The left-hand side of the expression can be rewritten asdo {t ← mbuildF g ;m ←
return (foldF h t);m }, which by Law 8 is transformed to the right-hand side. It is
interesting to see that the monadic expression obtained with this fusion law is exactly the
same as the one produced by Chitil’s law. In fact, if we defineq h f = do {t ← g h; f },
this law reduces to Chitil’s.

6. Conclusions
This paper presented a shortcut fusion law tailored to a restricted form of compositions
of programs with effects. The monadic shortcut fusion law introduced is simple, generic,

and easy to apply in practice.

We have used the rewrite rules mechanism (RULES pragma) of the Glasgow Haskell
Compiler (GHC) to obtain a prototype implementation of monadic shortcut fusion. Exper-
imental results measuring time and space improvements for a set of examples are available
in the webpagehttp://www.fing.edu.uy/˜pardo/MonadicShortcut/ .

AcknowledgementsWe would like to thank the referees for their helpful comments and
suggestions.

References
Abramsky, S. and Jung, A. (1994). Domain theory. InHandbook of Logic in Computer

Science, volume 3, pages 1–168. Clarendon Press.

Bird, R. (1998). Introduction to Functional Programming using Haskell,2nd edition.
Prentice-Hall, UK.

Chitil, O. (2000).Type-inference based deforestation of functional programs. PhD thesis,
RWTH Aachen.

Ghani, N. and Johann, P. (2008). Short Cut Fusion of Recursive Programs with Compu-
tational Effects. InSymposium on Trends in Functional Programming (TFP 2008).

Gibbons, J. (2002). Calculating Functional Programs. InAlgebraic and Coalgebraic
Methods in the Mathematics of Program Construction,LNCS 2297, pages 148–203.
Springer-Verlag.

Gill, A., Launchbury, J., and Jones, S. P. (1993). A Shortcut to Deforestation. InConfer-
ence on Functional Programming and Computer Architecture.

Hutton, G. and Meijer, E. (1998). Monadic Parsing in Haskell.Journal of Functional
Programming, 8(4):437–444.

Johann, P. and Voigtländer, J. (2004). Free theorems in the presence of seq. In31st
Symposium on Principles of Programming Languages, pages 99–110. ACM.

Manzino, C. (2005). Monadic Shortcut Deforestation. Final year project, National Uni-
versity of Rosario, Argentina.

Meijer, E. and Jeuring, J. (1995). Merging Monads and Folds for Functional Program-
ming. In Advanced Functional Programming,LNCS 925, pages 228–266. Springer-
Verlag.

Pardo, A. (2001). Fusion of Recursive Programs with Computational Effects.Theoretical
Computer Science, 260:165–207.

Pardo, A. (2005). Combining Datatypes and Effects. InAdvanced Functional Program-
ming,LNCS 3622, pages 171–209. Springer-Verlag.

Takano, A. and Meijer, E. (1995). Shortcut to Deforestation in Calculational Form. In
Functional Programming Languages and Computer Architecture’95.

Wadler, P. (1989). Theorems for free! In4th International Conference on Functional
Programming and Computer Architecture, London.

Wadler, P. (1995). Monads for functional programming. InAdvanced Functional Pro-
gramming,LNCS 925. Springer-Verlag.

