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Abstract
This paper presents the definition of a language with reflection
primitives. The language is a homogeneous multi-stage language
that provides the capacity of code analysis by the inclusion of a pat-
tern matching mechanism that permits inspection of the structure of
quoted expressions and their destruction into component subparts.
Quoted expressions include an explicit annotation of their context
which is used for dynamic inference of type, where a dynamic typ-
ing discipline based on Hinze and Cheney’s approach is used for
typing quoted expressions.

This paper follows the approach of Sheard and Pasalic about
the use of the meta-languageΩmega as a tool for language design.
In this sense, it is shown how to represent the syntax, the static as
well as the dynamic semantics of the proposed language in terms
of Ωmega constructs.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guages]: Formal Definitions and Theory – Semantics, Syntax;
D.3.4 [Programming Languages]: Processors – Code Generation

General Terms Design, Languages, Theory

Keywords Reflection, Multi-stage Programming, Intensional Anal-
ysis, Dynamics

1. Introduction
With the evolution of computer systems and their growing com-
plexity it has become more and more important to take into account
the way to improve their flexibility. In order to provide systems
with the ability to evolve during its own execution, programming
languages should supportreflection, understanding it as the abil-
ity to “reason about itself”. Friedman and Wand [7] introduced the
concepts ofreificationandreflectionto define the processes of con-
verting an interpreter component into an object which the program
can manipulate and its inverse, respectively. For instance, one of
the components that can be reified is the program code. This sort of
reification can be performed by aquotationmechanism.

Multi-stage languages[23] are typed languages with quota-
tion constructs, analogues to those of Lisp, which define execu-
tion stages. These constructs are bracket, escape and run. Brack-
ets ([| |]) reify the surrounded expression lifting it into the next

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00.

stage. For example, while2 + 2 evaluates to4, [| 2 + 2 |]
evaluates to the representation of the piece of code2 + 2. Rei-
fied expressions can be constructed from others by using escape.
Escape ($( )) evaluates the expression surrounded to a code piece
and then splices it into the expression where it occurs. Thus, the
evaluation of[| 2 + $([| 2 + 2 |]) |] returns the represen-
tation of2 + 4. Run evaluates its arguments to a piece of code and
executes it. This implements the inverse operation of reification.

It is essential to have reflection that programs can reason about
their own state and manipulate it. According to Sheard [17] meta-
programs can be classified into two categories:analyzersand
generators. Program analyzers are an important class of meta-
programs that can be used among other things to optimize, trans-
form, maintain and reason about complex systems. Most of multi-
stages languages, like MetaML [27], lay in the category of program
generators. However, a formal treatment of program analyzers fea-
tures has not being sufficiently developed.

In this paper, we propose a multi-stage language withinten-
sional analysis, understanding intensional analysis as the ability of
a homogeneous meta-system to observe the structure of its object-
programs. This is carried out by a pattern matching mechanism that
is used to inspect the structure of quoted expressions and destruct
them into their component subparts.

In most multi-stage languages the type of quoted expressions is
〈τ〉 (or cod τ ), meaning code ofτ , for τ the type of the expres-
sion being quoted. This typing statically ensures that dynamically
generated programs are type-safe, but excludes some functions that
destruct or traverse the structure of expressions. Other approaches
[20, 8, 22] assign the same typecod to all quoted expressions, per-
forming their type checking at run-time. Such languages make a
tradeoff between static and dynamic typing. We follow these ideas
using the techniques proposed by Cheney and Hinze [5] and Baars
and Swierstra [2] for encoding dynamic typing. So, our language
somehow relaxes static safety in favour of retaining flexibility.

Our type for quoted expressions is of the formcodΓ, beingΓ
a type context reflecting, like Nanevsky [11, 12, 13]names, the
free variables of the expression. When an expression is quoted, its
type context needs to be explicitly annotated as it is necessary for
dynamic type inference.

We follow the approach of Sheard and Pasalic [19, 18, 21, 14]
about the use ofΩmega as a tool for language design. Languages
are encoded as object-program representation that enforces the
semantic invariants of scoping and typing rules. The type system
of Ωmega then guarantees that all meta-programs respect these
additional object-language properties. In the following subsection
we briefly describe some of theΩmega features we use, for further
information see the mentioned works.



1.1 Ωmega

Ωmega is based on Haskell, although it is strict and doesn’t have a
class system. Some of its most important features are the so-called
Generalized Algebraic Data Types and an extensible kind systems,
which make it possible to state and enforce interesting properties
of programs using the type system.

Generalized Algebraic Data Types (GADTs) are a generaliza-
tion of Algebraic Data Types (ADTs). GADTs remove the restric-
tion for parameterized ADTs which states that the range of every
constructor must be a polymorphic instance of the type constructor
being defined. This is possible by introducing an alternative syntax
for data types declarations, where the type being defined is given
an explicit kind, and every constructor is given an explicit type.
For example, the type constructorTerm has kind*0 ~> *0, taking
types to types, and represents a typed object-language:

data Term :: *0 ~> *0 where
Const :: a -> Term a
Pair :: Term a -> Term b -> Term (a,b)
App :: Term (a -> b) -> Term a -> Term b

The only restriction on constructors’ type is that their range
must be a fully applied instance of the type being defined. For
example, the range of the constructorPair is a non-polymorphic
instance ofTerm. Observe that the type argument ofTerm is used
to stand for the object level type of the represented term.

In the same way types classify values, types are classified by
kinds. Kinds are implicit in functional languages like Haskell, and
can only be either thebase kind(*0), which classifies types, or
higher order kinds(κ1 ~> κ2), which classifies type constructors.
In Ωmega, new kinds can be introduced by akind declaration,
which is analogous to adata declaration. Instead of introducing
value constructors, a kind declaration introduces type constructors
that produce types classified by that kind.

Sheard [18] proposes usingΩmega to explore the design of new
languages by encoding language semantics as meta-programs. The
language is defined as a GADT. Each GADT represents a judgment,
and its constructors encode the typing rules. Type parameters may
have an arbitrary structure, because of definition of new kinds,
and correspond to static semantics properties. These properties
are checked and maintained byΩmega’s type system.Ωmega’s
type system also guarantees that meta-level programs maintain
object level type-safety. Abig step semanticscan be defined as an
interpreter or evaluation function, or asmall step semanticscan be
defined in terms of substitutions over the term language. The typing
of this function maintains object level type-safety.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we introduce a lan-
guage with reflection primitives and present its static semantics.
Section 3 shows how the static semantics of the language is en-
coded inΩmega. Section 4 describes a big-step semantics of the
language in the form of anΩmega function. We discuss related
work in Section 5. Finally, Section 6 draws some conclusions.

2. Language
The aim of this paper is the proposal of a language with linguistic
reflection primitives that permit us to perform type-safe intensional
code analysis. In this section we define the syntax and static seman-
tics of that language.

2.1 Basic Calculus

The core of the language is a Church-style [1] simply typedλ-
calculus, with the following syntax:

Types τ ∈ T ::= int | bool | τ → τ | τ × τ
Contexts Γ ∈ G ::= · | Γ, τ
Ctxt. Stacks P ∈ GS ::= · | (P, Γ)
Variables v ∈ V ::= z | s v
Terms e ∈ E ::= b | i | (e1,e2) | fst e | snd e |

λτ . e | fix e | vτ | e1 e2 |
if e1 then e2 else e3

A type τ can be a base typeint or bool, a function type
τ → τ or a binary productτ × τ . De Bruijn indices [6] are used
to encode variables bindings, so variables are natural numbers and
type contexts are sequences of types.

The typing judgment is of the formP ; Γ ` e : τ , and reads
“expressione has typeτ in local contextΓ under stackP ”. The
presence of context stacks in the typing rules of Figure 1 is the
only difference from standardλ-calculus, but can be ignored until
we explain their use in the multi-stage extension.

P ; Γ ` i : int
LInt

P ; Γ ` b : bool
LBool

P ; Γ ` e1 : τ1 P ; Γ ` e2 : τ2

P ; Γ ` (e1, e2) : τ1 × τ2

Pair

P ; Γ ` e : τ1 × τ2

P ; Γ ` fst e : τ1
Fst

P ; Γ ` e : τ1 × τ2

P ; Γ ` snd e : τ2
Snd

P ; Γ, τ1 ` e : τ2

P ; Γ ` λτ1 .e : τ1 → τ2
Abs

P ; Γ, τ ` e : τ

P ; Γ ` fix e : τ
Fix

P ; Γ ` e1 : τ2 → τ1

P ; Γ ` e2 : τ2

P ; Γ ` e1 e2 : τ1
App

P ; Γ ` v : τ

P ; Γ ` vτ : τ
Var

P ; Γ ` e1 : bool
P ; Γ ` e2 : τ P ; Γ ` e3 : τ

P ; Γ ` if e1 then e2 else e3 : τ
Cond

Figure 1. Basicλ-calculus typing

In the typing rules for variables, the Base rule projects the 0-
th index type and the Weak rule fors n projects recursively the
(n + 1)-th type.

P ; Γ, τ ` z : τ
Base

P ; Γ ` v : τ1

P ; Γ, τ2 ` s v : τ1
Weak

Figure 2. Typing rules for variables

2.2 Multi-stage Extension

We include some staging annotations as part of the language to
build and combine pieces of code, partitioning the execution of
programs into computational stages.

Types τ ∈ T ::= ... | codΓ

Explicit Substitutions Θ ∈ S ::= ⇑ (Θ) | e/ | ↑τ

Terms e ∈ E ::= ... | [|e|]{Γ} | $(e)τ |
e[Θ] | run e1|e2



Annotations include brackets, escape, run and explicit substi-
tution. We don’t include Cross-Stage Persistence in our language.
Like in reFLect [8, 9], this decision is based on the observations of
Taha [23] that intensional analysis requires reductions not to be al-
lowed in higher levels, which leads to a loss of confluence if cross-
stage persistence is included.

The typing rules for the staged terms (Figure 3) are inspired by
the “sliding band” of type contexts proposed by Sheard [18], except
for the “future” stack of contexts which is unnecessary without
cross-stage persistence. The “past” stack contains the contexts of
the past stages that could be accessed when an escape is applied to
the current context.

2.2.1 Dynamic Typing and Explicit Contexts

The type for quoted expressions iscodΓf

, whereΓf is a type
context reflecting the free variables of the expression. When an
expression is quoted, a context including the free variables of the
expression must be passed explicitly. Observe thatΓf doesn’t need
to be minimal. That is, ifΓp represents all free variables in the
bracketed expressionΓf must fulfill the relationΓf = (Γp, Γc),
meaning that all free variables in the expression have to be inΓf ,
but some others (Γp) could be added.

Unlike most multi-stage languages this type doesn’t include the
type of the expression, so the escape annotation judgment could
type wrong formed expressions. For example the expression

(λcod(·) .[|$(#0cod
(·)
)int|]{ · }) [| True |]{ · }

is well typed, because the requirement that the bound code must
be an integer expression cannot be checked statically. The type
checking of this kind of expressions is deferred until run-time,
and ill-typed quoted expressions evaluates to the well-typed value
[| Fail |].

Therun annotation is similar to the one proposed in [22], where
a run-time type checking and unification is done to decide if code
expression is executed. In the Run rule, the type of the executed
quoted expressione1 must be the type ofe2, called theexception
expression. If its type is not the expected one or type checking fails
thene2 is evaluated. The Run rule assures that only closed code can
be evaluated by allowing only expressions with typecod(·), that is,
without free variables.

(P, Γ); Γf ` e : τ

P ; Γ ` [|e|]{Γf} : codΓf
Br

P ; Γp ` e : codΓ

(P, Γp); Γ ` $(e)τ : τ
Esc

P ; Γ ` e1 : cod(·)

P ; Γ ` e2 : τ

P ; Γ ` run e1|e2 : τ
Run

Γ′ ` Θ ⇒ Γ′′ P ; Γ ` e : codΓ′

P ; Γ ` e[Θ] : codΓ′′
Subst

Figure 3. Multi-stage extension typing

2.2.2 Explicit Substitution

An explicit substitution operator over quoted expressions is in-
cluded in order to provide a simple way of capturing free variables.
We use the notation for substitutions ofλν [3], adding an explicit
annotation of the new type in the case of shifting.

The typing judgment for substitutions is of the formΓ ` Θ ⇒
Γ′. It relates a type context and a substitution with a “resulting”
type context. Therefore, a substitutionΘ over an expression typed
in local contextΓ results in an expression typed in local contextΓ′.
The typing rules are shown in Figure 4.

P ; Γ ` e : τ

Γ, τ ` e/ ⇒ Γ
Slash

Γ `↑τ⇒ Γ, τ
Shift

Γ ` Θ ⇒ Γ′

Γ, τ `⇑ (Θ) ⇒ Γ′, τ
Lift

Figure 4. Explicit substitution typing

Given an expressione of type τ in a local contextΓ under
any past stackP , a slash (e/) replaces the first variable bye and
decrements the indexes of the remaining variables by one. Shift
(↑τ ) increments the indexes of all variables by one and appends the
type τ at index 0. Applying lift (⇑), the 0-index typeτ remains
unchanged and the substitutionΘ is applied to the rest of the
context. For example, the expression

([|#0(int,bool)→bool (#1int, #2bool)|]
{bool, int, (int, bool) → bool})[ ⇑ (9/)]

would reduce to a code, with typecod·,bool,(int,bool)→bool, corre-
sponding to the expression:(#0(int,bool)→bool (9, #1bool)).

2.3 Intensional Analysis Extension

In order to provideintensional code analysiswe extend the calculus
with an alternation primitive, similar to the one proposed in [8],
where variables are bound by a pattern matching mechanism.

Terms e ∈ E ::= ... | λp. e1|e2

Patterns p ∈ P ::= i | b | (p1,p2) | •τ | _ | [|pc|]
Code Patterns pc ∈ PC ::= $(•)τ | $(lit)τ | _ | fail |

(pc1,pc2) | fst pc | snd pc |
λτ . pc | fixτ pc |
vτ | pc1 pc2 |
if pc1 then pc2 else pc3 |
[|_|]{Γ} | pc[Θ] |
run pc1|pc2

The semantics of patterns is inspired by the pattern matching
mechanism defined by Pasalic and Linger [15]. In that work, a
pattern judgmentΓ ` p : τ ⇒ Γ′ involves an “input” type context
Γ, a patternp, which should match a value of typeτ , and a resulting
type contextΓ′. This context extendsΓ with the types of the pattern
variables. Based on the fact that the only change possible to an
“input” context is its extension with the free variables ofp, and
in order to simplify the dynamic semantics of substitutions over
alternations (see section 4.2), we had omitted the “input” context in
the pattern judgment. So the judgment is of the form` p : τ ⇒ Γ,
meaning that a patternp (matching a value of typeτ ) has the free
variables contained inΓ.

The Alt rule for an alternation of typeτ1 → τ2 relates a pattern
p, which should match a value of typeτ1 extending a context by
Γ′, an expressione1 with typeτ2 in local contextΓ, Γ′ (Γ extended
with Γ′), and an alternative expressione2 of type τ1 → τ2. If p
matches a value of typeτ1, thene1 is evaluated in local context
Γ, Γ′, otherwisee2 is evaluated in local contextΓ and applied to
the matched value.

The simplest pattern is the patternany ( ) which matches any
value of typeτ and leaves the context unchanged. Another basic



` p : τ1 ⇒ Γ′

P ; Γ, Γ′ ` e1 : τ2

P ; Γ ` e2 : τ1 → τ2

P ; Γ ` λp. e1|e2 : τ1 → τ2
Alt

Figure 5. Alternation typing

pattern is the (nameless)variable binding pattern(•τ ), which dif-
fers from the previous one in the type annotation and the extension
of the context binding the value matched. More than one variable
in a pattern could be bound. The PPair rule shows how variables
are related to the indexes in the resulting context. Given a pair pat-
tern(p1, p2), wherep1 andp2 are related toΓ′ andΓ′′ respectively,
its free variables areΓ′, Γ′′. So the variables of the furthest to the
right subpattern (p2) would be those of smaller indices in the con-
text. This can be taken as a general rule for patterns with multiple
variables.

` : τ ⇒ · PAny ` •τ : τ ⇒ ·, τ PVar

` i : int⇒ · PLInt ` b : bool⇒ · PLBool

` p1 : τ1 ⇒ Γ′

` p2 : τ2 ⇒ Γ′′

` (p1, p2) : τ1 × τ2 ⇒ Γ′, Γ′′
PPair

Γf ° pc ⇒ Γ′

` [|pc|] : codΓf ⇒ Γ′
PCod

Figure 6. Pattern typing

Code analysis is carried out with the help ofcode patterns. Their
typing rules are shown in Figure 7. The judgmentΓf ° pc ⇒ Γ′

expresses that a patternpc, which should match a quoted expression
with typecodΓf

, has the variables contained inΓ′.
Most code patterns consist in destructing the expression and ap-

plying code patterns to the subexpressions. Theany( ) code pattern
matches any code, while thefail (fail) code pattern matches only
failed code. Both patterns leave the context unchanged.

The syntax ofvariable binding($( • )τ ) and literal binding
($(lit)τ ) code patterns suggest their semantics in the sense that
they only match with expressions that when unquoted have typeτ .
Having fulfilled this constraint the former matches any value while
the latter matches only quoted literal expressions. Both patterns
extend the context with the code value matched.

Thevariable constantbehaves likeliteral constants(i andb). It
matches with code which quoted expression is exactly the variable
vτ , unchanging the context. Theany bracketcode pattern matches
any brackets quoted expression with free variablesΓff . Given a
quoted explicit substitution,e[Θ′], the substitutioncode pattern
requiresΘ to be equal toTheta′ and matches the code pattern
pc with e.

An example of code analysis is the following:

λ[|if #0bool then $(•)int else $(•)int|]
. #1cod

·,bool
[True/]

| λcod·,bool .[|0|]{ · }

Γf ° ⇒ ·
PCPAny

Γf ° fail⇒ ·
PCPFail

Γf ° $( • )τ ⇒ ·, codΓf
PCPVar

Γf ° $(lit)τ ⇒ ·, codΓf
PCPLit

Γf ° i ⇒ ·
PCLInt

Γf ° b ⇒ ·
PCLBool

Γf ° pc1 ⇒ Γ′ Γf ° pc2 ⇒ Γ′′

Γf ° (pc1, pc2) ⇒ Γ′, Γ′′
PCPair

Γf ° pc ⇒ Γ′

Γf ° fst pc ⇒ Γ′
PCFst

Γf , τ ° pc ⇒ Γ′

Γf ° λτ .pc ⇒ Γ′
PCAbs

Γf , τ ° pc ⇒ Γ′

Γf ° fixτ .pc ⇒ Γ′
PCFix

Γf ° pc1 ⇒ Γ′

Γf ° pc2 ⇒ Γ′′

Γf ° pc1 pc2 ⇒ Γ′, Γ′′
PCApp

Γf ° vτ ⇒ ·
PCVar

Γf ° pc1 ⇒ Γ′

Γf ° pc2 ⇒ Γ′′ Γf ° pc2 ⇒ Γ′′′

Γf ° if pc1 then pc2

else pc3 ⇒ Γ′, Γ′′, Γ′′′

PCCond

Γf ° [| |]{Γff} ⇒ ·
PCBr

Γf ° pc ⇒ Γ′

Γf ° pc[Θ] ⇒ Γ′
PCSubst

Γf ° pc1 ⇒ Γ′ Γf ° pc2 ⇒ Γ′′

Γf ° run pc1|pc2 ⇒ Γ′, Γ′′
PCRun

Figure 7. Code Pattern typing

This expression takes a code value with typecod·,bool and
returns one with typecod(·). If the code passed is a quotation of
an “if-then-else” expression, with condition#0bool, a code with
the “then”” subexpression is returned, with a True literal in each
occurrence of the variable#0bool. Otherwise, the returned value is
a code of the literal 0.

3. Static Semantics as anΩmega GADT
In this section we will encode the typing judgments of section 2
as Ωmega GADTs. A value of each datatype then represents a
derivation of the encoded judgment. This ensures that the properties
of the static semantics are checked and maintained by the meta-
language type system.

The expression judgmentP ; Γ ` e : τ is represented by the
multiple indexed type(Exp p n t). The “past” stackP is tracked
by the first index, a nested product type, which contains types of



kind Row *0 1representing type contexts. The next index is aRow
*0 tracking the current context typeΓ. Finally, t tracks the term
typeτ .

TheΩmega encoding of the rules showed in Figures 1, 3 and 4
is the following:

data Exp :: *0 ~> Row *0 ~> *0 ~> *0 where
ELBool :: Bool -> Exp p n Bool
ELInt :: Int -> Exp p n Int
EPair :: Exp p n t -> Exp p n s

-> Exp p n (t,s)
EPFst :: Exp p n (t,s) -> Exp p n t
EPSnd :: Exp p n (t,s) -> Exp p n s
EAbs :: Rep s -> Exp p (RCons s n) t

-> Exp p n (s->t)
EFix :: Exp p (RCons t n) t

-> Exp p n t
EApp :: Exp p n (s->t) -> Exp p n s

-> Exp p n t
EVar :: Var n t -> Rep t

-> Exp p n t
ECond :: Exp p n Bool

-> Exp p n t -> Exp p n t
-> Exp p n t

EBr :: Exp (p,Env n) c t -> RepEnv c
-> Exp p n (Cod c)

ERun :: Exp p n (Cod RNil) -> Exp p n t
-> Exp p n t

EEsc :: Exp p b (Cod n) -> Rep t
-> Exp (p, Env b) n t

ESubst :: Exp p n (Cod f) -> Subst f fc
-> Exp p n (Cod fc)

EAlt :: Pat s c -> Exp p {eapp c n} t
-> Exp p n (s->t)
-> Exp p n (s->t)

Each constructor has the structure of a formal judgment. For
example,EApp takes two argumentsExp p n (s->t) andExp p
n s. These arguments correspond to the judgmentsP ; Γ ` e1 :
τ2 → τ1 andP ; Γ ` e2 : τ2, respectively. If these can be supplied,
the constructor results in the typeExp p n t, encodingP ; Γ ` e1

e2 : τ2.
In EAbs, EVar andEEsc a type must be annotated. This is done

by an argument of typeRep t, the parametric type representation
defined both by Cheney and Hinze [5] and Baars and Swierstra [2]
for dynamic typing:

data Rep:: *0 ~> *0 where
Int :: Rep Int
Bool :: Rep Bool
Arr :: Rep a -> Rep b -> Rep(a -> b)
Prod :: Rep a -> Rep b -> Rep (a,b)
Cod :: RepEnv n -> (Rep (Cod n))

These type annotations are used to carry out the run-time type
checking in the same way dynamic typing is handled in the works
mentioned previously.

The EVar constructor includes theVar n t sub-judgment,
whereVZ andVS encode the rules Base and Weak of Figure 2.

data Var :: Row *0 ~> *0 ~> *0 where
VZ :: Var (RCons t env) t
VS :: Var env t -> Var (RCons s env) t

1Row is a kind that classifies list-like data structures at type level, its defini-
tion is: kind Row (x::*1) = RCons x (Row x) | RNil. SoRow *0
is a list of types that classifies values.

Observe that a context extensionΓ, τ is represented by theRow
constructor(RCons t env).

The stacks of contexts are nested pairs. A typeEnv, which
is indexed by aRow *0, is used to push a context. This is done
because the pair constructor takes only types of kind *0.

data Env :: Row *0 ~> *0 where
EnvNil :: Env RNil
EnvCons :: t -> Env r -> Env (RCons t r)

Multi-stage annotations involves expressions with typecodΓf

.
The encoding of this type inΩmega has the following definition:

data Cod :: Row *0 ~> *0 where
Q :: (forall p. Exp p n t) -> RepEnv n

-> Cod n
F :: RepEnv n -> Cod n

Because of dynamic typing, it could happen that an expression
evaluates to a bad formed code value. For this reason, the typeCod
has two constructors: one for well formed quoted expressions and
another for failed ones. A well formed code is an expression at level
0, typed in a given environment. A term at level 0 has no escapes at
level 0. This is captured by requiring that the past contexts stack
is universally quantified. Both in the case of well formed code
like for failed code, a representation of the context is passed as
an argument. This representation has typeRepEnv.

data RepEnv:: Row *0 ~> *0 where
REnvNil :: RepEnv RNil
REnvCons :: Rep t -> RepEnv r

-> RepEnv (RCons t r)

This type classifies lists ofRep t and is indexed by aRow *0.
Type RepEnv is also used in the constructorEBr to represent the
free variables of the expression.

The substitutions judgment is encoded by the datatypeSubst.
Like in the Q constructor forCod, the expression passed to the
SSlsh constructor must carry an universally quantified past con-
texts stack.

data Subst :: Row *0 ~> Row *0 ~> *0 where
SSft :: Rep t -> Subst n (RCons t n)
SLft :: Subst n c

-> Subst (RCons t n) (RCons t c)
SSlsh :: (forall p. Exp p n t)

-> Subst (RCons t n) n

So, the encoding for the explicit substitution example of section
2.2.2 is:

(ESubst
(EBr

(EApp
(EVar VZ (Arr (Prod Int Bool) Bool))
(EPair

(EVar (VS VZ) Int)
(EVar (VS VS VZ) Bool)))

(REnvCons (Arr (Prod Int Bool) Bool)
(REnvCons Int (REnvCons Bool REnvNil))))

(SLft (SSlsh (ELInt 9))))

In the EAlt constructor we use thetype functioneapp to en-
code a list append constraint (Γ′, Γ′′). It can be proven by doing
induction on the first argument that this function terminates.

eapp :: Row *0 ~> Row *0 ~> Row *0
{eapp RNil ys} = ys
{eapp (RCons x xs) ys} = RCons x {eapp xs ys}
{eapp {eapp xs ys} zs} = {eapp xs {eapp ys zs}}



The pattern judgment̀ p : τ ⇒ Γ is encoded by the datatype
(Pat t n).

data Pat :: *0 ~> Row *0 ~> *0 where
PLInt :: Int -> Pat Int RNil
PLBool :: Bool -> Pat Bool RNil
PPair :: Pat t1 c1 -> Pat t2 c2

-> Pat (t1,t2) {eapp c2 c1}
PVar :: Rep t -> Pat t (RCons t RNil)
PAny :: Pat t RNil
PCod :: PatCod f c -> Pat (Cod f) c

The constructor functionPCod includes a sub-judgment for
code patterns. The definition of the typePatCod, representing the
code patterns judgment, is the following:

data PatCod :: Row *0 ~> Row *0 ~> *0 where
PCPVar :: Rep t

-> PatCod f (RCons (Cod f) RNil)
PCPAny :: PatCod f RNil
...
PCVar :: Var vn t -> Rep t

-> PatCod f RNil
PCLInt :: Int -> PatCod f RNil
...
PCPair :: PatCod f c1

-> PatCod f c2
-> PatCod f {eapp c2 c1}

...
PCAbs :: Rep s -> PatCod (RCons s f) c

-> PatCod f c
...
PCCond :: PatCod f c1

-> PatCod f c2
-> PatCod f c3
-> PatCod f {eapp3 c3 c2 c1}

PCBr :: RepEnv fp
-> PatCod f (RCons (Cod f) RNil)

PCRun :: PatCod f c1 -> PatCod f c2
-> PatCod f {eapp c2 c1}

PCSubst :: PatCod fc c -> Subst f fc
-> PatCod fc c

4. Dynamic Semantics as anΩmega evaluator
Dynamic semantics for the language is given by a big-step seman-
tics written as an evaluation function. The semantics shows that the
evaluation of well typed terms doesn’t go wrong.

The evaluation function has typeExp p n t -> Env n ->
t. Given any well typed expressionExp p n t and an environment
with shapen, eval returns a value with typet.

eval :: Exp p n t -> Env n -> t
eval (ELInt i) env = i
...
eval (EPair e1 e2) env = (eval e1 env,eval e2 env)
...
eval (EAbs t e) env = \ v -> eval e (EnvCons v env)
eval (EApp f x) env = (eval f env)(eval x env)
eval (EVar v t) env = evalVar v t env
...
eval (EFix e) env = lazy ((\ v ->

(eval e (EnvCons v env)))
(eval (EFix e) env))

eval (EBr e renv) env
= case (bd (CountBrZ env) e) of

(x,True) -> Q x renv
(x,False) -> F renv

eval (ERun e1 e2) env
= case (eval e1 env) of

Q e REnvNil ->
case eqType (getType e)

(getType e2) of
Just Eq -> eval e EnvNil
Nothing -> eval e2 env

_ -> eval e2 env
eval (ESubst e s) env

= case (eval e env) of
Q eb rb ->

case (evalSub s eb rb) of
(en,rn) -> Q en rn

F rb -> F (evalSubR s rb)
eval (EAlt p e1 e2) env

= \ v -> case (evalPat p v env) of
Just env2 -> eval e1 env2
Nothing -> (eval e2 env) v

This function is total excepting for deEEsc case, which is not
evaluated. In an expression at level 0 will not be an escape, so the
evaluation function must be defined to take expressions at level 0.
This could be enforced defining an evaluation function that can
only be applied to terms polymorphic in their past.

eval0 :: (forall p. Exp p n t) -> Env n -> t
eval0 exp env = eval exp env

To avoid infinite loops, theΩmega construct for explicit laziness
(lazy) is used in the evaluation ofEFix.

4.1 Dynamic Type Checking and Building Code

The type checking is implemented by the unification function
eqType, which takes two type representations, tests them for struc-
tural equality, and possibly returns a proof of their equivalence. Its
signature is:

eqType :: Rep a -> Rep b -> Maybe(Equal a b)

During the evaluation ofERun, after a verification that the code
is well formed, an unification between the types of the quoted ex-
pressione and the exception expressione2 is made. If the unifica-
tion succeeds, there’s a witness that the type ofe is the same ase2.
So, the expressione is evaluated in the empty environment (static
type-checking assures thate is closed). If the unification fails, the
expressione2 is evaluated in the environmentenv. The types ofe
ande2 are obtained by the type inference functiongetType, which
is based on the typing rules:

getType:: Exp p n t -> Rep t
getType (ELInt i) = Int
getType (ELBool b) = Bool
getType (EPair e1 e2) = Prod (getType e1)

(getType e2)
getType (EPFst e) = case (getType e) of

Prod r1 r2 -> r1
...
getType (EAbs t e) = Arr t (getType e)
getType (EApp e1 e2) = case (getType e1) of

Arr r1 r2 -> r2
getType (EVar v t) = t
...
getType (EBr e renv) = Cod renv
getType (ESubst e s) = case (getType e) of

Cod renv ->
Cod (evalSubR s renv)



getType (ERun e1 e2) = getType e2
getType (EEsc e t) = t
getType (EAlt p e1 e2) = getType e2

Observe that type annotations and the explicit type contextrenv
are used in the type inference algorithm.

EvaluatingEBr involves evaluating a code template in order to
build an expression polymorphic in the past. This is done by the
bd function, which is the one defined in [18] with the addition
of dynamic type checking. Essentially, the function traverses an
expression, generating a copy without embedded escapes at level
0, and a boolean expressing if the code produced is well typed. The
CountBr argument counts the brackets surrounding the expression.
When aEBr is found, the counter is incremented.

data CountBr :: *0 ~> *0 ~> *0 where
CountBrZ :: a -> CountBr (b,a) c
CountBrS :: CountBr a b -> CountBr (a,c) (b,c)

bd :: CountBr a z -> Exp a n t -> (Exp z n t,Bool)
bd env (ELInt i) = (ELInt i,True)
...
bd env (EPair e1 e2) = let (x1,b1) = (bd env e1)

(x2,b2) = (bd env e2)
in (EPair x1 x2, b1 && b2)

...
bd env (EBr e renv)

= let (x,b) = bd (CountBrS env) e
in (EBr x renv, b)

...
bd (CountBrZ env) (EEsc e t)

= case (eval e env) of
Q x renv ->

case eqType (getType x) t of
Just Eq -> (x,True)
Nothing -> (getAny t,False)

_ -> (getAny t,False)
bd (CountBrS r) (EEsc e t)

= let (x,b) = bd r e
in (EEsc x t, b)

For(EEsc e t), if brackets’ counter is(CountBrZ env), the
expressione is evaluated and, if it is well formed and the type is
what was expected, the resulting code is spliced. In other case a
dummy expression with typet is generated by the functiongetAny
:: Rep t -> Exp p n t.

4.2 Explicit Substitution

The explicit substitution evaluation is divided into two functions,
which apply the substitution to the expression and to the context
representation, respectively.

The core of the expression substitution is the one defined by
Sheard and Pasalic [21], extended by passing the representation of
the source environment.

evalSubE :: Subst g gp -> Exp p g t -> RepEnv g
-> Exp p gp t

evalSubE s (ELInt i) r = ELInt i
...
evalSubE s (EPair e1 e2) r = EPair (evalSubE s e1 r)

(evalSubE s e2 r)
...
evalSubE s (EAbs t e) r = EAbs t

(evalSubE (SLft s) e (REnvCons t r))
evalSubE (SSlsh e) (EVar VZ t) (REnvCons t r) = e
evalSubE (SSlsh e) (EVar (VS v) t) (REnvCons tp r)

= EVar v t
evalSubE (SLft s) (EVar VZ t) (REnvCons t r)

= EVar VZ t
evalSubE (SLft s) (EVar (VS v) t) (REnvCons tp r)

= evalSubE (SSft tp)
(evalSubE s (EVar v t) r)

(evalSubR s r)
evalSubE (SSft tp) (EVar v t) (REnvCons t r)

= EVar (VS v) t

Evaluating the substitution over bracketed expressions implies
evaluating a code template with a function, similar to thebd of sec-
tion 4.1, which traverses the expression and applies the substitution
when thebrackets counteris zero.

evalSubE s (EBr e renv) r
= EBr (bds (CountSBrZ s r) e) renv

evalSubE s (ESubst e sp) r
= ESubst (evalSubE s e r) sp

To apply a substitution to the Alternation expression we take
the following steps. First, we leave the pattern unchanged. Then,
similarly as done in the Abstraction expression but in a more gen-
eral case, we evaluate the effect of the pattern over the substitution
and the context representation of the matched expression. Next we
apply this new substitution to the matched expression with the new
context representation. Finally, we evaluate the original substitution
over the alternative expression.

evalSubE s (EAlt p e1 e2) r
= case (getType e2) of (Arr t1 t2)

-> EAlt p (evalSubE (evalPatS p s)
e1 (evalPatR p r t1))

(evalSubE s e2 r)

Observe that the decision taken in section 2.3 of only including
the extensions of type contexts in pattern judgments simplifies
the definition of this operation. For example, the signature of the
auxiliar functionevalPatS is simply:

evalPatS :: (Pat t eout) -> Subst g gp
-> Subst {eapp eout g} {eapp eout gp}

That is, taking a patternp, with judgment` p : τ1 ⇒ Γ′,
and a substitutionΘ, with judgmentΓ1 ` Θ ⇒ Γ2, evaluating
the effect ofp over Θ results in a substitutionΘ′ with judgment
Γ1, Γ

′ ` Θ′ ⇒ Γ2, Γ
′. That way, we isolate the effect ofp from

Γ1 andΓ2.
The function that applies the substitution to the context repre-

sentation is separated in three cases. In the Slash case the first type
is removed, in the Shift case the new type is appended at the begin-
ning, and, in the Lift case, the first type is left unchanged and the
substitution is applied recursively to the rest of the context.

evalSubR :: Subst g gp -> RepEnv g -> RepEnv gp

evalSubR (SSlsh e) (REnvCons t r) = r
evalSubR (SSft t) r = REnvCons t r
evalSubR (SLft s) (REnvCons t r)

= REnvCons t (evalSubR s r)

4.3 Pattern Matching

The evaluation of alternation(EAlt p e1 e2) is done by eval-
uating the patternp, ande1 or e2 depending on the result of pat-
tern matching. The pattern matching evaluation function,evalPat,
has three arguments: a pattern judgment of type(Pat t eout), a
value of typet, to match with the pattern, and an input variable of
typeEnv ein. If pattern matching succeeds, the function returns a



value(Just env), beingenv the extended environment (with type
Env eapp eout ein), ande1 is evaluated in this environment. If
matching fails, aNothing value is returned, ande2 is evaluated in
the current context.

For example, ifi is passed when evaluating the pattern(PLInt
i), the same environment passed as argument is returned. On the
other hand, evaluating(PVar t) never fails, just returning the
current environment extended with the value passed.

evalPat :: (Pat t eout) -> t -> Env ein
-> Maybe (Env {eapp eout ein})

evalPat (PLInt i) v env = if (i==v)
then (Just env)
else Nothing

...
evalPat (PPair p1 p2) (v1,v2) env

= case (evalPat p1 v1 env) of
Just env1 -> evalPat p2 v2 env1
Nothing -> Nothing

evalPat (PVar t) v env = Just (EnvCons v env)
evalPat PAny v env = Just env
evalPat (PCod p) v env = evalCPat p v env

In the case of(PPair p1 p2), the patternp1 is evaluated ex-
tending the current environment and thenp2 is evaluated extending
the environment returned byp1.

The code patterns are evaluated by the functionevalCPat.

evalCPat :: (PatCod f eout) -> (Cod f) -> Env ein
-> Maybe (Env {eapp eout ein})

evalCPat (PCPVar t) e env
= case e of

Q v renv ->
case (eqType (getType v) t) of

Just Eq -> Just (EnvCons e env)
Nothing -> Nothing

_ -> Nothing
evalCPat PCPAny e env = Just env
evalCPat PCPFail e env

= case e of
F renv -> Just env
Q eq renv -> Nothing

evalCPat (PCLit t) e env
= case e of

Q (ELInt i) renv ->
case (eqType Int t) of

Just Eq -> Just (EnvCons e env)
Nothing -> Nothing

Q (ELBool b) renv ->
case (eqType Bool t) of

Just Eq -> Just (EnvCons e env)
Nothing -> Nothing

_ -> Nothing
evalCPat (PCLInt i) e env

= case e of
Q (ELInt v) renv -> if (i==v)

then (Just env)
else Nothing

_ -> Nothing
...
evalCPat (PCPair p1 p2) e env

= case e of

Q (EPair v1 v2) renv ->
case (evalCPat p1

(eval (EBr v1 renv) env) env) of
Just env1 -> evalCPat p2

(eval (EBr v2 renv) env) env1
Nothing -> Nothing

_ -> Nothing
...
evalCPat (PCAbs tx pb) e env

= case e of
Q (EAbs tvx vb) renv ->

case (eqType tvx tx) of
Just Eq -> evalCPat pb

(eval (EBr vb
(REnvCons tvx renv)) env) env

Nothing -> Nothing
_ -> Nothing

...
evalCPat (PCVar v t) e env

= case e of
Q (EVar vv vt) renv ->

case (eqType t vt) of
Just Eq -> if (eqVar v vv)

then Just env
else Nothing

Nothing -> Nothing
_ -> Nothing

...
evalCPat (PCBr r) e env

= case e of
Q (EBr ve renv2) renv ->

case (eqType (Cod r) (Cod renv2)) of
Just Eq -> Just env
Nothing -> Nothing

_ -> Nothing
...
evalCPat (PCSubst p s) e env

= case e of
Q (ESubst ve vs) renv ->

if (eqSubst s vs)
then (evalCPat p

(eval (EBr ve renv) env) env)
else Nothing

_ -> Nothing

Consider the case of(PCAbs tx pb). If the value passed is
a code(Q (EAbs tvx vb) renv) and tx represents the same
type thantvx, the code patternpb is evaluated to match with a
quotation ofvb with contextrenv extended bytvx ((REnvCons
tvx renv)).

4.4 Soundness

The soundness of a type system with respect to the semantics means
that, if a term is well-typed, then its evaluation either returns a value
of same type or gives rise to an infinite reduction sequence. In other
words, well-typed terms never go wrong. To prove soundness, sub-
ject reduction and progress must be proved. The former property
means that reduction preserves typing while the latter means that
programs which are well-typed are either values or can be further
reduced (evaluation never gets stuck).

According to the type of the evaluation function,Exp p n t
-> Env n -> t, the evaluation of any expressione satisfying the
type judgmentP ; Γ ` e : τ yields, if it terminates, a value of type
τ . This means that subject reduction is automatically ensured by
Ωmega’s type system.



Concerning progress, observe that every well-typed term of the
language always matches one of the clauses ofeval. Therefore, if
the term is not a value, there is a reduction rule that is applicable to
it.

5. Related Work
Our language is based on multi-stage languages like MetaML [23,
24, 27, 10, 26] and MetaOCaml [25, 4], with the incorporation
of features presented in languages like Template Haskell [20],
reFLect [8, 9] andν¤ [11, 12, 13] with the aim of supporting
intensional analysis in a flexible way.

Typing MetaML and MetaOCaml have static type checking, as-
sociating a typecode ofτ to the quotation of an expression of type
τ . On the other hand, languages like Template Haskell,reFLect

and the one proposed in [22] associate a universal typecode to
all quotations. As a consequence, these languages need to perform
a dynamic type-checking for generated code, excepting for Tem-
plate Haskell which performs compile-time code generation. Our
language follows the approach of [22]. We perform dynamic type-
checking for generated code, avoiding run-time errors by the inclu-
sion of an exception expression in therun construct.

In our language quoted open expressions are represented by
annotating the typecodewith a type context, containing the types
of the free variables. These variables can be captured by an explicit
substitution mechanism provided by the language. This approach is
similar to that ofν¤, which uses names to represent free variables
in quoted expressions.

Intensional Analysis Neither MetaML nor MetaOCaml are pro-
posed as code analyzers, they focus on code generation and its op-
timization. Taha [23, 24] argued that by introducingβ reduction at
higher levels and code inspection the property of coherence is vi-
olated. Therefore there exists many optimizations that can only be
applied to code at stage 0. Moreover, cross-stage persistence, one
of the most distinguishing features of these languages, can not be
present as well.

In Template Haskell code is represented by an algebraic data
type, allowing its inspection. In contrast, our language uses a high-
level pattern matching interface to intensional analysis, in the line
of ν¤ andreFLect. In ν¤ pattern matching is only defined over
the simply typedλ-calculus fragment of the language. Our pattern
matching mechanism is similar to the one proposed inreFLect.

Ωmega for language design The use ofΩmega for develop-
ing the semantics of our language is inspired in the encoding of
MetaML done by Sheard in [19].

6. Conclusions
In this paper we presented an homogeneous functional multi-stage
language with support for intensional analysis. A pattern matching
mechanism was defined as a high-level interface to perform code
inspection. The type of quoted expressions reflects the free vari-
ables of the expression but not its type, which is inferred at run-
time. Although ill-typed quoted expressions can be generated at
run-time only well-typed generated code can be evaluated byrun.
An explicit substitution operator over quoted expressions was in-
cluded too.

The proposed language may seem impractical due to its type
annotations. However, like in [8] and [22], a type annotation al-
gorithm from implicitly typed terms to annotated terms could be
defined to avoid this. This algorithm would be essentially an exten-
sion of the Hindley-Milner type inference algorithm.

Static and Dynamic Semantics were represented inΩmega by
encoding the typing judgments as GADTs and defining a big-step

semantics written as an evaluation function, respectively. Since the
evaluation function has a case defined for any well-typed term, the
Ωmega implementation of the semantics showed that the evaluation
of well-typed terms doesn’t go wrong.
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