Shortcut Fusion of Monadic Programs
Cecilia Manzino!, Alberto Pardo?

! Facultad de Ciencias Exactas, Ingefdgr Agrimensura
Universidad Nacional de Rosario, Argentina

2Instituto de Computadhn, Facultad de Ingeniiex
Universidad de la Rdjblica, Montevideo, Uruguay

ceciliam@fceia.unr.edu.ar, pardo@fing.edu.uy

Abstract. Functional programs often combine separate parts of the program
using intermediate data structures for communicating results. Programs so de-
fined are easier to understand and maintain, but suffer from inefficiency prob-
lems due to the generation of those data structures. In response to this problem-
atic, some program transformation techniques have been studied with the aim to
eliminate the intermediate data structures that arise in function compositions.
One of these techniques is known as shortcut fusion. This technique has usually
been studied in the context of purely functional programs. In this work we pro-
pose an extension of shortcut fusion that is able to eliminate intermediate data
structures generated in the presence of monadic effects. The extension to be
presented can be uniformly defined for a wide class of data types and monads.

1. Introduction

Functional programs often combine separate parts of the program using intermediate data
structures for communicating results. Programs so defined have many benefits, such as
clarity, modularity, and maintainability, but suffer from inefficiencies caused by the gen-
eration of those data structures. In response to this problematic, some program transfor-
mation techniques have been developed aiming at the elimination of the intermediate data
structures. One of these techniques, known as shortcut fusion (or shortcut deforestation)
[Gill et al. 1993], has mainly been studied in the context of purely functional programs.

The aim of this paper is the proposal of an extension of shortcut fusion for programs with
monadic effects. The goal is to achieve fusion of monadic programs, maintaining the
global effects. Like standard deforestation, we will be interested in eliminating the inter-
mediate data structures generated in function compositions, but with the difference that
now those intermediate structures are produced as the result of monadic computations.
An important feature of the extension to be presented is that it is generic, in the sense that
it is given by a uniform, single definition that can then be instantiated to a wide class of
data types and monads.

This work has strong connections with previous work on fusion techniques for recur-
sion schemes for programs with effects [Pardo 2001, Pardo 2005]. The main difference
is that in the present work we adopt a shortcut fusion approach based on parametricity
properties of polymorphic functions, known in functional programming as free theorems
[Wadler 1989]. The results of this paper were preliminary presented in [Manzino 2005].
Throughout we will use Haskell notation, assuming a cpo semantics (in terms of pointed
cpos), but without the presence of the function [Johann and Voigihder 2004].

The paper is organized as follows. We start in Section 2 with a review of the concept of
shortcut fusion. In Section 3, by means of specific examples, we show the extension of
shortcut fusion to programs with effects. The generic constructions that give rise to the
specific program schemes and laws presented in Sections 2 and 3 are developed in Sec-
tion 4; a proof of the monadic shortcut fusion law is also presented. Section 5 summarizes
related work, and Section 6 concludes the paper.

2. Shortcut fusion

Shortcut fusion [Gill et al. 1993] is a program transformation technique originally pro-
posed for lists, but that can be defined for other datatypes as well. Given a function com-
position ¢ o p, the idea of shortcut fusion is to eliminate the intermediate data structure
produced by (the producel) and consumed by (the consumey by a suitable combina-

tion of their definitions. We analyse the case of lists and arithmetic expressions.

Lists Shortcut fusion requires the consumer to be given by a structural recursive definition
that treats all elements of a list in a uniform manner. This is captured by a recursion
scheme called fold:

fold,, 2(bya—b—b)—|a] = b

fold; (nil, cons) [] = nil
fold; (nil, cons) (a: as) = cons a (fold; (nil, cons) as)

A fold is a function that traverses the input list and replaces the occurrences of the list
constructorg | and (:) by nil and cons, respectively. For examplepld; (nil, cons)
applied to the listl : 2 : 3 : [] returns the expressiafons 1 (cons 2 (cons 3 nil)).

The producer, on the other hand, is required to be able to show that the list constructors
can be abstracted from the process that generates the intermediate list. This is expressed
by a function calleduild:

build, = (Vb.(bya—b—b)—b)— [d]

buildy g = g (], (2))

For example, the list : 2: 3 : [| can be written aguild;, (A(n,c¢) — ¢ 1 (c 2 (¢ 3 n))).

With the forms required to the producer and the consumer it is now possible to state the
following fusion law, known ashortcut fusion

Law 1 (fold/build for lists)

fold; (nil, cons) (buildy, g) = g (nil, cons)
The intuition behind this law is the following: singeexplicitly exhibits that the inter-
mediate list generation relies on the construc{grand (:), and those constructors are

immediately replaced byil and cons by the fold, then the final result correspondsjto
applied directly tonil and cons.

To see an example, consider the following definition of factorial:

1The fold for lists is known agoldr in the functional programming jargon [Bird 1998].

fact n = product (down n)

product :: [Int] — Int
product [] =1

product (a : as) = a * product as
down :: Int — [Int]

down 0 =[]

down n =n: down (n — 1)

Given n, we first compute the list of numbers betweemand1 and then calculate their
product. However, as we all know, it is not necessary to produce an intermediate list to
compute factorial. The listless definition can be obtained by shortcut fusion. To do so we
need to express theoduct anddown in terms offold andbuild, respectively.

product = fold;, (1, (x))

down n = buildy, (gdown n)
where gdown 0 (nil, cons) = nil
gdown n (nil, cons) = cons n (gdown (n — 1) (nil, cons))

By applying Law 1 we obtairfact n = gdown n (1, (%)), which corresponds to the usual
definition of factorial:fact 0 = 1 andfact n = n * fact (n — 1).

Arithmetic expressions Consider a datatype for simple arithmetic expressions formed
by numerals and addition.

data Ezp = Num Int | Add Ezp Exp

The fold and build functions for this datatype are defined as follows:

fold g :(Int - a,a — a— a) — Exp — a
fold g (num, add) (Num n) = num n

foldy (num, add) (Add e ¢') = add (foldy (num, add) e) (foldy (num, add) €)

buildg = (Y a . (Int — a,a — a — a) — a) — Ezp
buildg g = g (Num, Add)

Law 2 (fold/build for expressions)
fold; (num, add) (buildg g) = g (num, add)

3. Monadic shortcut fusion

In functional programming, monads are a powerful mechanism to structure programs that
produce effects, such as exceptions, state, or input/output [Wadler 1996jonadis
usually presented as a triple formed by a type construeton polymorphic function
return and a polymorphic operatgrs=) (often calledbind), such that certain laws are
satisfied [Wadler 1995]. In Haskell, a monad can be defined in terms of a class:

class Monad m where

return 1 a — m a

(>=) =ma—(a—mb)—mb
(>) cma—mb—mb
m>m'=m>=_—m

With the aim at improving readability of monadic programs, Haskell provides a special
syntax called thelo notation It is defined by the following translation rules:

do{z—m;m'} = m>=Xz —do{m'}
do{m;m’'} = m>do{m'}
do{m} = m

Associated with every monad it is possible to define a map function, which together with
the type constructom satisfies to be a functor in the sense we will define in Section 4.

mmap :: Monad m = (a — b) — (m a — mb)
mmap [m =do {a «— m;return (f a)}

Before introducing a law corresponding to monadic shortcut fusion, we first analyse what
happens when we consider compositions of effectful functions. After that we present a
fusion law that considers a restricted form of monadic compositions in which only the
function that generates the intermediate data structure may produce an effect, while the
consumer is purely functional. The conception of this law has strong connections with
similar laws developed for monadic recursion schemes like the monadic versions of fold
and hylomorphism [Pardo 2001, Pardo 2005].

3.1. Fusion of effectful functions

Computations ordering is what makes effectful functions more difficult to be fused. In
fact, the main difference with fusion of pure programs is that, when fusing two monadic
functions, we must ensure the preservation of the order in which monadic computa-
tions are performed. Like in the case of purely functional programs, fusion laws for
monadic programs rely on the representation of the involved functions in terms of recur-
sion schemes and the properties those representations require to make fusion possible. For
example, when the monadic versions of fold and hylomorphism [Pardo 2001, Pardo 2005]
are used as representation, a strong condition to the monad, namely, commutativity, is re-
quired in order to make fusion possible. A monad is said todremutativef the order in

which computations are performed is irrelevant. The essential property is the following:
do {a <« m;b «— m/;return (a,b)} = do {b «— m/;a «— m;return (a,b)}. Cases

like the state reader (also known as the environment monad) or the identity monad are
commutative, while monads like state or 10 are not.

We analyze examples on lists and binary trees; the case on trees will raise the necessity
of a commutativity condition for the monad.

Lists Consider the following composition of two effectful functions:

displaySeq :: Show a = [I0 a] — 10 ()

displaySeq ms = do {zs « sequence ms; display xs}

sequence [0 a] — 10 |a]
sequence |] = return ||
sequence (m : ms) = do {z « m;xs < sequence ms; return (x : xzs) }

display 2 Show a = [a] — 10 ()
display [] = return ()
display (z :zs) = do {display zs; putStr (show)}

put z = do { putStr (show z); return '}

The sequence function executes a list of IO computations from left-to-right, collecting
their results in a list, whilelisplay prints the elements of a list in reverse order. For
example, when applied to the ligtut 1, put 2, put 3], displaySeq produces the string
"123321" in the standard output.

A definition of displaySeq that avoids the generation of the intermediate list can be derived
by case analysis. Two cases have to be considered:

displaySeq [] = return ()
displaySeq (m : ms) = do {z < m; displaySeq ms; putStr (show z)}

In this case fusion succeeds because the computations are in a “suitable” order. This situa-
tion can be captured by the following shortcut fusion law, presented by Meijer and Jeuring
[Meijer and Jeuring 1995], which is associated to a recursion scheme called monadic fold.

Law 3 (mfold/mbuild for lists)

do {as < mbuildy, g; mfold; (mnil, mcons) as} = g (mnil, mcons)
where

mpfold; :: Monad m = (m b,a — b —mb) — [a] > m b

mpfold; (mnil, mcons) [] = mmnil

mpfold; (mnil, mcons) (a: as) = do {y < mfold; (mnil, mcons) as; mecons a y}
mbuild;, :: Monad m = (Vb .(m b,a—b—mb)— mb)— ma]

mbuildy, g = g (return [], Aa as — return (a : as))

By writing sequence anddisplay in terms ofmbuild , andmfold ; , respectively, we arrive
at the same recursive definition @fsplaySeq shown before.

Trees Now, we present a similar example on trees but that requires the monad to be
commutative.

data Tree a = Leaf a | Join (Tree a) (Tree a)

displaySeqp 2 Show a = Tree (10 a) — 10 ()
displaySeqr ms = do {t < seqp ms; display, t}
seqrp it Tree (10 a) — 10 (Tree a)

seqr (Leaf m) = do {a < m;return (Leaf a)}

seqp (Join ml mr) = do {1 < seqp ml;r < seqp mr; return (Join | r)}

display 2 Show a = Tree a — 10 ()
displayy (Leaf a) = putStr (show a)
displayp (Join | r) = do { display l; display, v}

The seq function executes from left-to-right the IO computations stored in the leaves of a
tree, whiledisplay prints the elements that result from those computations. For example,
when applied to the tredoin (Leaf (put 1)) (Join (Leaf (put 2)) (Leaf (put 3))),
displaySeq produces the stringl23123" in the standard output.

In this case, we would like to eliminate the intermediate tree that is generated bgnd
consumed bylisplay . Like for lists, we proceed by case analysis.

displaySeqy (Leaf m) = do {a «— m; putStr (show a)}

However, in the case of a join node:

displaySeqy (Join ml mr)
= do {l « seqp ml;r « seqp mr; display l; displayp r}

We get stuck at this point as it is not possible to reorder the terms in the do-expression so
that to introduce a recursive call thsplaySeq, (a change in the order of the 10 compu-
tations would produce a different output).

Taking a slightly different approach, Chitil [Chitil 2000] and Ghani and Johann
[Ghani and Johann 2008] give a shortcut fusion law that permits fusion of effect-
ful functions without requiring commutativity of the monad. The law presented in
[Ghani and Johann 2008] is related with the shortcut fusion law to be introduced next.

3.2. Fusion with pure functions

Now we focus our attention on a restricted form of compositions involving effects. Con-
cretely, we will consider compositions between a monadic produ@erd the lifting of
afold: do {t <« p z;return (fold h t)}. These are compositions where the effect is
produced by the first function and only propagated by the second one. We introduce a
shortcut fusion law for this kind of monadic compositions by means of specific examples.

Lists Consider the following composition:

sumSeq :: Num a = [I0 a] — 10 a
sumSeq ms = do {zs < sequence ms; return (sum xs) }

sum Num a = [a] — a
sum || =0
sum (a: as) = a+ sum as

For example, when applied to the ljgit 1, put 2, put 3], sumSeq returns a computation
that yields6 as result and prints the strif@23" in the standard output. A recursive
definition can be derived forumSeq:

sumdSeq] = return 0
sumSeq (m : ms) = do {z «— m;y «— sumSeq ms; return (x + y)}

In this case, we can observe that fusion simply performs the substitution of the intermedi-
ate list constructors by corresponding actions in function. That is, it is a substitution
between purely functional objects; no effects are involved.

This transformation can be captured by a shortcut fusion law associated with fold where
we have to reflect the fact that the producer may be an effectful function and that the
consumer (a fold) must appear lifted.

Law 4 (fold/mbuild for lists)

do { as < mbuildy, g; return (fold; (nil, cons) as)} = g (nil, cons)

where

mbuild;, :: Monad m = (Y b.(b,a—b—b) —mb)— m|a
mbuildy, g = g ([],(2))

The recursive definition okumSeq can then be obtained by first writingum and
sequence in terms of fold and the monadic build, respectively, and then applying Law 4.

sum = fold; (0,(+))

sequence ms = mbuildy, (gseq ms)
where
gseq [(n,c) = return n
gseq (m:ms) (n,c) =do {x «— m;y < gseq ms (n, c); return (c x y)}

Parsing Shortcut fusion is well suited to be used in the context of monadic parsers
[Hutton and Meijer 1998]. A parser usually returns an abstract syntax tree which is then
consumed by another function that performs the semantic actions. Using shortcut fusion,
we show how these two phases can be merged together. To illustrate this, we present a
simple parser that recognizes natural numbers. We adopt the usual definition of the parser
monad (see [Hutton and Meijer 1998] for more details):

newtype Parser a = P (String — [(a, String)])

instance Monad Parser where
return a = P (Aes — [(a, cs)])
p>=[f =P (Aes — concat [parse (f a) cs' | (a,cs") «— parse p cs])

parse it Parser a — String — [(a, String)]
parse (P p) =p
pzero :: Parser a

pzero = P (Aes — [])

(@) :: Parser a — Parser a — Parser a
(Pp)@ (P q)=P (Acs — case p cs H q cs of

item :: Parser Char
item = P (Acs — case cs of

"=

(c:cs) —[(c,c8)])

Alternatives are represented by a deterministic choice opgratorvhich returns at most
one result. The parseeero is a parser that always fails. Thiem parser returns the first
character in the input string.

Suppose we want to parse a string formed by digits and return a list containing their integer
conversion. For example, given the stridi@3" the parser returns the ligk,2,3]

digits :: Parser [Int]

digits = do { d « digit; ds < digits; return (d : ds)} @ return []

digit :: Parser Int

digit = do { ¢ « item;if isDigit ¢ then return (ord ¢ — ord '0’) else pzero}
isDigit c = (¢ 2’0")A(c¢<'9)

We want to test whether the number represented by the list of digits is divisible by 3, but
without computing the number itself. It is well known that a number is divisible by 3 if
the sum of its digits is also divisible by 3.

sumDigits :: Parser Int
sumDigits = do { ds < digits; return (sum ds)}

divby3 :: Parser Bool
divby3 = do {n «— sumDigits; return (n ‘mod‘ 3 == 0) }

Sincedigits can be written as a monadic build,

digits = mbuwildy, gdig
where gdig (nil, cons)
= do {d « digit; ds — gdig (nil, cons); return (cons d ds)}
@ return nil

andsum is a fold, we can apply Law 4, obtaining the following monolithic definition:

sumDigits = do {d « digit; y < sumDigits; return (d + y) } & return 0

Arithmetic Expressions Let us now consider a parser for arithmetic expressions. The
parser takes a string containing an arithmetic expression and returns an abstract syntax
tree of typeFEzp. For example, given the strinf+2+3" the parser returns the term

Add (Num 1) (Add (Num 2) (Num 3)).

expression :: Parser Exrp
expression = do {n < number; plusop;
e « expression; return (Add (Num n) e)}
@ do {n « number; return (Num n)}

number :: Parser Int
number = do {(n, p) < numpowl10; return n }

numpowl0 :: Parser (Int, Int)
numpowl0 = do {d « digit; (n,p) < numpowl10; return (d * p + n,10 % p) }
@ return (0,1)

plusop :: Parser ()
plusop = do { ¢ « item;if ¢ =="+" then return () else pzero}

Given an arithmetic expression, we want to evaluate it.

evalexp :: Parser Int
evalerp = do { e « expression; return (eval e)}

eval » Bxp — Int
eval (Num n) =n
eval (Add e ') = eval e + eval €'

Function evalexp generates an intermediate expression that we would like to eliminate
with fusion. The monadic shortcut fusion law in this case is the following:

Law 5 (fold/mbuild for expressions)
do { e «— mbuildg g; return (foldy (num, add) e)} = g (num, add)
where

mbuildg :: Monad m = (Y a . (Int — a,a — a — a) — m a) — m Exp

mbuildg g = g (Num, Add)

Now, if we write eval and expression in terms of fold and build, respectively:

eval = foldy (id, (+))

expression = mbuildg gexp
where gexp (num, add)
= do {n < number; plusop;
e < gexp (num, add); return (add (num n) e)}
@ do {n « number; return (num n)}

we can apply shortcut fusion (Law 5) tealezp, obtaining the following definition:

evalerp = do {n < number; plusop; z < evalexp; return (n + z) }
@ do {n < number; return n}

4. Shortcut fusion, generically

In this section, we show that the instancegw@d, build, and shortcut fusion presented in
the previous sections correspond to generic definitions valid for a wide class of datatypes.

4.1. Data types

The structure of datatypes can be captured using the concepfuoiceor. A functor
consists of a type constructérand a functiommapg :: (a — b) — (F a — F' b), which
preserves identities and compositiomsupy id = id andmapr (f o g) = mapg f o
mapr g. A standard example of a functor is that formed by the list type constructor and
the well-knownmap function.

Semantically, recursive datatypes are understood as least fixed points of functors. That is,
given a datatype declaration it is possible to derive a fun&tsuch that the datatype is

the least solution to the equatier®™ F'r. We write [to denote the type corresponding

to the least solution. The isomorphism betwegnand F' pF' is provided by two strict
functionsing :: F uF — pF andoutr :: uF — F uF, inverses of each other. Function

inp packs the constructors of the datatype whilé - the destructors (for more details

see e.g [Abramsky and Jung 1994, Gibbons 2002]).

For example, for the datatype of expressions we can derive a fulctach that:

data £ a = FNum Int | FAdd a a

mapg 2(a—b)—-Fa—FEb
mapg f (FNum n) = FNum n
mapg f (FAdd a ') = FAdd (f a) (f)

In this casepEF = Exp and

g = F Fxp — Fxp
ing (FNum n) = Num n
ing (FAdd e ¢') = Add e ¢

outp wFrxp — E Fxp

outg (Num n) = FNum n
outp (Add e ¢') = FAdd e ¢

In the case of lists, the structure is captured by a bifunttt functor on two variables)
because of the presence of the type paremeter. Thatlisy) = [a].

data L a b = FNil | FCons a b
mapy, 2(a—c¢)—=(b—d)—Lab—Lcd

mapy, f g FNil — FNil
mapy, [g (FCons a b) = FCons (f a) (g b)

4.2. Fold

Let F' be a functor that captures the structure of a datatype. Given a furictibne — a,
fold [Gibbons 2002] is defined as the least functfofil - & :: uF' — a such that:

foldp hoing =hoF (foldy h)

A functionh :: F a — a is called anF-algebra For example, an algebra corresponding
to the functorF is a functionh :: £ a — « of the form:

h (FNum n) = num n

h (FAdd a ') = add a o

with num :: Int — a andadd :: « — a — a. In the specific instance of fold for the
FEzp datatype we wrote an algebhasimply as a paifnum, add). For the list datatype
we did something similar, in the fold for lists we wrote an algebral, a b — b as a pair
(nil, cons). The same can be applied to any other inductive datatype.

An F-homomorphisnbetween two algebrds:: F' ¢« — a andk :: F b — b is a function
f :a — b between the carriers that commutes with the operations. This is specified by
the conditionf o h = k o F' f. Notice that fold is a homomorphism between the algebras
inp andh.
4.3. Shortcut fusion
Given a functorF', we can define a corresponding build operator:

buildp = (Y a.(F a— a) — a) — ulF

bwildrp g = g inp

Together withfold, build enjoys the following fusion law [Takano and Meijer 1995],
which is an instance of a free theorem [Wadler 1989].

Law 6 (fold/build) For strict 4,2
foldp h (buildg g) = g h

4.4. Monadic shortcut fusion

The shortcut fusion law for monadic programs can be obtained as a special case of an ex-
tended form of shortcut fusion that captures the case when the intermediate data structure
Is generated as part of another structure given by a functor. To state that law it is necessary
to introduce an extended form of build. Given a funckdb(signature of a datatype) and
another functorV, we define:

buildpn = (Va.(Fa—a)— Na)— N uF
buildpn g = g inp

When N is a monad we obtain a monadic build,

mbuildp :: Monad m = YV a . (F a — a) = m a) — m uF
mbuildr g = g ing

2The strictness condition dnwas not mentioned in the concrete instances of the law shown in Section 2
because a function defined by pattern matching is strict. That was the case of the algebras for expressions
and lists considered in those instances.

On the other hand, the standdrdid r is obtained by considering the identity functor.

Law 7 (extended fold/build) For strict » and strictness preserviny,
mapy (foldp h) (buildpn g) = g h

Proof The free theorem associated withk type states that, for all typésandd’, algebras

g Fb— bandy :: F b — b, and strict functiory :: b — b’, the following holds
fow=1vomapr f = mapn f (9) = g 1. By consideringf = fold, h, p = ing
andy = h, we getmapy (foldr h) (g inp) = g h, because, again, the premise of
the implication holds by definition of fold. Finally, we apply the definitiontafid r

to obtain the law. The strictness @nis necessary for instantiation: if the algeliras
strict, then so igold . h, and we can instantiafewith fold . h. The strictness-preserving
assumption on the functor means thaip,y preserves strict functions, i.e., fifis strict,
then so ismapy f. This condition is necessary for stating the free theorem itself, and
therefore it is inherited by the instantiation. a

Monadic shortcut fusion is then obtained from this law by considering the functor associ-
ated with a monad: and by unfolding the correspondimgmnap function:

Law 8 (fold/mbuild) For strict 4 and strictness preservingmap,
do {t « mbuildr g;return (foldz h t)} =g h

5. Related work

In [Pardo 2001, Pardo 2005], fusion laws for monadic versions of some recursion schemes
(fold, unfold and hylomorphism) are presented. It is simple to see that so-eaikdain

laws (a kind of fusion laws) associated with monadic folds and hylomorphisms are par-
ticular cases of monadic shortcut fusion. This is something that should not be surprising
if we take into account that corresponding laws for purely functional versions of the same
operators can be expressed in terms of standard shortcut fusion [Takano and Meijer 1995].
Let us consider, for example, the generic definition of monadic fold:

mfold, :: Monad m = (F a — m a) — uF — ma
mfold, h = h e F (mfold h) o outp

where(f e g) = = do {y < f z;g y}, for monadic functiong andg, andF f =

distp o mapr f, for monadic functionf, such thatdistr :: F' (m a) — m (F a)
distributives the functor over the monad (see e.g. [Pardo 2005]). Consider the following
acid rain law associated with monadic fold: For.V a . (F a — a) — (G a — m a),
strict » and strictness-preservingmap,

do {t' — mfold (T ing) t;return (foldz h t')} = mfold, (7 h) t

If we definegmfold t ¢ = mfold, (1 ¢) t, thenmfold,, (1 ing) t = gmfold t ingp =
mbuildr (gmfold t), and therefore the acid rain law reduces to monadic shortcut fusion.
For the acid rain law associated with monadic hylomorphism the situation is the same.

Chitil's PhD thesis [Chitil 2000] presents a generalized shortcut fusion law for the list case
that is able to fuse effectful functions. We recall that law by giving its generic definition.
Let¢g:Va.(Fa—a)— (a—b)— candh: F b— b. Then,

qing (foldp h) = q h id
To see an example, consider again the functi@playSeq . If we define,

q (leaf , join) f = Ams — do {t < gseqy ms (leaf, join); f t}

gseqr (Leaf m) (leaf join) = do {a — m; return (leaf a)}
gseqr (Join ml mr) (leaf, join) = do {1 « gseqy ml (leaf, join);
T« gseqr mr (leaf, join); return (join [r)}

display, = fold (putStr o show, A\ml mr — do {ml; mr})

fold 2 (a—b,b—b—b)— Tree a — b
fold (leaf,join) (Leaf a) = leaf a
foldy (leaf, join) (Join I r) = join (fold (leaf, join) 1) (fold, (leaf, join) r)

then,

displaySeqr ms
= do {t < seq; ms; display t}
= q (Leaf, Join) (displayp t) ms
= q (putStr o show, \ml mr — do {ml; mr}) id ms
= do {m « gseq (putStr o show, A\ml mr — do {ml; mr}) ms; m}

Observe that the obtained expression is formed by a function that returns a computation
that yields computations as result, such that, the outer computation produces the effects
of the producerd4eq;), while the inner computations produce the effects of the consumer
(displayy). By inlining f = gseqr (putStr o show, Aml mr — do {ml; mr}) we geta

clear picture of the generated computation.

f (Leaf m) = do {a « m; return (putStr (show a))}
f (Join ml mr) = do {ml" — f ml; mr’ — f mr; return (do {ml'; mr'})}

At the same time to us, but independently, Ghani and Johann [Ghani and Johann 2008]
presented a shortcut fusion law that is able to fuse compositions of effectful programs.
Like our monadic shortcut fusion law, their fusion law is also based on extended shortcut
fusion (Law 7). The crucial difference with ours is that they consider a fold with monadic
carrier as consumer. The law is the following: For strict h,

do {t « mbuildg g;foldp h t} =do {m «— g h;m}
The left-hand side of the expression can be rewrittedl@s{t «— mbuildr g;m «—
return (foldr h t); m}, which by Law 8 is transformed to the right-hand side. It is
interesting to see that the monadic expression obtained with this fusion law is exactly the
same as the one produced by Chitil's law. In fact, if we defirief = do {t «— ¢ h;f},
this law reduces to Chitil’s.

6. Conclusions

This paper presented a shortcut fusion law tailored to a restricted form of compositions
of programs with effects. The monadic shortcut fusion law introduced is simple, generic,

and easy to apply in practice.

We have used the rewrite rules mechanism (RULES pragma) of the Glasgow Haskell
Compiler (GHC) to obtain a prototype implementation of monadic shortcut fusion. Exper-
imental results measuring time and space improvements for a set of examples are available
in the webpagéttp://www.fing.edu.uy/"pardo/MonadicShortcut/

AcknowledgementsWe would like to thank the referees for their helpful comments and
suggestions.

References

Abramsky, S. and Jung, A. (1994). Domain theory.Handbook of Logic in Computer
Sciencevolume 3, pages 1-168. Clarendon Press.

Bird, R. (1998). Introduction to Functional Programming using Haske2ihd edition.
Prentice-Hall, UK.

Chitil, O. (2000).Type-inference based deforestation of functional progréPh® thesis,
RWTH Aachen.

Ghani, N. and Johann, P. (2008). Short Cut Fusion of Recursive Programs with Compu-
tational Effects. Ir'Symposium on Trends in Functional Programming (TFP 2008)

Gibbons, J. (2002). Calculating Functional Programs.Algebraic and Coalgebraic
Methods in the Mathematics of Program ConstructibNCS 2297, pages 148-203.
Springer-Verlag.

Gill, A., Launchbury, J., and Jones, S. P. (1993). A Shortcut to Deforestatid@orfer-
ence on Functional Programming and Computer Architecture

Hutton, G. and Meijer, E. (1998). Monadic Parsing in Haskdburnal of Functional
Programming 8(4):437-444.

Johann, P. and \oigthder, J. (2004). Free theorems in the presence of se@ldn
Symposium on Principles of Programming Languagages 99-110. ACM.

Manzino, C. (2005). Monadic Shortcut Deforestation. Final year project, National Uni-
versity of Rosario, Argentina.

Meijer, E. and Jeuring, J. (1995). Merging Monads and Folds for Functional Program-
ming. In Advanced Functional ProgrammingNCS 925, pages 228-266. Springer-
Verlag.

Pardo, A. (2001). Fusion of Recursive Programs with Computational EffEleeoretical
Computer Scienc60:165-207.

Pardo, A. (2005). Combining Datatypes and EffectsAttvanced Functional Program-
ming,LNCS 3622, pages 171-209. Springer-Verlag.

Takano, A. and Meijer, E. (1995). Shortcut to Deforestation in Calculational Form. In
Functional Programming Languages and Computer Architecture’95

Wadler, P. (1989). Theorems for free! 4th International Conference on Functional
Programming and Computer Architectytsondon.

Wadler, P. (1995). Monads for functional programming. Aldvanced Functional Pro-
gramming,LNCS 925. Springer-Verlag.

