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1. movilidad urbana, 2. ciudades inteligentes,

3. sistemas inteligentes de transporte, 4. análisis de datos

urbanos, 5. matriz origen-destino. I. Nesmachnow,

Sergio, . II. Universidad de la República, Programa de
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ABSTRACT

Transportation systems play a major role in modern urban contexts, where

citizens are expected to travel in order to engage in social and economic ac-

tivities. Understanding the interaction between citizens and transportation

systems is crucial for policy-makers that aim to improve mobility in a city.

Within the novel paradigm of smart cities, modern urban transportation sys-

tems incorporate technologies that generate huge volumes of data in real time,

which can be processed to extract valuable information about the mobility of

citizens.

This thesis studies the public transportation system of Montevideo,

Uruguay, following an urban data analysis approach. A thorough analysis

of the transportation system and its usage is outlined, which combines several

sources of urban data. The analyzed data includes the location of each bus of

the transportation system as well as every ticket sold using smart cards during

2015, accounting for over 150 GB of raw data. Furthermore, origin-destination

matrices, which describe mobility patterns in the city, are generated by pro-

cessing geolocalized bus ticket sales data. For this purpose, a destination

estimation algorithm is implemented following methodologies from the related

literature. The computed results are compared to the findings of a recent

mobility survey, where the proposed approach arises as a viable alternative

to obtain up-to-date mobility information. Finally, a visualization web appli-

cation is presented, which allows conveying the aggregated information in an

intuitive way to stakeholders.

Keywords:

urban mobility, smart cities, intelligent transportation systems, urban

data analysis, origin-destination matrix.
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Chapter 1

Introduction

Since 1950 populations have been steadily shifting from rural to urban resi-

dencies, in a worldwide process known as urbanization (Camagni et al., 2002).

Among the multiple challenges that emerge due to this intense and on-going

urban expansion process, mobility of citizens constitutes a central issue in mod-

ern cities (Cardozo and Rey, 2007). The geographical organization of urban

scenarios demands citizens to travel in order to engage in social and economic

activities. In this context, public transportation systems play a major role in

urban mobility, as they represent the most efficient, sustainable, and socially

fair mode of transportation (Grava, 2000). Therefore, understanding the in-

teraction between citizens and public transportation systems is paramount in

order to design and implement policies that aim at improving mobility in a

city.

Urbanization has taken place along with an increasing incorporation of

information and communication technologies in the infrastructure of cities.

Modern smart cities take advantage of technology to improve urban ser-

vices (Deakin and Waer, 2011). Urban traffic and transportation systems are

generally addressed under the paradigm of smart cities, in what is referred to

as smart mobility (Benevolo et al., 2016). Related to this concept are Intelli-

gent Transportation Systems (ITS), which make use of technology to develop

and enhance transportation. In addition to improving mobility in cities, ITS

allow collecting large volumes of urban data (Figueiredo et al., 2001). Large

repositories of data offer a unique opportunity to gain valuable insights into

the mobility of citizens. In this context, urban data analysis arises as a tool to

extract meaningful information from raw urban data to help decision-making
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processes in cities.

Understanding the dynamics of mobility within a city is crucial to improve

transportation systems. Mobility is described through Origin-Destination

(OD) matrices, which indicate the number of passengers moving between rel-

evant locations in a city. Traditionally, OD matrices are generated based on

surveys or manual passenger counts. However, these methods are very expen-

sive to be carried out regularly, so they offer a partial and outdated view of

the mobility patterns in a city (Ortúzar et al., 2011). ITS usually incorporate

technology to locate vehicles and to simplify the process of paying for tickets in

public transportation systems. Thus, data from these sources can be processed

to generate OD matrices. As will be outlined throughout this thesis, the main

challenge of this approach resides in accurately estimating the destination of

trips, since most ITS do not require any action from passengers alighting the

bus.

In 2010 an urban mobility plan was implemented in Montevideo, Uruguay,

with the goal of restructuring and modernizing public transportation (Abreu

and Vespa, 2010). Under this plan, public transportation in the city was

integrated into a unified system named Sistema de Transporte Metropolitano

(STM), which incorporates many of the characteristics common to ITS. Buses

in STM were equipped with on-board GPS units and ticket selling machines

operated with smart cards. These devices represent new sources of urban

data, which have a huge potential to help authorities understand mobility in

Montevideo.

The main goal of the research reported in this thesis is to take advantage of

ITS data in order to characterize mobility patterns of citizens in Montevideo,

Uruguay, following an urban data analysis approach. The main contributions

of this work are:

1. A thorough review of the related works regarding urban mobility, specif-

ically, on OD matrix generation using ITS data.

2. An urban data analysis of the use of the public transportation system of

Montevideo, Uruguay.

3. An algorithm that estimates destinations of trips and generates OD ma-

trices using ticket sales transactions and bus location data.

2



4. Estimated OD matrices for the public transportation system of Monte-

video and their validation against a household mobility survey.

5. A visualization tool to interactively present the computed OD matrices

to stakeholders in an intuitive fashion.

The work reported in this thesis resulted in several publications, which

address topics included in this manuscript and other related lines of work. A

list of these publications, along with a brief description, is presented next.

• Massobrio et al. (2016) presented a framework to assess the Quality of

Service (QoS) offered to citizens by a transportation system. A data

analysis approach was implemented to compute interesting QoS metrics,

such as punctuality of buses, and the case study of Montevideo was

addressed.

• Massobrio and Nesmachnow (2016) was a divulgation article presented

at a conference held at Intendencia de Montevideo (IM). Partial results

from the data analysis process reported in this thesis were included in

this article and presented to the transportation authorities of IM during

this event.

• Nesmachnow et al. (2017) presented a data analysis that combined mo-

bility data with socioeconomic data. The case study of Montevideo was

presented and QoS metrics were compared between areas of the city with

different socioeconomic characteristics.

• Fabbiani et al. (2017) introduced a master-slave parallel model to com-

pute OD matrices using ITS data. The model was evaluated using data

from STM and the distributed approach allowed significantly reducing

the execution times.

• Massobrio et al. (2018) proposed a cloud framework for processing large

volumes of urban data. A MapReduce model implemented using the

Hadoop framework was proposed and evaluated over a set of case studies

based on data from STM.

Additionally, during the research phase of this thesis, a collaboration with

a research group at Centro de Investigación Cient́ıfica y de Educación Superior

de Ensenada in Mexico was established. The results from the data analysis

process reported in this thesis were used to address bus fleet scheduling and

timetable synchronization problems. This collaboration led to a series of co-

authored articles on the topic (Peña et al., 2016, 2017a,b, 2018).

3



The remainder of this thesis is structured as follows. Chapter 2 reviews the

main concepts related to urban mobility, smart cities, and ITS; which comprise

the theoretical framework of the research. Additionally, urban data analysis

is presented as an approach to gain insight from data available in the context

of smart cities. Then, Chapter 3 reviews the literature related to urban data

analysis and to the problem of generating OD matrices that describe mobility

using ITS data. The trip chaining methodology is thoroughly reviewed, since

it provides the foundation for the destination estimation algorithm used in this

thesis. Afterwards, Chapter 4 presents a study of the transportation system

of Montevideo, Uruguay, following an urban data analysis approach. Firstly,

the city and the STM transportation system are described. Then, the specific

details of the urban data analysis process are outlined. Finally, the results of

the analysis of urban data from the STM system in Montevideo are presented

through several visualizations and discussed in detail. Later, Chapter 5 out-

lines the OD matrix estimation process using sales and vehicle location data

from STM. The implementation details of the destination estimation algorithm

and the OD matrix generation process are presented, and the obtained results

are outlined and compared against a household mobility survey. Additionally,

an interactive visualization tool is presented, which allows conveying mobility

in the city in an intuitive way to stakeholders. Finally, Chapter 6 states the

conclusions of the research reported in this thesis and presents the main lines

of future work.
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Chapter 2

Urban mobility in smart cities

This chapter reviews the main concepts related to the subject of this thesis.

Section 2.1 introduces mobility as one of the key issues in urbanized geo-

graphic areas. Then, Section 2.2 presents the paradigm of smart cities and

ITS as means to address mobility issues in modern cities. Finally, Section 2.3

introduces urban data analysis as an approach to gain valuable information

from data available in smart cities.

2.1 Urban mobility

According to United Nations (2018), nowadays more people live in urban rather

than rural areas. In 1950, an estimated 30% of the world population lived in

towns or cities. Current indicators state that 55% of the population is ur-

banized, and projections suggest that this trend will continue, reaching an

estimated 68% by 2050. The effect of rapid urban expansion has been thor-

oughly studied (Camagni et al., 2002). In this intense urbanization process,

successful management of urban growth becomes crucial to ensure sustainable

development at economic, social, and environmental levels.

The geographical organization of urban scenarios, along with the complex-

ity of the activities developed in modern cities, impose serious challenges to the

mobility of citizens (Cardozo and Rey, 2007). Facing these challenges requires

user-centered policies and regulations that strive for social and spatial justice

of citizens (Harvey, 1992). In this context, urban transportation systems play

a major role in modern cities (Grava, 2000). The main mobility problems in

urban scenarios are related to the inability of transportation systems to satisfy
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the needs of a growing number of users.

Understanding the dynamics of mobility within a city is crucial to identify

problematic situations related to the daily operation and long-term planning

of transportation systems. Mobility is usually described using OD matrices,

which indicate the amount of trips between relevant locations in a city. A trip

is defined as a movement from a location of origin to a location of destina-

tion (Ortúzar and Willumsen, 2011). Each trip can have multiple segments,

if a passenger makes intermediate stops and transfers between vehicles in or-

der to get to their final destination. Thus, when building OD matrices, the

destination of a trip is considered as the final destination of the sequence of

segments, where a passenger is assumed to go to perform an activity. Dif-

ferent divisions for the city can be used to analyze mobility at a finer (e.g.,

specific locations) or coarser grain (e.g., zones). Additionally, OD matrices can

be built for specific periods of time to characterize mobility in different days

(e.g., working days vs. weekends) or times of the day (e.g., peak vs. non-peak

hours).

Traditionally, OD matrices are generated using information from mobility

surveys. Ortúzar et al. (2011) reviewed survey methodologies implemented in

different cities and emphasized on the importance of collecting mobility data

on a continuous basis. Unless performed regularly, surveys offer a partial and

outdated view of the mobility patterns of citizens. Additionally, in large cities,

where mobility analysis requires detailed zonification and time disaggregation,

surveys demand very large sample sizes to compute results with statistical

significance. As a consequence, surveys are usually a very expensive mean

to characterize urban mobility. Therefore, mobility data repositories in many

cities, especially in under-developed countries, are scarce and outdated, due

to the lack of human and economic resources to perform large surveys. Tak-

ing into account the aforementioned considerations, incorporating technology

to help administrations to understand the dynamics of mobility in a city is

mandatory, in order to implement solutions that improve the quality of life of

citizens.

2.2 Smart cities and ITS

The rapid trend of worldwide urbanization has occurred along with the emer-

gence of information and communication technologies. Consequently, a new
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term was coined, which describes the interaction between these two phenom-

ena: smart cities. The concept of smart cities embraces several definitions and

there is still no definitive consensus in the related literature (Cocchia, 2014;

Albino et al., 2015). Among the multiple definitions, the following proposed

by Barrionuevo et al. (2012) stands as the most comprehensive one:

“Being a smart city means using all available technology and re-

sources in an intelligent and coordinated manner to develop urban

centers that are at once integrated, habitable and sustainable.”

In essence, the paradigm of smart cities proposes taking advantage of infor-

mation and communication technologies to improve the quality and efficiency

of urban services (Deakin and Waer, 2011). Several fields, including pub-

lic administration, education, health services, public safety, housing, energy,

transportation, and logistics, can be improved, interconnected and become

more efficient under this paradigm (Washburn and Sindhu, 2009). Modern

cities are increasingly becoming sensed and instrumented. The embedding of

smart devices into traditional physical systems deployed on cities, together

with the emergence of citizen sensors such as mobile phones or Internet of

Things (IoT) enabled domestic appliances, currently generate vast volumes of

data that present unprecedented opportunities as well as challenges. Extract-

ing insights from the gathered datasets is crucial to improve decision-making

processes in cities as well as to achieve quality improvements and increase the

efficiency of public services. One of the most addressed areas within the smart

cities paradigm is urban mobility. In fact, initiatives aiming at improving

transportation and mobility in smart cities are encompassed in the concept of

smart mobility (Benevolo et al., 2016).

Related to the topic of smart mobility are ITS. ITS integrate synergistic

technologies, computational intelligence, and engineering concepts to develop

and improve transportation. ITS are aimed at providing innovative services

for transportation and traffic management, with the main goals of improving

transportation safety and mobility, while also enhancing productivity (Suss-

man, 2008). ITS allow gathering large volumes of data by taking advantage

of different sensors and devices present in modern vehicles and infrastruc-

ture (e.g., passenger counters, GPS devices, video cameras, ticket vending

machines) (Figueiredo et al., 2001). Some of the more widely available tech-

nologies in urban transportation systems, which are the source of the data that

7



drives the analysis presented in Chapter 4, are described next.

Automatic Vehicle Location (AVL) systems are a mean for automatically

determining and communicating the geographic location of a moving vehi-

cle (Zhao, 1997). The transmitted locations of a fleet of vehicles can be col-

lected at a central server to overview and control the group of vehicles. Due

to its widespread availability, low cost, and precision, the most common tech-

nology to determine the location of vehicles in AVL is GPS. However, for

areas where GPS coverage is poor, this technology is often applied in com-

bination with other methods such as Inertial Navigation Systems (INS) and

active Radio-frequency identification (RFID). INS are systems that combine

motion and rotation sensors (e.g., accelerometers, gyroscopes) to compute lo-

cation using dead reckoning. Dead reckoning is the process of estimating the

current position of a given object based on a known previous location and its

estimated velocity and direction. AVL technology is frequently incorporated

in ITS and constitutes a rich source of data, as it can help to monitor and

control the QoS provided by the transportation system to users.

Most ITS incorporate technology to simplify the process of paying for tick-

ets or fares. Automated Fare Collection (AFC) systems are the stack of com-

ponents that automate the ticketing system of a public transportation net-

work (Blythe, 2004). With some variations, most AFC systems are comprised

of fare media, devices to read/write on to these media, communication tech-

nologies, and back office systems. Regarding fare media, contactless smart

cards have become the de facto technology in AFC systems. Pelletier et al.

(2011) provided a thorough literature review on the use of smart cards in public

transportation systems. The review covered the most used technologies, pri-

vacy and legal concerns related to these systems, and several applications that

use smart card data from public transportation systems. AFC systems gen-

erate highly valuable data, which can be processed to extract useful metrics

for both day-to-day operation and long-term planning of the transportation

system.

Technology has also been integrated in ITS to measure the use of vehicles

within the transportation system. Automated Passenger Counters (APCs) are

electronic devices that can be incorporated to moving vehicles to record board-

ing and alighting data (Boyle, 2008). This technology is a major improvement

over traditional manual passenger counts or surveys. Several implementations

of this concept have been proposed. The most frequently used ones are: i)
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incorporating a set of infrared lights in the doorways of vehicles in such way

that the order in which the beams are interrupted by a person moving through

the door allows determining whether they are entering or exiting the vehicle;

and ii) using CCTV cameras in combination with computer vision software to

automatically identify and count people. The data generated by these systems

allow identifying use patterns by linking boarding and alighting data with stop

or station location (Furth et al., 2006).

The development of smart tools that use data gathered by ITS infrastruc-

ture and vehicles has risen in the past years. These tools rely on efficient

and accurate data processing (even in real-time), which poses an interesting

challenge from the technological perspective. Furthermore, ITS data can be

combined with more traditional data sources, such as sociodemographic data,

that are regularly and systematically collected by government agencies. The

methodology for analyzing these sources of urban data in order to gain valuable

insights to describe and improve the life of citizens is described next.

2.3 Urban data analysis

Data analysis is the process of collecting and processing raw data to extract

meaningful information that provides supporting evidence for conclusions and

helps decision-making processes. Multiple definitions and workflows have been

proposed to describe the process of data analysis, and techniques under a

variety of names have emerged in different fields of knowledge at both academia

and industry. Figure 2.1 outlines the data science workflow proposed in Schutt

and O’Neil (2013).

The data analysis process has as both, starting and ending points, the cur-

rent reality. In urban contexts, the analysis starts with collecting raw data

from a given city and ends with communicating findings that can potentially

help stakeholders to shape the reality of that city to improve the quality of

life of its citizens. In between, the data analysis process is comprised of sev-

eral phases. Firstly, raw collected data must be processed. This phase may

include several tasks such as placing data into structures (e.g., tables), inspect-

ing datasets, and cleansing data to detect missing or inaccurate records. After

data processing, Exploratory Data Analysis (EDA), which is described next,

is performed. This phase may lead to detecting further inaccuracies in the

data and potentially requiring further cleansing. After EDA, statistical mod-
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Figure 2.1: Data analysis workflow, based on Schutt and O’Neil (2013)

els and algorithms (e.g., machine learning techniques) are applied to identify

relationships between the studied data (Judd et al., 2011). Finally, results are

interpreted and communicated, mostly using visualization techniques. When

dealing with urban data, effectively communicating results is crucial, thus, the

visualization phase is described in more depth in the following paragraphs.

In 1977, Tukey argued that the field of statistics placed too much emphasis

in hypothesis testing instead of using data to suggest which hypotheses to test

first. As an alternative Tukey introduced EDA, which constituted a major

development in statistical theory. In contrast to confirmatory data analysis,

where the goal is to build a model to test a defined hypothesis, EDA aims

at describing what data can tell beyond the formal modeling and hypothesis

testing phase. In this regard, Tukey (1977) stated the following description of

EDA:

“Exploratory data analysis is an attitude, a state of flexibility, a

willingness to look for those things that we believe are not there,

as well as those we believe to be there.”

There are multiple benefits of doing proper EDA early in the data analy-

sis process, including: gaining intuition about the data, making comparisons

between distributions and datasets, performing sanity checks to datasets to
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find missing and inaccurate data, and summarizing large sets of data. Since

urban data tends to come from a variety of diverse and dynamic sources, EDA

becomes mandatory for urban data analysis.

EDA makes an intensive use of data visualization. The main goal of data

visualization is to efficiently display measured quantities through graphics. As

defined by Tufte (1986), in one of the seminal books on visualization, “At their

best, graphics are instruments for reasoning about quantitative information”.

Traditionally, data visualization techniques were mainly dominated by charts

and diagrams comprised of numerical data. However, areas such as urban data

analysis, which demand combining quantitative and qualitative data, require

more advanced means of visualizing results for effective communication. Since

urban data usually has a prevalence of geographic components, urban data

visualization combines classic statistical graphics with Geographic Information

Systems (GIS).

As a final remark, when performing urban data analysis, several sources

of data may be considered. Public entities are among the largest collectors of

data (Janssen, 2011). Thus, the willingness of public administrators to open

up government data is crucial. Open data is defined as non-confidential data

which is made available without restrictions of use or distribution. Several

benefits associated with open data have been identified, including a higher

return of investment from publicly-funded data, economic growth through

stimulation of innovation, and a greater involvement of citizens with their

communities (Janssen et al., 2012). Additionally, open data allows citizens to

audit public organizations in a more transparent and democratic way, improv-

ing their trust in public authorities. In spite of all these benefits, convincing

stakeholders to open data is far from trivial. Huijboom and Van den Broek

(2011) presented a comparison of open data initiatives in multiple countries

and identify the main barriers and challenges for effective open data policy.

Overall, the success of open data initiatives heavily relies on citizens properly

using available data to generate innovative products that benefit communities,

in order to convince authorities to continue opening data. In this regard, the

work presented in this thesis intends to contribute with a small step in that

direction.
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Chapter 3

Related Work

This chapter presents the review of the related literature. Section 3.1 reviews

works related to data analysis applied to understand and improve urban mo-

bility. Then, Section 3.2 specifically reviews works that address the problem

of generating OD matrices. Later, Section 3.3 outlines the household mobility

survey carried out in Montevideo in 2016, which is used to compare and con-

trast the results arising from the urban data analysis process and from the OD

matrix estimation algorithm. Finally, Section 3.4 summarizes the literature

review and presents some conclusions of the analysis of related works.

3.1 Urban mobility data analysis

The advantages of using data analysis for social transportation have been stud-

ied in a thorough manner in the general review of the field developed by Zheng

et al. (2016). The authors discussed the use of several sources of information,

including vehicle mobility (e.g., GPS coordinates, speed data), pedestrian mo-

bility (e.g., GPS and WiFi signals from mobile devices), incident reports, social

networking (e.g., textual posts, user location), and web logs (e.g., user iden-

tification, comments). In the review, the advantages and limitations of using

each source of data were discussed. Several other novel ideas to improve public

transportation and implement the ITS paradigm were also reviewed, includ-

ing applying crowdsourcing techniques for collecting and analyzing real-time

or near real-time traffic information, and using data-based agents for driver

assistance and human behavior analysis. Finally, a data-driven social trans-

portation system that integrates all the previous concepts and improves traffic
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safety and efficiency was proposed.

Several proposals that combine computational intelligence techniques with

urban data analysis have been recently applied to process ITS data in order

to help decision-making processes in smart cities.

Chen et al. (2014) proposed a model that aims at efficiently predicting

traffic speed on a given location using historical data from various sources

including ITS data, weather conditions, and special events taking place in a

city. To obtain accurate results, the prediction model needs to be re-trained

frequently in order to incorporate up-to-date data. The proposed prediction

model combines the k nearest neighbors (kNN) algorithm with a Gaussian Pro-

cess Regression. Additionally, the results are computed using a Map-Reduce

model, implemented under the Hadoop framework. The experimental evalu-

ation was performed over a real scenario using data from Research Data Ex-

change, a platform for ITS data sharing (www.its-rde.net). The data used

corresponded to the Interstate 5 Highway in San Diego, California, United

States, and included speed, flow, and occupancy data measured using loop-

detectors on the road, as well as visibility data taken from weather stations

nearby. Experimental results showed that the proposed method was able to

accurately predict traffic speed with an average forecasting error smaller than

2 miles per hour. Additionally, a 69% improvement on the execution time was

achieved by using the Hadoop framework executing in a cluster infrastructure

when compared with a sequential algorithm executing in a single machine.

Shi and Abdel-Aty (2015) applied the random forest data mining technique

and Bayesian inference to process large volumes of data from a microwave ve-

hicle detection system, with the main goal of identifying in real-time the con-

tributing factors to crashes. Rear-end crashes were studied because they have

a straightforward relation with congestion. The experimental evaluation of

the proposed computational intelligence approach was performed considering

traffic data from State Routes 408, 417, and 528 in Central Florida, United

States. A reliability model was also included in the analysis. The main results

allowed the authors to conclude that peak hour, higher volume and lower speed

at upstream locations, and high congestion indices at downstream detection

points significantly increased the probability of crashes.

Ahn et al. (2016) applied Support Vector Regression (SVR) and a Bayesian

classifier for building a real-time traffic flow prediction system. Data prepa-

ration and noise filtering were applied to raw data, and a traffic flow model
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was proposed using a Bayesian framework. Regression techniques were used to

model the time-space dependencies and relationships between roads. The per-

formance of the proposed method was studied on traffic data from Gyeongbu,

the Seoul-Busan corridor in South Korea. The experimental results showed

that the approach using SVR-based estimation outperformed traditional lin-

ear regression methods in terms of accuracy.

Xia et al. (2016) studied the real-time short-term traffic flow forecasting

problem. To solve the problem, the kNN algorithm was applied in a distributed

environment, following the Map-Reduce model using the Hadoop framework.

The proposed solution considered the spatial-temporal correlation in traffic

flow, i.e., current traffic at a certain road segment depends on past traffic

(time dimension) and on the traffic situation at nearby road segments (spatial

dimension). These two factors can be controlled using weights in the proposed

algorithm. The experimental analysis was performed using data of trajectories

obtained from more than 12000 GPS-equipped taxis in the city of Beijing,

China, during a period of 15 days in November 2012. The first 14 days of

data were used as the training set and the last day was used for evaluating the

computed results. The proposed algorithm allowed reducing the mean absolute

percentage error by up to 11.5% over three existing techniques based on the

kNN algorithm. Additionally, the proposed solution achieved a computational

efficiency of 0.84 in the best case.

Effectively analyzing urban datasets is complex since data usually contain

both geographical and temporal components, in addition to multiple variables

associated to the specific source. Ferreira et al. (2013) developed a software

tool for visual exploration of large datasets of urban data. The developed

tool allows data scientists to dynamically explore data variation in space and

time, analyze specific events at a given time, and identify patterns across

different regions of a city. In order to enhance usability, the software allows

specifying the parameters of the data query visually, by setting spatial and

temporal constraints interactively over a graphic user interface with a map of

the studied area. The capabilities of the developed solution were demonstrated

by performing different analysis over a large set of taxi trajectories from New

York.

More related to the data analysis research included in this thesis, many

works have studied urban mobility using smart card data from AFC in public

transportation systems.
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Bagchi and White (2005) discussed the role of smart card data for travel

behavior analysis. Two datasets from the transportation systems of South-

port, Merseyside and Bradford in England were used, which accounted for

nearly 3500 cardholders. The authors performed a simple study focused on

the average number of trips and transfers made by passengers. Additionally,

the turnover rates were analyzed, to identify the number of active users in the

system. The research concluded that smart card data allow obtaining much

larger samples than surveys to characterize transportation systems. However,

certain information (e.g., purpose of traveling) cannot be inferred from these

data. Thus, the authors conclude that smart card transactions are not an al-

ternative to traditional data collection methods, but a useful complementary

source of data.

Utsunomiya et al. (2006) studied access and usage patterns of passengers

in the transportation system of Chicago, US. Firstly, the authors discussed

the analysis that can be performed using smart card sign-ups and transactions

data, identifying the major issues encountered as well as general recommen-

dations. The potential uses for smart card data were classified in several

categories, including service planning, demand forecasting, pricing and fare

policy definition, and market research. A dataset corresponding to seven days

of recorded transactions was studied to analyze walking access distances, fre-

quency of daily travel patterns, and passenger behavior by residential area.

During the data analysis, the more frequent errors were due to missing trans-

actions and incorrect bus route identification. In order to deal with these

inconsistencies, the authors proposed combining smart card data with passen-

ger counts and vehicle location from APC and AVL systems.

3.2 OD matrices generation

The estimation of OD matrices is a well-known problem in the field of pub-

lic transportation. This problem has had a renewed interest with the in-

creasing availability of large volumes of data from modern ITS systems and

other sources. Several works have proposed generating OD matrices for urban

transportation systems using a variety of data sources. Some authors have

used APC systems to estimate OD flows from detailed boarding and alight-

ing counts (Furth et al., 2006; Lu, 2008). However, since entering and exiting

data cannot be assigned to individual passengers, most of the proposed mod-
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els require some previously-computed OD matrix as a baseline, which is then

expanded using the passenger count data. Other approaches use Call Detail

Record (CDR) data from mobile phones. This is an extended method applied

to building OD matrices for general road transit analysis (i.e., considering all

modes of transportation). However, in order to limit the analysis to pub-

lic transportation systems, it is necessary to either infer the transportation

mode (Wang et al., 2010; Doyle et al., 2011) or combine CDR with data from

ITS (Anda et al., 2017). Other works have proposed using Bluetooth antennas

to detect when mobile devices enter and exit vehicles (Kostakos et al., 2010).

This information, combined with data from AVL systems, can be used to esti-

mate OD matrices. However, antennas must be installed on vehicles to detect

on-board devices, requring an initial investment to deploy the necessary in-

frastructure. Furthermore, noise from mobile devices outside the vehicles must

be filtered for accurate passenger sensing. Filtering external signals is not a

simple task and small false-positive passenger counts can rapidly accumulate,

impacting on the overall accuracy of the estimated OD matrices.

Despite the variety of sources that have been used to estimate OD matrices

in urban transportation systems, the majority of the literature focuses on

methods that involve using smart card data arising from AFC systems. Since

this is the approach followed in this thesis, a review of the main related works

regarding OD matrix generation using smart card data is presented next.

An analysis of the literature about using smart cards in ITS was presented

by Pelletier et al. (2011). The review covered all the details about hardware

and software needed for deploying smart card payment solutions in urban

transportation systems. In addition, privacy and legal issues that arise when

dealing with smart card data were also reviewed. Several examples of using

smart card data to improve transportation systems were described. The stud-

ied use cases were grouped in three categories: strategic level, tactical level,

and operational level. The strategic level refers to long-term planning of the

transportation networks. The reviewed examples in this category focus on

understanding user behavior through data analysis, as an alternative to tradi-

tional methods. On the tactical level, most of the revised work focus on taking

advantage of the estimated mobility patterns to optimize vehicle schedules to

improve the QoS offered to passengers. Finally, on the operational level, most

works focus on auditing the transportation system by checking for timetable

adherence, fare evasion, and employee mistakes.
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Most AFC systems require that passengers validate their smart cards when

boarding but not when alighting the bus. Thus, the origin of a trip can be

accurately determined but the destination must be inferred. Li et al. (2018)

presented an up-to-date survey of the literature related to destination estima-

tion techniques for OD matrix generation using smart card data. The survey

reviewed 20 articles after an initial selection of 984 published papers accessed

through different databases. Three models for estimating destination based

on smart card data were identified in the reviewed works: the trip chaining

model, the probability model, and the deep learning model. The trip chain-

ing model, which is the one applied in this thesis, is discussed in depth in

the remainder of this section. The probability model computes the alighting

probability based on the traveled distance and the number of passengers on

board. The main disadvantage of this model is that it infers the total number

of passengers boarding and alighting at each bus stop, as opposed to the trip

chaining method which can analyze boarding and alighting of each specific

passenger. The third model, based on deep learning, requires both boarding

and alighting data for training, which makes it more suitable to railway or

subway transportation systems where passengers are required to validate their

smart cards both to enter and exit stations. The most relevant works on OD

estimation based on the trip chaining method are reviewed next.

The trip chaining model for destination estimation was originally proposed

by Barry et al. (2002). The model proposes inferring destinations by looking

at the history of trips of each cardholder. Two hypotheses are considered: i)

the origin of a new trip is the destination of the previous one; and ii) at the

end of the day, users return to the origin of their first trip of the day. The

authors considered data from a travel survey to backup the validity of both

assumptions. The proposed model was applied to the subway system of New

York, where nearly 80% of riders use smart cards. The computed OD matrix

was validated using station exit counts at different times of the day and using

peak load passenger volume data and a trip assignment model. The authors

estimated that 90% of destinations can be accurately inferred for a 78% share

of the total number of subway users.

Trépanier et al. (2007) proposed using the trip chaining model for estimat-

ing the destination for passengers boarding buses with smart cards, follow-

ing a database programming approach. Based on the same two assumptions

than Barry et al. (2002), the proposed approach follows the chain of trips of
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each user in the system. Those trips for which chaining is not possible (e.g.,

only one trip in the day exists for a particular user) are compared with all

other trips of the month for the same user, in order to find similar trips with

known destination. The experimental evaluation was conducted using real in-

formation from the transit authority in Gatineau, Quebec. Two datasets were

used, with 378,260 trips from July 2003 and 771,239 trips from October 2003.

Results showed that the destination estimation was accurate for 66% of the

trips. Most of the trips for which destination could not be estimated with the

proposed approach took place during off-peak hours, where more atypical and

non-regular trips are performed. Considering only peak hours, the percentage

of trips with their destination estimated improved to 80%. However, the real

estimation accuracy could not be assessed due to the lack of a second source

of data (e.g., surveys, APC) for comparison.

Farzin (2008) applied the trip chaining method to data from the AVL and

AFC infrastructures of the transportation system in São Paulo, Brazil. Farzin

faced an additional challenge: the AVL and AFC systems studied were in-

dependent, thus, the location of each transaction was not directly recorded.

Consequently, an additional step in the trip chaining algorithm was required

to search for the most recent record in the AVL for each transaction, in order

to find the corresponding bus stop of each ticket sale. The studied dataset

accounted for only 8% of the total bus trips in the city, since it was mostly

concentrated in one particular area. The computed results were compared to

the findings of a household survey and the proposed approach arose as a viable

alternative to understand mobility in the city. However, the household survey

was performed 11 years before the comparison, so the conclusions are, at least,

questionable.

Later, Wang et al. (2011) proposed using the trip chaining method to infer

bus passenger origin-destination from smart card transactions and AVL data

from London, United Kingdom. Origins were accurately determined by search-

ing for the timestamp of each smart card transaction in the AVL records to

assign each transaction to a bus stop. To estimate destinations, the authors

used a similar methodology to the one presented by Trépanier et al. (2007),

chaining trips when possible to infer destinations. Results were compared

against the passenger intercept survey of Transport for London, which is per-

formed every five to seven years for each bus route and includes the number of

people boarding and alighting at each bus stop (Transport for London, 2018).
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The analysis showed that destinations could be estimated for nearly 57% of

all trips. When compared to the survey, the difference on the estimated desti-

nations were below 4% on the worst case. Finally, two practical applications

of the results were presented. The first one consisted of studying the daily

load/flow variation in order to identify locations along each bus route where

passenger load is particularly high, as well as underutilized route segments.

The second application consisted of a transfer time analysis, evaluating the

average time that users need to wait for transferring between buses, based on

the alighting stop and the AVL data.

More recently, Munizaga and Palma (2012) presented a similar approach

to the one applied by Wang et al. (2011) for estimating OD matrices in the

multimodal transportation system of Santiago, Chile. The scenario considered

by Munizaga et al. is more general than other previous works, since passengers

can use their smart cards to pay for tickets at metros, buses, and bus stations.

The proposed approach was evaluated using smart card datasets corresponding

to two different weeks, with over 35 million transactions each. The origin of the

trip was accurately determined for nearly every transaction and the destination

and time of alighting was estimated for over 80% of the transactions. After

extrapolating and post-processing, an estimated OD matrix was presented to

visualize the computed results at any given time-space disaggregation. Later,

the authors extended their work by validating the main assumptions of the

model (Munizaga et al., 2014). The estimated OD matrices were validated

using an endogenous validation (i.e., using the same data used to build the OD

matrices), comparing to a detailed OD survey with a sample size of 300,000

users, and by performing personal interviews to a small sample of passengers.

The authors concluded that the proposed model is highly reliable, accurately

estimating 84.2% of the inferred destinations.

Some of the reviewed works deal with an additional problem: origin es-

timation. This issue arises in transportation systems having AFC but not

AVL infrastructures. Most surveyed works that deal with this additional chal-

lenge are related to transportation systems present in China (Li et al., 2011;

Ma et al., 2012). In this problem variant, boarding location must be inferred

based on the timestamp of the transaction, the bus line identifier, and using

timetables. The generated OD matrices in these scenarios are less reliable,

since more assumptions need to be made (e.g., all buses are assumed to have a

synchronous clock in order to compare timestamps of transactions, drivers are
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assumed to strictly adhere to timetables). The case study addressed in this

thesis does not suffer from this problem, as it uses data from the transportation

system of Montevideo, Uruguay, which has both AVL and AFC infrastructure.

Alsger et al. (2015) proposed an interesting study to validate the key as-

sumptions of the trip chaining model. The authors used smart card data from

the transportation system of South East Queensland, Australia, which consists

of bus, train, and ferry networks that share the same AFC infrastructure. The

dataset accounted for one week of smart card transactions of 260,803 card-

holders, totaling 628,479 transactions. The peculiarity of this dataset is that

it contains both origin and destination records, since passengers are required to

validate their smart cards when boarding and alighting. Therefore, the authors

were able to study different variants of the trip chaining method and compare

the resulting OD matrices against the real data from AFC records. The study

focused on validating the following aspects of the trip chaining model: i) trans-

fer time thresholds; ii) transfer walking distances; and iii) the hypothesis that

passengers return to their first origin at the end of the day. For the first aspect,

different allowed transfer time thresholds proposed in the literature were stud-

ied. Results showed that the best estimations were achieved when considering

that consecutive trips within a 60 minutes timeframe correspond to a transfer,

which matches with the regulated allowed transfer time of the transportation

system. For the second aspect, several walking distances were considered and

the best results were computed when using 800 m as the maximum distance

a passenger is expected to walk between consecutive legs of a transfer. Both

aspects needed to be addressed since the AFC infrastructure of the studied

dataset did not record transfer activity directly. This is not the case for the

dataset used in the research reported in this thesis, which accurately indicates

whether a given transaction corresponds to a transfer or to a direct trip. Re-

garding the last aspect, results showed that for nearly 88% of the passengers

the last destination of the day was within a walkable distance of their first

origin, thus validating one of the key assumptions of the trip chaining model.

Nassir et al. (2015) used smart card data from the same transportation

system than Alsger et al. (2015) for activity detection. The authors argued

that a common assumption of the trip chaining model is that trips including

bus transfers are always considered as multi-legged trips when, in reality, some

correspond to separate trips done for specific purposes. Thus, the authors

propose an activity detection method to distinguish between “real transfers”
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(i.e., when a transfer is actually needed to reach the final destination) from

short/hidden activities (e.g., quick shopping, picking up kids from school). The

activity detection method uses vehicle schedules and optimal path calculations

to separate activities from transfers. The proposed model was evaluated using

data from a household travel survey. Results validated the proposed model and

emphasized the importance of activity detection when building OD matrices

using smart card data.

After OD matrices are estimated, several interesting metrics can be com-

puted to characterize the transportation system and the behavior of users. Re-

garding transportation systems, Trépanier et al. (2009) proposed using smart

card data to compute several metrics to assess the QoS offered to citizens.

Statistics regarding the performance of the network (e.g., operating speed,

distance per vehicle) and regarding passenger service (e.g., traveled distances,

traveled times, average trip length) were computed at multiple spatial and

temporal resolutions. Regarding behavior of users, Ma et al. (2013) proposed

using clustering algorithms to identify travel patterns regularities. By identify-

ing periodic travel patterns among users, authorities might be able to evaluate

the impact of potential changes to the transportation network, measure transit

performance, and target marketing campaigns more accurately.

Finally, some works in the literature addressed the problem of visualizing

OD matrices (Boyandin et al., 2011; Guo and Zhu, 2014). This is a problem

that arises not only when analyzing passenger flows in transportation systems,

but in many other areas which model flows of people, goods, animals, net-

work packets, etc., among different locations. The major challenges faced are

visualizing large amounts of data effectively and including temporal analysis

within the OD visualizations. To address these challenges, density estimation,

normalization, and smoothing techniques are applied to OD flows in order to

generate visually legible maps.

3.3 Mobility survey in Montevideo

In 2016, a metropolitan household survey was conducted in Montevideo,

Uruguay, to update the mobility information, which dated back to 2009. Maut-

tone and Hernández (2017) outlined the methodology used to carry out the

survey as well as the main findings. The survey aimed at characterizing the

mobility in the city, considering all modes of transportation and also com-
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prising the metropolitan area, which includes towns and villages outside of

Montevideo. Face-to-face interviews were carried out during working days

from August to October 2016 in 2230 households to 5946 individuals. Re-

garding mobility, the survey encompassed every trip done by each interviewed

individual between 4.00 a.m. on the previous day of the interview to 4.00 a.m.

on the same day of the interview. For each trip, mode of transportation, time

and place of origin and destination, and information on each leg of the trip was

recorded. Additionally, general questions about mobility habits and percep-

tions on the QoS offered by the public transportation service were inquired.

Besides mobility, the survey included several socioeconomic indicators, e.g.,

education level, employment status, income, building quality of the house-

hold. Thanks to the design of the sample in the survey, the results were later

extrapolated to represent each considered zone by applying a series of expan-

sion factors and taking into account the population of each defined zone. The

main findings of the urban data analysis described in Chapter 4 and from the

OD matrix estimation process described in Chapter 5 are compared to those

obtained from the mobility survey.

3.4 Summary

Table 3.1 summarizes the related works included in the literature review, in-

cluding a brief comment on each reviewed work.

The analysis of related works allows identifying several proposals for using

data analysis in the context of ITS to understand and improve urban mobility.

Urban data analysis combined with computational intelligence and learning

methods are often used to identify traffic patterns using a variety of data

sources and to provide useful information for planning.

Regarding OD matrices estimation, several works have addressed the prob-

lem of estimating the destination by chaining consecutive trips under certain

assumptions. This thesis expands the original trip chaining method proposed

by Barry et al. (2002) by also considering transfers between bus lines, which

are specifically recorded in the smart card dataset from Montevideo, Uruguay,

used for the evaluation. Additionally, many works that do consider transfers,

only take into account those made within the same bus stop. The trans-

fer analysis methodology reported in this thesis extends that idea, since the

transportation system in Montevideo allows transfers between any lines at any
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Table 3.1: Summary of the related works included in the literature review

Urban mobility data analysis

reference comment

Zheng et al. (2016) Reviewed the advantages of using data analysis for social transportation.
Chen et al. (2014) Predicted traffic speed using historical data from various sources.

Shi and Abdel-Aty (2015)
Processed large volumes of data from a vehicle detection system to identify the
contributing factors to crashes in real-time.

Ahn et al. (2016) Built a real-time traffic flow prediction system.
Xia et al. (2016) Studied the real-time short-term traffic flow forecasting problem.
Ferreira et al. (2013) Developed a software tool to visualize large volumes of urban data.
Bagchi and White (2005) Discussed the role of smart card data for travel behavior analysis.

Utsunomiya et al. (2006)
Studied access and usage patterns of passengers in the public transportation system
of Chicago, US.

OD matrix estimation

reference comment

Furth et al. (2006)
Lu (2008)

Estimated OD matrices using passenger counts from APC systems.

Wang et al. (2010)
Doyle et al. (2011)

Proposed using CDR data from mobile phones to build OD matrices.

Anda et al. (2017)
Argued that several data sources must be combined to accurately model mobility in
urban scenarios.

Kostakos et al. (2010) Proposed using Bluetooth antennas to detect on-board mobile devices.
Pelletier et al. (2011) Reviewed the literature on the use of smart cards in ITS.
Li et al. (2018) Reviewed the literature on using smart card data for OD matrix estimation.

Barry et al. (2002)
Proposed the trip chaining method for destination estimation and applied it to data
from the New York City subway.

Trépanier et al. (2007)
Applied trip chaining to data from Gatineau, Quebec. No comparison made due to
the unavailability of a second source of mobility data.

Farzin (2008)
Applied trip chaining in São Paulo, Brazil and compared the results to a household
mobility survey.

Wang et al. (2011)
Applied trip chaining to data from London and compared the results to a passenger
intercept mobility survey.

Munizaga and Palma (2012)
Munizaga et al. (2014)

Applied trip chaining to a multimodal transportation system in Santiago, Chile
comprised of buses and metros and validated the key assumptions of the model.

Li et al. (2011)
Ma et al. (2012)

Addressed the origin estimation problem in transportation systems with AFC but
not AVL.

Alsger et al. (2015)
Validated key assumptions of the trip chaining model using data from an AFC
system in Australia with both boarding and alighting information.

Nassir et al. (2015)
Proposed a model for identifying short/hidden activities masked as transfers in the
trip chaining method.

Trépanier et al. (2009) Used smart card data to compute statistics of the QoS offered to passengers.
Ma et al. (2013) Identified travel patterns regularities using clustering algorithms.
Boyandin et al. (2011)
Guo and Zhu (2014)

Addressed effective OD visualization in flow maps.

Mauttone and Hernández
(2017)

Outlined the methodology and main findings of the 2016 mobility survey in Monte-
video.
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bus stop. Thus, the OD matrix estimation algorithm considers trips that may

include several intermediate transfers as well as walks between bus stops to do

those transfers.

In order to compare the OD matrices generated using smart card data,

most authors use existing mobility surveys (passenger intercept and household

surveys) or passengers counts from APC systems. In this thesis, the estimated

OD matrices generated using smart card data are compared against the results

of the household mobility survey performed in 2016 (Mauttone and Hernández,

2017).

The main contribution of this thesis is to apply the existing knowledge in

the literature regarding urban data analysis and OD matrix generation to the

transportation system of Montevideo, Uruguay. In this regard, no previous

works using ITS data to understand and improve urban mobility in Montev-

ideo, Uruguay, were found in the analysis of the related literature. Therefore,

the research reported in this thesis contributes with a novel proposal to assess

the transportation system and understand mobility patterns in Montevideo,

Uruguay.
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Chapter 4

Urban data analysis in

Montevideo, Uruguay

This chapter presents a study of the transportation system of Montevideo,

Uruguay, following an urban data analysis approach. Section 4.1 introduces the

case study, describing Montevideo and its public transportation system. Then,

the urban data analysis process and implementation details are described in

Section 4.2. Finally, Section 4.3 outlines and discusses the main findings of

the analysis related to describing the use of the transportation system and

presents practical use cases for the information obtained through the data

analysis process.

4.1 Overview of the case study

This section presents an overview of the case study considered in the urban

data analysis process. Section 4.1.1 describes Montevideo, Uruguay, includ-

ing geographic, demographic, administrative, and socioeconomic information.

Then, Section 4.1.2 introduces STM, the public transportation system in Mon-

tevideo.

4.1.1 Montevideo, Uruguay

Montevideo is one of the nineteen departments in Uruguay. The capital city

of the department, also named Montevideo, is the capital city for the coun-

try as well. Due to sharing the same name, the city of Montevideo is often

confused with the department of Montevideo. For the remainder of the docu-
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ment, except when explicitly stated, Montevideo refers to the department and

not to the city, since the transportation system covers the whole department.

Located in the southernmost part of the country, Montevideo extends to an

area of only 530 km2. From an administrative point of view, Montevideo is

comprised of eight municipalities. Figure 4.1a shows a map of the municipal-

ities that comprise Montevideo, generated using data available at Servicio de

Geomática - Intendencia de Montevideo (2011). A finer-grain division, mostly

used in census and surveys, is defined by Instituto Nacional de Estad́ıstica

(INE). This division separates Montevideo into 1063 zones named census seg-

ments. Figure 4.1b shows a map of Montevideo and its division into census

segments based on data from Servicio de Geomática - Intendencia de Mon-

tevideo (2014b). Both administrative divisions are referenced throughout the

remainder of the document, as they constitute different units of analysis for

the urban data studied.

In spite of accounting for only 0.3% of the total surface of Uruguay, Mon-

tevideo has an estimated population of 1.319.108, which represents nearly

40% of the total population of the country (Instituto Nacional de Estad́ıstica,

Uruguay, 2012). The population of Montevideo is unevenly distributed over

its small area, with high population densities near the coastline bordering the

Ŕıo de la Plata estuary. Figure 4.2 shows a choropleth map of the population

density in Montevideo, according to data provided by Servicio de Geomática

- Intendencia de Montevideo (2014b).

Describing the population of Montevideo from a socioeconomic point of

view is not a simple task and is out of the scope of this thesis. However, a

broad picture of the social reality can be obtained by studying Unsatisfied Ba-

sic Needs (UBN). The UBN methodology aims at identifying the lack of goods

or services (or critical problems accessing them) which prevent citizens from

exercising their social rights. Figure 4.3 shows a choropleth map of Montev-

ideo indicating the percentage of households with UBN, as defined by Calvo

(2012). The map was generated using data available at Servicio de Geomática

- Intendencia de Montevideo (2014a). It is clear that the most vulnerable cit-

izens are located farther away from the coast and the city center, in sparsely

populated areas.
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(a) municipalities

(b) census segments

Figure 4.1: Administrative divisions of Montevideo, Uruguay
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Figure 4.2: Population density in Montevideo, Uruguay (inhabitants per ha)

Figure 4.3: Percentage of households with UBN in Montevideo, Uruguay
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4.1.2 The public transportation system

The authorities at IM proposed in 2010 an urban mobility plan with the goal of

restructuring and modernizing public transportation (Abreu and Vespa, 2010).

Within this plan, public transportation in Montevideo was integrated into a

unified system named STM, which is comprised of 1528 buses operated by four

private companies.

The bus network consists of 145 bus lines. However, each bus line usu-

ally has different variants, accounting for outward and return trips, as well as

shorter versions of the same line. The total amount of bus lines when consid-

ering each variant individually is 1383. This amount seems to be remarkably

large, especially when compared to the total number of buses available in STM.

Figure 4.4 shows the bus lines that comprise STM, on top of a road map, ac-

cording to data provided by Servicio de Geomática - Intendencia de Montevideo

(1996, 2012a). It is clearly noticeable that the city center acts as a centrality

in the bus network, with most lines converging to that area. Additionally, the

large length of certain bus lines with respect to the area of Montevideo is also

noteworthy. The average bus line length is 16.7 km (standard deviation 7.1)

and the median length is 16.4 km, with the longest line spreading over 39.6

km. Intuitively, these figures strike as remarkably large, considering that the

total area of Montevideo is 530 km2 and can be circumscribed to a rectangle

of 26×37 km. Furthermore, if only the two upper quartiles of census segments

according to their population density are considered (i.e., census segments with

a population density larger than the median), it can be stated that the most

urbanized area extends only to 75.2 km2, representing 14% of the total area of

Montevideo.

The bus network is comprised of 4718 bus stops. Figure 4.5a shows a map

with the location of bus stops, while Figure 4.5b shows a detailed view of the

bus stops located in the city center. Bus stop location data correspond to data

available from Servicio de Geomática - Intendencia de Montevideo (2012b).

The density of bus stops in the city center is noteworthy, with more than one

bus stop per block in some of the main avenues. This fact is consistent with

the previous observation about the central role that this area of the city plays

within the bus network.

With the creation of STM, fares were redefined to provide passengers with

more flexibility when traveling. Firstly, smart cards were introduced to allow
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Figure 4.4: Bus lines in STM

passengers to pay for tickets without using physical money. STM smart cards

are contact-less top-up cards which are linked to the identity of the owner (a

valid government ID or passport is required to get one). Passengers traveling

with STM cards can buy different types of tickets: regular tickets, preferen-

tial tickets (for certain bus lines with better vehicles and faster routes), local

tickets (to travel within certain areas of the city), and a city-center ticket (to

travel within the city center). Two different types of bus tickets exist which

allow bus transfers, named one-hour and two-hours tickets. One-hour tickets

allow boarding up to two buses within an hour, while two-hours tickets grant

unlimited bus transfers within a period of two hours. This fare scheme sup-

ports transfers between any bus line at any bus stop. In practice, this means

that a passenger can even make an outward and return trip in the same line,

as long as the boarding time of the second bus is within the validity period of

the ticket.

Using the STM card is straightforward: passengers indicate the type of

ticket desired to the driver and approach their smart cards to the terminal,

which prints out the corresponding ticket. For consecutive trips included in

the valid period of time of the ticket, the user simply approaches the STM

card to the terminal, which signals the validity of the ticket without printing
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(a) Montevideo

(b) Montevideo city center

Figure 4.5: Bus stops location in STM
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a new proof of purchase. Passengers do not validate their STM cards when

alighting a bus. While this is practical for passengers, it constitutes one of the

main challenges for building OD matrices, as discussed in Chapter 5. Cash

payments are also allowed for users without STM cards, however only single

trips can be purchased (i.e., no transfers are permitted). Authorities have

recently taken measures to encourage citizens to pay using STM cards, e.g.,

including a price surcharge for cash payments.

4.2 Urban data analysis process

This section describes the urban data analysis process performed with the

goal of characterizing how citizens of Montevideo use the public transporta-

tion system. The analysis followed the workflow outlined in Section 2.3. The

data analysis reported in this section focused on the interaction of passengers

and the transportation system. Additionally, some related lines of work were

explored during the research process of this thesis. The QoS offered to citi-

zens by the transportation system, according to the punctuality of buses, was

studied using bus location data. The proposed solution and the main findings

of this study are reported in Massobrio et al. (2016). Furthermore, a solution

for processing large volumes of urban data in the cloud was implemented and

is described in Massobrio et al. (2018). Finally, Nesmachnow et al. (2017)

presents an urban data analysis of the public transportation system combined

with socioeconomic data.

4.2.1 Computing infrastructure

This section describes the computing infrastructure used during the urban

data analysis process. A description of the specific software packages used for

the implementation is presented, along with the main characteristics of the

hardware platform where the analysis was performed.

Software infrastructure

The majority of the urban data analysis reported in this thesis was performed

using Python. Python is an interpreted high-level programming language that

has been gaining sustained popularity in many fields in recent years (TIOBE,
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2018). Due to the emergence of a plethora of Python libraries for data pro-

cessing, machine learning, statistical analysis, and visualization; Python has

been widely adopted by the scientific computing community (Oliphant, 2007).

A brief description of the main libraries used for data analysis in the context

of this thesis is presented next:

• NumPy, a Python library that efficiently manages numerical

data (Oliphant, 2006). NumPy is the foundational library for scientific

computing on top of which most data analysis libraries are built.

• pandas, a Python library that offers high-performance data structures

and data analysis tools (McKinney, 2010). The library provides a data

structure, named dataframe, which consists of a two-dimensional tabu-

lar with both row and column indices. This data structure combines

the high-performance capabilities offered by NumPy with a flexible data

manipulation functionality similar to that offered by spreadsheets and

relational databases.

• GeoPandas, an extension of pandas that allows working with geospatial

information (GeoPandas developers, 2013).

• Matplotlib, the most popular plotting library in Python to generate two-

dimensional visualizations (Hunter, 2007).

• Bokeh, an interactive visualization library for data applications (Bokeh

Development Team, 2018). Bokeh incorporates an optional component,

named Bokeh Server, which allows deploying interactive visualizations

as standalone applications.

• Datashader, a library for plotting large volumes of data (Bednar et al.,

2016). Datashader is designed to project entire datasets on to a two-

dimensional rectangular grid, by aggregating data into bins (e.g., pixels).

This approach allows creating effective visualizations of large datasets

without the need to sub-sample, making it ideal for EDA.

These libraries were combined into an integrated ecosystem for data anal-

ysis by using the Jupyter Notebook (Kluyver et al., 2016). The Jupyter Note-

book system provides a web-based application for interactive computing. The

system offers a web interface to create notebooks, which are documents that

combine text annotations, executable code, and outputs from computations.

In essence, notebooks contain the inputs and outputs of an interactive com-

puting session. Additionally, notebooks may incorporate accompanying text,

thus interleaving executable code, rich representations of computed results,
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and documentation. Notebooks are internally represented as JSON files, so

are suited to collaborative editing and can be version-controlled with software

such as Git. Furthermore, notebooks can be exported to several static formats

such as HTML, LATEX, and PDF. All these features make Jupyter Notebook a

very interesting tool for reproducible research (Peng, 2011).

Hardware infrastructure

Due to the large volumes of data included in the analysis, special hardware in-

frastructure was required, particularly for the OD matrix generation described

in Chapter 5. Data was processed over the cloud infrastructure at ClusterUY,

the national center of supercomputing in Uruguay (Nesmachnow, 2010). The

main goal of ClusterUY is to provide support for solving complex problems

that require large computing power. Specifically, the computations described

in Chapter 5 were performed using a server comprised of 40 Intel Xeon Gold

6138 (2.00GHz) cores and 128 GB of RAM.

Additionally, following a reproducible research methodology, Jupyter Note-

books corresponding to the data analysis process were hosted at the Git-

Lab server provided by Facultad de Ingenieŕıa (FING). Finally, interactive

Bokeh and Datashader plots generated during the data analysis process were

published as standalone applications and hosted at Amazon Web Services.

All these resources are available at the thesis website (www.fing.edu.uy/

~renzom/msc).

4.2.2 Data collection and processing

On August 2010, a presidential decree was published which regulated public

access to state-owned information (Presidencia de la República, 2010). Fol-

lowing its publication, several initiatives have been taken to strive to open up

data to the public at all levels of the public administration. A web portal that

acts as a hub for open data at the state level was created and is available at

www.catalogodatos.gub.uy. Additionally, many state agencies and local gov-

ernments have web interfaces for publishing open data. In the context of this

thesis, the most useful web interface was the geographic information site at IM

(www.sig.montevideo.gub.uy), which holds geographic data of Montevideo

including base maps, socioeconomic indicators, and transportation network

data. Open data from these sources was key for the performed analysis and
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are cited frequently throughout the document.

Besides using open data publicly available, the analysis included data re-

garding STM accessed through a collaboration between FING and IM. The

sources of these data are the AVL and AFC systems integrated in buses of

the STM. The data corresponding to the full set of records of GPS bus loca-

tion and bus ticket sales payed with STM cards during 2015 was released for

research purposes. These large datasets comprise over 150 GB of raw data.

The bus location dataset contains information about the position of each

bus in STM, sampled every 10 to 30 seconds. Each location record holds the

following information:

• a unique bus line identifier.

• a unique trip identifier to differentiate trips of the same bus line.

• GPS coordinates.

• instant speed of the vehicle.

• time stamp when the GPS measure was taken.

Ticket sales data contain records related to each STM transaction made,

including the following fields:

• trip identifier for the sale, which allows linking to the bus location

dataset.

• GPS coordinates at the moment of the STM card validation.

• bus stop identifier.

• time stamp at the moment of the STM card validation.

• unique STM card identifier, hashed for privacy purposes.

• number of passengers traveling with the same STM card.

• leg number, for multi-leg trips that include transfers.

The fact that each ticket sale is associated to a univocally identifiable key

is a fundamental feature for building OD matrices based on historic trip infor-

mation of users, as outlined in Chapter 5.

The data collection process was straightforward in the case of already

opened datasets. The main efforts on this phase were related to data pro-

vided by IM. Several meetings with authorities at IM were celebrated, until an

agreement was signed granting access and use to the data for research purposes.

With regards to the processing phase, the studied data was structured

in pandas dataframes. Among the many transformations performed to the

datasets, the most significant one was related to the Coordinate Reference

System (CRS). Since several sources of data were considered during the anal-
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ysis, geospatial data appeared in a variety of CRS. In order to be able to

combine different datasets, all geospatial data was transformed to the WGS

84 (EPSG:4326) coordinate system which is the standard used by GPS.

For the sake of clarity in the visualizations, the reported results of the

analysis correspond to tickets sold during the month of May 2015. Pre-hoc

analysis of the complete dataset showed that this month is representative of

the trends in the full dataset. The source code for the analysis (Available

at: www.fing.edu.uy/~renzom/msc) can be easily configured to process any

subset of the complete dataset.

4.2.3 Exploratory Data Analysis (EDA)

An initial EDA was performed to characterize the dataset of sales with STM

cards. Visualizing data early in the analysis process is crucial, specially when

dealing with urban data (Tukey, 1977). Figure 4.6 shows an aggregated visual-

ization of the geolocation of 20.4 million sales corresponding to May 2015. The

visualization was generated using Datashader, as described in Section 4.2.1.

The location of each STM transaction was projected on to a grid of bins of

size equal to one pixel of the 900 × 750 image. Then, transactions on the

same bin were aggregated and a color mapping was applied to generate the

final image, where brighter (white) areas indicate high concentration of ticket

sales whereas darker (red) areas indicate low STM transaction activity. An

interactive version of this visualization is also available at the thesis web site

(www.fing.edu.uy/~renzom/msc).

The initial visualization of aggregated sales location data allows uncovering

several interesting facts of the underlying dataset. Firstly, the city center is

clearly different from other zones, with a significant higher number of STM

transactions. Additionally, the main avenues can be clearly identified due to

the higher number of ticket sales. It is worth noting that the visualization

only considers ticket sales data and does not include any information related

to the bus lines or the city streets. Furthermore, some sales activity is reg-

istered outside of the limits of Montevideo, for instance, in the sea. This is

an important insight that guided the data cleansing process described in the

following section.
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Figure 4.6: Aggregated sales with STM cards in May 2015

4.2.4 Data cleansing

Data cleansing is a mandatory step in data analysis that strives to detect and

correct corrupt or inaccurate records (Rahm and Do, 2000). EDA allowed iden-

tifying several types of inconsistencies within the studied datasets. Due to the

lack of a backup source of information the chosen strategy was to delete records

that appeared to be corrupted. This section describes the errors encountered

and the actions taken to filter the inaccurate records from the dataset.

Vehicle location using GPS is prone to errors from a variety of sources, so

several methodologies have been proposed to cope with this phenomena (Ja-

gadeesh et al., 2004). As described in Section 4.2.2, the studied dataset holds

the GPS measure at the time of the transaction. The most frequent error

regarding geolocation was that a large number of records had a fixed value for

both latitude and longitude. The fixed location pinpoints to the middle of the

Atlantic Ocean. Most likely, this was caused by an error message of the GPS

unit (e.g., when no satellites are visible) being misinterpreted as a valid coor-

dinate during data recording. Considering the sales data of May 2015, 932.176
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records suffered from this issue, accounting for nearly 4.6% of the total dataset.

Additionally, 29.432 records corresponded to locations outside of the bound-

ing box of Montevideo. However, these records were not discarded, since the

dataset also holds the identifier of the boarding bus stop of each transaction,

which is defined using a series of measures from the on-board GPS unit. Thus,

even though the GPS measure at the moment of the transaction may fail,

the boarding bus stop can be accurately determined from previous measures.

Consequently, the bus stop identifier is more reliable than the raw GPS mea-

sure when defining the starting point of each trip. As a result, the OD matrix

estimation described in Chapter 5 was designed using bus stops identifiers as

starting and ending points for trips.

Regarding time stamps of transactions, the sales corresponding to May 1st

were filtered, since they correspond to Labour Day, a public holiday in which

the transportation system is mostly inoperative. The transactions on this day

represent a clear outlier from the remainder of the dataset. Thus, the trans-

actions occurring on this date were filtered from the dataset, accounting for

74 records. Similarly, only one transaction occurring on May 31st was present

in the dataset. There is no clear explanation for this issue and, therefore, the

record was filtered. As a consequence, during the data analysis process, the

month of May will represent STM transactions occurring between May 2nd

00:00:00 to May 30th 25:59:59 of 2015.

Other filters were applied to account for situations identified during the

EDA. Some transactions had trip identifiers which were not present in the

GPS records. In other words, some transactions appeared in the AFC system

but not in the AVL system. Since these records cannot be linked to their

corresponding bus line, they were discarded. This approach allowed filtering

1634 additional records.

Similarly, transactions made with the same STM card during the same trip

were detected in the original dataset. In some cases, transactions occurred

within few seconds of each other. This might be caused by users validating their

STM card twice when boarding the bus. In other cases, the repeated records

occurred after several minutes. This might be explained by a synchronization

problem between the bus and the centralized server where transactions are

recorded. Since no fail-proof criteria can be adopted to decide which of the

repeated records corresponds to the legitimate transaction, all repeated records

were discarded, accounting for 22 transactions.
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Since the dataset corresponds to sales from 2015, some transactions refer

to bus lines that were modified or no longer exist. In this case, the trans-

action cannot be linked to a bus line nor to a bus stop according to current

data. These transactions were also filtered from the dataset, accounting for an

additional 36.030 records. Finally, a considerable amount of transactions had

identifiers of bus stops which were not part of the bus line route corresponding

to the sale. Due to this issue 274.011 additional records were filtered.

In summary, the complete data cleansing process consisted in filtering

311.772 out of a total of 20.359.835 records, accounting for 1.53% of the original

dataset.

4.3 Results and discussion

This section outlines the main results of the urban data analysis process aimed

at characterizing the use of the public transportation system in Montevideo,

Uruguay. A description of the use patterns of STM cards is presented, as well

as a spatial and temporal analysis of the use of the transportation system.

Additionally, some practical use cases for the information resulting from the

data analysis process are presented.

4.3.1 Characterizing the use of STM

This section presents the results from the data analysis process that help to

describe the use of the transportation system in Montevideo from several per-

spectives.

Cardholders

The sales dataset holds transactions made with 654.228 different STM cards.

As explained in Section 4.2.2, the STM system allows several passengers to

travel together using the same STM card. Table 4.1 shows the number of

passengers traveling with the same STM card. The vast majority of passengers

use their personal STM card, with over 97% of transactions corresponding to

individual ticket sales. Therefore, STM cards can be confidently assumed to

represent a single passenger. This is a key assumption used in the OD matrix

estimation presented in Chapter 5, where all passengers under the same STM

card are assumed to travel from origin to destination without splitting. Thus,
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the fact that few group trips are performed using the same STM card provides

a certain level of robustness to the OD matrix estimation model.

Table 4.1: Number of passengers traveling with the same STM card

# passengers total percentage

1 19494451 97.24%
2 510043 2.54%
3 36454 0.18%
4 5468 0.03%

5+ 1647 0.01%

Another interesting aspect that can be studied through data analysis is

the frequency of use of the transportation system. Table 4.2 shows descriptive

statistics of daily and monthly transactions per STM card. The mean number

of transactions is reported, along with the standard deviation (std). Addi-

tionally, the minimum (min) and maximum (max ) values are presented, along

with the 25th (Q1 ), 50th (Q2 ), and 75th (Q3 ) percentiles. The 50th percentile

corresponds to the median of the distribution of transactions per STM card.

Monthly statistics consider all transactions done by each cardholder during

May 2015. Daily transaction statistics only consider days for which at least

one transaction was made.

Table 4.2: Descriptive statistics of daily and monthly use of STM cards

STM transactions
daily monthly

mean 2.78 30.65
std 1.53 28.14
min 1 1

Q1 (25%) 2 8
Q2 (50%) 2 22
Q3 (75%) 4 47

max 54 528

Several interesting facts arise from use data of STM cards. When looking at

monthly figures, cardholders perform over 30 transactions on average, nearly

one transaction per day. However, the standard deviation is large, indicating

a significant difference between regular and sporadic users of the public trans-

portation system. The median of the monthly transactions is 22, nearly one
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transaction per working day in the month. Regarding daily use, the average

cardholder performs 2.78 STM transactions each day that uses the transporta-

tion system. Figure 4.7 presents an histogram of daily transactions per STM

card, considering only cards that made up to 10 transactions within the same

day in order to remove outliers. Most cardholders perform two transactions

per day, which probably correspond to direct trips used for commuting. It is

interesting to observe that more cardholders perform four rather than three

transactions. This might be explained by passengers commuting to work using

a trip involving a transfer, thus, two transactions correspond to the outward

trip and the remaining two transactions to the return trip.

Figure 4.7: Histogram of daily transactions per STM card during May 2015

A few interesting applications arise when looking at outliers within the

STM use statistics. On the one hand, cardholders with very low activity can

be identified by their card ID. For instance, in the studied dataset 15.440

cardholders performed only a single trip during the whole month of May 2015.

Targeted marketing campaigns could be designed to encourage disengaged cit-

izens to use the public transportation system more frequently. On the other

hand, cardholders with large number of transactions can also be identified. In

the studied dataset a single card was found to perform 54 transactions within

the same day. Through data analysis, authorities may further investigate these

situations in order to identify possible abuses to the rules of the transportation

system.
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Transfers

As introduced in Section 4.1.2, STM tickets allow transfers between any bus

line at any bus stop. Thus, a trip can be comprised of several legs, with bus

transfers between each leg. Figure 4.8 details the percentage of trips involving

different number of legs, where a trip with one leg corresponds to a direct

trip. Results show that 55.99% of all transactions involve a single direct trip.

Next, 40.26% of STM transactions correspond to a trip comprised of two legs

and involving one transfer. The number of transactions involving more than

two bus transfers are less than 4% of the total dataset. The average number

of legs for the studied dataset is 1.37. According to the household mobility

survey, presented in Section 3.3, the average number of legs when travelling

by bus is 1.5 (Mauttone and Hernández, 2017). The slight difference between

both estimations might be explained due to the fact that the mobility survey

considers the walks from/to the bus stop as separate legs (if they are longer

than 500 m). Since the cardholders identity is not included in the study dataset

for privacy issues, personal information (e.g., home address) cannot be used to

infer the walked distance to/from the bus stop from the studied dataset. Thus,

direct trips requiring the passenger to walk more than 500 m to reach the bus

stop are counted as two-legged trips in the mobility survey and as one-legged

trips in the urban data analysis approach.

Figure 4.8: Percentage of legs per trip during May 2015

It is worth noting that consecutive transactions within the validity of a

ticket are assumed to be legs of a larger trip. In reality, since the purpose of

travel is unknown, a passenger may actually perform two independent short
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trips using the same ticket. This problem was discussed in the analysis of the

related literature and is addressed in Chapter 5 when estimating OD matrices.

Transactions per bus trip

Grouping STM transactions by their corresponding trip identifier provides a

rough estimate for the number of boardings on each trip. Figure 4.9 presents

a histogram of the number of transactions per trip. On average, 39.70 trans-

actions are made in each bus trip (std: 28.16). The largest value encountered

was a single trip with 249 transactions. It is worth noting that passengers

might also board without using a STM card, so these figures represent a lower

bound on the total number of boardings for each trip. Taking into account

the capacity of the buses operating in Montevideo, some of the largest values

point to one of the issues discussed in Section 4.1.2 regarding the length of

some of the bus lines of the transportation system.

Figure 4.9: Histogram of transactions per bus trip during May 2015

Most used bus lines

Data analysis over the transaction data can be used to identify the most pop-

ular as well as the most underused bus lines. Figure 4.10 shows the ten most

used bus lines. Some of the lines overlap since they correspond to different

variants of the same line (e.g., outward and return lines). For each line the

regular name (i.e., the name appearing in the front of the bus) is indicated in

the map, along with its variant code indicated in parenthesis. The most used

bus line is 183, closely followed by 181. Both lines connect the neighborhood
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of La Teja, located in the west side of Montevideo, with Pocitos, located in

the south by the coastline. It is interesting to notice that none of the ten most

used bus lines go into the city center.

Figure 4.10: Top 10 bus lines with most STM card transactions during May 2015

Most used bus stops

Figure 4.11 shows the ten most used bus stops in the studied dataset. The first

and second most used bus stops are located in the intersection of Agraciada

and Freire avenues, in Paso Molino neighborhood. The third most used bus

stop is located in Portones, a bus terminal within a shopping mall. It can be

observed that the most frequently used bus stops are those corresponding to

bus terminals or which are located in the intersection of busy avenues.

Temporal analysis of transactions

The AFC system in STM records the date and time of each transaction. These

data allows analyzing the distribution of transactions across time.
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Figure 4.11: Top 10 bus stops with most STM card transactions during May 2015

Figure 4.12 outlines the number of transactions occurring each day of the

week in the studied dataset. As expected, working days show the largest

concentration of transactions with an average of ∼33.15M of transactions and

a median of ∼34.41M. A slight decrease is noticed on Mondays, which might

be explained due to the 18th of May, a calendar holiday which was a Monday in

2015. In contrast, transactions during weekends drop significantly, with a clear

difference between Saturdays (∼2.19M transactions) and Sundays (∼1.28M

transactions).

A finer-grain analysis can be done to study the distribution of transac-

tions across time. Figure 4.13 shows an histogram with the number of STM

transactions at each hour of the day during May 2015.

As expected, two clear peaks of STM transaction activity can be noticed

during the morning (7.00–8.00) and the afternoon (16.00–18.00), probably due

to commuting. The morning peak is preceded by an increasing trend of sales

starting at 3.00 a.m. while the afternoon peak gradually decays as the night

approaches. However, an interesting observation is that another peak occurs
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Figure 4.12: Histogram of sales with STM cards at each day of the week during
May 2015

Figure 4.13: Histogram of sales with STM cards at different times of the day
during May 2015

at midday (12.00–13.00) which might not be foreseen prior to the analysis. In

fact, the overall largest amount of transactions occur at 13.00. Finally, it is

worth noting that the lowest number of STM sales happen at 3.00 a.m. This

finding is used for the OD matrix estimation algorithm presented in Chapter 5,

which considers each new day as starting at 3.00 a.m., when fewer sales are

made.

A similar temporal analysis was made during the 2016 household mobility

survey, introduced in Section 3.3. Figure 4.14 shows the histogram of starting

time of trips according to the urban mobility survey (Mauttone and Hernández,

2017). Although the survey covered trips in many modes of transportation, the

histogram corresponds only to trips done by bus. The previous observations
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regarding peak hours and the time of the day with fewest sales hold. According

to the results from the survey, three peak hours can be identified (i.e., morning,

midday, afternoon), and 2.00 a.m. is the time of the day when fewer sales occur.

Consequently, the results of the temporal analysis following an urban data

approach are highly consistent with those arising from the household mobility

survey.

Figure 4.14: Histogram of starting times of trips in public transportation according
to the Urban Mobility Survey Mauttone and Hernández (2017). Aggregated data
provided by the authors. Raw data are available at https://catalogodatos.gub.
uy/dataset/encuesta-origen-destino-montevideo

A different picture is obtained when studying weekends independently. Fig-

ure 4.15 outlines the number of transactions occurring at each time of the day

considering only Saturdays and Sundays of May 2015. It can be seen that the

distribution of transactions differs significantly from the one presented in Fig-

ure 4.13. The morning and afternoon peaks entirely disappear. Instead, the

number of transactions steadily increases from the lowest value at 3.00 a.m. to

the highest value at 12.00 p.m. Then, transactions gradually decrease, with a

valley between 4.00 p.m. and 6.00 p.m. Unfortunately, the household mobility

survey only characterizes trips done during working days. Therefore, it is not

possible to assess whether or not these observations are consistent with the

surveyed reality.

In this regard, it is interesting to highlight how the survey approach and

the data analysis approach are not exclusive but, in fact, can complement

each other. Urban data analysis can extract meaning from large volumes of

data generated from sources such as ITS. This type of massive data collection

would be infeasible to perform through surveys. However, ITS usually gen-

erate data as a by-product, since their main goal is not collecting data but
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Figure 4.15: Histogram of sales with STM cards at different times of the day
during weekends of May 2015

providing users with better QoS. In contrast, surveys are specifically designed

to characterize the studied reality and provide answers to a series of questions.

Thus, some of the information collected through surveys is hard to estimate

through data analysis approaches. For instance, the household mobility survey

holds information about the purpose of trips. Results show that the midday

peak of trips disappears when considering only trips associated to commuting.

This information cannot be easily inferred from the studied dataset, since no

personal information (e.g., household or work location) is associated to each

cardholder.

Spatial analysis of transactions

Since each sale record holds the geolocation of the bus at the moment the ticket

was sold, interesting analysis can be performed to characterize sales activity

in the spatial dimension. This type of analysis provides valuable insights to

understand mobility and can help authorities in the decision-making processes

aimed at improving the QoS offered to citizens. For instance, the city center of

Montevideo is widely known to be one of the most troublesome areas in terms

of mobility. These issues are related to the transportation network design,

with many bus lines converging to the city center, as outlined in Section 4.1.2.

This design leads to major congestion at peak hours in 18 de Julio, the main

avenue in the city center.

In our article Massobrio and Nesmachnow (2016) the average speed of buses
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running through 18 de Julio was studied. For this purpose the avenue was

divided into three sections, as outlined in Figure 4.16. The study considered

bus lines that run throughout the entire avenue in the East-West direction.

The analysis used GPS traces of buses corresponding to the working days of

the first week of September 2014. Table 4.3 shows the average speed of buses

in each section of 18 de Julio at different times of the day. In the worst case,

average speeds of 9.39 km/h were identified during the afternoon peak hour

(17.00–19.00). Authorities at IM are concerned with the mobility issues in the

city center and have proposed a plan to significantly alter the infrastructure of

18 de Julio (Intendencia de Montevideo, 2017). Decisions to address this kind

of issues could be supported with evidence resulting from urban data analysis

processes, as described next.

Figure 4.16: 18 de Julio avenue: sections considered for bus speed study

Table 4.3: Average speed of buses in 18 de Julio (in km/h)

section
1 2 3

07:00–09:00 13.57 15.85 10.15
13:00–15:00 13.25 13.05 9.82
17:00–19:00 12.78 13.77 9.39
21:00–23:00 15.56 18.53 11.92

Figure 4.17 shows a heatmap of sales transactions in the city center during

the month of May 2015. An interactive visualization for the whole area of

Montevideo is available at the thesis website (www.fing.edu.uy/~renzom/

msc). Bright (white) pixels in the heatmap indicate high concentration of

ticket sales while dark (red) areas indicate low STM transaction activity.

The largest concentration of sales can be observed along 18 de Julio avenue.

However, most of the streets running parallel to 18 de Julio also show a signif-
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Figure 4.17: Aggregated sales with STM cards in the city center during May 2015

icant intensity of transactions. Thus, a plan that only targets the main avenue

might not be successful in solving the mobility problems in the city center as

a whole. Additionally, a considerable amount of sales activity is present in

the old town, where streets are significantly narrower, thus aggravating the

mobility issues in this area of the city.

Spatiotemporal analysis of transactions

The spatial and temporal dimensions of sales data can be combined, in order

to gain insights that might not be evident when studying each dimension inde-

pendently. Figure 4.18 shows an aggregated visualization of the spatiotemporal

distribution of sales in Montevideo during May 2015. In this visualization the

hours of the day are used as categories. Each transaction occurring at a given

pixel in the image is categorized according to its time stamp. Then, the color

of the pixel is set considering the amount of transactions on each category.

The color mapping, which is detailed in the visualization, corresponds roughly

to: red (12 a.m.), yellow (4 a.m.), green (8 a.m.), cyan (12 p.m.), blue (4
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p.m.), purple (8 p.m.), and back to red, since hours and colors are both cyclic.

An interactive version of the visualization of the spatiotemporal analysis is

available at the thesis web site (www.fing.edu.uy/~renzom/msc).

Figure 4.18: Spatiotemporal distribution of trips in Montevideo during May 2015

Firstly, it is observed that the city center has a prevalent blueish tone in

the visualization. This corresponds to most transactions taking place between

noon and the afternoon. This is consistent with the fact that many offices

and public entities are located in this area of the city, thus, most transactions

correspond to people commuting from the city center back to their homes by

the end of the office-hours.

Another interesting fact arising from the spatiotemporal analysis of STM

transactions is the clear difference between areas near the coast and areas far-

ther away. It can be clearly observed that areas away from the coastline appear

with more yellow and greener tones whereas areas closer to the coast have pre-

dominantly blue tones. This means that the majority of STM transactions in

areas farther away from the coast occur earlier in the day than those near the

coast. This can be explained by people commuting early in the day from these
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areas to workplaces located closer to the city center.

A more detailed analysis can be done by mapping transactions at different

times of the day. Figures 4.19 and 4.20 show choropleth maps of the number

of transactions occurring in each census segment in the morning and evening,

respectively.

Regarding STM transactions occurring in the morning, Figure 4.19a clearly

shows that those areas farther away from the city center and the coastline

have higher STM transaction activity early in the morning (6.00 a.m.–7.00

a.m.) than those near the coast. Transaction activity in the city center and

near the coastline intensifies an hour later, as can be seen in Figure 4.19b.

Between 7.00 a.m. and 8.00 a.m. large amounts of transactions occur in most

areas of Montevideo. A few census segments show a specially large number of

transactions. These areas correspond to the location of bus terminals, where

several bus lines converge and many transfers between bus lines occur.

Considering STM transactions occurring in the evening, Figure 4.20a shows

a large number of transactions located in the city center area. This may be

explained by the large amount of people returning to their homes from work-

places located in this area of the city at the end of office hours (6.00 p.m.–7.00

p.m.). When looking at transactions occurring later at night, Figure 4.20b

shows that between 9.00 p.m. and 10.00 p.m. the amount of sales in the whole

territory significantly drops. The areas with some remaining transaction ac-

tivity are, once again, those located farther away from the city center and the

coastline. This might be explained by people living in poorly connected areas

taking longer to commute back to their homes by the end of the working day

or also due to citizens working during night shifts and commuting to their

workplace.

It is interesting to combine this analysis with the population density and

socioeconomic description outlined in Section 4.1.1. Areas with transactions

occurring early in the day and later at night are also the more vulnerable

from a socioeconomic point of view. Our journal article (Nesmachnow et al.,

2017) studied the differences in the QoS offered to citizens by the public trans-

portation system according to their socioeconomic situation. Bus lines were

characterized using the median household income of the areas they cover. A

similar analysis could be performed to understand how mobility patterns vary

across citizens with different socioeconomic characteristics.
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(a) 6.00 a.m.–7.00 a.m.

(b) 7.00 a.m.–8.00 a.m.

Figure 4.19: Choropleth map of STM transactions in the morning during May
2015
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(a) 6.00p.m.–7.00p.m.

(b) 9.00p.m.–10.00p.m.

Figure 4.20: Choropleth map of STM transactions in the evening during May 2015
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4.3.2 Practical use cases

Besides a purely descriptive use, urban data analysis can help authorities of

the public transportation system in several ways. This section presents use

cases where data analysis can be incorporated to the auditing, control, and

policy enforcement workflows of public transportation authorities.

Anomaly detection in the spatial dimension

Geolocation data of sales transactions can be used to detect abnormal sit-

uations in the transportation system. As an example, Figure 4.21 shows a

heatmap of transactions, along with the streets (in gray) and the bus lines

(in blue). Two clusters of sales records (labeled A and B) appear in a street

where no bus routes run. This represents a detour of one or more bus lines

from their predefined routes. This may be due to an exceptional circumstance

(e.g., road works) or due to a periodic event occurring certain days of the week

(e.g., a flee market). Authorities can take advantage of this type of analysis to

identify anomalies and make appropriate changes to bus routes and schedules.

Anomaly detection in the time dimension

By applying a similar methodology to the one used in the previous analysis,

the time stamp of sales can be used to identify abnormal use patterns in

the transportation system. Figure 4.22 shows an aggregated visualization of

combined spatial and temporal information regarding STM transactions data.

A small cluster of pixels in red can be observed in the map (indicated with

a circle), which correspond to a group of sales occurring approximately at

midnight. This pattern significantly differs from the remainder of the dataset.

Given the location of these records, near an outdoor venue named Velódromo

Municipal, the transactions probably correspond to a special event (e.g., a

concert) taking place at night in this venue. In these occasions, bus companies

usually assign buses to allow citizens to return to their homes at the end of

the event. Authorities can use urban data analysis to identify special events

taking place in the city and implement strategies that improve the mobility of

those attending these events.
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Figure 4.21: Anomaly detection: example of detour. The blue lines represent bus
routes. A and B are two clusters of transactions which occurred outside of the bus
network.
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Figure 4.22: Anomaly detection: example of event taking place at midnight near
an outdoor venue.
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Driving behavior and safety

Another interesting use for information of sales records is to analyze the spatial

distribution of sales with regards to bus stops. Figure 4.23 shows a heatmap of

transactions occurring in one-way streets. Arrows indicate the direction of each

street and bus stops are represented using blue circles. This visualization shows

that the spatial distribution of sales is skewed with respect to the location of

the bus stops. More transactions occur after the location of the bus stop than

before. This uneven distribution is probably caused by drivers moving the

bus before all the boarding passengers validate their smart cards. This might

represent a safety issue, since passengers are standing while validating their

cards. In fact, this might represent an even more serious issue, when drivers

are also in charge of operating the smart card terminal. Driving and selling

tickets at the same time is a risky behavior that can be seen frequently among

bus drivers in Montevideo. It is interesting to see how data gives evidence that

support these observations.

Figure 4.23: Spatial distribution of transactions with regards to stop location:
one-way streets
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Similarly, Figure 4.24 shows a heatmap of transactions and bus stops in

the surroundings of a roundabout. It can be noticed that a large amount of

transactions take place within the roundabout. This means that passengers

are standing and validating their smart cards while the bus is moving. Addi-

tionally, for buses without an assistant, the driver is actually driving through

the roundabout while operating the STM card terminal. Authorities can use

this type of data analysis to audit driving behavior, improving the safety of

passengers and drivers of the transportation system.

Figure 4.24: Spatial distribution of transactions with regards to stop location:
roundabout
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Chapter 5

OD matrices generation

This chapter describes the methodology and discusses the results of computing

OD matrices using data from the ITS in Montevideo, Uruguay. Section 5.1

outlines the implemented solution for estimating OD pairs and presents a cloud

computing framework that could be used to generate OD matrices. Then,

Section 5.2 presents the OD matrix computed using ITS data from May 2015

and compares the result against the household mobility survey of 2016. Finally,

two practical use cases of the information derived from the computed OD

matrices are presented in Section 5.4.

5.1 Implemented solution

This section presents the implementation details of the proposed approach

for building OD matrices using ITS data. Firstly, the details of the proposed

approach for estimating destination of trips based on the trip-chaining method.

Then, a cloud computing framework is presented, which could offer citizens and

authorities near real-time mobility information.

5.1.1 Destination estimation algorithm

This section presents the destination estimation algorithm using trip chaining

and gives the specific details used to adapt the algorithm to the case study of

the ITS in Montevideo.
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General overview

By combining data from the AFC and AVL systems it is possible to identify

the origin of trips precisely, since the location of the bus is recorded whenever

a passenger pays for a ticket using a smart card. However, since passengers are

only required to validate their smart cards when boarding and not when alight-

ing the bus, the destination of each trip is unknown and must be estimated

in order to generate OD matrices. For this purpose, a destination estimation

algorithm was developed based on the trip chaining method proposed by Barry

et al. (2002) and later applied by other researchers, as outlined in Section 3.2.

The trip chaining method proposes estimating destinations of trips for a

given passenger using information of the previous trips done by the same pas-

senger earlier on the day. The method is based on the following two assump-

tions: i) the origin of a new trip is near the destination of the previous one;

and ii) at the end of the day, users return to the origin of their first trip of

the day. Figure 5.1 shows an example of the use of the trip chaining method

to estimate destinations. In the example, the passenger performs three smart

card transactions throughout the day. The boarding bus stops associated to

each transaction are marked in green, and the estimated destinations of trips

and trip legs are marked in orange.

In the example, the first transaction of the day occurs at 07:30, when the

passenger boards bus line A at bus stop A19. Later, at 08:15, the passenger

boards bus line B at bus stop B9 without paying for a new ticket. Since the

boarding occurred within the validity of the previous ticket, the trip is assumed

to be a transfer between buses. The closest stop from line A to bus stop B9 is

A23, which is assumed to be the destination of the leg trip starting at 07:30.

The last transaction of the day occurs at 17:20, when the passenger boards

line C at bus stop C4 and pays for a new ticket. Bus stop B12 is identified as

the destination of the leg trip starting at 08:15, since it is the closest stop from

line B to bus stop C4. Since a new ticket was payed for, no further transfers

are considered. Thus, an OD pair is identified between bus stops A19 and B12.

Finally, the destination of the last trip of the day is assumed to be bus stop

C8, since it is the closest bus stop of line C to the origin of the first transaction

of the day (A19). As a result, two OD pairs are identified, one consisting of

two leg trips with a bus transfer and the other being a direct trip.
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Figure 5.1: Example of the trip chaining algorithm to estimate destinations

Implementation details

The destination estimation algorithm was implemented using the Python pro-

gramming language. A Python pseudo-code to describe the algorithm is pre-

sented in Listing 1. The algorithm receives as input a set of transactions sorted

by their timestamp corresponding to a 24-hour period for a given cardholder.

The first transaction of the day is processed independently (lines 2-7), since it

is used to close the chain of trips with the last transaction of the day. Trans-

actions are processed iteratively (lines 8-31). For each new transaction, the

destination of the previous one is estimated (line 9). If the destination cannot

be estimated (i.e., no stops are found within a given range), the trip chain is

considered broken, so no further transactions are processed (lines 11-12). If

a destination was estimated, the information regarding the identified trip is

saved (lines 15-16). If the new transaction was payed for (i.e., it is not a bus

transfer), then the estimated destination corresponds to the final end of the

previous trip. Thus, the OD pair is recorded (lines 17-21), as it will be used
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later to generate OD matrices. On the contrary, if the transaction was not

payed for, then it corresponds to a bus transfer, which is recorded appropri-

ately (lines 22-26). Then, the chain of trips is updated (lines 27-31) and the

process continues with the next transaction of the day. Finally, the destina-

tion of the last transaction of the day is estimated independently, using the

information of the origin of the first transaction of the day (lines 32-41). The

algorithm returns three files with information corresponding to the identified

trips, OD pairs, and bus transfers corresponding to the transactions received

as input.

The destination estimation algorithm used during trip chaining is straight-

forward and is presented in Listing 2. The algorithm receives as input the

identifier of the current stop, along with the identifiers of the previous line and

boarding bus stop. All stops of the previous line occurring after the boarding

bus stop are considered as potential destinations (lines 2-4). The distance from

the current stop to all candidate stops is computed, and the closest bus stop is

obtained (lines 6-8). Finally, if the distance to the closest bus stop is less than

a given threshold, the algorithm returns the stop identifier as the estimated

destination. Otherwise, an empty value is returned, which will break the chain

of trips for that passenger.

Configuration for the ITS in Montevideo

The destination estimation algorithm processes sales data grouped in chunks

corresponding to 24 hour periods. Records are split at the time of the day

when the lowest sales activity is observed, as recommended by Munizaga et al.

(2014). In the studied scenario, with data from the ITS in Montevideo cor-

responding to May 2015, the lowest amount of sales occurs at 3.00 a.m., as

outlined in Section 4.3.1. A similar methodology was used by the urban mobil-

ity survey of 2016, which inquired about trips done in a 24-hour period starting

at 4.00 a.m. (Mauttone and Hernández, 2017).

The destination estimation algorithm limits the search of a possible desti-

nation bus stop to a configurable radius (max distance parameter on List-

ing 2). The search is sensitive to this parameter: large values may incorrectly

identify destinations when other transport modes are used within the chain

of bus trips, while a small radius might miss to identify destinations for trips

that involve large walks from the bus stop to the destination. In the reviewed
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1 def trip_chaining(transactions):

2 #First transaction of the day

3 t=transactions[0]

4 n_passengers=get_number_of_passengers(t)

5 first_origin_of_day=origin_for_od=previous_origin=get_origin(t)

6 timestamp_for_od=previous_timestamp=get_timestamp(t)

7 previous_line=get_bus_line(t)

8 for t in transactions[1:]: #Process chain of trips

9 destination=estimate_destination(get_origin(t), previous_origin,

10 previous_line)

11 if not destination:

12 exit() # Trip chain broken. Exit.

13 else:

14 #Save the identified trip

15 save_trip(previous_origin, destination, passengers,

16 previous_timestamp, previous_line)

17 if is_payed(t): # Final destination, record OD pair.

18 save_od_pair(origin_for_od, destination,

19 passengers, timestamp_for_od)

20 origin_for_od=get_origin(t)

21 timestamp_for_od=get_timestamp(t)

22 else: #Save info regarding the bus transfer

23 save_transfer(previous_line, get_line(t),

24 destination, get_origin(t),

25 get_number_of_passengers(t),

26 get_timestamp(t))

27 #Update the chain of trips

28 passengers=get_number_of_passengers(t)

29 previous_origin=get_origin(t)

30 previous_timestamp=get_timestamp(t)

31 previous_line=get_line(t)

32 #Last destination of the day

33 destination=estimate_destination(first_origin_day, previous_origin,

34 previous_line)

35 if not destination:

36 exit() # Trip chain broken. Exit.

37 else:

38 save_od_pair(origin_for_od, destination,

39 passengers, timestamp_for_od)

40 save_trip(previous_origin, destination, passengers,

41 previous_timestamp, previous_line)

Listing 1: Trip chaining algorithm to process daily transactions of a given card-
holder
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1 def estimate_destination(current_stop, previous_stop, previous_line):

2 #Consider alighting stops visited before boarding stop

3 previous_stop_index=get_line_stops(previous_line).index(previous_stop)

4 candidate_stops=get_line_stops(previous_line)[previous_stop_index:]

5 #Find the closest stop from within the candidates

6 closest_stop = min (candidate_stops,

7 key= lambda s: compute_distance(current_stop,s))

8 distance=compute_distance(current_stop,closest_stop)

9 #Check distance threshold

10 if distance<=MAX_DISTANCE:

11 return closest_stop

12 else:

13 return None

Listing 2: Destination estimation algorithm

works of the related literature, several values were found for this parameter:

800 m (Alsger et al., 2015), 1000 m (Wang et al., 2011; Munizaga and Palma,

2012), and 2000 m (Trépanier et al., 2007). In this work the maximum distance

to search for a destination bus stop was set to 1000 m, which is the median

of the values found in the related literature. Additionally, 1000 m is also the

maximum distance used to classify a walk as “short” according to the urban

mobility survey (Mauttone and Hernández, 2017).

The proposed approach for destination estimation could be further im-

proved. The trip chaining methodology may provide inaccurate results when

mixed modes of transportation are used, since the sequence of trips using buses

is broken. For instance, the trips of a passenger commuting to work by bus

and returning home in a private vehicle (e.g., carpooling) would not be iden-

tified. Several alternatives could be implemented as a fallback method when

trip chaining is not possible. Machine learning and clustering methods could

be used to identify frequent bus stops visited by a passenger. By looking at

historical data (e.g., monthly or yearly transactions) instead of relying only on

the transactions occurring on the same day, frequently visited areas could be

identified and assigned to trips for which the destination cannot be estimated

using trip chaining.

Another aspect of the proposed approach that could be improved involves

transfers. The destination estimation algorithm assumes that trips done within

the validity of a ticket correspond to legs of a larger trip. In reality, passengers
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may use a single ticket for independent trips in order to perform several short

activities. To mitigate this issue AVL data should be used to determine the

time of alighting from the first bus. Then, a simple time-based criteria could

be used to decide whether a transfer corresponds to a second leg of a larger

trip or to a short activity. For example, Munizaga and Palma (2012) proposed

using a threshold of 30 minutes for the transfer. If the time between alighting

from the first bus and boarding the second bus is larger than 30 minutes,

the passenger is assumed to have engaged in a short activity and the trips

are recorded separately. A more complex method could be devised, using AVL

data to assess whether the passenger boarded the first arriving bus or if several

buses passed by the bus stop before the passenger boarded, which may be an

indicator of a short activity taking place.

5.1.2 Cloud computing framework

In our journal article, Massobrio et al. (2018), we described a framework for

processing ITS data in the cloud in order to improve public transportation

systems. The proposed framework is suitable to process ITS data to generate

OD matrices. The framework decomposes the problem at hand into two sub-

problems: i) a pre-processing stage that prepares the input data for the next

phase, and ii) the parallel/distributed processing of ITS data. A master-slave

model is used to define and organize the control hierarchy and processing.

Figure 5.2 outlines the conceptual diagram of the proposed framework.

Figure 5.2: Framework for processing ITS data in the cloud

During the pre-processing phase, the master process prepares the data, fil-

tering inaccurate or corrupt records. The filtering stage is dependent on the

specific problem being solved. In the case of the OD estimation process, this

phase corresponds to the data cleansing process described in Section 4.2.4.
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The framework applies a data-parallel domain decomposition strategy for par-

allelization. After the pre-processing stage, the filtered data are split into

chunks and distributed to several processing elements. The master process

partitions the data and assigns each chunk to a slave for processing. The slave

collaborate in the data processing, following a Single Program Multiple Data

(SPMD) model.

The proposed implementation can be integrated under a Software as a

Service (SaaS) paradigm in a real cloud computing environment, providing a

useful service for both citizens and authorities. A diagram of the proposed

system is presented in Figure 5.3. Buses send their current geographic loca-

tion to a server in the cloud. The server performs the distributed processing

of the collected location and sales data from buses in real time. The results

from this processing are published to be consumed by intelligent ubiquitous

mobile applications and websites for end-users and by monitoring applications

for city authorities, following the traditional SaaS model for cloud computing.

From the point of view of public transport users, information from real-time

ITS data can help with mobility decisions (e.g., prefer a certain bus line over

others, decide to transfer between buses). From the point of view of the city

authorities, mobility data are useful for planning long-term modifications to

bus routes, timetables, bus stop locations, as well as to identify specific bot-

tleneck situations.

Figure 5.3: Cloud computing framework for real-time ITS data processing
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5.2 Experimental results

This section reports the experimental results from the OD matrix estimation

process. Firstly, the results achieved by the implemented algorithm are pre-

sented and discussed. Then, the computed results are compared and contrasted

against the findings from the household mobility survey of 2016.

5.2.1 Numerical results

After the cleansing process described in Section 4.2.4, 311.772 records were

discarded from the dataset corresponding to May 2015, leading to a cleansed

dataset comprised of 20.048.063 records. For the destination estimation pro-

cess, this dataset was split into chunks, where each chunk held the information

for an entire day starting and ending at 3 a.m. Due to this splitting strategy,

six hours worth of data were discarded, i.e., the first three hours of the first

day and the last three hours of the last day of the dataset. Additionally, since

the destination estimation algorithm requires at least two transactions to per-

form trip-chaining, the records associated to cardholders that only performed

one transaction within a given day were filtered from the dataset. As a re-

sult, the destination estimation algorithm was applied to a set of 18.885.711

records. Out of these records, the implemented algorithm was able to assign

a destination to 15.414.230 trips, achieving a success rate of 81.62%. This is

a highly competitive result, considering the success rates achieved by other

works in the related literature, e.g., 57% (Wang et al., 2011), 66% (Trépanier

et al., 2007), 80% (Munizaga and Palma, 2012). Each identified trip holds the

following information: boarding bus stop, time stamp at boarding, bus line

identifier, and alighting bus stop.

OD matrices were built considering the first origin and final destination of

each trip, without considering intermediate stops due to transfers. As a result,

the number of OD pairs is lower than the number of identified trips, since

more than 40% of trips involve at least one transfer, as shown in Section 4.3.1.

Computed results allowed identifying 9.485.904 OD pairs, which were used to

generate OD matrices. At the finest grain, OD matrices were generated con-

sidering each pair of bus stops. At a more coarse grain, the computed results

were aggregated for each census segment. Both OD matrices are available

at the thesis website (www.fing.edu.uy/~renzom/msc) in Comma Separated

Values (CSV) files with their corresponding metadata. For the sake of visual-
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ization, results are discussed at a coarser grain in this document, aggregating

the computed OD pairs by municipality. Table 5.1 outlines the estimated OD

matrix corresponding to the studied dataset of May 2015. Each municipality

is represented by its identifying code, as described in Section 4.1.1.

Table 5.1: Estimated OD matrix by municipalities for May 2015

destination

A B C CH D E F G total

or
ig

in

A 626388 199196 184905 98087 30108 40370 21875 73390 1274319
B 154358 662993 224578 366865 108640 173898 119306 108469 1919107
C 174040 260526 320368 111113 102244 64691 62188 101337 1196507

CH 100348 334040 131089 362377 101433 156685 115310 66461 1367743
D 48502 222110 148581 130733 321610 71018 93969 64253 1100776
E 27463 138400 46288 110868 86344 287243 133179 28827 858612
F 21038 127429 51570 108017 155355 82811 315573 20427 882220
G 74482 141380 120539 57388 41670 29779 21068 379724 866030

total 1226619 2086074 1227918 1345448 947404 906495 882468 842888

Several conclusions arise from the computed OD matrix. Firstly, the largest

values are located in the diagonal of the matrix. Values located in the diagonal

represent trips starting and ending within the same municipality. This obser-

vation holds for every municipality with the only exception of trips ending at

CH, which are mostly originated in B rather than CH by a small margin. Sec-

ondly, municipality B stands out as both the largest generator and attractor

of trips when considering the total number of OD pairs (highlighted in gray in

the table). This is consistent with the fact that the city center and other sur-

rounding areas are within municipality B, where multiple workplaces, public

offices, and services are located.

5.2.2 Comparison to the 2016 mobility survey

According to the best practices reviewed in the related literature, it is desirable

to compare the results of the OD matrix estimated using ITS data against an

alternative source of information. To this end, the results from the household

urban mobility survey carried out in 2016 (presented in Section 3.3) were used.

Table 5.2 shows the OD matrix of trips done between each municipality using

public transportation, according to the results of the 2016 urban mobility

survey (Mauttone and Hernández, 2017). Reported figures were computed by

expanding the results of the survey taking into account the population of each

municipality.

69



Table 5.2: OD matrix in public transportation by municipalities according to the
2016 household mobility survey (Mauttone and Hernández, 2017). Aggregated val-
ues by municipalities were provided by the authors. Raw data are available at https:
//catalogodatos.gub.uy/dataset/encuesta-origen-destino-montevideo

destination

A B C CH D E F G total

or
ig

in

A 45576 19667 15733 10863 3103 3783 1436 6136 106297
B 18301 69964 25705 36210 14245 24805 15071 15779 220080
C 13772 20702 19314 7781 9823 5893 5622 15243 98150

CH 10244 38628 7402 15614 18543 11360 8876 6935 117602
D 1796 17904 7999 18275 18881 5835 10896 3954 85540
E 3094 25004 4942 13397 8023 15801 8369 2213 80843
F 1858 15296 4858 6957 12192 9515 18183 3304 72163
G 6163 11984 14427 10026 2737 3061 3563 31865 83826

total 100804 219149 100380 119123 87547 80053 72016 85429

Results from the OD survey have many similarities with those estimated

from ITS data. The previous observation of a large number of trips taking

place within each municipality also applies to the results from the survey. Ad-

ditionally, the survey OD also identifies municipality B as the largest generator

and attractor of trips. These remarks can also be assessed in Figure 5.4, where

a visual comparison between the OD matrices derived from ITS data and from

the mobility survey is presented. Each OD matrix is represented as a two-

dimensional grid with colors mapped according to the number of transactions

occurring in each OD pair. Results derived from the ITS data are presented

in Figure 5.4a whereas those derived from the mobility survey are presented

in Figure 5.4b.

The visual representation of OD matrices as heatmaps on two-dimensional

grids allows identifying further similarities between the results computed with

ITS data and those from the mobility survey. Trips within municipalities

A and B are the most dominant OD pairs according to both estimations,

followed by trips within municipality G. Both figures show that trips from

B to CH and vice versa are also highly dominant with regards to other OD

pairs. The diagonal of the grid is mapped to more intense colors in Figure 5.4a

than in Figure 5.4b. This might be a consequence of the larger number of

trips considered in the OD matrix generated from ITS data. Despite this

observation, an outstanding number of similar color patterns are found when

comparing the grids both row-wise and column-wise.
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(a) estimation for May 2015 using ITS data

(b) results from the 2016 mobility survey

Figure 5.4: Comparison of OD matrices.
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Results are very promising, showing that OD matrices generated from ITS

data are a valid alternative to understand mobility in a city. Several advantages

can be highlighted from the proposed approach for building OD matrices.

Firstly, due to the large volume of data generated by ITS compared to the

number of individuals that participate in a survey, a finer-grain OD matrix

can be obtained. With the approach proposed in this thesis, OD matrices at

the bus stop and census segment levels were obtained, whereas the mobility

survey results only apply to municipalities. Secondly, thanks to data analysis,

different OD matrices can be computed applying different criteria regarding,

e.g., days of the week, hours of the day. As an example to showcase this

feature, Figure 5.5 shows a heatmap corresponding to the OD matrix derived

from ITS data considering only weekends of May 2015. It can be seen that

the role of municipality B as the largest generator and attractor of trips is

significantly smoothed when considering only weekends. As stated before,

several offices and workplaces are located within municipality B, which are

mostly only opened during working days. The information from the mobility

survey refers to trips done during working days only. Thus, in order to gain

insight on the mobility of citizens during weekends a new survey ought to be

carried out, with the associated costs and delays.

Regarding costs, the proposed approach for OD matrix estimation provides

an attractive alternative for public administrations aiming at characterizing

mobility in a city. If the ITS infrastructure is already deployed, deriving mo-

bility information is nearly inexpensive, since value is produced from already

existent data. This is clearly the case of Montevideo, where the ITS infrastruc-

ture has been deployed for nearly a decade. Besides economic considerations,

it is worth noting that the proposed approach can be easily applied whenever

new data becomes available. In fact, following the architecture described in

Section 5.1.2, OD estimation techniques could be applied in a streamline fash-

ion in order to obtain near real-time OD matrices. This represents a clear

advantage in comparison to surveys, which demand large amounts of time to

plan, carry out the survey, and process the results. As a consequence, the

proposed approach allows easily obtaining an up-to-date view on the mobility

of a city while surveys offer a partial and mostly outdated picture.

The previous observations are not aimed at questioning the importance

and convenience of carrying out mobility surveys. On the contrary, surveys

are essential to understand mobility in a city and authorities should invest in
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Figure 5.5: OD matrix heatmap by municipalities for weekends in May 2015

conducting them periodically. Firstly, because they serve as a ground-truth for

other methodologies, such as the one proposed in this thesis. Secondly, surveys

can be used to gain insights into aspects that cannot be easily derived from raw

ITS data. For instance, the purpose of travel is a standard question in most

mobility surveys and is not easy to state using merely data analysis (Nassir

et al., 2015). Another example is leg identification in trips involving bus trans-

fers. In the approach proposed in this thesis, all trips done within the validity

of a ticket were considered as legs of a larger trip. In reality, passengers may

use the same ticket to perform several short activities. Thus, surveys are less

prone to errors in this aspect, since they inquire about each leg of each trip

separately. Some procedures could be incorporated to the proposed approach

to mitigate these errors. For example, bus location from the AVL system can

be used in order to check whether a given passenger boarded the first arriving

bus while doing a transfer. If several buses went through the bus stop and were

not boarded by the passenger, this might be an indicator that the passenger

was performing a short activity and not actually doing a bus transfer to get

to a final destination.
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5.3 OD matrix visualization tool

As outlined in Section 2.3, the last step of the urban data analysis workflow

involves presenting results visually to communicate the main findings and to

help stakeholders make decisions that can shape the studied reality (Schutt and

O’Neil, 2013). For this purpose, an interactive web application was developed

to show the computed OD matrices in an intuitive and friendly manner. The

OD visualization tool allows users to select an area in the map and creates a

heatmap indicating the number of passengers traveling from the selected area

to all other areas in the map. The tool was developed in Python using Pandas

for data processing, Geopandas to display the map of the city and the adminis-

trative divisions, and Bokeh to provide interactivity to the visualization. The

web application is freely available at www.fing.edu.uy/~renzom/msc. Fig-

ure 5.6 shows the user interface of the developed tool and its main components

are described next.

The OD visualization tool offers several tools for users to filter data using

different criteria prior to plotting. Firstly, the canvas of the plot supports

multiple tabs. These tabs are used to select the level of aggregation for the

OD data. Users can select between a coarse-grain visualization consisting of

municipalities or a finer-grain aggregation consisting of census segments. When

a tab is selected the map is updated accordingly, to show the city division

selected by the user. The map area has pan and zoom capabilities, which

can be toggled on or off using the buttons located on the bottom right of the

canvas. Secondly, users can select ranges of dates as well as ranges of hours

in the day to consider in the visualization. These selections are done in a

straightforward fashion, using range sliders to indicate the exact time frame

to be plotted. Additionally, users can select the type of day to consider for the

visualization among three pre-defined types, namely, all days, working days,

or weekends.

After indicating the desired options the user can select an area (i.e., a mu-

nicipality or a census segment) by clicking on the map. Then, the selected area

is shown in a different color for the user to confirm the selection. Once con-

firmed, the application updates the color of all the areas in the map according

to the amount of trips done from the selected area, considering the date, time,

and type of day preferences indicated before. A color bar is presented on the

right to quantify the information visually displayed. Additionally, the applica-
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Figure 5.6: User interface of the OD matrix visualization tool

tion offers a hover tool, which displays information when the mouse cursor is

over a given area. The displayed information includes the area identifier (name

of the municipality or id of the census segment) as well as the exact number

of trips with that destination. Finally, at every step of the visualization the

user is able to export the displayed map as an image using the save button in

the bottom right panel of the map.

5.4 Practical use cases

OD matrices are a key input for any optimization problem involving public

transportation (e.g., bus network redesign, stop location, timetable schedul-

ing) and to provide evidence that supports decisions aiming at improving the

QoS offered to citizens. In this section, two straightforward examples of the

75



potential use of OD matrices are presented.

5.4.1 Bus line load profile

The set of identified trips using the destination estimation algorithm can be

filtered by the bus line identifier. By doing so, all OD pairs for a given bus

line can be obtained. This subset of the results holds the information of every

boarding and alighting at each bus stop of a given line. A measure of the load

of the line at each bus stop can be obtained when subtracting the number of

alightings to the number of boardings. Figure 5.7 shows the load profile of

line 183 (code 1303), the most frequently used line as shown in Section 4.3.1,

considering all the identified trips of May 2015. The bus stops are represented

in the X-axis in the order that are visited by the bus line, with bus stop 0

being the origin of the line. The Y-axis represents the difference between the

number of passengers boarding and alighting at each bus stop.

Figure 5.7: Load profile of line 183 (1303) in May 2015

Several interesting remarks arise when looking at the load profile of the

bus line shown as an example. As expected, the first stop of the bus line has

a significant higher number of boardings than alightings. Along the route of

the bus line, three peaks can be clearly identified which have more boardings

than alightings. This bus stops may correspond to areas used for bus transfers

or that are located near attractions that generate large number of trips (e.g.,

shopping malls). Special actions can be taken to reduce the time of boarding
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for passengers at this identified stops, for instance, by implementing closed

bus stops and allowing passengers to pay for their tickets in advance, prior

to boarding the bus. Finally, it can be noted that the bus stop where more

alightings occur compared to boardings is not the last stop of the bus line, but

nearly 10 stops before the end of the route. This information could be used

when planning a redesign of the bus network, for example, to shorten the bus

line.

5.4.2 Transfers

When identifying trips using the destination estimation algorithm, bus trans-

fers were recorded separately, including the pair of bus lines involved in the

transfer as well as the alighting and boarding stops used by the passenger. This

information is highly valuable to identify pair of lines and locations where cit-

izens transfer the most. Studying frequent transfer points might bring to light

bad designs in the bus network topology that may force passengers to transfer

excessively due to the absence of direct lines. Additionally, bus timetables can

be synchronized in highly demanded point in order to reduce the waiting times

of passengers during transfers. Table 5.3 shows the ten most frequent transfers

according to data of May 2015. The identifiers of both lines involved in the

transfer are presented, along with the bus stop identifier of the alighting stop

of the first bus and the boarding stop of the second bus. For each identified

transfer, the number of occurrences in the studied dataset is outlined.

Table 5.3: Top ten most frequent bus transfers in May 2015

lines stops
# transfers

first second alighting boarding

1096 2579 2427 2426 8055
1759 1667 1885 4468 4641
1122 650 1108 4775 4192
1759 987 1942 4399 3823
170 1290 4212 5709 3806
1276 1092 2447 2437 3778
170 2579 4212 5709 3754
1122 1347 4843 4930 3613
1096 1290 2427 2426 3342
2050 1418 2392 2295 2927
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The most popular bus transfer outnumbers the occurrences of the second

most frequent transfer in 42.4%. This bus transfer corresponds to lines 158

(id: 1096) and 183 (id: 2579). The transfer takes place in the intersection of

Burgues and Luis Alberto de Herrera, two main avenues of the city. The first

bus line, 158, starts at Gruta de Lourdes in a lower-income area of the city,

whereas line 183 ends in Pocitos, a highly-populated upper-class neighborhood

with many services. Figure 5.8 shows both bus lines and transfer bus stops on

top a choropleth map indicating the percentage of UBN of each census segment

along the route of the bus lines.

Figure 5.8: Most frequent bus transfer in May 2015. Passengers travel from areas
with high percentage of UBN using line 158 (in green) and transfer to line 183 (in
blue) at the bus stops marked in red to reach areas with better UBN indicators.

It can be clearly seen that the trip involving the bus transfer allows citi-

zens from areas of the city with higher percentage of UBN to reach areas near

the coastline with better socioeconomic levels. The large number of trans-

fers might be due to people commuting to this area of the city where more

job opportunities are located. This example shows how authorities can take

advantage of information arising from estimated OD matrices to improve the

quality of the transportation system. For instance, a direct line could be im-

plemented to link these areas of the city or a better transfer option could be

implemented that does not imply such a large detour.

78



Chapter 6

Conclusions and future work

This closing chapter outlines the main findings and conclusions resulting from

the research reported in this thesis, along with the main lines of future work.

6.1 Conclusions

This thesis studied mobility in Montevideo, Uruguay, following an urban data

analysis approach.

An intense urban expansion process has been taking place worldwide since

1950, with populations shifting from rural to urban residencies. In urban

scenarios, public transportation systems play a major role in mobility, since

they constitute the most sustainable and socially fair mode of transportation.

Under the paradigm of smart cities, ITS have emerged to take advantage of

information and communication technologies to improve public transportation.

ITS allow collecting massive amounts of urban data, which can be used to

extract meaningful information to help decision making in cities. This thesis

studied data from the ITS in Montevideo, Uruguay, in order to characterize

mobility in the city.

The studied dataset from the ITS in Montevideo consisted of GPS bus

location data and smart card ticket sales data corresponding to the full year of

2015, accounting for over 150 GB. The results reported in this thesis correspond

to the dataset of May 2015, accounting for more than 20.4 million bus tickets

sold using smart cards. During a data cleansing process, 1.53% of the records

were filtered due to inconsistencies. Several insights were obtained through

data analysis of the studied dataset, including: number of passengers traveling
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with the same smart card, frequency of use of the smart cards, number of bus

transfers, number of transactions per bus trip, and most used bus lines and

stops. A temporal analysis of ticket sales was performed, identifying three peak

hours during working days, namely, morning, midday, and afternoon. These

peak hours were also identified in the 2016 urban mobility survey (Mauttone

and Hernández, 2017). Additionally, a spatial analysis of ticket sales was

performed focusing on the city center, a troublesome area with regards to

mobility. Then, both dimensions were combined into a spatiotemporal analysis

which revealed that citizens from areas farther away from the coastline start

trips earlier than those near the coast. Finally, some practical examples on the

use of data analysis on ITS data were presented, including: anomaly detection

in space (to identify bus detours), anomaly detection in time (to identify events

in the city), and a characterization of driving behaviors and potential safety

hazards due to reckless driving.

Besides using ITS data in a purely descriptive fashion to characterize the

public transportation system, a methodology for building OD matrices was

proposed and implemented. The main challenge when building OD matrices

using ticket sales data from ITS is that passengers validate their cards when

boarding but not when alighting the bus. Thus, while the origin is known, the

destination of the trip must be estimated. For this purpose, a trip chaining

algorithm was developed based on previous works on the related literature.

The algorithm receives as input a historical set of sales records and aims to

link together trips done by the same cardholder based on the following two

assumptions: i) the origin of a trip is near the destination of the previous one;

ii) the destination of the last trip in the day is near the origin of the first trip

of the day. The implemented algorithm was able to estimate the destination

for 81.62% of trips in the studied dataset, which is a highly competitive result

when compared to other figures reported in the related literature. Grouping

the trips identified by the algorithm, OD matrices were built at different levels

of granularity, i.e., the bus stop, census segment, and municipality levels.

The computed OD matrix was compared against the one resulting from

the 2016 urban mobility survey. Results showed many similarities between

both approaches, suggesting that OD matrices built using ITS data are a valid

alternative to understand mobility in a city. Both methods identified munici-

pality B as the largest generator and attractor of trips in the city, as well as

a large number of intra-municipality trips. Several advantages can be high-
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lighted from the proposed approach. Firstly, taking advantage of ITS data

allows studying mobility at a finer grain, obtaining OD matrices between pairs

of bus stops (4718 × 4718) and census segments (1063 × 1063), whereas the

OD matrix built using data from the mobility survey applies to the level of

municipalities (8× 8). Secondly, the proposed approach allows computing OD

matrices considering different criteria, e.g., building OD matrices for specific

dates, times of the day, or group of bus lines. Moreover, generating OD ma-

trices using ticket sales data is inexpensive if the ITS infrastructure is already

present. This was the case of Montevideo, where the ITS infrastructure has

been deployed for nearly a decade. Finally, computing OD matrices using ITS

data allows obtaining up-to-date mobility information, since new matrices can

be built whenever new data is present or even in a near real-time fashion with

streaming sources of data.

In order to communicate the main findings of the proposed approach, an

interactive web application was developed to visually display the computed OD

matrices in an intuitive way to citizens and authorities alike. The visualization

tool allows users to select an area in the map of Montevideo and displays

a heatmap indicating the number of passengers traveling from the selected

area to all other parts of the city. The application supports working at the

census segment and municipality level of aggregation for OD matrices and

offers several tools to filter data, including: range of dates, range of hours

in the day, and type of day (i.e., all days, working days only, or weekends

only). Besides displaying the information visually, users can inspect each area

to retrieve the exact number of trips with that destination. Finally, at each

step of the visualization the displayed information can be exported as an image

and downloaded.

In order to demonstrate the use of ITS data to understand mobility in

a city two practical examples were presented. The first example considered

all trips done on the most frequently used bus line in Montevideo. For this

bus line a load profile was generated, indicating the number of boardings and

alightings along the route of that line. The second example involved studying

the most frequent bus transfers done by passengers. This example allowed

identifying one bus transfer frequently made by citizens from a socioeconomi-

cally vulnerable part of the city in order to reach a high-income neighborhood.
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Summarizing, the main contributions of the research reported in this thesis

are:

• A review of related works regarding urban mobility, specifically, on OD

matrix generation using ITS data.

• An urban data analysis of mobility in Montevideo, Uruguay, using ITS

data from the public transportation system.

• An algorithm to estimate trip destinations using ticket sales transactions

and bus location data.

• Estimated OD matrices for the public transportation system of Monte-

video and their validation against a household mobility survey.

• An interactive web application to visually display the computed OD

matrices.

The work reported in this thesis resulted in several publications including

two journal articles (Nesmachnow et al., 2017; Massobrio et al., 2018) and

three conference papers (Massobrio et al., 2016; Massobrio and Nesmachnow,

2016; Fabbiani et al., 2017), which address topics included in this manuscript

and other related lines of work. Additionally, a collaboration with a research

group at Centro de Investigación Cient́ıfica y de Educación Superior de Ense-

nada in Mexico was established. The results from the data analysis process

reported in this thesis were used to address bus fleet scheduling and timetable

synchronization problems, leading to a series of co-authored articles on the

topic (Peña et al., 2016, 2017a,b, 2018).

6.2 Future work

The work reported in this thesis constitutes one of the first steps towards

using data from the ITS in Montevideo to understand mobility in the city. As

such, many lines of research remain to be explored in order to extract more

and richer information that can be used to improve the public transportation

system.

The data analysis reported in this thesis mainly focused in understanding

the interaction between passengers and the transportation system. However,

the available data sources offer the potential to study other very interesting

aspects of mobility in the city. For instance, location data from AVL systems

could be used to further study the QoS offered to citizens by the transportation

system in terms of punctuality, frequency of lines, and load of passengers with
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regards to the bus capacity. Additionally, speed information of buses could

be used to characterize the streets of the city and identify bottlenecks. This

information could be used as input when designing new lines or re-designing

existing ones.

Regarding the estimation of OD matrices, several improvements could be

made to the proposed approach. Data from tickets sold without smart cards

should be used to expand the results from the estimated OD matrices to ac-

count for all passengers of the transportation system. This would make the

comparison with the mobility survey fairer, since the survey accounted for pas-

sengers traveling with and withous smart cards. Additionally, the destination

estimation algorithm could be further refined. Historical passenger data could

be used when trip chaining fails to estimate the destination of a trip. For in-

stance, frequent destinations could be inferred on a per-passenger basis using

clustering or other machine learning techniques. This would allow to predict

the destination of a trip based on past information of the same passenger.

Another aspect that could be improved from the current approach involves

transfers. In the proposed method, bus transfers are always considered as part

of a trip with multiple legs. AVL data could be used to help identifying short

individual trips done using a single ticket. Furthermore, other related opti-

mization problems could be tackled using the OD matrices computed in this

work, e.g., synchronizing bus schedules for transfers, incorporating demand

data to optimize the fleet size and vehicle schedule of buses in the system,

modifying the location of bus stops, and redesigning the bus line network.

Finally, it is worth noting that this work used ITS data from 2015. Since

that year, the use of smart cards to pay for tickets has risen significantly.

Consequently, OD matrices estimated using up-to-date data might be more

representative of the universe of passengers using the public transportation

system. The proposed approach should be applied to recent ITS data when

it becomes available publicly. In this regard, this work intends to contribute

with a small step towards authorities opening up more data.
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