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PARALLEL EVOLUTIONARY ALGORITHMS
FOR SCHEDULING ON HETEROGENEOUS
COMPUTING AND GRID ENVIRONMENTS

ABSTRACT

This thesis studies the application of sequential and parallel evolutio-
nary algorithms to the scheduling problem in heterogeneous computing
and grid environments, a key problem when executing tasks in dis-
tributed computing systems. Since the 1990’s, this class of systems
has been increasingly employed to provide support for solving complex
problems using high-performance computing techniques. The schedu-
ling problem in heterogeneous computing systems is an NP-hard op-
timization problem, which has been tackled using several optimization
methods in the past. Among many new techniques for optimization,
evolutionary computing methods have been successfully applied to this
class of problems. In this work, several evolutionary algorithms in their
sequential and parallel variants are specifically designed to provide accu-
rate solutions for the problem, allowing to compute an efficient planning
for heterogeneous computing and grid environments. New problem ins-
tances, far more complex than those existing in the related literature,
are introduced in this thesis in order to study the scalability of the
presented parallel evolutionary algorithms. In addition, a new parallel
micro-CHC algorithm is developed, inspired by useful ideas from the
multiobjective optimization field. Efficient numerical results of this al-
gorithm are reported in the experimental analysis performed on both
well-known problem instances and the large instances specially designed
in this work. The comparative study including traditional methods and
evolutionary algorithms shows that the new parallel micro-CHC is able
to achieve a high problem solving efficacy, outperforming previous re-
sults already reported for the problem and also having a good scalability
behavior when solving high dimension problem instances. In addition,
two variants of the scheduling problem in heterogeneous environments
are also tackled, showing the versatility of the proposed approach using
parallel evolutionary algorithms to deal with both dynamic and multi-
objective scenarios.

Keywords: Parallel evolutionary algorithms, Scheduling, Heteroge-
neous computing, Grid computing
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ALGORITMOS EVOLUTIVOS PARALELOS
PARA PLANIFICACION DE TAREAS
EN ENTORNOS HETEROGENEOS

RESUMEN

Esta tesis estudia la aplicacion de algoritmos evolutivos secuenciales
y paralelos para el problema de planificaciéon de tareas en entornos
de cémputo heterogéneos y de computaciéon grid. Desde la década de
1990, estos sistemas computacionales han sido utilizados con éxito para
resolver problemas complejos utilizando técnicas de computacién de
alto desempeo. El problema de planificacién de tareas en entornos he-
terogéneos es un problema de optimizacion NP-dificil que ha sido abor-
dado utilizando diversas técnicas. Entre las técnicas emergentes para
optimizacion combinatoria, los algoritmos evolutivos han sido aplica-
dos con éxito a esta clase de problemas. En este trabajo, varios al-
goritmos evolutivos en sus versiones secuenciales y paralelas han sido
especificamente diseados para alcanzar soluciones precisas para el pro-
blema de planificacién de tareas en entornos de heterogéneos, permi-
tiendo calcular planificaciones eficientes para entornos que modelan
clusters de computadores y plataformas de computacién grid. Nuevas
instancias del problema, con una complejidad mucho mayor que las
previamente existentes en la literatura relacionada, son presentadas en
esta tesis con el objetivo de analizar la escalabilidad de los algorit-
mos evolutivos propuestos. Complementariamente, un nuevo método,
el micro-CHC paralelo es desarrollado, inspirado en ideas ttiles prove-
nientes del area de optimizacién multiobjetivo. Resultados numéricos
precisos y eficientes se reportan en el andlisis experimental realizado
sobre instancias estandar del problema y sobre las nuevas instancias
especificamente diseadas en este trabajo. El estudio comparativo que
incluye a métodos tradicionales para planificacion de tareas, los nuevos
métodos propuestos y algoritmos evolutivos previamente aplicados al
problema, demuestra que el nuevo micro-CHC paralelo es capaz de
alcanzar altos valores de eficacio, superando a los mejores resultados
previamente reportados en la literatura del area y mostrando un buen
comportamiento de escalabilidad para resolver las instancias de gran
dimensién. Ademas, dos variantes del problema de planificacién de
tareas en entornos heterogéneos han sido inicialmente estudiadas, com-
probandose la versatilidad del enfoque propuesto para resolver las vari-
antes dinamica y multiobjetivo del problema.

Palabras clave: Algoritmos evolutivos paralelos, Planificacion de ta-
reas, Computacién heterogénea, Computacién grid
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Chapter 1

Introduction

In the last fifteen years, the fast increase of the processing power of low-cost compu-
ters and the rapid development of high-speed networking technologies have boosted
the use of distributed computing environments for solving complex problems. Starting
from small clusters of homogeneous computers in the 1980’s, as for today distributed
computing environments include platforms formed by hundreds or thousands of hete-
rogeneous computing resources widespread around the globe, providing the computing
power needed for solving complex problems arising in many areas of application. Nowa-
days, a common platform for distributed computing usually comprises a heterogeneous
collection of computers able to work cooperatively. At a higher level of abstraction, the
expression grid computing has become popular to denote the set of distributed compu-
ting techniques that work over a large loosely-coupled virtual supercomputer, formed
by combining together many heterogeneous components of different characteristics and
computing power. This infrastructure has made it feasible to provide pervasive and cost-
effective access to a collection of distributed computing resources for solving problems
that demand large computing power (Foster and Kesselman, 1998).

A crucial problem when using such heterogeneous computing (HC) environments
consists in finding a planning strategy or scheduling for a set of tasks to be executed.
The goal of the scheduling problem is to optimally assign the computing resources
by satisfying some efficiency criteria, usually related to the total execution time or
resource utilization. Frequently, the scheduling strategy is devoted to optimize the
makespan, a metric that quantifies the total execution time of the tasks in the system,
even though alternative metrics have also been taken into account in many scheduling
problem variants (e.g. flowtime, that evaluates the sum of the finishing times of the
tasks, and several other metrics related to the resources utilization).

Scheduling problems on multiprocessor systems have been widely studied in operatio-
nal research, and numerous methods have been proposed for finding accurate schedules
in reasonable times (El-Rewini et al., 1994; Leung et al., 2004). In their classic formula-
tion, scheduling problems assume a computing environment composed by homogeneous
resources. However, in the 1990’s decade the research community started to pay atten-
tion to scheduling problems on HC environments, specially due to the popularization
of distributed computing and the growing use of heterogeneous clusters (Freund et al.,
1994; Eshaghian, 1996). In the last ten years, significant effort has been made to study
the scheduling problem on HC environments, since this platform provides the efficiency
required for distributed and grid computing techniques.

3



4 Introduction

Traditional scheduling problems are NP-hard (Garey and Johnson, 1979), thus classic
exact methods are only useful for solving problem instances of reduced size. The research
community has been searching for new scheduling techniques that are able to improve
upon the traditional exact ones, whose low efficiency often makes them useless in prac-
tice for solving large-dimension scheduling problems in reasonable times. When dealing
with large-dimension computing environments, ad-hoc heuristic and metaheuristic tech-
niques have shown up as promising methods for solving the HC and grid scheduling
problems. Although these methods do not guarantee success in computing an optimal
solution for the problem, they get appropriate quasi-optimal schedules that usually sat-
isfy the efficiency requirements for real-life scenarios, in reasonable times. Among a
broad set of modern metaheuristic techniques for optimization, evolutionary algorithms
(EAs) (Béck et al., 1997) have emerged as flexible and robust methods for solving the he-
terogeneous computing scheduling problem (HCSP), achieving the high level of problem
solving efficacy also shown in many other areas of application. Although they usually
require longer execution times —in the order of few minutes— than ad-hoc heuristics, EAs
consistently find better solutions than ad-hoc heuristic methods, so they are competitive
schedulers for distributed HC and grid systems where large tasks —with execution times
in the order of minutes, hours, and even days— are submitted for execution (Braun et al.,
2001; Tupcouglu et al., 2002). In order to further improve the efficiency of EAs, parallel
implementations became a popular option to speed up the search, allowing to reach
high quality results in a reasonable execution time even for hard-to-solve optimization
problems (Cantu-Paz, 2000; Alba, 2005).

EAs and other metaheuristics have been frequently applied to the HCSP and related
problem variants in the last ten years. The most relevant proposals included Genetic
Algorithms (GA) (Wang et al., 1997; Braun et al., 2001; Zomaya and Teh, 2001; Page
and Naughton, 2005; Xhafa et al., 2008c), Memetic Algorithms (MA) (Xhafa, 2007),
cellular MA (cMA) (Xhafa et al., 2008a), and also hybrid methods combining EAs with
other optimization techniques. Two relevant works have obtained the best-known results
when facing a set of low-sized de-facto standard HCSP instances using non-evolutionary
metaheuristics: an hybrid combining Ant Colony Optimization (ACO) and Tabu Search
(TS) (Ritchie and Levine, 2004) that took a long time —over 3.5 hours— to perform the
search, and a hierarchic TS (Xhafa et al., 2008b) that used a time limit of 100 s. to run
the scheduling algorithm. Other HCSP variants have been tackled using EAs, mostly
remarkable the precedence-constrained task scheduling problem in multiprocessors (Wu
et al., 2004; Boyer and Hura, 2005), real-time grid scheduling (Tordache et al., 2007),
economy-based scheduling (Yu and Buyya, 2006), and other complex HCSP versions
regarding many task attributes (Sugavanam et al., 2007; Braun et al., 2008).

Despite the numerous proposals on applying EAs and other metaheuristics to the
HCSP and related variants, few works have tackled realistic instances in grid envi-
ronments, mainly due to the inherent complexity of dealing with the underlying high-
dimension optimization problem. In addition, few works studied parallel algorithms, in
order to determine their ability to use the computing power available in large clusters
or multicore computers to improve the search. Thus, there is still room to contribute in
these lines of research by studying highly efficient parallel EA implementations that, by
using simple operators, are able to scale-up and to deal with large-sized HCSP instan-
ces, eventually employing the available additional computational power of parallel and
distributed computing environments.



This thesis presents the application of sequential and parallel EAs for solving the
HCSP in distributed computing and grid environments. The work follows the line of
research on studying evolutionary computation methods and parallel processing tech-
niques for solving hard optimization problems, currently developed in Universidad de
la Republica, Uruguay, and Universidad de Malaga, Spain. The research reported in
this thesis was based in an initial conceptualization of parallel implementations of EAs,
and the scheduling problem in distributed HC and grid environments. After perform-
ing a review of the state-of-the-art publications on the application of EAs and other
metaheuristics to the HCSP and related problems, the conceptualization, design, and
implementation of several EAs in their sequential and parallel variants was tackled. The
experimental study was initially aimed to analyze the efficacy of the proposed EAs to
solve a de-facto standard set of small-sized HCSP instances, by using simple search op-
erators that allow the methods to scale up in order to face realistic large-sized problem
instances. The analysis led to the proposal of a new parallel micro-CHC evolutionary
algorithm (pu-CHC) that uses specific operators in order to efficiently solve the HCSP.
After that, the efficacy, efficiency, and scalability of the proposed EAs were evaluated
for solving a new set of HCSP instances, far more complex than the ones existing in the
present literature, designed by following a well-known methodology to model realistic HC
environments such as large clusters and medium-size grid infrastructures. In addition,
two lines of future work addressing variants of the HCSP have been initially studied:
the scheduling problem in dynamic scenarios using the rescheduling strategy, and a mul-
tiobjective version of the HCSP devoted to simultaneously optimize the makespan and
flowtime metrics.

The main contributions of this work are:

i. to analyze EA techniques for solving the scheduling problem on distributed hete-
rogeneous environments,

ii. to apply parallel models of EAs that allow improving the quality of results and
reducing the execution times,

iii. to provide new state-of-the-art methods for HC scheduling that can be used as
building blocks for scaling to large distributed computing and grid systems,

iv. to introduce a new set of benchmark HCSP instances, specifically designed by
following a well-known methodology, that model realistic HC environments such
as large clusters and medium-size grid infrastructures, and

v. to introduce the pu-CHC algorithm, a novel EA for solving the HCSP that com-
bines a parallel subpopulation model with a focused evolutionary search using a
micro population and a specific randomized local search method.

The experimental analysis shows that pu-CHC is the new state-of-the-art algorithm
for solving both standard problem instances and large unseen HCSP instances designed
in this work. The new pu-CHC algorithm outperforms previous results already reported
in the related literature, and also shows a good scalability behavior when solving the
new high dimension problem instances proposed in this work.



6 Introduction

The content of the manuscript is structured as follows. Next chapter introduces
the paradigm of evolutionary computation and presents the most important features
of the EAs involved in this study. It also describes the application of parallel process-
ing techniques in order to improve the efficiency and efficacy of EAs, and introduces
the new pu-CHC algorithm proposed in this work. The HCSP problem model and
formulation are presented in Chapter 3, along with generic considerations about sche-
duling methods. The chapter also discusses the performance estimation methods and
the HCSP instances already used in the related literature, just before introducing the
new problem instances designed in this work in order to scale up to real-life-sized HC
and grid environments. Finally, Chapter 3 also presents a brief description and review
of several classic static heuristics and metaheuristics approaches using performance es-
timation, whose main ideas have been considered to design the EAs included in the
study. Chapter 4 reviews and comments previous works that have proposed applying
EAs to solve the HCSP and related variants in the last fifteen years. The review follows
a chronological classification that allows identifying three stages regarding the scope of
the proposals and the characteristics of the faced scenarios. Chapter 5 describes the
implementation details of the serial and parallel EAs proposed in this study. It also
presents MALLBA, the public C4++ algorithmic environment on which the proposed
EAs were implemented and the specific pu~-CHC algorithm applied to the HCSP. The
experimental analysis and the discussion of obtained results are included in Chapter
6. It presents the parameter setting experiments, the numerical results and compari-
son with other techniques for standard and new large HCSP instances. The numerical
analysis also includes the comparison with lower bounds computed for the preemptive
case of the problem, and a study of the scalability and parallel performance behavior
of the parallel EAs when solving the new large HCSP instances proposed in this work.
The experimental results presented in Chapter 6 demonstrate the usefulness of the new
pu-CHC algorithm to efficiently compute accurate solutions for the HCSP. Chapter 7
presents the preliminary studies of two lines of research proposed as future work: the
application of the pu~-CHC algorithm to solve two variants of the HCSP aimed at solving
the scheduling problem in dynamic scenarios using the rescheduling strategy, and facing
a multiobjective version of the HCSP devoted to optimize the makespan and flowtime
metrics. Finally, the conclusions of the research are formulated in Chapter 8, along with
a summary of the main contributions and the possible lines to continue the work in the
near future.



Chapter 2

Parallel evolutionary algorithms

This chapter introduces the generic concepts about evolutionary computation techniques
and describes the algorithms considered in this research for solving the HCSP. The chap-
ter also presents the application of parallel processing techniques in order to improve the
efficiency and efficacy of EAs, and introduces the new parallel micro-CHC evolutionary
algorithm proposed in this work.

2.1 Introduction

Classic exact optimization methods —such as linear programming, branch and bound,
dynamic programming, etc.— need to perform a superpolynomial number of operations
when solving NP-hard optimization problems. Thus, those classic methods are gene-
rally only useful for solving problem instances of reduced size. In the last twenty-five
years, the research community has been searching for new optimization techniques that
are able to improve over the traditional exact ones, whose low efficiency often makes
them useless in practice for solving large-dimension optimization problems in reasonable
times. In this context, heuristics and metaheuristics techniques showed up as promising
methods for solving NP-hard optimization problems (Glover and Kochenberger, 2003;
Blum and Roli, 2003). Although heuristic and metaheuristics methods do not guar-
antee success in computing an optimal solution for the problem, they get appropriate
quasi-optimal schedules that very often satisfy the efficiency requirements for real-life
scenarios, in reasonable execution times. Among a broad set of modern metaheuristic
methods for optimization, evolutionary computation techniques have emerged as flexible
and robust methods for solving complex optimization problems in many areas of appli-
cation like industry, mathematics, economy, telecommunications, and bioinformatics,
among others (Goldberg, 1989a; Davis, 1991; Béck et al., 1997).

Evolutionary computation techniques are stochastic methods that emulate the evo-
lutionary process of natural species in order to solve optimization, search, learning, and
other related problems. The idea of designing simulation methods for solving problems
using the concepts of self-replication, self-modification, and evolution was suggested in
the early 1960’s by pioneers on information science and artificial intelligence such as Von
Neumannn, Barricelli, Rechenberg, and others (Dyson, 1997). However, the fist algo-
rithmic proposal of an evolutionary method dates from Holland, who suggested a genetic
search procedure and presented the analytical background of evolutionary computation
in the 1970’s decade (Hayes-Roth, 1975).
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As for today, the general term evolutionary computation includes a broad set of
search and optimization techniques that use processes analogous to the natural evolution,
but somehow different than the seminal concepts on self-replication and self-modification
programs. In the last twenty-five years, EAs have been successfully applied for solving
optimization problems underlying many real applications of high complexity. In order to
considerably improve the efficiency of EAs, parallel implementations have been employed
to enhance and speed up the evolutionary search. By splitting the computation in several
processing elements, parallel evolutionary algorithms allow reaching high quality results
in reasonable execution times even for hard-to-solve optimization problems (Canti-Paz,

2000; Alba, 2005).

2.2 Evolutionary algorithms

The generic schema of an EA is shown in Algorithm 1. An EA is an iterative technique
(each iteration is called a generation) that applies stochastic operators on a pool of in-
dividuals (the population P) in order to improve their fitness, a measure related to the
objective function to optimize. Every individual in the population is the encoded version
of a tentative solution of the problem. The initial population is either generated by a
random method or by seeding the individuals using a specific heuristic for the problem.
An evaluation function associates a fitness value to every individual, indicating its suita-
bility to the problem. Iteratively, the probabilistic application of variation operators like
the recombination of parts of two individuals and random changes (mutations) in their
contents are guided by a selection-of-the-best technique to tentative solutions of higher
quality. The stopping criteria usually involves a fixed number of generations or execu-
tion time, a quality threshold on the best fitness value, the detection of a stagnation
situation, or a logical combination of all of the previously mentioned criteria. Specific
policies are used to select the groups of individuals to recombine (the selection method)
and to determine which new individuals are inserted in the population in each new ge-
neration (the replacement criterion). The EA returns the best solution ever found in the
iterative process, taking into account the fitness function considered for the problem.

Algorithm 1 Schema of an evolutionary algorithm.
1: initialize(P(0))
generation «+ 0
while not stopcriteria do
evaluate(P(generation))
parents < selection(P(generation))
offspring < variation operators(parents)
newpop « replace(offspring, P(generation))
generation 4+
P(generation) « newpop
end while
: return best solution ever found

— =
— O




2.3 Genetic algorithm

In the last twenty-five years, EAs have been successfully applied for solving opti-
mization problems underlying many real applications of high complexity. Next sections
present specific instances and specializations of the generic algorithmic proposal des-
cribed in Algorithm 1: genetic algorithm (GA), the CHC method, parallel EAs, and
a novel parallel micro-CHC algorithm proposed in this work. All these methods have
been applied in the research reported in this thesis for solving the HCSP.

2.3 Genetic algorithm

The classic formulation of a GA can be found in Goldberg (1989a) and Béck et al. (1997).
Based on the generic schema of an EA shown in Algorithm 1, the classic GA defines
recombination and mutation as variation operators, applying them to the population of
potential solutions in each generation. The recombination is used as the main operator
to perform the search (exploiting the characteristics of suitable individuals), while the
mutation is used as a (seldom-applied) secondary operator aimed at providing diversity
for exploring different zones of the search space.

The simplest GA formulation —named simple GA (SGA)— was proposed by Goldberg
(1989a). SGA wuses a binary string for encoding solutions, the Single Point Crossover
(SPX) as recombination operator and a mutation operator that randomly modifies se-
lected positions in the solution encoding. Many other GA variants have been proposed
in the literature by using alternative encodings, diverse recombination and mutation
operators, or even different evolution models.

GAs are widely spread due to their versatility for solving combinatorial optimization
problems. In this research, a traditional GA and other variants have been applied to
solve the HCSP. The implementation details are presented in Chapter 5.

2.4 CHC algorithm

The CHC acronym stands for “Cross generational elitist selection, Heterogeneous re-
combination, and Cataclysmic mutation” (Eshelman, 1991). CHC is a specialization of
a traditional GA that uses a conservative elitist selection strategy, that tends to per-
petuate the best individuals in the population. CHC uses a special mating procedure:
parents are randomly selected, but only those individuals which differ from each other
by some number of bits are allowed to reproduce. The initial threshold for allowing
mating is often set to 1/4 of the chromosome length. If no offspring is inserted into
the new population during the mating procedure, this threshold is reduced by 1. The
recombination operator in CHC is a special variant of the uniform crossover (UX), called
half uniform crossover (HUX), which randomly swaps exactly half of the bits that differ
between the two parent strings. CHC does not apply mutation, diversity is provided
by applying a re-initialization procedure, using the best individual found so far as a
template for creating a new population after convergence is detected.

Algorithm 2 presents a pseudo-code for the CHC algorithm, based on Eshelman’s
proposal, showing those features that make it different from traditional GAs: the highly
elitist replacement strategy, the use of its own HUX recombination operator, the absence
of mutation —which is substituted by a re-initialization operator— and the use of a mating
restriction policy, that does not allow to recombine a pair of “too similar” individuals
(considering a bit-to-bit distance function).
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Algorithm 2 Schema of the CHC algorithm.

1: initialize(P(0))

2: generation «+ 0;

3: distance « (1/4) x chromosomeLength

4: while not stopcriteria do

5. parents « selection(P(generation))

6:  if distance(parents) > distance then

7: offspring <« HUX(parents)

8: evaluate(offspring)

9: newpop « replacement(offspring, P(generation))
10:  end if

11:  if newpop == P(generation) then

12: distance — —

13:  end if

14:  generation ++

15:  P(generation) < newpop

16:  if distance == 0 then

17: re-initialization(P(generation))

18: distance <« (1/4) X chromosomeLength

19:  end if
20: end while
21: return best solution ever found

Although CHC is less known in the research community than other EA variants, it
has been used with much success for solving difficult combinatorial optimization pro-
blems in our research groups. As examples, we can mention the design of robust network
topologies (Nesmachnow et al., 2007), where several different metaheuristics —including
CHC- were compared, and a multiobjective antenna placement problem (Nebro et al.,
2007). In those previous works, CHC emerged as a very strong method for solving
optimization problems, obtaining the best results among the studied algorithms.

The CHC method has been applied in this work for solving the HCSP. The imple-
mentation details are presented in Chapter 5.

2.5 Parallel evolutionary algorithms

The application of parallel processing techniques to EAs was suggested in early works
in the 1960’s decade, where the intrinsically parallel nature of the evolutionary process
was identified as a key factor for the success of the evolutionary search (Holland, 1962;
Bossert, 1967). However, no parallel implementations of EAs were proposed, mainly due
to the lack of available parallel hardware in those years. Twenty years later, the first
experiments with parallel implementations of genetic algorithms were reported during
the 1980’s decade (Grefenstette, 1981; Grosso, 1985). Since the massive popularization
of parallel and high performance hardware architectures in the 1990’s decade, many
proposals of parallel evolutionary algorithms have been presented. Several reviews have
been published about the topic (Nowostawski and Poli, 1999; Canti-Paz, 2000; Alba
et al., 2002), including a comprehensive review about the design and classification of
parallel EAs by the author (Nesmachnow, 2002).
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Parallel implementations became popular in the last fifteen years as an effort to
improve the efficiency of EAs, while they also provide an improved search mechanism
than often obtains better results than the sequential models. By splitting the population
into several processing elements, parallel evolutionary algorithms (PEAs) allow reaching
high quality results in a reasonable execution time even for hard-to-solve optimization
problems (Cantu-Paz, 2000; Alba, 2005).

Three main models have been proposed in the related literature for designing PEAs,
regarding the criterion used for the organization of the population: the master-slave
model, the cellular model, and the distributed subpopulation model (Alba and Tomassini,
2002). These PEA models are briefly presented in the following subsections, before in-
troducing the new parallel micro-CHC algorithm proposed in this work.

2.5.1 Master-slave PEAs

The master-slave model follows a classic functional decomposition of the EA, where
different stages of the evolutionary process are performed in several computing re-
sources (Alba, 2005). The evaluation of the fitness function is the main candidate to
perform in parallel, since it usually requires larger computing time than the application
of the evolutionary operators. Thus, a master-slave PEA is organized in a hierarchic
structure: a master process performs the evolutionary search and controls a group of
slave processes that evaluate the fitness function. Unlike the other two models for para-
llel EAs, the master-slave model has an identical algorithmic behavior than a sequential
EA, since it works with a single panmictic population (i.e., no restrictions are established
for the interactions between individuals). Figure 2.1 presents a graphical representation
of the master-slave model for PEAs.
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Figure 2.1: Diagram of a master slave PEA.
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2.5.2 Cellular PEAs

The cellular model considers an underlying spatial structure for the individuals in the
population (most usually a two-dimensional grid, while other connection topologies have
been seldom used) (Alba and Dorronsoro, 2008). The interactions in the evolutionary
search are restricted only to neighboring solutions. The propagation of good charac-
teristics in the encoded solutions follows the diffusion model (Pettey, 1997), gradually
spreading through the grid. These features provide the cellular model with an algo-
rithmic behavior that differs from a traditional sequential EA. The limited interaction
between individuals is useful for providing diversity in the population, often improving
the efficacy of the evolutionary search. Figure 2.2 presents a graphical representation of
the cellular model for PEAs, where I;; represents the individual locates in the coordi-
nates i-j in the two-dimensional grid.
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Figure 2.2: Diagram of a cellular PEA.
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2.5.3 Distributed subpopulations PEAs

The distributed subpopulation model for PEAs (often also named island model) proposes
to divide a panmictic population in several subpopulations (also called islands or demes),
separated geographically from each other. Each deme runs a serial EA, so individuals are
able to interact only with other individuals in the deme. Furthermore, an extra migration
operator is defined: occasionally some selected individuals are exchanged among demes,
introducing a new source of diversity in the evolutionary search. Figure 2.3 presents a
graphical diagram of a distributed subpopulation PEA (Alba, 2005).

Algorithm 3 shows the generic schema for a distributed subpopulation PEA. Two
conditions control the migration procedure: sendmigrants determines when the exchange
of individuals takes place, and recumigrants establishes whether a foreign set of indivi-
duals has to be received or not. These two conditions are separated in time in an
asynchronous PEA, but they coincide in a synchronous model, when the send and re-
ceive operations are executed synchronically, one just after the other. Migrants denotes
the set of individuals to exchange with some other deme, selected according to a given
policy.
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The generic schema for a distributed subpopulation PEA in Algorithm 3 explicitly
distinguishes between selection for reproduction and selection for migration; they both
return a selected group of individuals to perform the operation, but following potentially
different policies. The sendmigration and recvmigration operators carry out the exchange
of individuals among demes according to a connectivity graph defined over them, most
usually an unidirectional ring.

./ 3

Migration

Figure 2.3: Diagram of a distributed subpopulation PEA.

Algorithm 3 Schema of a distributed subpopulation PEA.
1: initialize(P(0))
2: generation « 0
3: while not stopcriteria do
4:  evaluate(P(generation))

5. parents « selection(P(generation))
6: offspring < reproduction operators(parents)
7:  newpop < replace(offspring, P(generation))
8  generation 4+
9:  P(generation) < newpop
{Migration}
10:  if sendmigrants then
11: migrants « selection for migration(P(generation))
12: sendmigration(migrants)
13:  end if
14:  if recvmigrants then
15: inmigrants < recvmigration()
16: P(generation) « insert(immigrants, P(generation))
17:  end if

18: end while
19: return best solution ever found

The PEAs proposed in this work for solving the HCSP follow the distributed sub-
population model. The implementation details are presented in Chapter 5.
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2.6 Parallel micro-CHC algorithm

By splitting the global population, PEAs allow achieving high computational efficiency
due to the limited interaction and the reduced population size within each deme. How-
ever, EAs quickly lose diversity in the solutions when using small populations, and the
search suffers the well-known premature convergence effect, leading to a stagnation situ-
ation. The mating restriction policy and the re-initialization operator used in the CHC
algorithm are usually not powerful enough to provide the required diversity to avoid pre-
mature convergence in the parallel model when using very small populations (i.e. less
than 10 individuals per deme). Many alternatives have been proposed in the related
literature to overcome the lose of diversity on EAs. In the quest for designing a fast
and accurate version of the CHC algorithm for solving the HCSP, able to achieve high
quality results in a reduced execution time, concepts from the micro-genetic algorithm
(u1-GA) by Coello and Pulido (2001) were incorporated in this work in order to design
a parallel micro-CHC algorithm.

Back in 2001, u-GA was a novel proposal of EA in the context of multiobjective
optimization, following previous works by Goldberg (1989b), Krishnakumar (1989) and
Knowles and Corne (2000), aimed at speeding up the resolution of complex real-world
problems. Years before, theoretical studies by Goldberg (1989b) hinted that an elitist
evolutionary search is able to converge when using a reduced population size of only three
individuals. Goldberg suggested a GA that uses a small population which evolves until
reaching nominal convergence (i.e. when all individuals in the population are similar
to each other). After that, a random reinitialization operator is applied in order to
generate a new population, while keeping the best individuals from the previous cycle.
The evolutionary search suggested by Golberg is rather similar to the CHC method later
proposed by Eshelman, so devising a micro-CHC algorithm is a rather straightforward
task.

The u-GA by Coello and Pulido (2001) uses two populations to store memory along
the search: the main population used in any EA, and a secondary population (also known
as elite population or external population) which stores the best solutions found so far.
The elite population allows keeping diversity at a low computational cost, by using the
elite individuals to perform the population reinitialization after a certain low number
of generations (in their proposal, Coello and Pulido (2001) applied the reinitialization
after two to five generations pass when solving standard multiobjective problems).

The new parallel micro-CHC algorithm proposed in this work combines a distributed
subpopulation parallel model of the original CHC structure by Eshelman (using HUX
and mating restriction) with two key concepts from p-GA: an external population that
stores elite solutions found along the search, and an accelerated reinitialization using
a specific randomized version of a well-known local search method to provide diversity
within each subpopulation. The new algorithmic proposal uses an external population
with three individuals, and a simple remove-of-the-worst strategy is used each time a
new individual is inserted in the elite set. The accelerated reinitialization process applies
both the CHC reinitialization operator and the local search method after a certain
low number of generations (MAX_COUNT_REINIT, originally set to five generations) pass
without inserting any offspring into the new population during the mating procedure.
All these features have been proposed in this work to allow an efficient search when
using a small population —i.e. less than 10 individuals— within each deme.
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Algorithm 4 presents a pseudo-code for the new parallel micro-CHC algorithm (pyu-
CHC), distinguishing those features that make it different from the traditional CHC
algorithm: the use of a micro-population and an external elite population, the accelera-
ted reinitialization, and the specific local search method employed to provide diversity.

Algorithm 4 Schema of the parallel micro-CHC algorithm.

1: initialize micro-population(P(0))
2: generation « (
3: counter « 0 {counter for reinitialization}
4: distance « initial_distance
5: elite_population = &
6: while not stopcriteria do
7.  parents < selection(P(generation))
8:  if distance(parents) > distance then
9: offspring «— HUX(parents)
10: evaluate(offspring)
11: newpop « replacement(offspring, P(generation))
12 end if
13:  if newpop == P(generation) then
14: distance — —
15: counter ++4
16:  end if
17:  generation ++
18:  P(generation) <« newpop
{Reinitialization}
19:  if ((distance == 0) OR (counter == MAX_COUNT_REINIT)) then
20: re-initialization(P(generation))
21: local search(elite population)
22: distance < initial_distance
23: counter « 0;
24: end if
25:  if best_solution_found then
26: remove_worst(elite_population)
27: insert(best_solution, elite_population)
28: end if

29: end while
30: return best solution ever found

The pu-CHC algorithm has been proposed in this work as an improved method
for solving the HCSP, including some additional features in order to design an efficient
and fully scalable implementation for tackling realistic large-dimension HCSP instances.
The implementation details of the parallel micro-CHC for the HCSP are presented in
Chapter 5.
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2.7 Summary

This chapter has presented the main concepts about evolutionary computing techniques
applied to solve optimization problems, and the specific evolutionary methods selected
to be applied to the HCSP —GA and CHC- have been described. It also described the
main ideas about the application of parallel processing techniques for improving the
computational efficiency and the quality of results of EAs, briefly introducing the three
parallel models of EAs that have been frequently used in the related literature. Finally,
a direct contribution of this research has been introduced: the new parallel micro-CHC
evolutionary algorithm, specially designed in order to provide a highly efficient search
for complex optimization problems. pu-CHC is inspired in previous works about GA
using micro-populations and it incorporates specific features usually employed in the
evolutionary multiobjective optimization field.



Chapter 3

Scheduling in heterogeneous
computing environments

This chapter presents the HCSP mathematical formulation and concepts about the task
execution time estimation in HC systems. It also discusses the HCSP instances already
used in the related literature, as well as the need of new problem instances to scale up and
model real-life HC and grid scenarios. Finally, it presents a brief description of some
classic static heuristics and metaheuristic approaches using performance estimation,
whose main ideas have been used in the design of the EAs included in this study.

3.1 Heterogeneous computing

A HC system is a well-orchestrated and coordinated set of processing elements, often
called resources, processors or simply machines, interconnected by a network. The he-
terogeneous quality of the computing environment refers to the variable computational
capabilities of the resources (e.g., CPU processing power, data transfer speed of the
network, etc.). Usually, an HC system comprise a parallel and/or distributed suite of
high performance machines, working together in order to provide support to cooperati-
vely solve computing-intensive applications. Since the massive popularization of parallel
and distributed computing in the 1990’s decade, HC systems have emerged as a major
paradigm for scientific and high performance applications that has been used to solve
key problems with high computational requirements in many application areas (Khokhar
et al., 1993; Freund et al., 1994; Eshaghian, 1996; Braun et al., 2000).

Nowadays, there exist mainly four types of HC systems: parallel systems in a single
high performance supercomputer, distributed systems (usually connected in a Local Area
Network), clusters of servers and workstations (often in a geographically distributed envi-
ronment ), and grid systems (widespread through the globe, with the potential scalability
of using thousands of machines). Distributed clusters and grid systems have developed
in the last decade as a powerful tool for tackling challenging hard-to-solve applications
by using collaborative parallel-distributed computing strategies. While each of the pre-
viously described HC systems has its own characteristics, a crucial problem for all of
them consists in finding a suitable tasks-to-machines assignment in order to satisfy some
objectives related with efficiency, resource utilization, economic profit, and many other
criteria. This problem, called task assignment, task planning or simply scheduling, has
been an important focus in this line of research in the last twenty years.

17
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Figure 3.1 shows an example of a distributed HC system composed of different (tra-
ditional and non-traditional) high performance computing platforms, and a centralized
scheduler which performs the tasks-to-resources assignment. In some cases, a simplified
version of the scheduling problem can be formulated by using information about the HC
system (e.g., when all resources are managed by a single control point which accounts
for full information about tasks and resource utilization). However, heterogeneity usua-
lly poses a hard challenge for the scheduling application, specially in fully distributed
HC systems, where few information about tasks and resources is available, and different
resource utilization policies may be locally applied.
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Figure 3.1: Scheduling in an HC environment.

3.2 HCSP formulation

Let an HC system be composed of many computers, also called processors or simply
machines, and a set of tasks with variable computational requirements, to be executed
on the system. A task is the atomic unit of workload to be assigned to a computing
resource, so a task cannot be divided in smaller chunks, nor interrupted after it is
assigned (the scheduling problem follows a non-preemptive model). The execution times
of any individual task vary from one machine to another, so there will be a competition
among tasks for using those machines able to execute each task in the shortest time.
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The general formulation of a scheduling problem proposes to find a tasks-to-machines
assignment in order to satisfy some objectives. Given that using the computational
resources does not come for free, most scheduling problems mainly concern about time,
trying to minimize the total time spent to execute all tasks. Several properties or
attributes can be assigned to each task (i.e. CPU and memory requirements, priority,
execution time deadline, etc.), but the simplest model used for scheduling, and also the
most common one, considers only the execution time of each task in each computing
resource as the most relevant property. The most usual metric to minimize in this model
is the makespan, defined as the time spent from the moment when the first task starts
its execution to the moment when the last task is completed. However, many other
performance metrics have been considered in scheduling problems, such as the economic
cost of executing an application and the quality of service, which is specially pertinent in
grid infrastructures (Leung et al., 2004). Other relevant metrics, from the performance
optimization point of view, include the resource utilization, the throughput and also the
economic profit of a certain infrastructure. Beyond all those single-objective approaches,
the scheduling problem is an obvious multiobjective problem when considering several
task properties or several performance metrics in conflict with each other.

This work mainly concerns the optimization of the makespan metric, and the follo-
wing formulation presents the mathematical model for the HCSP aimed at minimizing
the makespan:

e Given an HC system composed of a set of computational resources (machines) P =
{m1,ma,...,mp} (dimension M), and a collection of tasks T' = {t1,t2,...,tn}
(dimension N) to be executed on the HC system,

e let there be an ezecution time function ET : P x T — R*, where ET(t;,m;) is
the time required to execute the task ¢; in the machine m,;,

e the goal of the HCSP is to find an assignment of tasks to machines (a function
f: TN — PM) which minimizes the makespan, defined in Equation 3.1.

ET(t;,m; 31
max t; (ti, my) (3.1)
f(ty)=m;

The previous model does not account for dependencies among tasks: the formula-
tion assumes that all tasks can be independently executed, disregarding the execution
order. Even though it is a simplified version of the more general scheduling problem
that accounts for task dependencies, the independent task model is specially important
in distributed environments such as supercomputing centers and grid infrastructures.
Independent-task applications frequently appears in many lines of scientific research,
and they are specially relevant in Single-Program Multiple-Data (SPMD) applications
used for multimedia processing, data mining, parallel domain decomposition of nume-
rical models for physical phenomena, etc. In addition, the independent tasks model
also arises when different users submit their (obviously independent) tasks to execute
in a grid computing service -such as Berkeley’s BOINC, Xgrid, TeraGrid, EGEE, etc.
(Berman et al., 2003)-, and in parameter sweep applications, structured as a set of mul-
tiple experiments, each one executed with a different set of parameter values. Thus, the
relevance of the HCSP version faced in this work is justified due to its significance in
realistic distributed HC and grid environments.
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3.2.1 Problem model considerations

Scheduling policies and algorithms are classified in static, dynamic or adaptive, regarding
the moment in which the scheduling decisions are taken. In a static method, the schedu-
ler gathers all the available information about tasks and resources before the execution:
the resource availability and the collection of tasks is completely known a-priori, and it
is assumed that no task arrives after the planning is done. The scheduler takes early
decisions, and the task-to-resource assignment is not allowed to change during the exe-
cution. Static schedulers require an accurate estimation of the execution time for each
task on each machine, which is usually achieved by performing task profiling and sta-
tistical analysis of both submitted workloads and resource utilization (see Section 3.3).
Although static scheduling does not account for infrastructure failures or unexpected
overload situations, auxiliary mechanisms such as rescheduling can be used to mitigate
the effect of disruptive events. By contrast, dynamic scheduling methods allow plan-
ning when tasks are admitted to arrive dynamically, providing an efficient way to deal
with problematic events such as unexpected overload and resource crashes. Dynamic
schedulers try to overcome the difficulties of execution time estimation by taking the
scheduling decisions while the application is running. They rely on information about
the current state of the HC system to properly take the adequate decisions about where
to dispatch an incoming task, or where to reallocate it when a failure occurs, in order
to maintain a good load balancing pattern. In a higher level of complexity, adaptive
scheduling techniques apply the dynamic assignment model, but they also incorporate
prediction techniques trying to take the most adequate scheduling decisions after fore-
seeing the system behavior. Adaptive schedulers often require complex procedures to
know in advance the metrics needed to perform adaptation, such as resource load and
availability. They also frequently need to forecast the tasks execution times in order to
increase their planning efficiency. Nevertheless, when using forecasting techniques, the
resulting tool is accurate, but it is also often application-specific, with restricted use in
general-purpose domains.

This work proposes using parallel EAs to solve the static HCSP. Static scheduling
has it own areas of specific application, such as planning in distributed clusters and
HC multiprocessors, and also analyzing the resource utilization for a given hardware
infrastructure. Static scheduling also provides a first step for solving more complex
scheduling problems arising in distributed and dynamic environments: static results can
be used as a reference baseline to determine if a dynamic scheduler is taking the right
decisions about using the available resources in the system. In addition, an efficient
static planner that obtains accurate results for high dimension scheduling problems, can
be the building block to develop a powerful dynamic scheduling application, able to deal
with the increasing complexity of nowadays grid infrastructures.

3.2.2 HCSP computational complexity

The heterogeneous computing scheduling problem is NP-hard. HCSP is a generalization
of the Minimum Resource Constrained Scheduling Problem (problem SS8 in the classi-
fication by Garey and Johnson (1979)) where no resource constraints are formulated,
and the task length (I(t;) in SS8) is replaced by the execution time function ET'(t;,m;).
The HCSP has been also named as Minimum Multiprocessor Scheduling Problem in the
compendium of NP optimization problems by Crescenzi and Kann (1999).
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The dimension of the HCSP search space is M7 for a problem scenario with N
tasks and M machines. This fact means that the number of possible schedules increases
exponentially with the number of tasks. Even for (unrealistic) very small problem
instances, the dimension of the HCSP search space is really huge (more than a million
schedules for M = 4, N = 10, and almost 100 billion schedules for M = 5, N =
20). The high computational complexity of HCSP implies that classical exact methods,
such as branch and bound, dynamic programming or linear programming, are only
useful for solving problem instances of reduced size. In this context, ad-hoc heuristic
and metaheuristic techniques are promising methods for solving the HCSP and related
problems in distributed HC and grid environments, since they are able to get accurate
suboptimal schedules that satisfy the efficiency requirements for real-life scenarios, in
reasonable times.

3.3 Execution time estimation

It is quite impossible to exactly evaluate the execution time of a computer program on
a specific computing resource. Even though the computational complexity of a program
may be known, it only provides a bound function (depending on the input data size),
which is independent of the underlying hardware. In addition, the computational power
(in CPU cycles) of any processor depends on many structural components, so an exact
value cannot be achieved without considering several design issues. Approximation
methods are needed in order to estimate the execution time of any given program on a
specific computing resource.

Ezecution time estimation is a common technique applied to model the execution
time of tasks on a computer that has been used in HC static scheduling since the early
1990s (Yang et al., 1993; Singh and Youssef, 1996). This technique relies on estimation
methods such as task profiling (used to predict the computational requirements of a
given task), benchmarking (used to estimate the computing power of a machine) and
statistical analysis of both submitted workloads and resource utilization, in order to pro-
vide an accurate prediction of the execution time of a given task in a specific machine.
The estimation scenario is a feasible and realistic one, with only a few assumptions, given
that the computational capacity of machines are quite easy to estimate, and the com-
putational requirements of each task can be approximated by exploiting specifications
provided by the users, analyzing historic data, and/or using more advanced prediction
models. Researchers have stated that predicting the task execution times is useful to
guide the resource selection performed by a scheduling method and also to achieve load
balancing on HC environments (Li et al., 2004).

This section introduces the ezpected time to compute performance estimation model.
It also discusses two methods and parameters used for generating matrices that represent
the execution time function for a set of tasks in an HC system in the estimation model.

3.3.1 Expected time to compute estimation model

In 2000, Ali et al. (2000) presented the expected time to compute (ETC) performance
estimation model, which has been widely used in the research about HC scheduling in
the last nine years. ETC provides an estimation for the execution time of a collection of
tasks in an HC system, taking into account three key properties: machine heterogeneity,
task heterogeneity and consistence.
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Machine heterogeneity evaluates the variation of execution times for a given task
across the HC resources. An environment comprised by similar computing resources
will be represented by low machine heterogeneity, while high machine heterogeneity
represents generic HC systems, integrated by computing resources of different type and
power. Task heterogeneity represents the degree of variation among the execution times
of tasks for a given machine. High task heterogeneity describes those scenarios in which
different types of applications are submitted to execute in the HC system, from simple
programs to large and complex tasks which require large CPU times to be performed.
On the other hand, when the complexity, and thus the computational requirements of
the tasks are quite similar, they shall have rather similar execution times for a given
machine. This situation is modeled by a low task heterogeneity scenario.

The ETC model also considers a second classification, trying to reflect the characte-
ristics of realistic scenarios. In a consistent ETC scenario, whenever a given machine m;
executes any task t; faster than other machine my, then machine m; executes all tasks
faster than machine my. This situation corresponds to an ideal case where the execution
time of each task is mainly determined for the computational power of each machine,
since tasks are supposed to perform at the same rate in all machines. A scenario with
this structure seems to be unrealistic for general purpose applications, but it captures
the reality of many SPMD applications executing with local input data. An inconsistent
ETC scenario lacks of structure among the computing demands of tasks and the com-
puting power of machines, so a given machine m; may be faster than another machine
my when executing some tasks, and slower for others (i.e. execution time values are
uncorrelated). This category represents the most generic scenario for a distributed HC
infrastructure that receives many kinds of tasks, from easy-to-solve programs to very
complex parallel models. In addition, a third category of semi-consistent ETC scenarios
is included, to model those inconsistent systems that include a consistent subsystem. In
this last category, even though there is not a predefined structure on the whole sets of
tasks and machines in the HC system, some of them behave like a consistent HC system.

Table 3.1 presents the twelve possible combinations of heterogeneity types and con-
sistency classifications in the ETC model by Ali et al. (2000) (hi stands for high he-
terogeneity, 1o for low heterogeneity, and the consistency categories are named for the
correspondent initial letter).

heterogeneity consistency
task machine consistent inconsistent semiconsistent
hi hi c/hihi i/hihi s/hihi

hi lo c/hilo i/hilo s/hilo

lo hi c/lohi i/lohi s/lohi

lo lo c/lolo i/lolo s/lolo

Table 3.1: Heterogeneity and consistency combinations in the ETC model.

In order to effectively model real-life HC systems, the ETC prediction does not only
account for the explicit running time of a task in a certain machine. Other relevant
factors in parallel and distributed computing are also included in the performance esti-
mation, such as the time needed to move the executable files to the target machine, the
time needed to gather and transfer the input data for the computation, and eventual
short communications. All these overheads are supposed to be included in the ETC
estimation.
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3.3.2 Methods for generating ETC scenarios

In their pioneering work, Ali et al. (2000) proposed two methods for designing random
ETC matrices to represent diverse HCSP scenarios: the range based method and the
coefficient of variation method, which only differ in the mathematical model used to
define the heterogeneity values for tasks and machines.

The range based method defines two ranges: (1, Rpqcn) for machine heterogeneity,
and (1, Rysk) for task heterogeneity. Heterogeneity values for machines (757) and tasks
(rr) are randomly sampled using an uniform distribution, and the ETC for task i in
machine j is computed by ETC(i,j) = 7r(i) x Tp(j). The authors suggested using
the parameter values presented in the first row of Table 3.2 —selected to model relevant
scenarios for the Management System for Heterogeneous Networks project (Hensgen
et al., 1999)— to generate HCSP scenarios. However, no specific HCSP test suites were
generated by Ali et al. (2000).

The range based method was later used to create a test suite of random HCSP
scenarios by Braun et al. (2001), using the parameter values showed in the second row
of Table 3.2 (the details about these instances are presented in Section 3.4.1).

task heterogeneity machine heterogeneity
model Tow high Tow high
Ali et al. (2000) Rigsk = 10 Riaqsk = 100000  Rpmaeh =10 Rpacen = 1000
Braun et al. (2001) Riqst = 100 Rigst = 3000  Rpmacn = 10 Rpach = 1000

Table 3.2: Parameters of ETC models.

The coefficient of variation method uses the quotient between the standard deviation
and the mean of execution times values as a measure of machine and task heterogeneity,
and the ETC values are randomly generated using the uniform distribution.

The HCSP instances used to evaluate the parallel EAs proposed in this work follow
the ETC model by Ali et al. Their characteristics are commented in the next section.

3.4 HCSP instances

Although the research community has faced the HCSP in the past, there do not exist
standard benchmarks or test suites for the problem (Theys et al., 2001; Dong and AKkl,
2006). A test suite of twelve randomly generated HCSP instances presented by Braun
et al. (2001) have been employed to evaluate heuristic and metaheuristic methods for
the HCSP in a large number of publications. Those instances have been also adopted
as a reference baseline for designing a complete set of large HCSP instances in this
work, so they are commented in section 3.4.1. Some other authors, like Page and
Naughton (2005) generated their own test suite of random instances to evaluate the
effectiveness of heuristic algorithms for the HCSP, while arguing that “it is not clear
what characteristics a typical task would exhibit”. Several other works used randomly
generated HCSP instances, but researchers did not often put much effort in describing
the methodology for creating the random scenarios used. It is also worth noting that
none of the previous proposals have scaled up the dimension of the designed problem
instances in order to model realistic grid environments, with the exception of two works

by Xhafa et al. (2007b) and Boyer and Hura (2005).
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Xhafa et al. (2007b) generated four inconsistent ETC matrices with 4096 tasks and
256 machines with high task and machine heterogeneity, arguing that “these are usually
the most difficult instances to solve” to evaluate several EAs. Boyer and Hura (2005)
used scenarios up to 1000 machines and 5000 tasks for evaluating an iterated randomized
search method for the HCSP. However, neither Xhafa et al. (2007b) nor Boyer and Hura
(2005) published the HCSP instances used.

Next subsections describe the HCSP instances already used in the related literature,
and present some details about nowadays grid platforms, before introducing the new
set of problem instances specifically designed in this work to challenge state-of-the-art
scheduling techniques.

3.4.1 Instances from Braun et al. (2001)

Braun et al. (2001) presented an HCSP test suite with twelve instances generated using
the range based method. All the instances have 512 tasks and 16 machines, and they
combine the three ETC model properties (task and machine heterogeneity, and con-
sistency). Instead of using the previously proposed ETC parametrization by Ali et al.
(2000), the authors suggested the upper bounds for machine and task heterogeneity
intervals presented in the second row of Table 3.2. These values were selected to model
several characteristics of the prediction methods used in Armstrong et al. (1998), but
the authors pointed out that their election was quite arbitrary, and suggested that re-
searchers may substitute in their own values to generate instances that model other
specific situations of interest. However, the commented test suite has become a de-facto
standard benchmark to evaluate algorithms for solving the HCSP.

The instances from Braun et al. (2001) are labeled with a name with the pattern
d_c_MHTH. 0, where d indicates the distribution function used to generate the ETC values
(u, for the uniform distribution), and c indicates the consistency type (c for consistent, i
for inconsistent, and s for semiconsistent). MH and TH indicate the heterogeneity level for
tasks and machines respectively (1o for low heterogeneity, and hi for high heterogeneity).
The final number after the dot (0) refers to the number of test cases (initially, several
suites were generated, but only the class 0 gained popularity).

3.4.2 Grid infrastructures

In the last decade, distributed computing environments have grown at a fast pace. The
previously described HCSP instances from Braun et al. (2001) were conceived for mo-
deling multiprocessor HC systems, and so they do not capture the reality of nowadays
large-scale cluster computing and grid infrastructures. As an example, the Berkeley
Network of Workstations project surpassed the one-hundred-processors milestone in the
middle of the 1990’s decade (Anderson et al., 1995). Nowadays, modern grid initiatives
use platforms with more than 1,000 processors, while hierarchical computing grids dis-
tributed worldwide and volunteer-based distributed computing platforms manage more
than 100,000 computing resources (Berman et al., 2003). Table 3.3 presents a brief
description of sampled grid and volunteer-based distributed computing infrastructures,
showing the large number of processing resources usually involved in those platforms.
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name location processors comment/URL
medium-sized grids

EELA Europe-LA ~ 750 regional grid, www.eu-eela.eu

Grid5000 France > 3,000 national grid, www.grid5000.fr
large grids

0SG USA > 30,000 national grid, www.opensciencegrid.org
TeraGrid USA > 40, 000 national grid, www.teragrid.org
EGEE Europe > 80,000 continental grid, www.eu-egee.org
WLCG Europe > 100,000 CERN worldwide grid, www.cern.ch/lcg

volunteer distributed computing platforms
SETI@home  worldwide > 350, 000 setiathome.ssl.berkeley.edu
BOINC worldwide > 500, 000 boinc.berkeley.edu
Folding@Home worldwide > 250,000 folding.stanford.edu

Table 3.3: Details of sampled grid and volunteer distributed computing platforms.

EELA-2 (eScience grid facility for Europe and Latin America) and Grid500 are
examples of medium-sized grids. EELA-2 is currently the largest grid initiative in-
volving Latin America, with less than a thousand processors (Brasilero et al., 2008).
Grid5000 has 1597 nodes (8 families, 17 systems) with a total number of 3,000 pro-
cessors, but the experimental scenarios for scheduling algorithms usually consider less
than 250 processors, often grouped in few heterogeneous classes (Caniou and Gay, 2008;
Mohamed and Epema, 2008). However, some large scale experiments involving more
than 1000 processors have been planned to analyze middleware resource managers and
batch schedulers (Grid5000, 2009). On the other hand, large grid infrastructures usually
have a hierarchical structure, such as TerGrid and WLCG, the largest computing grid
in the world in 2009, with almost 100,000 projected processors at CERN, Switzerland,
and more than 100,000 additional processors distributed worldwide (WLCG, 2009). In
these large-scale organizations, heterogeneity is only handled on high-level schedulers,
while local schedulers perform the intra-site task allocation on homogeneous machines.
Volunteer-based distributed computing platforms usually comprehend a huge number
of computing resources, but the scheduling is often performed using simple methods
for tasks-to-processors assignment. SETI@Qhome was a pioneering initiative of volunteer
distributed computing launched in the last years of the 20th century. Today, it involves
more than 350,000 active computers, while the number of total resources used since the
start of the project is near to 2 million (SETI@Qhome, 2009). BOINC is nowadays the
largest volunteer distributed computing platform, with more than half a million active
computers (BOINC, 2009), and today provides the support for the SETI@home project.
Folding@home is the first computing project ever to cross the 4 petaFLOPS milestone
(reaching 7 petaFLOPS in August 2009), by using the cooperative effort of more than
250,000 PS3 processors and GPU units (Folding@home, 2009).

The previous description of modern grid infrastructures shows that new problem
instances, larger than the ones proposed by Braun et al. (2001), are needed in order
to make cutting-edge research on the scalability of scheduling algorithms for solving
real-life scenarios.



26 Scheduling in heterogeneous computing environments

3.4.3 New HCSP instances

Apart from the proposals previously commented in Section 3.4.1, there has been little
effort to define a standard test suite for HC scheduling. Even today, when grid scheduling
has been the focus of many works, researchers have been using the test suite from Braun
et al. (2001) or proprietary instances, often generated without following a methodological
basis. One of the main objectives of the work reported in this thesis consists in studying
the scalability of new methods to solve the HCSP (i.e. how the solution quality achieved
using a fixed execution time varies when the instances dimension grows). In order to
perform the analysis, this work introduces a test suite of large HCSP instances designed
following the methodology for execution time estimation proposed by Ali et al. (2000).

The new HCSP instances were created using a random generator program, imple-
mented in the C language using the standard C libraries stdlib.h and math.h, without
requiring any additional software. The generator implements the range based method
from Ali et al. (2000), regarding the relevant scenario parameters: dimension (number
of tasks and machines), task and machine heterogeneity, consistency, and two different
parametrization models of ETC.

The input parameters for the HCSP instances generator program and its execution
syntaxis are presented in Figure 3.2.

Syntaxis: ./generator <num_tasks> <num_machines> <task_het>
<machine_het> <consistency> [model] [type] [seed]

Required parameters:

<num_tasks>: number of tasks (integer).

<num_machines>: number of machines (integer).

<task_het>: task heterogeneity level (O-Low, 1-High).

<machine_het>: machine heterogeneity level (0-Low, 1-High).

<consistency>: consistency type (0-Consistent,
1-Partially consistent, 2-Inconsistent).

Optional parameters:

[model]: heterogeneity model (0-Ali et al., 1-Braun et al.).
Braun et al. model assumed as the default option.
Heterogeneity ranks (tasks, machines):

Ali et al. (10-100000,10-100),
Braun et al. (100-3000,10-1000).

[typel: task execution time type (O-real, l-integer).
Real type assumed as default.

[seed]: seed for the random number generator (integer).

Allows replicating the generation of instances.

Figure 3.2: Details of the HCSP instances generator.

The output file format is similar to the one employed by Braun et al. (2001): a
column vector of N x M floating point numbers (or integers) that represents the ETC
matrix, ordered by task identifier. Figure 3.3 presents an example of the format for an
HCSP scenario with tT tasks and mM machines.
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ETC(t1,ml)
ETC(t1,m2)

ETC(t1,mM)
ETC(t2,m1)
ETC(t2,m2)

ETC(tT,m1)

ETC(tT,mM)

Figure 3.3: Format of the HCSP instance files.

The HCSP test suite generated in this work includes instances with diverse comple-
xity. The small-sized instances include twelve instances with 512 tasks and 16 machines
generated using the ETC parameters from Ali et al. (2000), and also problem instan-
ces up to 1,024 tasks and 32 processors. The medium-sized instances include up to
4,096 tasks and 128 machines, and they are considered as representative of large mul-
tiprocessors, medium-size clusters of computers, and small grid systems. The group
of large-sized instances includes scenarios with up to 8,192 tasks and 256 processors,
a dimension that represents large clusters and medium-size grid systems. For each di-
mension (except 512x16), twenty-four HCSP instances were generated regarding all the
heterogeneity and consistency combinations, twelve of them using the parameter values
from Ali et al. (2000), and twelve using the values from Braun et al. (2001); in order
to avoid biased results in the experimental analysis. The instances are named follo-
wing the previously presented convention for the instances by Braun et al. (2001): the
names have the pattern M.d_c_MHTH, where the first letter (M) describes the heteroge-
neity model used (A for Ali, and B for Braun). The number 0 originally included in the
last position of the name for the instances by Braun et al. (2001) was omitted in the
new HCSP instances, since only one suite was generated for each problem dimension
and ETC parametrization.

Since the new test suite was designed following a well-known methodology, the pro-
blem instances maintain the relevant properties of the ETC performance estimation
model by Ali et al. (2000). By including a more comprehensive set of scenarios, the
test suite allows performing studies aimed at obtaining a better characterization of new
scheduling methods, specially to solve large HCSP instances that better model present
distributed HC and grid systems. The new set of large-sized HCSP instances poses a real
challenge to scheduling methods: the size of the search space increases from 3.2 x 10616
possible schedules in the set of instances with dimension 512x16 by Braun et al. (2001)
to 2 x 1019728 for the largest new HCSP instances (dimension 8192x256). Thus, the new
set of HCSP instances is useful to analyze the efficacy of scheduling methods when the
problem instances grow.

The problem instances and the generator code are presented in Appendix A. The
HCSP instances and the generator program are also publicly available to download at
the HCSP website http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP.
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3.5 Static scheduling using execution time estimation

The relevance of the scheduling problem on HC environments led to the proposal of
many deterministic and randomized methods for solving the HCSP. A plethora of works
presented deterministic heuristics through the 1990s, but the most complete review
was the comprehensive study by Kwok and Ahmad (1999), who extensively classified,
described and compared twenty-seven classic scheduling algorithms for the static task
allocation problem. This subsection briefly describes the most popular deterministic
methods and metaheuristic approaches using execution time estimation, whose main
ideas have been used for designing the EAs for the HCSP proposed in this work.

3.5.1 Traditional scheduling heuristics

The class of list scheduling techniques comprises a large set of deterministic static sche-
duling methods that work by assigning priorities to tasks based on a particular ad-hoc
heuristic. After that, the list of tasks is sorted in decreasing priority and each task
is assigned to a processor, regarding the task priority and the processor availability.
Algorithm 5 presents the general schema of a list scheduling method.

Algorithm 5 Schema of a list scheduling algorithm.

1: while tasks left to assign do

2 determine the most suitable task according to the chosen criterion
3:  for each task to assign, each machine do

4: evaluate criterion (task, machine)

5. end for

6 assign the selected task to the selected machine

7: end while

8: return task assignment

Since the pioneering work by Ibarra and Kim (1977), where the first algorithms follo-
wing the generic schema presented in Algorithm 5 were introduced, many list scheduling
techniques have been proposed in order to provide easy methods for tasks-to-processors
scheduling. This class of methods has also often been employed in hybrid algorithms,
most usually combined with EAs, with the objective of improving the search of meta-
heuristic approaches for the HCSP and related scheduling problems.

The simplest category of list scheduling heuristics applied to minimize the makespan
include:

e Shortest Job to Fastest Resource (SJFR) is a simple technique that sorts the
tasks by increasing ETC and assigns them to the available resources, decreasingly
sorted by their computing capacity. The method is devoted to reduce the average
response time of tasks.

e Longest Job to Fastest Resource (LJFR) is motivated by results in bin-packing
problems, indicating that a simple first-fit algorithm achieves better packing when
sorted in decreasing size. Thus, LJFR assigns the longest tasks, decreasingly
sorted by ETC, to the available resources, decreasingly sorted by their computing
capacity.
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e Opportunistic Load Balancing (OLB) considers the set of tasks sorted in an
arbitrary order, and assigns them to the next machine that is expected to be
available, regardless of the ETC for each task on that machine. OLB is a simple
method that intends to maximize the resource utilization, keeping all the ma-
chines as busy as possible. However, as it does not account for the expected tasks
execution times, the resulting schedules will often have high makespan values.

e Minimum Execution Time (MET) considers the set of tasks sorted in an ar-
bitrary order, and assigns them to the machine with lower ETC for that task,
regardless of the machine availability. MET assign each task to its best machine,
but since it does not account for the resource availability, severe load imbalance
should arise, specially when applied in consistent ETC instances.

e Minimum Completion Time (MCT) tries to combine the benefits of OLB and
MET. Considering the set of tasks sorted in an arbitrary order, MCT assigns each
task to the machine with the minimum ETC for that task. By assigning tasks to
machines that do not have the minimum ETC for them, MCT intends to avoid
those cases in which both OLB and MET find poor schedules.

In addition, several methods have proposed trying to overcome the inefficacy of
simple static heuristics by taking into account more complex and holistic criteria to
perform the task mapping, and then reduce the makespan values. Some of the most
popular heuristics include:

e Min-Min greedily picks the task that can be completed the soonest. The method
starts with a set U of all unmapped tasks, calculates the MCT for each task in U
for each machine, and assigns the task with the minimum overall MCT to the best
machine. The mapped task is removed from U, and the process is repeated until
all tasks are mapped. Min-Min improves upon the MCT heuristic, since it does
not consider a single task at a time but all the unmapped tasks sorted by MCT,
and the availability status of the machines is updated by the least possible amount
of time for every assignment. This procedure leads to more balanced schedules
and generally also allows finding smaller makespan values than other heuristics,
since more tasks are expected to be assigned to the machines that can complete
them the earliest.

e Max-Min follows an iterative procedure similar to Min-Min, but assigns the task
with the overall mazimum MCT to the best machine. The method tries to mini-
mize the penalties from performing tasks with longer ETC, attempting to exploit
the capability of executing the shorter tasks in parallel. In scenarios with high
task heterogeneity, Max-Min could lead to find more load balanced schedules than
Min-Min, and also better makespan values.

e Duplex is a combination of the Min-Min and Max-Min heuristics, which performs
the previously described techniques and uses the better solution. Duplex has been
applied to overcome the problems of the two previously described methods, by
exploiting the conditions in which either Min-Min or Max-Min are able to find
accurate schedules.
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e Sufferage identifies in each iteration step the task that if it is not assigned to
a certain host, it will suffer the most. The sufferage value is computed as the
difference between the best MCT of the task and its second-best MCT. Sufferage
gives precedence to those tasks with high sufferage value, assigning them to the
machines that can complete them at the earliest time.

e XSufferage was proposed to fix a specific problem of Sufferage that arises when
the best and second best MCTs are nearly identical for a given task. In this
situation —rather frequent when using clusters with near-identical performance
resources—, the sufferage value is close to zero, and Sufferage will defer the task,
disregarding execution time considerations. To fix this problem, XSufferage adds
a cluster-level sufferage value to each task, usually outperforming the conventional
Sufferage in terms of the makespan of the resulting schedule.

Some of these list scheduling heuristics have been used in this work to provide a
baseline for comparing the results achieved when using the proposed parallel evolutio-
nary scheduling methods. Three of them have also been used to design probabilistic
methods for the initialization procedure in the parallel EAs proposed in this work (the
implementation details are presented in Chapter 5).

3.5.2 Metaheuristics for scheduling using ETC

In the last years, metaheuristic approaches have been frequently applied to find accu-
rate schedules for HC systems. The next chapter presents a comprehensive review on
the application of EAs to the HCSP and related problems; this subsection summarizes
the most relevant works that have proposed applying non-evolutionary metaheuristics
to solve the ETC-based model of the HCSP. The summary includes proposals using
trajectory-based methods such as Simulated Annealing (SA), Tabu Search (TS), con-
structive techniques such as Greedy Randomized Adaptive Search Procedure (GRASP),
swarm intelligence methods such as Ant Colony Optimization (ACO), and also fuzzy
logic techniques and many hybrid algorithms, showing the diversity of metaheuristic
applied to the HSCP.

Table 3.4 summarizes the most relevant works that have proposed using non-evolutio-
nary metaheuristic methods to solve the HCSP and similar problems.

author(s) year algorithm comment problem size
Borriello, Miles 1994 SA HC multiprocessors scheduling 60x6
Porto, Ribeiro 1995 ACO precedence-constrained HCSP  up to 4000x 10
Abraham et al. 2000 SA,TS,hybrids HCSP and grid scheduling N/D, theoretical
Braun et al. 2001 SATS HCSP 512x16
Yarkhan, Dongarra 2002 SA HC ScaLAPACK scheduling 12 and 25 machines
Blythe et al. 2005 GRASP HC workflow scheduling up to 1185x6
Onbagioglu, Ozdamar 2003 SA+hill climbing N/D
Jakob et al. 2005 EA+LS grid scheduling 87 tasks
Boyer 2005 randomized search HCSP up to 1000x5000
Stucky et al. 2007 EA+LS grid scheduling N/D
Singh, Bawa 2007 ACO+EA operators grid scheduling N/D
Ritchie, Levine 2004 ACO+TS HCSP 512x16
Xhafa 2008 TS HCSP 512x16

Table 3.4: Summary of metaheuristic methods applied to solve the HCSP.
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Metaheuristics were excluded from the first comparative studies of HC scheduling
techniques. When the size of the faced problem instances grew, researchers found them-
selves against the curse of dimensionality of NP-hard problems. Thus, emergent meta-
heuristic methods gained popularity to find accurate schedules in reasonable times.

The pioneering work from Borriello and Miles (1994) proposed a straightforward SA
algorithm for HC multiprocessors scheduling, which used random moves for changing ei-
ther the task-to-processor assignment or the task execution order on the same processor.
Despite its simplicity, the method showed high efficacy when applied on an example pro-
blem with 60 tasks and 6 processors, achieving a high resource utilization factor (over
95%), while being fast enough for it to be applied in simulations for aircraft systems
testing in use at Boeing. Another early work by Porto and Ribeiro (1995) applied T'S
to the HCSP with task precedence constraints. The initial solution was generated with
a deterministic greedy heuristic and the candidate list of neighborhood solutions differs
from the current one by a single task-to-processor assignment. Several attributes of
the search history were considered to build the tabu list, while the aspiration criteria
allowed identifying restrictions that may be override to improve the search. The TS
approach was robust, and the results showed a makespan reduction of 20-30% over a
greedy method for test problems ranging from 16 to 4000 tasks and up to 10 processors.

SA and TS were among the nature-inspired heuristics for scheduling on grid environ-
ments discussed in the generic description by Abraham et al. (2000). Both methods were
aimed at optimizing makespan and flowtime using a steepest-descent /mildest-ascent ap-
proach for exploring the solution neighborhood, but the techniques were not further
commented. Braun et al. (2001) included SA and TS in their comparison of methods for
solving the HCSP. SA used a random task reassigning operator and an inverse exponen-
tial cooling scheme, while TS followed a two-stage exploration pattern involving a short
hop to find the nearest local minimum and a long hop to move to unexplored regions
of the search space. Both methods were unable to find accurate solutions, mainly due
to the helpless search pattern for consistent scenarios. Later, YarKhan and Dongarra
(2002) presented an analysis on applying a SA method integrated with grid services
from the GrADS project Berman et al. (2001), for scheduling realistic instances of a
numerical linear algebra routine (ScaLAPACK LU solver). Using information from an
accurate performance model for the routine, SA explored the search space using a ran-
dom add-remove-swap operator. SA outperformed an ad-hoc greedy scheduler on two
HC clusters with 12 and 25 computers, by avoiding some local minima that were not
anticipated by the greedy search.

Blythe et al. (2005) developed a GRASP scheduler for workflows in distributed HC
environments, using a randomized Min-Min method to construct the solutions. The
GRASP scheduler was compared with a traditional Min-Min method using a grid simula-
tor built over ns-2, and real-life workflows of both compute-intensive and data-intensive
applications. Using a time limit of 200 sec., GRASP was able to outperform Min-
Min for scenarios with 57, 739, and 1185 tasks and 6 resources. The authors found
that the workflow-based approach is less sensitive to uncertainty in ETC than a task-
based approach. Using an improved version of Min-Min that explicitly accounts for idle
times significantly speeded up the workflow-based approach, allowing tackling scenarios
with thousands of tasks. Boyer and Hura (2005) presented RS, an iterated randomized
method for scheduling dependent tasks in HC systems, based in an ad-hoc scheduling
heuristic that executes in linear order with respect to the number of tasks and machines.
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RS outperformed two GAs and a list scheduling technique for simulated scenarios mo-
deled by large ETC matrices and real world parallel applications, but failed to find the
most efficient schedules in consistent scenarios when using a 100 sec. stopping criterion.
The article did not present numerical results for each scenario, it only reported the
comparative performance of RS against GAs and the list scheduling technique.

The line of research on applying hybrid metaheuristics to the HCSP has shown that
by exchanging a small set of partial solutions and/or statistical values in an efficient
manner, hybrid schedulers could take advantage of combining methods to improve the
search, outperforming single heuristics techniques.

The pioneering work on hybrid methods tackled simple variants of the HCSP. The
hybridization of GA with SA and TS was suggested by Abraham et al. (2000), who
claimed that the simple combination of methods has better convergence properties than
a pure evolutionary search, although no experimental evidence was provided. Onbasioglu
and Ozdamar (2003) presented a hybrid combining SA with hill climbing to minimize
the total execution time of a parallel program. The authors reported satisfactory results
when applying the hybrid method for solving two studied applications, one of them
being computation intensive and the other being communication intensive.

Ritchie and Levine (2004) proposed an hybrid ACO for the HCSP. The ACO en-
coded in the pheromone trail the advantage of scheduling any given task onto each
available processor, and each ant used a constructive heuristic method based on the
(scaled) inverse MCT of tasks, which resembles a probabilistic Min-Min heuristic. Two
local search (LS) methods were studied in order to improve the exploration: a fast LS
method based on task move and swap operators, and a TS method specially designed to
enhance the ACO search. The hybrid ACO+TS approach achieved the best makespan
results, improving over the method combining ACO with Min-Min and LS. In addition,
ACO+TS was able to achieve the best-know makespan results (at that time) for the set
of HCSP instances proposed by Braun et al. (2001). However, the method took a long
time (over 3.5 hours) to complete 1000 ACO iterations, thus it is not useful to perform
on-line scheduling in dynamic HC and grid environments.

Jakob et al. (2005) presented a hybrid method combining an elitist EA that used
problem-configurable encodings with application-independent LS methods. A mutation
operator guided the search by performing small parameter changes and gene add-delete-
reorder operations. Experiments later reported by Stucky et al. (2007) suggested that
the method could be a promising tool for performing grid resource allocation. Re-
cently, Singh and Bawa (2007) proposed a hybrid method for scheduling in grid envi-
ronments, by using a fitness function that combines makespan and delays. The hybrid
approach consists in an ACO improved by adding genetic operators that help to reduce
the makespan, resource usage, and delay in meeting user specified deadlines, but no
experimental analysis was provided.

Prior to the research reported in this thesis, the best results for the HCSP bench-
mark instances by Braun et al. (2001) were achieved by the TS scheduler proposed
by Xhafa et al. (2008b). The problem model follows a hierarchic approach, considering
makespan as a primary objective and flowtime a secondary one. The approach employed
an integer-based encoding, Min-Min was used to generate the initial solution, and the
TS movements were based on task moves and swaps. The tabu memory stored previous
task-to-resource assignments and solutions already visited. Some elite solutions were
kept during the evolution, and several aspiration criteria based on fitness, tabu list, and
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local makespan were used. The search included an intensification phase to explore pro-
mising regions of the search space using the elite solutions and neighborhood structure
changing, while soft and hard diversification methods were applied (using task distribu-
tion, penalizing ETC values, freezing tasks, etc.). Using a predefined stopping criterion
of 100 sec., T'S was able to improve over the previous best-known results —achieved using
the hybrid ACO+TS by Ritchie and Levine— in ten of the twelve HCSP instances by
Braun et al. (2001). In addition, experiments performed using a more realistic bench-
mark ranging from 32 to 256 machines showed that T'S also outperformed a steady state
GA for all the problem instances studied.

The results previously obtained with the ACO+TS by Ritchie and Levine (2004) and
the TS by Xhafa et al. (2008b) ~the two previous state-of-the-art methods for the HCSP—
are used as a reference baseline to compare the results of the parallel EAs proposed in
this work.

3.6 Summary

This chapter has presented the main general concepts about scheduling in heterogeneous
computing environments, and the HCSP has been introduced and formally defined. Se-
veral considerations about the problem model used in this work have been commented
in order to justify the relevance of the problem version tackled in distributed HC and
grid environments. The chapter also described the key concepts about execution time
estimation techniques, that are usually employed to estimate the execution time for a
set of task in a heterogeneous system. The ETC estimation model has been presented,
and the existing HCSP instances by Braun et al. (2001) have been commented. A brief
survey about current grid and volunteer computing infrastructures has been included,
which provides the motivation for the design of new large-sized HCSP instances that
model large HC environments and medium-sized grid systems. The last section pre-
sented a brief review of the most popular deterministic heuristics and non-evolutionary
metaheuristic approaches using execution time estimation, whose main ideas have been
used for designing the EAs for the HCSP proposed in this work.






Chapter 4

Related work: EAs for HC
scheduling

In the last fifteen years, the HCSP has become important due to the increasing popula-
rity of parallel and distributed HC systems for cooperatively solving complex problems.
Since the HCSP is NP-hard, heuristic and metaheuristic algorithms have been proposed
in order to find accurate sub-optimal results in reasonable times. Among other meta-
heuristic techniques, EAs have been successfully applied for solving scheduling problems
in heterogeneous environments, achieving the high level of problem solving efficacy also
shown in many other areas of application.

This chapter presents a review of previous works that have proposed applying EAs
to the static HCSP in the standard formulation given in Section 3.2, and also to solve
related variants of the problem.

4.1 Introduction

EAs have been progressively applied to solve the HCSP and related scheduling problems
since the middle of the 1990’s decade. The analysis of related works allows identifying
three periods, regarding the scope of the proposals:

e 1995-2000: HCSP in multiprocessors. In this first stage the concept of a
distributed grid of computational resources was incipient, so multiprocessor ar-
chitectures were the focus of the pioneering works on applying metaheuristics to
scheduling in HC environments. EAs emerged from those first proposals as a pro-
mising alternative to deterministic heuristics, in order to efficiently find accurate
schedules for executing tasks in heterogeneous multiprocessors systems. However,
the limited scalability of the multiprocessor parallel architecture put a practical
upper bound on the number of resources involved in the scheduling problem, thus
restricting to clearly demonstrate the advantages of EAs and other nature-inspired
approaches for solving large instances of the scheduling problems.
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e 2000-2005: distributed HCSP. The new millennium saw the consolidation of
distributed computing to harness the computer power resources in order to solve
computing-intensive problems. The grid infrastructure started to consolidate, and
as the size of HC systems increased, heuristics and metaheuristics appeared as
the natural way to solve the related scheduling problems. Numerous researches
proposed applying EAs to solve the HCSP on distributed environments in this
period. Although many works followed the general concepts for HC scheduling
proposed for multiprocessors in the previous stage, valuable new ideas were devised
in order to fully exploit the search capabilities of EAs.

e 2005-2009: HCSP on grids. Recently, the research community has focused
on systematizing the application of EAs to the HCSP on grids, trying to provide
compact and efficient methods for solving real-life scenarios. Several key issues
such as techniques hybridization, incorporating specific problem knowledge, and
using agent-driven approaches have been proposed to deal with the complexity
of current and future heterogeneous multi-tiered grid infrastructures. Some me-
thods have even been integrated into real-life tools for scheduling in HC and grid
environments.

Figure 4.1 shows the three stages on applying EAs to the HCSP in a timeline from
1990 to the present time. The most relevant works from these three periods are summa-

rized in the following sections.
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Figure 4.1: Timeline of EAs applied to the HCSP.

4.2 1995-2000: HSCP on multiprocessors

Back in the middle of the 1990’s, the pioneering work on scheduling in multiprocessor
computers provided a foundation for solving more complex problem instances and also
scaling to large environments. The first proposals often faced small scenarios, tackling
the problem of scheduling a limited number of dependent tasks, represented by a directed
acyclic graph (DAG), a slightly different formulation than the one presented in Section
3.2. However, those seminal works provided the first hints on the applicability of EAs
to solve scheduling problems in distributed HC systems. The most relevant works from
this period are briefly summarized below.
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The pioneering proposal by Tirat-Gefen and Parker (1996) dealt with the problem
of designing heterogeneous multiprocessor systems and simultaneously minimizing the
execution time of a given DAG. The approach combined a mixed integer linear pro-
gramming model with a GA for finding near optimal designs of an application-specific
multiprocessor. However, in the last twelve years, the most common approaches in
HC scheduling considered the problem of minimizing some performance-related metric,
usually the makespan, on a given machine suite.

Singh and Youssef (1996) applied a GA to the static mapping and scheduling of a
set of tasks with dependencies on HC clusters. The experiments showed that the GA
obtained high quality results in significantly reduced execution times, when compared
with those required by polynomial-order deterministic heuristics for a set of randomly
built DAGs with up to 100 nodes. Shroff et al. (1996) solved the HCSP using a hybrid
Genetic Simulated Annealing (GSA) algorithm, conceived to retain the strengths of the
two metaheuristic techniques combined. GSA was able to achieve the optimal values —
computed by an exhaustive search of the solution space— for a set of randomly generated
problem instances with up to 100 tasks and 35 hosts, although the required CPU times
to compute the schedule significantly increased when solving large problem instances.

Wang et al. (1997) proposed applying a GA to solve the HCSP aimed at minimizing
the makespan. This proposal started a specific line of research in HC scheduling, since
many posterior works adopted their GA approach to solve diverse HCSP variants by
using an ETC model. The problem formulation by Wang et al. (1997) split the mapping
(allocation of tasks in machines) and scheduling (ordering of tasks execution in each
machine), so a specific two-vector encoding was used, while it also assumed an estimated
ETC for each task on each machine. The GA used a random initialization with a seeding
procedure using deterministic heuristics in order to speed the search. The experimental
analysis considered instances up to 100 tasks and 20 machines, where the GA was able
to achieve better results than other non-evolutionary heuristics and a random search.

Kwok and Ahmad (1997) proposed Parallel Genetic Scheduling (PGS), a parallel GA
for scheduling DAG-based applications on both homogeneous and heterogeneous com-
puting environments. PGS followed a synchronous distributed subpopulation model
using a migration operator that exchanged the best individual among subpopulations,
considering a fully connected topology. The experimental results on scheduling random
graphs and numerical algorithms with up to 500 tasks in a Intel Paragon with 16 proce-
ssors showed that PGS outperformed the best list scheduling methods in terms of both
solution quality and running time. In addition, PGS showed an almost linear speedup
and suggested a good scalability behavior.

Grajcar (1999) faced the problem of mapping a partially ordered set of tasks to
an HC multiprocessor system, trying to minimize the makespan while satisfying data
dependencies and resource usage constraints. A GA was combined with a list scheduling
method in a hybrid GA+LS algorithm, which follows a steady-state evolution model
using several evolutionary operators in an integrated fashion. GA+LS found the optimal
solution for problem instances with up to 96 tasks, while significantly reducing the run-
times required by exact methods. Later, Grajcar (2001) applied GA+LS in HC systems,
pointing out that a major weakness comes from the lack of information about tasks and
the environment that forces to take several assumptions, thus facing a restricted version
of the HCSP. T'wo simple cases in which GA+LS fails to find the optimum were analyzed,
suggesting that forecasting tools may be used to enhance the approach.
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4.3 2000-2005: HCSP on distributed environments

In 2000, a new stage on applying EAs to the HCSP started. Abraham et al. (2000)
studied the novel paradigm of grid computing, analyzing three nature-inspired heuristics
for task scheduling. A conceptual formulation of the dynamic task scheduling into
geographically distributed HC resources was presented, and the authors claimed that
the environment complexity forces to use non-traditional methods to improve the search.
So, they suggested using GA, SA, TS, and two hybrid algorithms aimed at minimizing
the makespan and flowtime. Several encoding issues were analyzed, and two ordered
task and resource list representation was proposed, which are to be dynamically updated
through load profiling and forecasting. No experimental results were reported, but the
work provided a detailed algorithmic description. This proposal was one of the first
conceptual analysis of applying hybrid EAs to the grid scheduling problem.

Theys et al. (2001) presented three EAs for solving the HCSP. The first approach fo-
llowed the previous work from Wang et al. (1997), and it was later extended in the works
by Braun et al. (2001). The second approach corresponded to a problem-specific domain
for a particular case of hardware platform, but the authors presented a methodology to
perform online task rescheduling (in real time) using a GA off-line static mapping as
a reference baseline. The third method explored the planning of meta-tasks in an HC
environment considering task dependencies. Following this line of work, Braun et al.
(2001) presented a systematic comparison of eleven mapping heuristics for the static
HCSP. The analysis included two EAs based on the GA by Wang et al. (1997), adapted
for scheduling independent tasks. The GA used a task-oriented encoding, and the fit-
ness function evaluated the makespan of the schedule. Two methods were compared
to perform the population initialization: a random initialization and a seeding proce-
dure using Min-Min. The GA used elitism, proportional selection, SPX, and a random
change mutation operator, all of them applied on a population of 200 individuals. Three
different stopping criteria were studied: a predefined effort set in 1000 generations, and
two stagnation criteria. In the hybrid Genetic Simulated Annealing (GSA) algorithm,
the SA cooling procedure set a threshold that was used to decide whether an offspring
survives (if its makespan is lower than the makespan of its parents plus the SA tempera-
ture value) or not. The results showed that both GA and GSA were able to consistently
obtain the best makespan values for all types of HC scenarios studied, while they were
able to take benefit of the Min-Min seeding procedure to significantly improve the search.
Both EAs found the best results, based on calculated confidence intervals at 95%.

Zomaya and Teh (2001) faced a HSCP variant aimed at achieve load-balancing, max-
imizing the resource utilization and minimizing the makespan. A centralized GA was
proposed to perform the dynamic task allocation, adopting a two-dimensional task-based
encoding and initializing the population using a sliding-window technique. The GA used
proportional selection, cycle crossover, swap mutation, and employs a predefined effort
stopping criterion. The experimental analysis showed that GA significantly outper-
formed the First Fit heuristic and a random allocation scheme in terms of makespan
and processor utilization for problem instances up to 1000 tasks and 50 processors. The
GA worked better when the number of tasks increased, achieving almost full processor
utilization. When increasing the number of processors, the GA makespan improved but
the average processor utilization deteriorated, suggesting that load-balancing is harder
for larger systems. The GA dynamic load-balancing scheduler was very effective from a
practical point of view, specially when scheduling a large number of tasks.
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Barada et al. (2001) faced the HCSP with coarse-grained tasks using a Simulated
Evolution (SE) algorithm to minimize the makespan. SE is a generic iterative heuristic
that emphasizes the behavioral relationships between parents and offspring (while tra-
ditional EAs focus in genetic relationships), by combining a EA schema with stochastic
constructive perturbations to avoid local optima. SE uses problem-dependent tech-
niques in the initialization, evaluation, and evolutionary operators. The authors did not
present numerical results, but the graphics of evolution over randomly generated HCSP
instances with 100 tasks and 20 machines showed that SE obtained mixed results when
compared with the GA by Wang et al. (1997), so the conclusions were not definitive.

Dhodhi et al. (2002) studied the problem of efficient scheduling DAGs onto a dis-
tributed HC system, and proposed a problem-space GA (PSGA) including a known
fast problem-specific heuristic. PSGA was executed to minimize the schedule makespan
using a task-priority based encoding, which is used by problem-specific decoding heuris-
tics, while 2PX, elitism, and a perturbation mutation were applied in the problem space.
Several test suites of well-known applications and randomly generated graphs up to 200
tasks and 20 processors were employed in the experimental evaluation. Using a pre-
defined effort stopping criterion, PSGA obtained better makespan results than three
other scheduling methods: a deterministic heuristic, GSA and the GA by Wang et al.
(1997), while significantly improved the required execution time for computing the best
schedule.

Scheduling tasks on an HC grid system in case of resources contention was the main
focus of the works by Di Martino and Mililotti. A GA scheduler was proposed for
maximizing the resources throughput while resolving conflicts in the power usage. The
GA used task information provided by the users, and it operated in two levels: allocating
a single task at a time on a local resource using local information, and using a centralized
superscheduler GA to resolve the interaction with geographically distributed HC entities
using HC hardware. The authors employed ad-hoc crossover and mutation operators to
avoid infeasible solutions, and a weighted fitness function to compute the local makespan
for each resource, trying to achieve a good load-balancing pattern. The GA obtained
accurate solutions with limited resource power waste for a test case of 24 tasks and 6
resources (DiMartino and Mililotti, 2002). However, it failed to find the optimal solution
for a test case with 4 resources and 32 tasks in 600 executions (DiMartino and Mililotti,
2004), when using a one-minute time limit stopping criterion, suggesting that a more
adequate fitness function should be used.

Wu et al. (2004) presented an original GA that required minimal problem informa-
tion for scheduling DAGs in a multiprocessor system. The GA admitted non-feasible
solutions in the population, and avoided using problem specific operators or repair me-
chanisms to correct individuals. A problem encoding based on a list of task-processor
pairs was proposed as a way to help the GA to identify and maintain tightly linked
building blocks. The fitness function focuses on both ensuring the feasibility of tasks
execution and minimizing the makespan. The GA followed an incremental approach
that gradually increases the difficulty of fitness values until finding adequate schedules.
Even though the work was mainly focused on solving the homogeneous multiprocessor
scheduling problem, the authors performed experiments on a small HC environment
with only four processors. The GA outperformed traditional scheduling methods, but
since it needed a large population size to achieve the best results, the scalability of the
approach to large problems is compromised.
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Following the GA scheduler by Zomaya and Teh (2001), Page and Naughton (2005)
proposed a dynamic micro-GA scheduler for HC environments. The micro-GA used a
specific heuristic to create the initial population, while cycle crossover and two types
of random swap and balancing mutations were applied. The evaluation was performed
using a randomly generated test set of HCSP instances with up to 50 processors and up
to 10000 tasks. Using a predefined effort stopping criterion, micro-GA performed better
than several well known heuristics and the GA by Zomaya and Teh (2001), consistently
achieving lower makespan values and higher processor utilization.

4.4 2005-2009: Heterogeneous grid scheduling

Last years have seen many proposals devoted to solve real-life HCSP instances with
increasing dimensions, while also integrating the EA schedulers with high-level tools for
grid environments.

In the context of the ASKALON project, Prodan and Fahringer (2005) presented
ZENTURIO, a scheduling tool that combines GA with heuristics for grid environments,
employing prediction models to compute high performance metrics of tasks. The GA
used a workflow-parameter encoding to represent grid resources, fitness scaling, SPX,
and random mutation. High quality results were reported for experiments using ZEN-
TURIO to schedule a real-world scientific workflow application executing in a grid with
over 300 machines.

The makespan robustness of HC schedules was investigated by Sugavanam et al.
(2005). In the problem model, a system is defined to be robust if the makespan un-
der perturbations in ETC estimates does not exceed a required time constraint. The
studied methods included a steady state GA (SSGA), a Memetic Algorithm (MA) inclu-
ding a hill climbing swapping operator, and the HereBoy EA, a trajectory-based hybrid
method combining GA and SA to accept worse solutions than the current one. All
three EAs used an integer encoding, elitism, seeded initialization, and rank-based selec-
tion. The EAs were evaluated using a simulated HC system with 8 machines and 1024
independent tasks, using a predefined effort stopping criterion. Both SSGA and MA
achieved the best makespan and robustness metric results, while HereBoy performed
the worst. The methods were later applied to identify the hardware to build an HC
cluster whose total cost falls within a specified budget, and simultaneously maximizing
the makespan robustness (Sugavanam et al., 2007). The EAs were compared with three
specific heuristics, running for 3000 s. to solve several HC scenarios with 1024 tasks.
While GA and MA performed comparably to the heuristics, HereBoy achieved poorer
results. Improved methods were proposed by combining EAs and specific heuristics, but
the best exploration pattern was achieved using a technique that employs two GAs: one
for selecting the set of machines and the other for later performing the task mapping.

In the last years, multiple works from Xhafa et al. have explored several variants of
EAs applied to the HCSP.

Carretero and Xhafa (2006; 2007b) studied GAs for scheduling tasks in large scale
grids. Two GA were presented: a hierarchical GA which in a first phase optimizes the
makespan and next optimizes the flowtime, and a GA which optimizes both objectives
simultaneously, using a linear aggregation fitness function. The authors analyzed using
integer vector and permutation-based representations, and studied several variations for
the population initialization and GA operators. An exhaustive experimental analysis
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was reported in order to identify the best operators and fine tuning its parameters for
static HCSP instances following the ETC model from Ali et al. (2000). In addition,
a simple grid simulator was developed in order to deal with realistic large-scale HCSP
instances, up to 4096 tasks and 256 hosts. The experimental results showed that the GAs
were able to achieve fast makespan reductions for both the static and dynamic problem
versions, showing the practical interest of GA-based schedulers for grid environments.

Duran and Xhafa (2006) solved the HCSP using the Struggle GA (SGA) (Griininger
and Wallace, 1997), an EA aimed at delaying the convergence by applying a generation
gap model and a niche technique to maintain diversity. The experimental study com-
pared SGA and a SSGA for the HCSP in grid resources, using a fitness function that
combines makespan and flowtime using a linear aggregation. The EAs was evaluated
using the HCSP instances from Braun et al. (2001) and random dynamic instances from
the previous work. Both EAs were able to outperform the makespan results by Braun
et al. (2001) in more than half of the instances studied. SSGA obtained better flowtime
results for all but one instance, while SGA was able to achieve better makespan results
for small instances, but requiring larger execution time than SSGA. For high dimension
problem instances, the population diversity of SGA conspired against achieving high
makespan reductions within an execution time of 90 s., suggesting that SSGA is a more
adequate scheduler for dynamic grid environments.

Later, Xhafa et al. (2007a; 2008c) tuned the replacement mechanism, trying to re-
duce the computational cost of SGA. The authors introduced a new hash-based simi-
larity measure for finding similar individuals on the population in constant time. Three
struggle operators based on different hash keys were evaluated regarding the makespan
metric for the HCSP instances from Braun et al. The SGA using a task-resource alloca-
tion hash key outperformed the previous (quadratic order) SGA implementation, while
showing linear scalability, so the population size can be increased without downgrading
the performance.

The line of work on applying MAs to the HCSP was summarized in the book chapter
by Xhafa (2007), who also presented a MA for minimizing the makespan and flowtime.
The MA used a task-based encoding and subordinate LS operators to provide high
quality solutions in a very short time (a critical issue in dynamic grid environments).
Several methods were considered to initialize the population, and a large set of LS op-
erators were evaluated, ranging from simple local move and swaps to complex operators
such as a TS method. The experimental analysis using the HCSP instances from Braun
et al. (2001) and a 90 s. stopping criterion showed that the MA+TS hybrid performs
better than previous GAs. Four scenarios up to 2096 tasks and 256 machines were
used for the dynamic HCSP, where MA+TS achieved better makespan results than MA
but worse flowtime results. Later, Xhafa and Duran (2008) presented parallel MA im-
plementations, trying to reduce the large search times for the HCSP. The numerical
experiments using fine-grained and coarse-grained versions of MA+TS showed that the
parallel models were suitable to achieve several performance requirement on HC and
grid scheduling.

Xhafa et al. (2008a) also explored the efficacy of using a cellular MA (cMA) for the
HCSP, in order to efficiently exploiting the large amount of grid computing resources.
The structured population gives cMA the ability of controlling the tradeoff between
the exploitation and exploration of the solution space, helping to achieve high quality
solutions in a very short time. The proposed cMA population was arranged using
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a two-dimensional toroidal grid topology, several well-known neighborhood patterns
were considered, and an asynchronous cell updating was used. c¢cMA used a seeding
initialization, SPX, a rebalancing mutation operator and three LS methods. The cellular
model outperformed previous GA results for half the HCSP instances from Braun et al.
(2001), while showing a robust behavior, able to achieve high quality planning in short
times.

Following a slightly different line of work, Iordache et al. (2007) studied the real-
time HCSP in grid environments. The author proposed a dynamic GA scheduler, able
to efficiently execute in a fully decentralized system by using monitoring information to
perform the task allocation. The GA used SPX and a task-moving mutation with adap-
tive probabilities, while the monitoring information was employed in the initialization,
in the fitness evaluation, and also when receiving a new group of tasks. Several GA
versions were evaluated on small real-time environments up to 12 processors and 100
typical CPU-intensive tasks, using true monitoring and execution systems. A distributed
cooperative GA achieved the best load balancing and processor utilization results, while
a non-cooperative GA was able to exploit multiple initial search points. Although the
problem instances faced were too small, the work had a valuable contribution as it
used a real environment and true monitoring and task execution tools. Iordache et al.
(2007) also implemented a distributed and scalable GA scheduler for HC environments
(SAGA), working in cooperation with grid services to overcome the lack of robustness
of centralized GAs in realistic scenarios. SAGA clearly outperformed other GAs regard-
ing load-balancing, processor utilization, as well as makespan minimization in an eleven
node grid, and its convergence speed improved when the number of agents increased.
The main ideas from the previous works were applied to design an integrated GA-based
scheduling tool for the GridMOSI project (Neagu et al., 2007).

A recent work by Braun et al. (2008) tackled a general HCSP formulation concerning
dependencies, priorities, deadlines and versions. The experimental analysis compared
two greedy heuristics, a GA, and a steady-state GA with customized encodings and
operators to solve scenarios with up to eight machines and 2000 tasks. The results
showed that the steady-state GA performed the best among the studied heuristics,
achieving the best schedules, whose fitness values were between 65% and 95% of upper
bounds calculated under unrealistic assumptions.

4.5 Summary

The analysis of the related bibliography shows the large diversity of proposals on apply-
ing EAs for solving the HCSP, its related variants, and similar scheduling problems on
HC environments. Since the first proposals in the early 1990s, much effort has been
done on conceptualizing the HCSP, and EAs have been employed in order to exploit
the exploration pattern of the evolutionary search for finding accurate results. However,
when high levels of computational efficiency are required, the traditional formulation of
EAs seems to be rather slow for achieving high quality results within a few minutes of
execution time. Trying to overcome this problem, researchers have often combined EAs
with specific heuristics in the quest for obtaining accurate results. Table 4.1 summarizes
the most relevant works on applying EAs to the HSCP and related variants.
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Period Author(s) Year(s) Method(s)
1995-2000: Tirat-Gefen, Parker 1996 MEGA (GA+LP)
Singh, Youssef 1996 GA
HCSP on Shroff et al. 1996 GSA
Wang et al. 1997 GA
multiprocessors Kwok, Ahmad 1997 GA
Grajcar 1999, 2001 hybrid GA+LS
Abraham et al. 2000 GA, GASA, GATS
Theys et al. 2001 EA
2000-2005: Ali et al. 2000 GA
Braun et al. 2001 GA, GASA
distributed Zomaya, Teh 2001 dynamic GA
Barada et al. 2001 simulated evolution
HCSP Dhodhi et al. 2002 problem-space GA
Di Martino, Mililotti 2002, 2004 two-level GA
Wu et al. 2004 incremental GA
Page, Naughton 2005 micro-GA
Prodan, Fahringer 2005 GA + heuristics
Sugavanam et al. 2005, 2007  GA, MA, HereBoy, hybrids
2005-2009: Carretero, Xhafa 2006, 2007 GA
Duran, Xhafa 2006 Struggle GA
HCSP on Xhafa et al. 2007, 2008 GA
Xhafa et al. 2007, 2008 MA, MA+TS
grids Xhafa et al. 2007 cMA
Tordache et al. 2007 multiagent GA
Braun et al. 2008 GA

Table 4.1: EAs applied to the HSCP.

The first works allowed identifying EAs as promising methods for solving scheduling
problems on heterogeneous multiprocessors. Most of the proposals faced DAG-based
applications with only few tasks and resources, but seminal works such as the one
by Wang et al. (1997) provided a foundation for more complex methods later proposed
following this approach. Due to the limited scalability of the multiprocessor architecture,
the experimental evaluation was often performed using few processors, and EAs had few
opportunities to show their potentiality for solving complex scheduling instances.

When distributed computing emerged as an important resource for solving complex
problems with high computing demands, the relevance of the HCSP also raised. Since the
first works in the 2000’s decade, the researchers showed a renewed interest for designing
accurate schedulers, able to deal with problems involving an increasing number of tasks
and machines. The independent task approach was adopted since it is more accurate to
model realistic situations in large HC and grid environments. The consensus formulation
for the HCSP aiming at minimizing the makespan dates from the early works by Ali et al.
(2000) and Braun et al. (2001), who also presented the first proposal of a benchmark test
suite constructed following a specific methodology. In addition, the works by Zomaya
and Teh (2001) suggested many GA and EA variants in order to provide efficient HCSP
solutions, while the first proposals of parallel-distributed GAs such as the one presented
in the works by DiMartino and Mililotti (2002, 2004) was also formulated. The proto-
implementation of a micro GA scheduler by Page and Naughton (2005), which is specially
relevant for the approach adopted in this work, also dates from this period.
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Recently, the line of research by Xhafa et al. systematized the empirical evaluation
of EAs applied to the HSCP, which also had a great influence in this work. Xhafa
et al. analyzed many EA variants, focusing in traditional and steady-state GAs, MAs,
and the cellular model. They also provided the first experiments on solving HCSP
instances of realistic large-size instances, using LS methods in order to improve the
efficiency and the efficacy of the evolutionary search. The best-known results for the
benchmark problems by Braun et al. (2001) were achieved following this line of work.
Many other key issues such as hybridization, incorporating specific problem knowledge,
and using agent-driven approaches have been proposed by other authors in order to deal
with the HCSP complexity. The research community have also diversified the problem
approaches, studying novel aspects such as the makespan robustness, the stochastic
nature of execution times, economic-driven methods, and other high-level issues for
achieving a scalable and highly reliable scheduling tool.

Despite the numerous proposals on applying EAs to the HCSP and related scheduling
problems, there have been few works studying large-size and realistic HCSP instances in
grid environments, mainly due to the inherent complexity of dealing with the underlying
high-dimension optimization problem. In addition, few works have studied parallel
algorithms, in order to determine their ability to use the computing power of large
clusters to improve the search. The survey of related works also allowed to conclude
that there do not exist standardized problem benchmarks or test suites —except the
low-dimension, de-facto standard problems by Braun et al. (2001)—. Thus, there is still
room to contribute in those lines of research, by studying highly efficient parallel EA
implementations, able to deal with large-size HCSP instances by using the computational
power of parallel and distributed environments, as it is presented in this thesis.



Chapter 5

Parallel evolutionary algorithms
for the HCSP

The previous chapter summarized the most relevant related works on applying EAs
and other evolutionary methods to the HCSP. Even though the review showed some
proposals on developing parallel models for improving the computational efficiency of
the studied methods, there have been few references about using PEAs —or other parallel
metaheuristics— for solving large HCSP instances in order to model realistic HC and grid
environments. This chapter presents the implementation details of three EAs applied
to the HCSP: a traditional GA, and a CHC algorithm, both of them in their sequential
and parallel variants, and a new parallel micro-CHC algorithm specifically developed in
this work.

All three EAs were designed trying to achieve accurate solutions in reduced time,
while providing a good exploration pattern that allows to efficiently solve large-size
HCSP instances. To achieve these goals, several techniques have been applied to reduce
the execution time of the studied methods: two alternative encodings were proposed, as
well as several options for population initialization, and many variants of evolutionary
operators were analyzed. The details about these alternatives and variants are presented
in this chapter, along with the software library in which the EAs were implemented.

5.1 The MALLBA library

The MALLBA project (Alba et al., 2002) is an effort to develop a library of algorithms
for optimization that can deal with parallelism (on a Local Area Network (LAN) or on a
Wide Area Network (WAN)), in a user-friendly and, at the same time, efficient manner.
The EAs described in this chapter are implemented as generic templates on the library
as software skeletons, to be instantiated with the features of the problem by the user.
These templates incorporate all the knowledge related to the resolution method, its in-
teractions with the problem, and the considerations about the parallel implementations.
Skeletons are implemented by a set of required and provided C++ classes that represent
an abstraction of the entities participating in the resolution method:

e The provided classes implement internal aspects of the skeleton in a problem-
independent way. The most important provided classes are Solver, which ab-

stracts the selected resolution method and SetUpParams that contains the setup
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parameters needed to perform the execution (e.g. number of iterations or genera-
tions, number of independent runs, parameters guiding the search, etc.).

e The required classes specify information related to the problem. Each skeleton
includes the Problem and Solution required classes, that encapsulate the problem-
dependent entities needed by the resolution method. The Problem class abstracts
the features of the problem that are relevant to the selected optimization method.
The Solution class abstracts the features of the feasible solutions that are relevant
to the selected resolution method. Depending on the skeleton, other classes may
be required.

The conceptual separation between classes allows defining required classes with a
fixed interface but without supplying specific implementations, thus provided classes
can use required classes in a generic manner. The Solver class provides methods to run
the resolution algorithm and methods to consult its progress or change its state. The
only information the solver needs is an instance of the problem to solve and the setup
parameters. In order to enable a skeleton to have different solver engines, the Solver
class defines a unique interface and includes several subclasses that supply different
sequential and parallel implementations (Solver_Seq, Solver_Lan and Solver Wan).
Figure 5.1 presents a UML diagram showing the MALLBA classes and their interactions.
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Figure 5.1: UML for MALLBA classes.

The MALLBA library is publicly available to download at University of Malaga
website http://neo.lcc.uma.es/mallba/easy-mallba. Using this library has allowed a
quick coding of different algorithmic prototypes to cope with the inherent difficulties of
the HCSP.
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The implementation of pu-CHC is based on the CHC skeleton provided by MALLBA.
Additional code was incorporated to define and manage the external population (inclu-
ding the implementation of a remove-of-the-worst strategy when inserting new indivi-
duals into the elite set), to implement the specialized reinitialization and local search
operators proposed for the micro population in pu-CHC, and to include other features
related to the HCSP resolution. The details about the problem encoding, the imple-
mentation of the evolutionary operators, and specific features of each EA are provided
in the next sections.

5.2 Problem encoding

Two main alternatives have been proposed in the related literature for encoding HCSP
solutions when dealing with independent tasks: the task oriented encoding and the
machine oriented encoding.

The task oriented encoding uses a vector of machine identifiers to represent the task-
to-resource assignment, as it is presented in Figure 5.2. The one-dimension vector has N
elements, where the presence of m; in the position ¢; means that the task ¢; is scheduled
to execute on machine m;. The task oriented encoding is a direct representation for
schedules that has been frequently used in related works, since it allows a straightforward
exploration by using simple operators based on moving and swapping task assignments.
However, after applying a move or swap operator, the task oriented encoding does
not provide an easy way to evaluate the changes on efficiency metrics related to the
whole schedule (such as makespan, flowtime or resource utilization). When using the
task oriented encoding, any single change on a task assignment forces to reevaluate the
schedule metric.

Figure 5.2: Task oriented encoding.

The machine oriented encoding uses a two-dimensional structure in order to represent
the group of tasks scheduled to execute on each machine m;. Figure 5.3 presents an
example of the machine oriented encoding, showing for each machine m; the list of tasks
tx assigned to it. The machine oriented encoding provides an easy and efficient way for
performing exploration operators based on moving and swapping task assignments, since
it is able to store specific values of efficiency metrics for each machine (such as the local
makespan). Thus, the makespan variation when performing changes on task assignments
can be efficiently calculated considering only the tasks and machines involved in the move
or swap performed, without requiring to reevaluate the efficiency metric for the whole
schedule.

Both encodings were applied in the EAs studied in this work. In the prototype
implementations of traditional GA and CHC methods, both serial and parallel versions
used the task-oriented encoding, in order to provide a simple method for analyzing
the efficiency of EAs for solving the HCSP. In a second stage, the machine-oriented
encoding was adopted, trying to improve the efficiency of the makespan calculation.
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m, m; m, .. e

Figure 5.3: Machine oriented encoding.

Those improved GA and CHC versions allowed to store the local makespan values,
significantly enhancing the computational efficiency of the search.

The parallel GA and CHC versions, and also the new pu-CHC uses the machine-
oriented encoding, since it provides the best efficiency for speeding up the evolutionary
search, allowing tackling large dimension HCSP instances.

5.3 Fitness function

The studied version of the HCSP considers the makespan as the objective function to
minimize (see Section 3.2). Since the standard formulation of EAs assumes a fitness
function to maximize, as it was presented in Chapter 2, the proposed algorithms consid-
ered the opposite value of the makespan metric as the fitness function (i.e. fitness =
makespan x (—1)). This issue is internally handled by the MALLBA library, which
solves a minimization problem if the sentence direction = minimize is included in
the required code for the correspondent algorithmic skeleton. The fitness function takes
positive real values.

5.4 Population initialization

Numerous methods have been proposed to generate the initial population in the related
works on applying EAs to the HCSP (Braun et al., 2001; Xhafa and Duran, 2008; Xhafa
et al., 2008a). Many of those proposals employed specific ad-hoc heuristics with the
objective of starting the evolutionary search from a set of useful suboptimal schedules,
increasing the EA effectiveness to minimize several efficiency metrics. Besides simple
random initialization operators, scheduling heuristics such as Min-Min, SJFR, LJFR,
MCT, and others, have often been applied with diverse effectiveness when minimizing
makespan and flowtime in the HCSP.
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In this work, several methods were studied to generate accurate initial solutions for
the EA population in order to speed up the search. When dealing with low-dimension
HCSP instances, deterministic heuristics such as Min-Min and Sufferage provide accu-
rate and easy-to-compute solutions to seed the population. The Min-Min strategy has
been identified as an efficient method for finding accurate schedules for small size HCSP
instances (Braun et al., 2001), and also when the ETC matrix has reasonable variations
on task and machine heterogeneity (Luo et al., 2007), while Sufferage often achieved
better schedules than Min-Min for inconsistent scenarios.

However, when the problem dimension grows, the time required to compute the
initial solution increases, thus reducing the EA efficiency. To avoid the performance
degradation, probabilistic versions of Min-Min and Sufferage heuristics have been used
in this work for the population initialization when solving large HCSP instances. The
probabilistic versions follow the general procedure of the correspondent deterministic
heuristic, but only for assigning a random number of M A X;,;;+ tasks, while the remaining
tasks are assigned using a MCT strategy.

5.5 Evolutionary operators

This subsection present the implementation details of the evolutionary operators, des-
cribing the recombination, mutation, reinitialization and local search used in GA, CHC
and pu-CHC.

5.5.1 Exploitation: recombination

The classic GA uses the Single Point Crossover (SPX) operator to recombine the charac-
teristics of two solutions. SPX is directly applied when using the task oriented encoding,
since cutting two schedule encodings and swapping the corresponding alleles (tasks-to-
machine assignments) from one parent to another always produces feasible solutions.
When using the machine-oriented encoding, SPX works selecting a cutting point and
after that each task from one parent is swapped to the corresponding machine in the
other parent.

CHC and pu-CHC uses HUX to recombine characteristics of two solutions. When
using the task oriented encoding, the HUX implementation is straightforward: for each
task, the corresponding machine in each offspring is chosen with uniform probability
between the two machines for that task on the parents’ encoding. When using the
machine-oriented encoding, each task from one parent is swapped to the corresponding
machine in the other parent with a probability of 0.5.

5.5.2 Exploration: mutation and reinitialization

Both the mutation (used in GA) and reinitialization (used in CHC and pu-CHC) are ran-
dom operators that perform small perturbations in a given schedule, aimed at providing
diversity to the population, to avoid the search from getting stuck in local optima. These
operators performs simple moves and swaps of tasks between two machines, selecting
with high probability the machines with highest and lowest local makespan (heavy and
light, respectively).
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The GA applies the mutation operator on selected individuals along the evolutionary
search, while CHC applies the reinitialization using the best individual found so far as
a template for creating a new population after convergence is detected.

The mutation and reinitialization operators cyclically perform a maximum number
of MAX_TRIALS move-and-swap task operators, which include:

1. Move a randomly selected task (selecting the longest task with a probability of
0.5) from heavy to light.

2. Move the longest task from heavy to the most suitable machine (the machine
which executes that task in minimum time).

3. Move into light the best task (the task with the lowest execution time for that
machine).

4. Select a task from heavy (selecting the longest task with a probability of 0.5), then
search the best machine to move it to, regarding the current schedule.

Each time that a task is moved from a source machine to a destination machine,
a swap movement is randomly applied with a probability of 0.5, moving a different
task from the destination machine to the source machine. Unlike previous exploration
operators for the HCSP presented in related works by Xhafa et al. (2006; 2007b; 2008b),
none of the foregoing operators imply exploring the O(n?) possible swaps, not even
exploring the O(n) possible task movements. The four exploration operators used in
the proposed EAs are performed in sub-linear complexity order with respect to both
the number of tasks and the number of machines in each HCSP instance. This feature
allows the proposed EAs to show a good scalability behavior when applied to solve large
HCSP instances that model large HC and grid systems.

The pseudo-code of the mutation and reinitialization operators for the HCSP is
presented in Algorithm 6. Trying to additionally improve the resulting schedules, a
rebalancing operator is randomly applied with a probability of 0.5 after applying the
mutation operator. This operator was designed in order to fill the gap on the local
makespan between the heavy machine and the light machine, by performing task moves
between them while it is possible, trying to balance the load in the schedule.
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Algorithm 6 HCSP mutation and reinitialization.
Input: schedule s
1: select machines HM y LM
{select heavy and 1ight machines with probability HEAVY _MACH}

2: trials « 0
3: end_search < FALSE
4: orig makespan « makespan(s)
5: repeat
6: select mut_operator
7:  if mut_operator == 1 then
8: move a randomly selected task from HM to LM
{with a probability of 0.5 move the longest task assigned to HM}
9:  else if mut_operator == 2 then
10: move the longest task from HM to the suitable machine
11:  else if mut_operator == 3 then
12: move the best task to LM
13:  else
14: search the machine that minimizes the MCT for a randomly selected task from HM
{select the longest task with a probability of 0.5}
15:  end if

16:  apply swap from destination to source (with probability 0.5)
17: trials « trials + 1

18:  if makespan(s) < orig makespan then
{Makespan improvement: end the cycle}

19: end_search < TRUE

20:  end if

21: until ((trials == MAX_TRIALS) OR (end_search))
22: apply rebalancing operator (with probability 0.5)

5.6 Local search: randomized PALS

Many strategies have been proposed in the related literature for providing diversity and
improving the efficacy of the search when using EAs for solving the HCSP. Most of the
previous works concluded that local search methods are needed within any EA to find
accurate schedules in reasonable short times. The works of Xhafa et al. (2007b; 2008a;
2008b) explored several local search operators for solving low-dimension HCSP instances,
but many of the proposed operators become ineffective when the problem instances grow.
Initial experiments showed that the reinitialization operator used in the traditional CHC
algorithm did not provide enough diversity when working with small subpopulations,
thus restraining the parallel algorithm to work using eight demes with 15 individuals
each. In order to improve the population diversity, the pu-CHC algorithm incorporates a
randomized version of a well-known local search method, already employed with success
for solving hard combinatorial optimization problems.

The local search operator used in the pu-CHC algorithm is based on Problem Aware
Local Search (PALS), a novel heuristic algorithm originally proposed for the DNA frag-
ment assembly problem (Alba and Luque, 2007). PALS is based on the classic 2-opt
heuristic, one of the most famous methods in the class of local search algorithms known
as exchange heuristics (because they are based on simple tour modifications) for solving
the Traveling Salesman Problem (TSP).
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2-opt uses a move that deletes two edges on a given cycle, thus splitting the tour
into two paths, and then reconnects those paths in the other possible way. Even though
the basic concepts on using the breaking-and-reconnecting moves had been proposed
earlier, the 2-opt heuristic was first formulated by Croes (1958). Since then, 2-opt has
been used as the building block for many algorithms for solving the TSP, most notable
in the TS-like method by Lin and Kernighan (1973) (which in fact was proposed more
than ten years before Glover conceptualized the TS metaheuristic approach).

PALS extended the original 2-opt concepts to design a specific search method for
solving discrete optimization problems. The general specification of PALS by Alba and
Luque (2007) is presented in Algorithm 7.

Algorithm 7 Generic schema of PALS method.

Input: solution s

1: repeat

2: L~

3: fori=0to N do

4: for 5 =0to N do

5: Ay « calculateDelta(s, ¢, j)

6: if Ay > 0 then

7 L =LUi,jAs) {Add candidate movements to L}
8: end if

9: end for
10:  end for
11:  if L # () then
12: (4,4, Ag) < Select(L) {Select a movement among candidates}
13: applyMovement(s, i, j) {Modify the solution}

14:  end if
15: until no changes on s

PALS works on a single solution s, which is iteratively modified by applying a series
of movements aimed to locally improve their function value f(s). The movement opera-
tor performs a modification on the positions 7 and j in a given solution s, while the key
step is the calculation of the objective function variation Ay when applying a certain
movement. When the calculation of Ay can be performed without significantly increa-
sing the computational requirements, PALS provides a very efficient search pattern for
combinatorial optimization problems.

Following the generic schema presented in Algorithm 7, a specific variant of PALS
was designed for the HCSP. The method is devoted to exploring possible task swappings
between machines in a given schedule, trying to improve the makespan metric. However,
due to both the huge dimension of the search space, specially when solving large HCSP
instances, and the goal of achieving accurate results in short execution times, the deter-
ministic paradigm in PALS was replaced by a randomized one (i.e. the local search uses
random criteria to define the set of adjacent swaps explored). The randomized version
also incorporates two other differences with the generic PALS algorithm: the main cycle
ends when finding a solution that improves the schedule makespan, and if the search
does not find an improved solution, MAX_TRIALS attempts are performed applying the
swap that produces the lowest makespan degradation, trying to introduce diversity in
the EA population.
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Algorithm 8 presents the pseudo-code of the randomized PALS for the HCSP. Work-
ing on a given schedule s, the randomized PALS selects a machine m to perform the
search. With high probability (HEAVY MACH) the machine with the largest local makespan
is selected, focusing on improving the assignment for the machine which defines the
makespan of the whole schedule, but also introducing a chance of improving the local
makespan for other machines. The outer cycle iterates on TOP_M tasks assigned to ma-
chine m (randomly starting in task start m), while the inner cycle iterates on TOP_T
tasks assigned to other machines (randomly starting in task start_t). For each pair (¢,
t7), the double cycle calculates the makespan variation when swapping tasks ty; and t7.
The method stores the best improvement on the makespan value for the whole schedule
found in the TOP_M x TOP_T swaps evaluated. After the double cycle ends, the best_move
found so far is applied, disregarding whether it produces an effective makespan reduc-
tion or not. The process is applied until finding a schedule which improves the original
makespan or after performing MAXIT PALS attempts.

Algorithm 8 Randomized PALS for the HSCP.

Input: schedule s
Select machine m {select heavy with probability HEAVY_MACH}

1: trials < 0; end_search <« FALSE
2: orig makespan < Makespan(s)
3: repeat
4:  Appst «—
5: for t); = start_m to TOP_M do
{Tterate on tasks of machine m}
6: for t7 = start_t to TOP_T do
{Iterate on tasks of other machines}
7 Ay + calculateDeltaMakespan(s, tar, t7)
8: if Ay < AggsT then
9: best.move «— (tpr, tr, Apr) {Store best move found so far}
10: ApgsT — Anp
11: end if
12: end for

13:  end for

14:  trials « trials + 1

15:  applyMovement(Best move) {Modify the solution}

16:  if Makespan(s) < orig makespan then
{Makespan improvement: end the cycle}

17: end_search < TRUE

18:  end if

19: until ((trials == MAXIT_PALS) AND (! end_search))

The randomized version of PALS was designed to provide a powerful search pattern
for the HCSP. It allows moving toward local optima in the space of HCSP solutions
each time that an improved solution is found, and it also provides diversity to solutions
—allowing the algorithm to scape from strong local optima— after applying MAXIT_PALS
changes when no improved solution is found. The calculation of the makespan variation
when swapping two tasks (calculateDeltaMakespan(s, ¢y, t7)) is performed without re-
quiring high computational requirements when using the machine oriented encoding,
since it stores the local makespan of each machine. Thus, PALS provides a very efficient
search pattern for the HCSP in pu-CHC.
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In addition, the PALS operator provides a generic search pattern for pu-CHC, a
feature seldom found in other existing local search algorithms for the HCSP, which
allows the new algorithm to be applied to other similar optimization problems.

5.7 Speeding up the pu-CHC search

This section presents the main features of pu-CHC, conceived to speed up the evolutio-
nary search in order to reach accurate results in short execution times for hard-to-solve
optimization problems. The first subsection comments the main characteristics of the
accelerated convergence evolution model, and the last subsection describes the two-level
parallel model employed in the pu-CHC implementation.

5.7.1 Accelerated convergence in pu-CHC

Diversity is quickly lost when using low population sizes. In order to speed up the
convergence of the pu-CHC algorithm, the PALS operator is applied after a certain
(low) number of generations pass without inserting any offspring into the new population
during the mating procedure. This accelerated cataclysmic model showed the ability of
providing enough diversity to avoid the EA getting stuck in local optima. In this way,
pu-CHC combines the evolutionary search with PALS in order to achieve high accurate
results in short execution times. PALS is applied considering the best solutions found
so far in the evolutionary search, which are stored in the elite population. In addition,
a one-step memory is included: a task move is rejected when it will move the task back
to the machine to which it was assigned one step in the past. The task memory is
refreshed each time that a valid move is performed. This mechanism is a basic version
of the memory already employed in TS algorithms to avoid loops, which has shown its
usefulness for improving the HCSP results (Xhafa et al., 2008b).

Summarizing, the distinctive characteristics of pu-CHC includes:

e Using a distributed subpopulation parallel model, with small populations within
each deme (population size: eight individuals per deme).

e Storing a small elite population with the best three individuals found so far in the
evolutionary search.

e Including a local search based on a randomized PALS method.

e Following an accelerated convergence model: the randomized PALS is applied after
a certain (low) number of generations when a nominal convergence is detected.

e Using a one-step task memory to prevent loops in the task-to-machine assignments.
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5.7.2 Parallel model of pu-CHC

A two-level parallel model was used in the implementation of pu-CHC applied to the
HCSP: the distributed memory message-passing paradigm was employed for communi-
cating demes that executes in different hosts in a distributed cluster, while the shared-
memory paradigm was applied to improve the efficiency of the communications between
demes executing in the same host. The hybrid parallel implementation of pu-CHC allows
taking advantage of two type of parallel infrastructures: traditional clusters of compu-
ters, and also modern multicore CPU architectures, where several processing cores share
a global memory that can be used to speed up the communications in cooperative-based
distributed search methods. Both communication paradigms were implemented using
the Message Passing Interface (MPI) (Gropp et al., 1994), the most popular library used
for developing parallel and distributed programs. By using the two-level parallel imple-
mentation, pu-CHC diminishes the impact of the time spent in communication during
the migration and synchronization procedures.

Figure 5.4 presents a graphical representation of the two-level parallel model used in
pu-CHC, showing a distributed PEA with many subpopulations arranged in a cluster
with several multicore processors. The shared memory within each host is used for
intra-processor communications, while a traditional message-passing migration operator
is applied to communicate demes executing in different hosts.
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Figure 5.4: Two-level parallel model used in pu-CHC.
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5.8 Summary

This chapter presented the implementation details of the proposed EAs for the HCSP.
MALLBA, the software library in which all the proposed algorithms were implemented,
was introduced in the first section. The chapter also described the generic concepts
about two alternative problem encoding and methods for the population initialization,
which are common to all the proposed EAs.

The traditional GA uses SPX and a move-and-swap mutation operator, while CHC
uses HUX, and an ad-hoc reinitialization operator specifically developed for the HCSP.
However, when using these traditional methods for exploration and exploitation, the
loss of diversity conspired against achieving accurate results for structured scenarios
and large-sized problem instances. Thus, a new parallel micro-CHC evolutionary algo-
rithm was proposed, inspired in previous methods for multimodal and multiobjective
optimization.

The pu-CHC algorithm uses HUX and the previously commented CHC reinitializa-
tion, but it also includes a local search performed by a randomized PALS method and
an accelerated convergence model. A two-level parallel model was presented for the ppu-
CHC implementation, which allows taking advantage of both the shared memory and
the distributed memory high performance computing infrastructures.

The novel parallel micro-CHC algorithm was able to achieve high problem solving
efficacy, even when facing large-sized HCSP instances. The details about the experi-
mental analysis, results, and its discussion are provided in the next chapter.



Chapter 6

Experimental analysis

This chapter presents the experimental evaluation of serial and parallel EAs for solving
the HCSP. The experimental analysis was aimed at studying the efficacy and efficiency
of the proposed EAs for solving the low-dimension HCSP instances by Braun et al.
(2001), and also analyzing the efficacy and scalability behavior when solving the new
set of large-sized problem instances introduced in Section 3.4.

The first section briefly describes the set of HCSP instances used in the experimental
evaluation (their details were already presented in Section 3.4). After that, additional
tools used to develop the parallel EAs and the computational platform used for the expe-
rimental evaluation are presented. Next section presents and comments the experiments
devoted to study the parameter settings of the proposed EAs. The last sections present
and discuss the experimental results for sequential and parallel versions of the proposed
algorithms when solving the problem instances considered. The report includes the nu-
merical results, comparisons with other techniques and lower bounds, and statistical
analysis on the results improvements. In addition, the analysis of the scalability and
parallel performance of the parallel EAs is presented, and several studies on the beha-
vior of the proposed EAs reporting interesting metrics (e.g. makespan evolution, time
required to achieve certain levels of solution quality, etc.) are also included.

6.1 HCSP instances

The experimental evaluation was performed using several sets of HCSP instances. Re-
garding the low-sized HCSP instances, the de-facto standard benchmark instances from
Braun et al. (2001) and a set of instances with 512 tasks and 16 machines designed using
the ETC parametrization from Ali et al. (2000) were used. The scalability of the pro-
posed algorithms for solving large-sized HCSP instances was studied using the HCSP
instances specifically designed with dimension (tasksxmachines) 1024x32, 204864,
4096x 128, and 8192x 256, whose details were presented in Section 3.4.3.

6.2 Development and execution platform

All the algorithms have been codified using the MALLBA library, implemented on C++.
The parallel model employed in pu-CHC used the version 1.2.7p1 of MPICH (Gropp
et al., 1996), a well-known popular implementation of MPI, to perform the interprocess
communications between demes. Both the distributed memory device (ch_p4) and the
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shared memory device (ch_shmem) of MPICH were employed to implement the two-level
parallel model proposed for pu-CHC.

The experimental analysis was performed using a cluster of four Dell PowerEdge
servers, with QuadCore Xeon E5430 processors at 2.66 GHz, 8 GB RAM, using the
CentOS Linux 5.2 operating system, connected with a Gigabit Ethernet LAN at 1000
Mbps (cluster website: http://www.fing.edu.uy/cluster). This parallel computational
infrastructure combines a shared memory architecture (the nodes within each processor)
and a distributed memory architecture (the cluster itself). Thus, it allows applying
the two-level parallel approach proposed for pu-CHC: demes executing on the same
processor use the shared memory to perform the inter-processes communications, while
demes executing on different processors use the network to explicitly send and receive
messages.

6.3 Parameter settings

Instead of fixing an arbitrary set of parameters, an initial configuration analysis was
performed for determining the best parameter values for each operator used in the pro-
posed EAs. The parameter setting experiments were performed using a subset of six pro-
blems with diverse characteristics from the set of instances by Braun et al. (u-i-hilo.O0,
ui lohi.O, u c hihi, u c hilo.0, us lohi.O, and u_s 1olo.0). The studied parame-
ters included: population size, crossover probability, mutation probability (in the GA),
percentage of the population involved in the reinitialization (in CHC and pu-CHC al-
gorithms), and number of subpopulations (in the parallel algorithms). The operators
probabilities and internal parameters were studied for all the EAs proposed. The anal-
ysis of the population size was performed for the sequential versions of GA and CHC,
while the analysis of the number of subpopulations was performed for the parallel CHC
and pu-CHC algorithms. For each parameter configuration analysis, 30 executions of the
correspondent algorithm were performed for each problem instance and each parameter
configuration studied.

This section presents the numerical analysis and comments the main decisions taken
and the experiments performed to study the parameter settings of the proposed EAs.

6.3.1 Stopping criterion

The main objective of the research is to study the ability of the proposed EAs to effi-
ciently solve the HCSP, thus demonstrating their usefulness to act as practical schedulers
for real-life sized HC and grid systems. Thus, the algorithms studied in this work used
a bounded time stopping criterion, following previous works by Carretero and Xhafa
(2006) and Xhafa et al. (2007b, 2008a,b), in order to determine the ability of EAs to
achieve accurate HSCP solutions in short execution times. This decision is useful for
efficiently solving static HCSP instances, and is also useful for solving dynamic scenarios
following the rescheduling strategy, by replanning incoming —and also unexecuted— tasks
after certain intervals of time.

When dealing with small and medium-sized HCSP instances, the bounded effort
stopping criterion was fixed at 90 s. of wall-clock time (following related works by Xhafa
et al.), while when solving the large HCSP instances the stopping criterion was fixed at
120 s. of execution time. These time limits can be considered too long for scheduling
short tasks in small multiprocessors, but it is actually an efficient time for scheduling in
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realistic distributed HC and grid infrastructures such as volunteer-computing platforms,
distributed databases, etc., where large tasks —with execution times in the order of
minutes, hours and even days— are submitted to execution. In addition, when facing large
HCSP instances, ad-hoc deterministic heuristics that usually require O(n3) operations
also require execution times in the order of minutes (e.g. Min-Min needs around a
minute of execution time for computing schedules for HCSP instances with dimension
8192x256). The stopping criterion used in the parallel EAs is useful for efficiently
solving static HCSP instances, and is also useful for solving dynamic scenarios following
the rescheduling strategy, by replanning incoming and unexecuted tasks after certain
intervals of time.

6.3.2 Population size

The population size configuration analysis was performed for the sequential versions
of GA and CHC. The candidate values for population size were 60, 120, and 200 in-
dividuals. The best makespan values were achieved when using a population size of
120 individuals. The analysis showed a very slow makespan evolution behavior for the
sequential algorithms when increasing the population size from 120 to 200, suggesting
that working with a larger population is not beneficial for the EAs: the processing time
increases, thus conspiring against quickly achieving accurate results.

6.3.3 Operators probabilities

The candidate values for the application probabilities of the evolutionary operators were:
e Crossover probability (pc), in GA and CHC: 0.5, 0.7, 0.9.
e Mutation probability, in GA (pas): 0.01, 0.05, 0.1.
e Percentage of reinitialization, in CHC and pu-CHC (pr): 0.4, 0.6, 0.8.

The best makespan results were achieved when using the following operators proba-
bilities configurations:

e GA (population size=120): pc = 0.7, pps = 0.1.

e CHC (population size=120): pc = 0.7, pr = 0.6.

e parallel CHC (population size=15): pc = 0.7, pr = 0.8.
e pu~-CHC (population size=8): pc = 0.7, pr = 0.8.

Figures 6.1 and 6.2 present examples of the results obtained in representative execu-
tions of the configuration setting experiments for the sequential and parallel algorithms,
respectively. The graphics report the average makespan values achieved for each com-
bination of pc and pys (or pr) in 30 executions of the correspondent EA for solving the
problem instances u_i_hilo.0 and u_s_hilo.0, when using the stopping criterion of 90
s. Figure 6.1 presents the sample results for sequential GA and CHC, using a population
size of 120 120 individuals, and Figure 6.2 for pCHC —splitting the panmictic popula-
tion in 8 demes (15 individuals per deme)— and pu-CHC —using 16 subpopulations with
8 individuals inside each deme—. Similar results were obtained for the other problem
instances studied.
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Figure 6.2: Analysis of the operators probabilities (parallel algorithms).

The results obtained in the operators probabilities configuration experiments demon-
strate the importance of the mutation and reinitialization operators to achieve highly
accurate solutions in short execution times: the best results are obtained when using
(unusual) high mutation probability (in GA) and percentage of reinitialization (in CHC).
These results are consistent with related works that have claimed that specific methods

are needed to provide diversity in order to achieve accurate HCSP solutions in short
execution times (Xhafa et al., 2007b, 2008b).

6.3.4 Parallel algorithms

The parallel EAs use a migration operator that exchanges individuals considering the
subpopulations connected in an unidirectional ring topology. The best results were
achieved when employing an elitist selection for migration policy that exchanges the best
two individuals between demes. The parameter setting analysis showed no significant
makespan variations when changing the migration frequency, so the algorithms worked
using a migration frequency of 500 generations trying to achieve a balance between
providing diversity and reducing the time spent in communications.
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Regarding the number of subpopulations, the parallel EAs showed a different beha-
vior. In the parallel versions of the traditional GA and CHC algorithms, the best results
were achieved when using eight subpopulations, while pu-CHC was able to obtain the
best results when using the largest number of subpopulations considered (16). The de-
tails of the configuration analysis for the parallel versions of CHC are provided in the
next subsections.

Number of subpopulations: parallel CHC

Table 6.1 and Figure 6.3 present representative results achieved in the analysis that
studied the ability of the pCHC algorithm of obtaining improved results when working
with additional subpopulations. A population of 120 individuals was split into 2 to 16
subpopulations and the parallel CHC algorithm was run with the stopping criteria of
90 s. for solving the HCSP instances u_i hihi.0, u_.c_hilo.O, and u_s_hilo.0. The
average and standard deviation of the makespan results are reported for each problem
instance studied.

# subpopulations

Instance 2 1 6 g 10 12 14 16
w1 nini o AV& 30092467 2995968.1 29813915 2959721.8 2064912.4 20720114 29740254 29782234
- : 0.68%  0.48%  0.43% 0.26%  023%  0.19%  0.25%  0.28%
Conile o AV& 1547451 1545854 1542231 1538115 1540552 1542085 1543565 1543910
011%  0.08%  0.05% 0.04%  0.04%  0.04%  0.05%  0.05%
o ioni o AVE 1248862 1246036 124320.8 1242044 1245236 1244420 1245818 1248524
-S-Lond- 043%  0.57%  0.46% 0.55%  0.42%  0.38%  0.30%  0.26%

Table 6.1: Sample results when configuring the number of subpopulations in pCHC.
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Figure 6.3: Sample results when configuring the number of subpopulations in pCHC.

When using smaller populations, pCHC has a more focused exploration pattern, so
it is able to take advantage of the evolutionary search in an efficient manner (see the
decrease on average makespan values when using more than one subpopulation in Figure
6.3). However, splitting the population in more than 8 demes causes a severe lost of
diversity and the parallel CHC results deteriorated (the same drawback was detected
for the parallel GA algorithm).
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The previous scalability behavior suggested that there was still work to be done in
order to enhance the pCHC method, and that was one of the main reasons for designing
the improved parallel micro-CHC algorithm.

Number of subpopulations: pu-CHC

Table 6.2 and Figure 6.4 present representative results achieved in an analysis that stu-
died the ability of pu~-CHC of finding more accurate results when working with additional
subpopulations. As in the previous study, a population of 120 individuals was split into
2 to 16 subpopulations and the pu-CHC algorithm was run with the stopping criteria
of 90 s. for solving the HCSP instances u_i hihi.0, u_c_hilo.0, and u_s_hilo.0. The
average and standard deviation of the makespan results are reported for each problem
instance studied.

# subpopulations

Instance 2 1 6 ) 10 12 4 16
i hihio Ve 124886.2 124603.6 124320.8 1242044 123976.8 123442.0 1230818 122852.4
o 043% 057% 046% 055% 0.42% 0.38% 0.31% 0.27%
o hilo.0 AvE. 3010247 2081653 2081392 2076351 2964912 2060011 2956506 2950896.4
O T8 %  0.48%  043%  0.20%  0.23%  0.19%  0.15% 0.14%
s hilo.o Av& 153945.1 1535854 153498.5 153423.1 153355.2 153307.8 1532264 153193.7
011% 0.08% 0.05% 0.04% 0.04% 0.04% 0.04% 0.04%

Table 6.2: Sample results when configuring the number of subpopulations in pu-CHC.
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Figure 6.4: Sample results when configuring the number of subpopulations in pu-CHC.

When using smaller populations, pu-CHC has a more focused exploration pattern,
so it is able to take advantage of both the evolutionary search and the randomized PALS
operator in an efficient way. The analysis also demonstrates that pu-CHC overcomes the
problem previously detected in the pCHC algorithm: the diversity provided by the ex-
ternal population and the randomized PALS operator allows pu-CHC to further improve
the makespan results when using additional demes (using additional computational re-
sources), despite working with smaller subpopulations.
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6.3.5 Probabilities within the evolutionary operators

Additional experiments were performed in order to find the optimum values for the
probabilities used inside the mutation, reinitialization and PALS operators. After per-
forming the configuration analysis, the value of HEAVY MACH (the probability of selecting
the machine with the largest local makespan) was fixed to 0.7. The value of MAX_TRIALS
(number of attempts to find a better solution before accepting a worse one) was set to
seven in the GA mutation, and to five in the CHC and pu-CHC reinitialization.

Regarding the randomized PALS method, the best results were achieved applying
it after five generations pass without inserting any offspring into the new population
during the mating procedure. The value of H.M (the probability of selecting the machine
with the largest local makespan) was fixed to 0.7. The value of TOP_M (number of tasks
of the heavy machine to process) was fixed to N/M (32 for all the problem instances
studied), while the value of TOP_T (number of tasks of other machines examined to
swap) was fixed to N/20. The number of iterations attempts to find a solution with
lower makespan (MAXIT_PALS) was set to 7.

The previously presented parameter values allow an efficient search of the HCSP
solution space: only TOP_MXTOP_T swaps are explored in every application of PALS.
Since TOP_.MXTOP_-T = N/M x N/20 and N = M x 32 for all problem instances studied,
the number of swaps explored is 32 x 32 %« M /5 = 50 x M —linear order on both the
number of tasks (N) and machines (M )-.

6.3.6 Summary: best parameter configurations

In summary, all the studied EAs worked using a bounded time stopping criteria of 90
s. for the HCSP instances by Braun et al. (2001). The best results in the configura-
tion analysis were obtained when using the parameters values presented in Tables 6.3
(sequential algorithms) and 6.4 (parallel algorithms).

pop. size exploitation  exploration  additional parameters
GA 120 pc=0.7 par=0.1  HM=0.7, MAX_TRIALS=7
CHC 120 pe=0.7 pr=0.6  H.M=0.7, MAX_TRIALS=5

Table 6.3: Best parameter configurations (sequential algorithms).

#demes pop. size exploitation exploration additional parameters
pCHC 8 15 pc=0.7 pr=0.8 MAX_TRIALS=5, H.M=0.7
pu-CHC 16 8 pe=0.7 pr=0.8  TOP_M=N/M TOP_T=N/20, MAXIT_PALS=7

Table 6.4: Best parameter configurations (parallel algorithms).

The parallel algorithms used an elitist selection for migration, a replace-worst re-
placement strategy, and a migration frequency of 500 generations. In pu-CHC, the
randomized PALS method was applied after five generations pass without inserting any
offspring into the new population during the mating procedure.
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6.4 Results and discussion

This section presents the experimental results obtained with the proposed EAs for sol-
ving the HCSP. It studies the numerical results for the set of HCSP instances from Braun
et al. (2001), a statistical analysis on the improvements obtained with the parallel EAs,
and the comparison with other metaheuristics. After that, the results obtained with
the parallel EAs when solving the large-dimension HCSP instances specially designed
in this work are presented and discussed. Finally, the section includes the analysis of
the makespan evolution, a comparison with lower bounds, and a study of the parallel
performance and scalability of the parallel EAs when solving large-sized HCSP instances.

6.4.1 Results for HCSP instances from Braun et al. (2001)

The results for the set of HCSP instances from Braun et al. (2001) (dimension 512x16)
are presented separately, since there have been antecedents of solving this benchmark
using other methods. Considerably effort has been done in this work in order to design
accurate algorithms for the HCSP, able to improve over the previous results using EAs
and other metaheuristics for the problem instances studied. Next subsections present
the numerical results using sequential and parallel EAs.

Sequential algorithms

The results achieved using the sequential versions of GA and CHC for the instances from
Braun et al. (2001) are presented in Table 6.5. The table shows the best, average and
standard deviation (o) of the makespan values obtained in 50 independent executions
of the sequential GA and CHC for solving each of the twelve problem instances studied.
The best makespan results obtained for each instance are marked with bold face.

Instance GA CHC
best avg. o best avg. o
uc hihi.0 7659878.7 7699080.1 0.41% 7599288.4 7681050.1 0.55%
uchilo.O 155092.0  155300.1 0.11% 154947.0 1553334 0.19%
uc_lohi.0 250511.8 252568.7 0.56% 251194.3  251868.3 0.22%
u_c_lolo.0 5239.1 5248.6 0.16% 5225.9 5241.9 0.20%
u_i hihi.0 3019844.3 3030564.2 0.22% 3015048.5 3024904.9 0.30%
u_ihilo.0  74142.9 74568.4  0.41% 74240.9 74375.9 0.12%
ui lohi.O 104688.0  105048.1 0.31% 104546.0  104939.1 0.32%
u_ilolo.0 2577.0 2587.8  0.46% 2576.7 2582.2  0.13%
us hihi.0 4332248.2 4347835.5 0.38% 4299146.3 4320803.4 0.52%
u_s_hilo.0  97630.1 98026.1 0.41% 97888.2 98307.4 0.27%
u_s_1lohi.O 126438.0  126840.8 0.25% 126238.0  126580.4 0.20%
us_lolo.0 3510.4 3516.5 0.23% 3492.1 3505.0 0.25%

Table 6.5: Results of the sequential EAs for the HCSP.

The analysis of Table 6.5 indicates that CHC systematically achieved better results
than GA for nine out of twelve problem instances studied (GA only obtained slightly
better makespan values than CHC for u_c_lohi.0, u-i hilo.0, and u_s_hilo.0). These
results suggested that the CHC evolutionary model —using HUX, diversity preservation,
and population reinitialization—, is a promising strategy for solving the HCSP when
compared with a traditional GA model.
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Instance Min-Min Sufferage GA imp. CHC imp.
u_c hihi.0 8460674.0 10249174.0 7659878.7 9.46% 7599288.4 10.18%
u_c_hilo.0  161805.4 168982.6 155092  4.15% 154947  4.24%
u.c_lohi.0  275837.3 337121.4  250511.8 9.18%  251194.3 8.93%
u_c_lolo.0 5441.4 5658.5 5239.1  3.72% 5225.9  3.96%
u-ihihi.0 3513919.3 3306819.3 3019844.3 8.68% 3015048.5 8.82%
u_ihilo.O 80755.7 77589.1 74142.9 4.44% 74240.9 4.32%
uilohi.0  120517.7 114578.9 104688  8.63% 104546  8.76%
uilolo.O 2785.6 2639.3 2577 2.36% 2576.7  2.37%
u_s hihi.0 5160343.0 5121953.5 4332248.2 15.42% 4299146.3 16.06%
u_s_hilo.0  104375.2 102499.9 97630.1 4.75% 97888.2 4.50%
u_s_lohi.0  140284.5 150297.1 126438  9.87% 126238 10.01%
u_s_lolo.0 3806.8 3846.5 35104  7.79% 3492.1  8.27%

Table 6.6: Comparative results: sequential EAs vs. deterministic heuristics.

Table 6.6 presents a comparative analysis between the best results obtained with
the sequential EAs and those computed by Min-Min and Sufferage, the deterministic
heuristics used to define the randomized procedure for the population initialization. The
results show that both GA and CHC are able to achieve significant improvement factors
(imp.) over the best makespan result computed using a deterministic heuristic: the
improvement factors ranged from 2.36% to 15.42% (for GA) and from 2.37% to 16.06%
(for CHC). The overall improvement factors —averaged for the twelve problem instances
studied— were 7.37% for GA and 7.54% for CHC.

Table 6.7 compares the best makespan values achieved by the sequential GA and
CHC against the previous best results obtained with EAs for the HCSP. The analysis of
Table 6.7 shows that both sequential EAs proposed in this work outperformed previous
results achieved with evolutionary techniques for six (four inconsistent and two semi-
consistent) out of twelve problem instances studied. However, the sequential methods
were not able to achieve the best makespan results formerly known for each of the
benchmark HCSP instances, achieved with non-evolutionary methods by Ritchie and
Levine (2004) and Xhafa et al. (2008b). The best results obtained with the sequential
EAs designed in this work were around 1% far from the best-known makespan results.

Instance GA GA MA+TS cMA GA CHC
(Braun et al.)  (Xhafa) (Xhafa et al.) (Xhafa et al.) (this work)

u_c_hihi.O 8050844.5 7610176.7  7530020.2 7700929.8 | 7659879  7599288.4
u-c_hilo.O 156249.2  155251.2 153917.2 155334.8 | 155092 154947.0
u_c_lohi.O 258756.8  248466.8 245288.9 251360.2 | 250511.8 251194.3
u_c_lolo.0 5272.3 5227.0 5173.7 5218.2 5239.1 5225.9
u-i_hihi.O 3104762.5 3077705.8 3058474.9 3186664.7 | 3019844 3015048.5
u_ihilo.O 75816.1  75924.0 75108.5 75856.6 | 74142.9 74240.9
u_i_lohi.O 107500.7  106069.1 105808.6 110620.8 | 104688 104546.0
u-i_lolo.0 2614.4 2613.1 2596.6 2624.2 2577 2576.7
u_s_hihi.O 4566206.0 4359312.6 4321015.4 4424540.9 | 4332248 4299146.3
u_s_hilo.O 98519.4  98334.6 97177.3 98283.7| 97630.1 97888.2
u_s_lohi.O 130616.5 127641.9 127633.0 130014.5| 126438 126238.0
u_s_lolo.0 3583.4 3515.5 3484.1 3522.1 3510.4 3492.1

Table 6.7: Comparative results: sequential EAs vs. previous EAs for the HCSP.
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Parallel GA and parallel CHC

The results achieved using the parallel versions of GA (pGA) and CHC (pCHC) for the
set of instances from Braun et al. are presented in Table 6.8. The table shows the best,
average and standard deviation (o) of the makespan values computed in 50 independent
executions of pGA and pCHC for solving each of the twelve problem instances studied.

parallel GA parallel CHC
Instance
best avg. o best avg. o

uchihi.0 7577921.9 7606613.0 0.29% 7461819.1 7481194.5 0.26%
u_c_hilo.O 154915.0  155036.5 0.06% 153791.9 153924.0  0.06%
uclohi.0 2487724  249687.9 0.33% 241513.2 243446.3 0.29%
u_c_lolo.0 5208.3 5224.7 0.17% 5177.5 5181.6 0.07%
uihihi.0 2990517.8 3002119.3 0.25% 2952493.2 2956905.7 0.21%
u_i-hilo.O 74030.3 74102.8 0.21% 73639.8 73847.1 0.13%
u_ilohi.O 103516.0  104078.6  0.34% 102123.1 102677.3  0.30%
uilolo.O 2575.4 2577.0 0.12% 2548.9 2557.2  0.11%
us hihi.0 4262337.5 4282920.5 0.25% 4198779.5 4239146.3 0.36%
u_s_hilo.O 97505.5 97585.5 0.05% 96623.3 96750.3 0.13%
u_s_lohi.O 125717.0  126100.1 0.22% 123236.9 123989.4  0.24%
u_s_lolo.0 3480.3 3487.2  0.11% 3450.1 3472.2  0.13%

Table 6.8: Results of parallel EAs for the HCSP.

The analysis of Table 6.8 shows that pCHC consistently achieved best results than
pGA for the twelve HCSP instances studied. The comparison of Tables 6.5 and 6.8
demonstrates that the parallel models of EAs are able to significantly improve over the
results of the sequential algorithms (achieving an improvement factor of up to 4% for
u_c_lohi.0). The parallel algorithms take advantage of the multiple search pattern and
the increased diversity provided by the subpopulation model to improve the evolutionary
search. In addition, since they work with a reduced population, the parallel EAs have
a more focused processing capability, which allows them to achieve highly accurate
results when using the bounded execution time stopping criterion of 90 s. The standard
deviation of the makespan values are very small for the two parallel EAs —well below
0.5%—, demonstrating a high robustness behavior when solving the HCSP.

Instance GA CHC parallel GA

imp. p-value imp. p-value imp. p-value
u_c_hihi.0 2.65% < 107%* 1.84% <10=* 1.56% < 10~*
u.c_hilo.0 0.85% 1x10~* 0.75% 6x10~% 0.73% 5x1073
uc_lohi.0 3.72% <107* 4.00% <10~* 3.00% < 10~*
uc_lolo.0 1.19% <107% 0.93% 1x10™* 0.59% 3x1073
u.ihihi.0 2.28% < 107% 2.12% < 10=* 1.29% 1x10~*
u.i_hilo.0 0.68% 7x1072 0.82% 1x10™* 0.53% 4x1073
uilohi.0 2.50% <107* 236% <107* 1.35% < 107*
uilolo.0 1.07% <107* 1.05% <107* 1.00% < 107*
u_s_hihi.0 3.18% <107% 239% <107* 1.51% <10~
u_s_hilo.0 1.04% < 107* 131% <10™* 0.91% 2x10~*
u_s_lohi.0 2.59% < 107% 242% < 107* 2.00% < 10~*
us_lolo.0 1.75% <107* 1.22% <10~* 0.88% 2x10~*

Table 6.9: Improvement factors and statistical analysis when using parallel CHC.
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Table 6.9 shows the improvement factors obtained when using pCHC over the other
studied methods. The Kruskal-Wallis test was performed to analyze the time distribu-
tions, and the correspondent p-values are presented for each problem instance and each
pairwise algorithm comparison. The pCHC makespan values significantly improve over
the results achieved with the other EAs, and the computed p-values are very small, so
the improvements can be considered as statistically significant.

Comparison: parallel CHC against other methods

The parallel versions of GA and CHC achieved lower makespan values with respect to
their sequential counterparts, but pGA was unable to improve over the best makespan
results formerly known for the problem instances from Braun et al. (2001). The pCHC
algorithm achieved more accurate schedules indeed, as it is discussed below.

Table 6.10 compares the best results obtained with pCHC for the instances from
Braun et al. (2001) against the best results previously found with diverse metaheuristic
techniques. The comparison with ACO+TS (Ritchie and Levine, 2004) and TS (Xhafa
et al., 2008b) is specially relevant, since those methods have achieved the previous best-
known results to date for the HCSP instances studied. In those cases where pCHC
outperformed the previous best results, the mean time required to achieve the previous
best-known makespan value (¢p, in s.) is also presented.

Instance GA MA+4TS cMA ACO+4TS TS pCHC

(Braun et al.) (Xhafa) (Xhafa et al.) (Ritchie et al.) (Xhafa et al.)  best avg. o ip
u_c_hihi.O 8050844.5 7530020.2 7700929.8 7497200.9 7448640.5 7461819.1 7481194.5 0.26% -
u_c_hilo.O 156249.2 153917.2 155334.8 154234.6 153263.3 153791.9 153924.00.06% -
u_c_lohi.O 258756.8 245288.9 251360.2 244097.3 241672.7 241524.0 243446.3 0.29% 71
u-c_lolo.0 5272.3 5173.7 5218.2 5178.4 5155.0 5177.5 5181.6 0.07% -
u_i hihi.O 3104762.5 3058474.9 3186664.7 2947754.1 2957854.1 2952493.2 2956905.7 0.21% -
u_i_hilo.0 75816.1  75108.5 75856.6 73776.2 73692.9 73639.8 73847.10.13% 74
u_i_lohi.O 107500.7 105808.6 110620.8 102445.8 103865.7 102136.1 102677.3 0.30% 31
u_i_lolo.0 2614.4 2596.6 2624.2 2553.5 2552.1 2549.8 2557.20.11% 62
u_s_hihi.O 4566206 4321015.4 4424540.9 4162547.9 4168795.9 4198779.5 4239146.3 0.36% -
u_s_hilo.O 98519.4 97177.3 98283.7 96762 96180.9 96623.3 96750.30.13% -
u_s_lohi.O 130616.5 127633 130014.5 123922 123407.4123251.5 123989.4 0.24% 55
u_s_lolo.0 3583.4 3484.1 3522.1 3455.2 3450.5 3450.1 3472.2 0.13% 80

Table 6.10: pCHC and other methods for HCSP instances by Braun et al. (2001).

The analysis of Table 6.10 shows that pCHC outperformed the results obtained with
previous EAs. pCHC also outperformed the ACO+TS by Ritchie and Levine (2004) in
ten out of twelve HCSP instances, and the TS by Xhafa et al. (2008b) in seven out of
twelve HCSP instances. In addition, pCHC was able to compute schedules with better
makespan values than the previously best-known solutions in six problem instances (the
correspondent makespan values are marked with bold in Table 6.10). Short execution
times are required to outperform the previous results in those cases.

Figure 6.5 summarizes the information about whether pCHC improves over the pre-
vious best-known methods for the problem set by Braun et al. (2001) or not, and it
also states when the pCHC algorithm obtained a best-known solution for each HCSP
instance studied. The solutions (schedules) with the lowest makespan values obtained
for each problem instance are reported in Appendix B and further details are provided
at the HCSP website (http://www.fing.edu.uy/inco/cecal/hpc/HCSP).
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parallel CHC

Instance is better than achieves a best

ACO+TS (Ritchie,Levine) TS (Xhafa et al.) known solution
u_c_hihi.0 YES NO NO
u_c_hilo.0 YES NO NO
u_c_lohi.0 YES YES YES
u_c_lolo.0 YES NO NO
u_i_hihi.0 NO YES NO
u_i_hilo.0 YES YES YES
u_i_lohi.0 YES YES YES
u_i_lalo.0 YES YES YES
u_s_hihi.0 NO NO NO
u_s_hilo.0 YES NO NO
u_s_lohi.0 YES YES YES
u_s_lolo.0 YES YES YES

TOTAL 10 out of 12 7 out of 12 6 out of 12

Figure 6.5: Comparison of pCHC against the best-known methods for the HCSP.

The previous results show that the parallel version of the CHC algorithm is a pro-
mising method for solving the set of low-dimension HCSP instances by Braun et al.
(2001).

Parallel micro-CHC

Table 6.11 reports the best, average and standard deviation of the makespan results
obtained in 50 independent executions of pu-CHC for the set of instances by Braun et
al. For the sake of comparison, Table 6.11 also reports the values obtained with the Min-
Min and Sufferage deterministic heuristics used to define the randomized procedure for
the population initialization and the pCHC method, reported in the previous subsection.

pCHC pu~-CHC
best avg. o best avg. o

Instance Min-Min Sufferage

u.chihi.0 8460674.0 10249174.0 7461819 7481195 0.26% T7381570.0 7394702.7 0.09%
u_c-hilo. 161805.4 168982.6 153791.9 153924 0.06% 153105.4 153193.7 0.04%
u_c_lohi. 275837.3 337121.4 241524 243446.3 0.29%  239260.0 239706.2 0.08%
u_c_lolo. 5441.4 5658.5 5177.5 5181.6 0.07% 5147.9 5152.3 0.04%

0
0
0
0
uihihi.0 3513919.3  3306819.3 2952493 2956906 0.21% 2938380.8 2947896.4 0.14%
u_ihilo.0 80755.7 77589.1  73639.8 73847.1 0.13% 73378.0 73531.4 0.10%
0o 120517.7 114578.9 102136.1 102677.3 0.30% 102050.6 102402.8 0.17%
0 2785.6 2639.3 2549.8 2557.2 0.11% 2541.4 2547.1 0.09%
0 5160343.0 5121953.5 4198780 4239146 0.36% 4103500.3 4123537.3 0.27%
0 104375.2 102499.9  96623.3  96750.3 0.13% 95787.4 96020.5 0.10%
0 140284.5 150297.1 123251.5 123989.4 0.24% 122083.3 122744.4 0.23%
0 3806.8 3846.5 3450.1 3472.2 0.13% 3433.5 3438.3 0.07%

u_i_lohi.
u-i-lolo.
u_s_hihi.
u_s_hilo.
u-s_lohi.

u_s_lolo.

Table 6.11: Results of pu-CHC for HCSP instances from Braun et al. (2001).
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The results in Table 6.11 show that pu-CHC obtained significant improvements over
the best deterministic heuristic result: the improvement factors were from 3.71% to
19.88%, with an averaged 9.77% overall improvement factor. Table 6.11 also shows
that the new algorithmic proposal in pu-CHC improves over all the results previously
obtained with the traditional pCHC algorithm. By using a micro population, the acce-
lerated convergence model, the elite population, and the local search based on a ran-
domized PALS method in order to improve the population diversity, pu-CHC is able to
find accurate HCSP solutions with lower makespan values than the previously obtained
with pCHC. The algorithmic robustness was also improved in pu-CHC, since very re-
duced values for the standard deviation of the makespan results were obtained. Thus,
it can be expected that pu-CHC will find accurate schedules in any single execution for
small-sized HCSP scenarios that follow the ETC performance estimation model by Ali
et al. (2000).

Table 6.12 presents the improvement factors on the makespan values obtained with
pu-CHC over pCHC. The p-values from the non-parametric Kruskal-Wallis test, per-
formed to analyze the distributions, are reported for each problem instance. The pu-
CHC makespan values improve over the pCHC results, and the computed p-values are
very small, so the improvements can be considered as statistically significative.

avg best
Instance - -

imp.  p-value imp.  p-value
uc_hihi.0 1.16% <1073 1.08% <1073
uc_hilo.0 0.47% <1073  0.45% 0.009
uc.lohi.0 1.54% <1073 0.93% <1073
u.c.lolo.0 057% <1073 0.57% <1073
u_i_hihi.0  0.30% 0.005  0.48% 0.003
u.ihilo.0 043% <1073  0.36% 0.009
u_i_lohi.0  0.27% 0.005 0.07% 0.01
uilolo.0 0.39% <1073 0.29% <1073
u_s_hihi.0  2.73% <1073 227% <1073
u_s_hilo.0  0.75% <1073 0.87™% <1073
u_s_lohi.O 1.00% <1072 0.94% <1073
us_ lolo.0 098% <1073 0.48% <1073

Table 6.12: pu-CHC improvement factors over pCHC.

Table 6.13 presents the comparison of the pu-CHC best makespan values against
the best results previously found with other EAs and diverse metaheuristic techniques.
Table 6.13 also presents the mean time required by pu-CHC to compute the previous
best-known makespan value (¢p, in seconds). The analysis of Table 6.13 shows that pu-
CHC was able to compute better makespan values than the previously best-known solu-
tions for all problem instances in the de-facto set of benchmark problems by Braun et al.
(2001). pu-CHC outperformed the ACO+TS by Ritchie and Levine (2004), the TS by
Xhafa et al. (2008b), and pCHC, the three methods that have obtained the previous best-
known solutions for the HCSP instances by Braun et al. Short execution times are re-
quired to outperform the previous best-known results in all cases. The makespan values
for the best solutions obtained are marked with bold in Table 6.13). The best solutions
(schedules) obtained for each problem instance are presented in Appendix B and they
are also reported in the HCSP website http://www.fing.edu.uy/inco/cecal/hpc/HCSP.
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GA MA+TS cMA ACO+TS TS
Instance (Braun et al.) (Xhafa et al.) (Xhafa et al.) (Ritchie et al.) (Xhafa et al.) PCHC  pu-CHC 15 (s)
u_c_hihi.O 8050844.5 7530020.2 7700929.8 7497200.9 7448640.5 7461819.1 7381570.0 15
u-c_hilo.O 156249.2 153917.2 155334.8 154234.6 153263.3 153791.9 153105.4 62
u_c_lohi.O 258756.8 245288.9 251360.2 244097.3 241672.7 241524.0 239260.0 23
u_c_lolo.0 5272.3 5173.7 5218.2 5178.4 5155.0 5177.5 5147.9 50
u_ihihi.oO 3104762.5 3058474.9 3186664.7 2947754.1 2957854.1 2952493.2 2938380.8 44
u_i_hilo.0 75816.1 75108.5 75856.6 73776.2 73692.9 73639.8 73378.0 43
u_i_lohi.O 107500.7 105808.6 110620.8 102445.8 103865.7 102136.1 102050.6 57
u_i_lolo.0 2614.4 2596.6 2624.2 2553.5 2552.1 2549.8 2541.4 49
u-s_hihi.O 4566206 4321015.4 4424540.9 4162547.9 4168795.9 4198779.5 4103500.3 18
u_s_hilo.O 98519.4 97177.3 98283.7 96762 96180.9 96623.3 95787.4 46
u_s_lohi.0O 130616.5 127633 130014.5 123922 123407.4 123251.5 122083.3 24
u_s_lolo.0 3583.4 3484.1 3522.1 3455.2 3450.5 3450.1 3433.5 30

Table 6.13: pu-CHC and other methods for HCSP instances by Braun et al. (2001).

After the previously commented results, we can claim that pu-CHC is the new state-
of-the-art algorithm for solving the low-dimension HCSP instances by Braun et al. Next
subsection characterizes the performance of the proposed parallel EAs for solving unseen
larger problems.

6.5 Results for the new large-sized HCSP instances

This section presents and discusses the results obtained when solving the new large
dimension HSCP instances specially designed in this work, using the parallel versions of
CHC and pu-CHC (identified as the best methods for solving the HCSP in the previous
section). For each problem dimension (1024x32, 2048x64, 4096x128, and 8192x256
tasks xmachines), the results for the twelve instances following the heterogeneity model
from Ali et al. (2000), and the twelve ones following the heterogeneity model from Braun
et al. (2001) are presented in the next subsections. There have been no previous works
solving this new set of HCSP instances, so the results obtained using the parallel EAs
are compared with those achieved by the popular ad-hoc deterministic list scheduling
heuristics used to define the randomized procedure for the population initialization in
the proposed EAs (MCT, Min-Min, and Sufferage).

6.5.1 Parallel CHC

Tables 6.14 to 6.17 present the results obtained when using pCHC for solving the large
HSCP instances with dimension 1024x32, 2048 x64, 4096 x 128, and 8192x256, respec-
tively. The results obtained with the MCT, Min-Min and Sufferage deterministic heuris-
tics are presented in order to perform a comparative analysis. After that, the tables
report the best and average makespan results achieved in 50 independent executions
of pCHC, the standard deviation on the makespan values, and the improvement factor
(impr., in percentage) over the best makespan result obtained with the deterministic
heuristics.
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Instance MCT Min-Min Sufferage pCHC -
best avg. o impr.

A.u_cohihi 32832740.0 22508064.0 30004648.0 20327924.0 20510300.9 0.14% 9.69%
A.uchilo 3245777.0 2255966.3 2816620.5 2048582.7 2058352.2 0.16% 9.19%
A.u c lohi 3058.7 2155.0 2716.0 1956.7 2000.0 0.19%  9.20%
A.uclolo 323.9 225.9 288.5 207.5 217.8 0.10% 8.13%
A.uihihi  7567147.0 6367767.5 5601367.0 5169960.5 5244046.9 0.24% 7.70%
A.uihilo 7131324 641438.4 533545.2 490280.3 492699.4 0.11% 8.11%
A.uilohi 754.1 664.7 551.7 518.2 523.6 0.15% 8.32%
A.uilolo 73.4 63.7 55.4 50.6 51.7 0.19% 8.63%
A.u_s hihi 19008366.0 14125880.0 16939632.0 12243560.0 12439843.1 0.10% 13.33%
A.ushilo 1825499.9 1319050.5 1603158.5 1187506.4 1214303.0 0.20% 9.97%
A.u_s_lohi 1822.0 1380.5 1681.4 1186.8 1199.2 0.30% 14.03%
A.us lolo 194.2 138.7 167.2 122.4 126.5 0.12% 11.77%
B.uc.hihi  9478168.0 6708228.0 8514663.0 6169823.0 6200118.0 0.11% 8.03%
B.u_c hilo 97584.4 66684.5 84876.8 61114.7 61390.1 0.10% 8.35%
B.u_c_lohi 333497.6 232011.8 296032.9 215149.2 218124.8 0.24% 7.27%
B.u.c_lolo 3402.3 2386.3 3105.7 2164.3 2208.4 0.11% 9.30%
B.u.i hihi 2511410.8 2164576.5 1847652.5 1630288.6 1670112.7 0.11% 11.76%
B.u_ihilo 22624.3 17083.1 16366.2 15121.5 15464.1 0.19% 17.61%
B.u i lohi 74041.1 56601.2 55083.2 49569.9 50128.2 0.13% 10.01%
B.uilolo 743.8 585.0 537.1 496.1 507.4 0.10% 17.64%
B.u_s_hihi  5458156.0 3967265.5 4714483.5 3393010.2 3430218.1 0.10% 14.47%
B.u_s hilo 55659.5 40691.6 50884.3 35988.4 36515.6 0.27% 11.56%
B.u_s_lohi 176744.7 135624.6 155599.9 115179.2 118070.3 0.19% 13.08%
B.u_s_lolo 1888.6 1333.2 1646.6 1191.7 1230.3 0.15% 10.61%

Table 6.14: pCHC results for new HCSP

instances with dimension 1024 x32.

Instance MCT Min-Min Sufferage pCHC -
best avg. o impr.

A.u_chihi 28519530.0 19552222.0 25579850.0 18110479.1 18218285.6 0.65% 7.37%
A.uchilo 2745652.5 1873134.3 2478699.3 1748509.2 1760141.2 0.47% 6.65%
A.u_c_lohi 2858.8 1924.7 2539.2 1798.4 1804.9 0.19% 6.56%
A.u_c_lolo 279.9 191.7 249.8 177.6 178.1 0.16% 7.35%
A.uihihi  3900502.5 3248935.5 3218272.5 2506258.5 2546459.7 0.25% 22.12%
A.uihilo 409815.0 365828.6 315267.5 272741.3 273876.3 0.32% 13.49%
A.u_i lohi 385.2 320.9 312.5 266.3 267.5 0.28% 14.80%
A.uilolo 41.8 32.3 29.5 26.4 26.5 0.29% 10.48%
A.u s hihi 16498318.0 11245679.0 13890956.0 9756499.7 9821934.5 0.58% 13.24%
Aushilo 1432291.0 1042948.5 1307394.3 924094.9 937998.8 1.44% 11.40%
A.u_s_lohi 1512.6 1056.0 1354.1 947.1 952.3 0.34% 10.31%
A.u_s_lolo 163.1 114.6 142.3 99.6 100.4 0.47% 13.15%
B.uc hihi  8236068.5 5564664.0 7560320.5 5290128.2 5300316.1 0.14% 4.93%
B.u.chilo 87265.9 59352.8 79079.2 55316.2 55343.1 0.06% 6.80%
B.u.c_lohi 281350.6 190842.4 253468.1 177063.4 177612.4 0.28%  7.22%
B.u.c_lolo 2882.3 1927.7 2613.8 1814.7 1818.3 0.19% 5.86%
B.u.i_hihi  1204421.0 929295.8 879421.3 770110.6 774993.0 0.47% 12.43%
B.u.ihilo 11715.7 10318.4 9047.6 7906.5 7932.9 0.53% 12.61%
B.u_i_lohi 40528.6 34071.0 32073.6 26941.2 27207.3 0.61% 16.00%
B.u.i_lolo 413.9 355.7 299.4 262.4 264.7 0.26% 12.36%
B.u_s_hihi  4715914.0 3293157.0 4121618.8 2910507.6 2923857.1 0.34% 11.62%
B.u.s hilo 47549.7 33445.4 41777.5 29442.2 29518.6 0.22% 11.97%
B.u_s_lohi 159401.9 111237.4 142534.7 98607.0 98758.3 0.19% 11.35%
B.u.s_lolo 1615.2 1163.8 1474.0 1014.3 1019.7 0.30% 12.85%

Table 6.15: pCHC results for new HCSP instances with dimension 2048 x64.
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Instance MCT Min-Min Sufferage pCHC -
best avg. o impr.

.u_c_hihi 24968242.0 16711134.0 23173816.0 15722681.0 15760840.0 0.16% 9.69%
.u_chilo  2466416.3 1649763.5 2240514.0 1562810.9 1565580.1 0.17%  9.19%

.u_c_lohi 2512.0 1635.3 2248.6 1540.9 1545.1 0.13%  9.20%
.u_c_lolo 247.3 166.9 223.9 155.7 156.2 0.19% 8.13%
.u-ihihi  1939731.8 1666126.5 1575787.6 1309493.5 1331529.0 0.37% 7.70%
.u_i_hilo 203714.6 177692.2 154506.9 137158.4 139250.8 0.17% 8.11%
.u_i_lohi 203.5 188.0 165.6 136.1 137.7 0.21% 8.32%
.u-i_lolo 20.8 19.4 15.2 13.7 13.7 0.27% 8.63%

.u_s-hihi 13101840.0 8949853.0 11756833.0 8089853.5 8121957.0 0.29% 13.33%
.u_s_hilo  1369277.1 930564.0 1215532.5 828912.4 834878.5 0.42% 9.97%
.u_s_lohi 1310.7 927.9 1181.7 807.6 811.9 0.32% 14.03%
.u_s_lolo 133.9 94.7 122.3 84.2 84.5 0.27% 11.77%

.u_c_hihi  7715335.5 5059571.5 6912596.5 4767774.5 4789005.9 0.20% 8.03%
.u_c_hilo 73858.5 49301.2 66003.5 46350.1 46470.8 0.14% 8.35%
.u_c_lohi 253202.0 169495.3 230424.2 158780.8 159312.0 0.17% 7.27%

.u_c_lolo 2464.7 1662.3 2263.6 1556.8 1562.2 0.16% 9.30%
.u-i_hihi 630009.9 524174.1 472071.9 402182.1 405768.5 0.46% 11.76%
.u_ihilo 6333.5 5381.1 4964.7 4224.8 42522 0.23% 7.61%
.u_i_lohi 21320.7 18772.1 15873.5 13847.8 13905.8 0.36% 10.01%
.u_i_lolo 210.7 183.9 152.4 1374 138.9 0.26% 7.64%

.u_s_hihi  4065974.5 2843118.3 3551046.8 2508467.3 2524194.9 0.30% 14.47%
.u_s_hilo 41297.3 27793.4 36605.5 252441 25346.6 0.43% 11.56%
.u_s_lohi 131824.3 91523.0 116056.8 81118.5 81559.4 0.45% 13.08%
.u_s_lolo 1358.2 921.8 1183.5 825.7 830.9 0.45% 10.61%
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Table 6.16: pCHC results for new HCSP instances with dimension 4096 x 128.

pCHC
best avg. o impr.

Instance MCT Min-Min Sufferage

.u_c-hihi 22273440.0 14798376.0 20198762.0 14070023.0 14105642.9 0.15% 7.37%
.u_c_hilo 2279612.5 1500181.5 2055377.3 1426068.0 1429947.9 0.09% 6.65%

.u_c_lohi 2214.7 1456.5 2032.7 1384.8 1386.8 0.12% 6.56%
.u_c_lolo 229.4 148.9 207.3 140.9 141.2 0.17% 7.35%
.uihihi 1075384.9 878829.5 788940.8 702540.6 715247.8 0.22% 22.12%
.u-i_hilo 102423.2 85076.7 77317.0 70199.3 70648.3 0.61% 13.49%
.u_i_lohi 102.2 96.1 82.6 71.0 73.5 0.32% 14.80%
.u_i_lolo 11.6 8.8 8.0 7.1 7.3 0.17% 10.48%

.u_s_hihi 11963559.0 8151522.0 10828664.0 7428847.5 7450818.7 0.32% 13.24%
.u_s_hilo  1141591.6 787507.6 1047018.1 711087.9 714308.1 0.17% 11.40%
.u_s_lohi 1165.5 796.9 1066.1 722.2 723.6 0.17% 10.31%
.u_s_lolo 120.3 81.2 107.9 73.8 74.1 0.08% 13.15%

.u_c_hihi  6880980.5 4460896.5 6251939.0 4254320.5 4261656.4 0.11% 4.93%
.u_c_hilo 67167.0 43670.3 60967.2 41535.6 41614.2 0.10% 6.80%
.u_c_lohi 225926.1 148102.7 203203.7 140752.1 140957.9 0.08% 7.22%

.u_c_lolo 2214.8 1468.6 2000.6 1393.4 1396.6 0.12% 5.86%
.u-i_hihi 313647.3 286800.2 248651.3 211439.3 216258.1 0.24% 12.43%
.u-i_hilo 3029.4 2960.2 2496.7 2099.7 21475 0.22% 12.61%
.u-i_lohi 10259.6 9496.4 7887.3 7017.2 7134.3 0.19% 16.00%
.u-i_lolo 114.2 90.0 78.8 71.0 72.5 0.29% 12.36%

.u-s_hihi  3461801.3 2411292.0 3137134.0 2155649.3 2167769.3 0.24% 11.62%
.u_s_hilo 34836.5 23979.2 31826.8 21799.3 21873.5 0.22% 11.97%
.u_s_lohi 117009.3 79291.5 106247.6 72303.5 724314 0.18% 11.35%
.u_s_lolo 1167.2 807.2 1063.7 726.2 728.0 0.22% 12.85%
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Table 6.17: pCHC results for new HCSP instances with dimension 8192 x256.
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The analysis of Tables 6.14 to 6.17 shows that pCHC achieved significant makespan
improvements —ranging from 4.92% to 22.12%- over the best list scheduling heuristics re-
sults. pCHC takes advantage of the multiple search and the increased diversity provided
by the subpopulation model to achieve high quality results. The standard deviation of
the makespan values were very small (below 1.0%), demonstrating a high robustness
behavior when solving the HCSP. Regarding inconsistent and semiconsistent instances,
pCHC obtained a roughly 10% makespan improvement factor over the best traditional
heuristic, even for the larger instances. The classic methods provide accurate schedules
for inconsistent low-dimension HCSP instances, so the pCHC improvements were slightly
below 10% for those scenarios. However, pCHC notably improves over the traditional
methods for large inconsistent HCSP instances, achieving makespan reductions above
10% for all problem instances, and a maximum of 22.12% for A.u_i_hihi with dimen-
sion 2048x64. The opposite situation happens for consistent instances, where pCHC
improvements diminished from nearly 10% to 5% as the instances dimension grows.

Table 6.18 and Figure 6.6 summarize the averaged pCHC improvements over the best
traditional heuristic for each type of HCSP instance and dimension studied. Consistent
instances are the most difficult to solve with pCHC, while accurate results were obtained
for inconsistent and semiconsistent HCSP instances. The improvement values tend to
slightly decrease as the instances grow, but they always remain above 5% for consistent,
above 8% for inconsistent, and above 10% for semiconsistent instances.

model type dimension
512x16 1024x32 2048x64 4096x128 &8192x256
consistent 11.34% 9.05% 6.98% 5.93% 5.04% T7.67%
Ali et al. inconsistent 9.85% 8.19% 15.22% 13.86% 11.46% 11.72%
semiconsistent 14.31%  12.28%  12.03% 11.14% 9.28% 11.81%
consistent 8.51% 8.24% 6.21% 6.11% 4.90% 6.79%
Braun et al.  inconsistent 7.53% 9.26% 13.35% 13.08% 12.93% 11.23%
semiconsistent 11.32%  12.43% 11.95% 10.68% 9.64% 11.20%
avg. 10.48% 9.91% 10.96% 10.13% 8.88%

avg.

Table 6.18: pCHC improvements over traditional heuristics.
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Figure 6.6: pCHC improvement over traditional heuristics.
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The previous results show that the parallel version of the CHC algorithm is an
accurate scheduler for the new large-dimension HCSP instances introduced in this work.

6.5.2 Parallel micro-CHC

Tables 6.19 to 6.22 present the results obtained when using pu-CHC for solving the large
HSCP instances with dimension 1024 x32, 2048 x64, 4096x 128, and 8192x 256, respec-
tively. The tables report the best, average, and the standard deviation on the makespan
values obtained in 50 independent executions of pu-CHC for each problem instance
studied. The results obtained with the MCT, Min-Min and Sufferage list scheduling
heuristics, and the improvement factor (impr., in percentage) over the best determinis-
tic heuristic results are also reported.

pu-CHC

best avg. o impr.

.u_c_hihi 32832740.0 22508064.0 26063096.0 19676858.0 19717711.4 0.11% 12.58%
.u-c.hilo  3245777.0 2255966.3 2694595.0 1969980.0 1975398.9 0.11% 12.68%
.u_c_lohi 3058.7 2155.0 2537.5 1887.3 1892.6 0.14% 12.42%
.u_c_lolo 323.9 225.9 261.0 201.2 201.5 0.08% 10.93%
.u_i-hihi  7567147.0 6367767.5 5601367.0 5126273.0 5147216.4 0.07% 8.48%
.u_ihilo 713132.4 641438.4 533545.2 485189.8 4878794 0.19% 9.06%
.u_i_lohi 754.1 664.7 551.7 513.8 516.8 0.24% 6.87%
.u-i_lolo 73.4 63.7 55.4 50.2 50.4 0.20% 9.39%
.u_s_hihi 19008366.0 14125880.0 14481880.0 11837170.0 11870719.2 0.15% 16.20%
.u-s_hilo  1825499.9  1319050.5 1379341.3 1148940.7 1155387.1 0.25% 12.90%
.u_s_lohi 1822.0 1380.5 1417.8 1152.5 1155.3 0.20% 16.52%
.u_s_lolo 194.2 138.7 141.0 118.9 119.4 0.18% 14.28%
.u_c_hihi  9478168.0 6708228.0 7874972.0 6049220.5 6052322.9 0.05% 9.82%
.u_c_hilo 97584.4 66684.5 77250.5 59679.5 59730.6 0.06% 10.50%
.u_c_lohi 333497.6 232011.8 272422.6 210005.1 210370.4 0.10% 9.49%
.u_c_lolo 3402.3 2386.3 2826.9 2100.0 2103.3 0.10% 12.00%
.u-ihihi  2511410.8  2164576.5 1847652.5 1616697.4 1621628.0 0.11% 12.50%
.u_ihilo 22624.3 17083.1 16366.2 14993.2 15047.8 0.26%  8.39%
.u_i_lohi 74041.1 56601.2 55083.2 49060.5 493519 0.31% 10.93%
.u-i_lolo 743.8 585.0 537.1 487.5 491.8 0.38% 9.23%
.u_s_hihi  5458156.0 3967265.5 3969449.5  3255266.8  3272088.3 0.22% 17.95%
.u_s_hilo 55659.5 40691.6 41551.2 34675.2 34747.2 0.19% 14.79%
.u_s_lohi 176744.7 135624.6 132510.3 110749.7 111068.5 0.20% 16.42%
.u_s_lolo 1888.6 1333.2 1403.3 1153.1 1158.0 0.24% 13.51%

Instance MCT Min-Min Sufferage

00 omoowwWwoWwWwmowowowesrEEEes>>B>>>>>>

Table 6.19: pu-CHC results for new HCSP instances with dimension 1024 x32.

The analysis of Tables 6.19 to 6.22 shows that pu-CHC is able to obtain signi-
ficant better makespan results than the three deterministic list scheduling heuristics
studied for all problem instances, while it specifically achieved large improvements for
high-dimension HCSP instances. The makespan improvements (averaged per problem
consistency and dimension) ranged from 7.5% (consistent, 8192x256) to 16% (semi-
consistent, 2048x64). In addition, pu-CHC maintained low values of standard deviation
in the makespan results (below 0.5%), suggesting that the robust behavior exhibited in
low-dimension HCSP instances also extends to large problem instances.
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Instance =~ MCT  Min-Min Sufferage pi-CHC :
best avg. o impr.

A.u_chihi 28519530.0 19552222.0 25579850.0 17474552.0 17495744.9 0.11% 10.63%
A.uchilo 2745652.5 1873134.3 2478699.3 1692750.0 1699639.9 0.11% 9.63%
A.u_c_lohi 2858.8 1924.7 2539.2 1731.9 1734.0 0.08% 10.02%
A.u_c_lolo 279.9 191.7 249.8 171.7 171.8 0.05% 10.43%
A.uihihi  3900502.5 3248935.5 3218272.5 2477753.9 2492860.9 0.14% 23.01%
A.uihilo 409815.0 365828.6 315267.5 272181.1 272529.4 0.17% 13.67%
A.u_i_ lohi 385.2 320.9 312.5 265.6 266.2 0.20% 15.01%
A.uilolo 41.8 32.3 29.5 26.3 26.4 0.19% 10.85%
A.u_s hihi 16498318.0 11245679.0 13890956.0 9359727.3  9379560.0 0.13% 16.77%
Aushilo 1432291.0 1042948.5 1307394.3 878838.4 880125.4 0.13% 15.74%
A.u_s_lohi 1512.6 1056.0 1354.1 911.8 913.7 0.12% 13.66%
A.u_s_lolo 163.1 114.6 142.3 95.0 95.1 0.09% 17.10%
B.u_c_.hihi  8236068.5 5564664.0 7560320.5 5085005.2 5092126.1 0.05% 8.62%
B.u.chilo 87265.9 59352.8 79079.2 53236.9 53306.3 0.06% 10.30%
B.u._c_lohi 281350.6 190842.4 253468.1 170659.4 170940.3 0.10% 10.58%
B.u.c_lolo 2882.3 1927.7 2613.8 1749.4 1754.7 0.10%  9.25%
B.u.i hihi  1204421.0 929295.8 879421.3 763701.5 766428.7 0.15% 13.16%
B.u.i hilo 11715.7 10318.4 9047.6 7859.0 79134 0.17% 13.14%
B.u.i_lohi 40528.6 34071.0 32073.6 26769.6 26973.5 0.27% 16.54%
B.u.i_lolo 413.9 355.7 299.4 261.8 263.2 0.26% 12.56%
B.u_s_hihi 4715914.0 3293157.0 4121618.8 2789531.9 2796655.7 0.18% 15.29%
B.u_s hilo 47549.7 33445.4 41777.5 28170.9 28209.7 0.11% 15.77%
B.u_s_lohi 159401.9 111237.4 142534.7 93798.0 93997.5 0.17% 15.68%
B.u.s_lolo 1615.2 1163.8 1474.0 969.7 972.9 0.17% 16.68%

Table 6.20: pu-CHC results for new HCSP instances with dimension 2048 x64.

Instance MCT Min-Min Sufferage pu-CHC -
best avg. o impr.

A.u_chihi 24968242.0 16711134.0 23173816.0 15260752.4 15277595.2 0.05% 8.68%
A.uchilo 2466416.3 1649763.5 2240514.0 1520225.1 1521480.9 0.04% 7.85%
A.u_c_lohi 2512.0 1635.3 2248.6 1493.8 1495.0 0.05% 8.65%
A.u_c_lolo 247.3 166.9 223.9 151.1 151.2 0.06% 9.47%
A.uihihi  1939731.8 1666126.5 1575787.6 1295054.0 1312530.8 0.38% 17.82%
A.u.ihilo 203714.6 177692.2 154506.9 135985.3 137480.8 0.14% 11.99%
A.u_i lohi 203.5 188.0 165.6 135.3 136.6 0.19% 18.30%
A.u.ilolo 20.8 19.4 15.2 13.6 13.8 0.28% 10.53%
A.u.s hihi 13101840.0 8949853.0 11756833.0 7831962.8 7848970.9 0.13% 12.49%
A.u_s_hilo 1369277.1 930564.0 1215532.5 799499.4 801468.6 0.12% 14.08%
A.u_s_lohi 1310.7 927.9 1181.7 778.3 778.8 0.05% 16.12%
A.u_s_lolo 133.9 94.7 122.3 81.6 81.7 0.13% 13.83%
B.u.chihi  7715335.5 5059571.5 6912596.5 4649566.5 4651738.2 0.04% 8.10%
B.u_c_hilo 73858.5 49301.2 66003.5 45142.7 45190.5 0.06% 8.43%
B.u_c_lohi 253202.0 169495.3 230424.2 154504.7 154627.4 0.04%  8.84%
B.u_c_lolo 2464.7 1662.3 2263.6 1516.2 1517.4 0.05% 8.79%
B.u_i hihi 630009.9 524174.1 472071.9 398655.1 403433.1 0.21% 15.55%
B.u.i hilo 6333.5 5381.1 4964.7 4174.5 4238.4 0.24% 15.92%
B.u_i_lohi 21320.7 18772.1 15873.5 13614.6 13876.5 0.13% 14.23%
B.u.i_lolo 210.7 183.9 152.4 136.3 137.9 0.31% 10.56%
B.u.s_hihi 4065974.5 2843118.3 3551046.8 2437604.5 2440304.5 0.05% 14.26%
B.u_s_hilo 41297.3 27793.4 36605.5 24353.7 243979 0.10% 12.38%
B.u_s_lohi 131824.3 91523.0 116056.8 78296.8 78455.5 0.10% 14.45%
B.u_s_lolo 1358.2 921.8 1183.5 800.7 801.2 0.06% 13.14%

Table 6.21: pu-CHC results for new HCSP instances with dimension 4096 x 128.
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Instance =~ MCT  Min-Min Sufferage pu-CHC :
best avg. o impr.

A.u_c_hihi 22273440.0 14798376.0 20198762.0 13708686.6 13712470.2 0.02% 7.36%
A.uchilo 2279612.5 1500181.5 2055377.3 1388689.3 1390076.8 0.04% 7.43%
A.u_c_lohi 2214.7 1456.5 2032.7 1344.2 1344.8 0.03% 7.71%
A.u_c lolo 229.4 148.9 207.3 136.6 136.7 0.03% 8.26%
A.u_ihihi 1075384.9 878829.5 788940.8 690223.8 693548.6 0.18% 12.51%
A.u_ihilo 102423.2 85076.7 77317.0 68428.1 70310.8 0.14% 11.50%
A.u_ilohi 102.2 96.1 82.6 68.9 71.4 0.46% 16.59%
A.uilolo 11.6 8.8 8.0 6.9 7.1 0.22% 13.75%
A.u_s_hihi 11963559.0 8151522.0 10828664.0 7112313.0 7119414.4 0.06% 12.75%
A.ushilo 1141591.6 787507.6  1047018.1 685350.9 686178.8 0.08% 12.97%
A.u_s_lohi 1165.5 796.9 1066.1 691.5 692.1 0.06% 13.23%
A.u_s_ lolo 120.3 81.2 107.9 70.9 71.0 0.05% 12.68%
B.u_c_hihi  6880980.5 4460896.5 6251939.0 4136265.2 4137730.4 0.02% 7.28%
B.u_c_hilo 67167.0 43670.3 60967.2 40410.0 40425.6 0.03% 7.47%
B.u_c_lohi 225926.1 148102.7 203203.7 136499.6 136582.1 0.04% 7.83%
B.u_c_lolo 2214.8 1468.6 2000.6 1357.0 1357.4 0.02% 7.60%
B.u_i_hihi 313647.3 286800.2 248651.3 205347.6 212492.0 0.29% 17.42%
B.u_.i hilo 3029.4 2960.2 2496.7 2043.0 2108.9 0.34% 18.17%
B.u_.i lohi 10259.6 9496.4 7887.3 6812.3 7058.0 0.31% 13.63%
B.u_i_lolo 114.2 90.0 78.8 69.2 71.5 0.31% 12.18%
B.u_.s_hihi  3461801.3 2411292.0 3137134.0 2087688.3 2088934.2 0.04% 13.42%
B.u_s_hilo 34836.5 23979.2 31826.8 21004.6 21045.2 0.08% 12.40%
B.u_s_lohi 117009.3 79291.5 106247.6 69347.8 69454.9 0.07% 12.54%
B.u_s_lolo 1167.2 807.2 1063.7 696.3 697.2 0.07% 13.74%

Table 6.22: pu-CHC results for new HCSP instances with dimension 8192 x 256.

Figure 6.7 summarizes the pu-CHC improvement factors with respect to the Min-
Min and Sufferage deterministic scheduling methods, regarding the problem dimension
and the consistency classification. The results show that the makespan improvement
factors are around 15% with respect to the Min-Min heuristic, and around 20% (more
than 25% for the largest instances) with respect to the Sufferage heuristic.

dimension Min-Min Sufferage

512x16 14.10% 17.47%
1024x32 15.42% 16.98%
2048 x 64 15.86% 26.67%
4096 x 128 15.95% 26.76%
8192x256 15.27% 27.35%
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Figure 6.7: pu~-CHC improvements with respect to deterministic heuristics.

Table 6.23 presents the averaged improvements when using pu-CHC with respect
to the best deterministic heuristic for each problem dimension, consistency type, and

heterogeneity model studied.
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model type dimension
512x16 1024x32 2048x64 4096x128 8192x256
consistent 13.34% 12.15% 10.18% 8.66% 7.68% 10.40%
Ali inconsistent 10.97% 8.44%  15.63% 14.64% 13.70% 12.68%
semiconsistent  16.62%  14.97%  15.81% 14.14% 12.92% 14.89%
consistent 9.19% 10.45% 9.69% 8.54% 7.54% 9.08%
Braun inconsistent 7.77% 10.27% 13.85% 14.06% 15.35% 12.26%
semiconsistent  12.28%  16.15%  15.86% 13.56% 13.03% 14.17%

avg. 11.70% 12.07% 13.50% 12.27% 11.70%

avg.

Table 6.23: pu-CHC improvements regarding the consistency classification.

Regarding the consistency classification, the pu-CHC improvements over the best
deterministic heuristic were always above 12% for semiconsistent instances, and above
7% for both consistent and inconsistent instances. The classic methods provide accurate
schedules for low-dimension inconsistent HCSP instances, so the pu-CHC improvements
are roughly around 10% for those scenarios. However, pu-CHC notably improves over
the traditional methods for larger inconsistent HCSP instances, achieving makespan
reductions above 13%, and a maximum of 23.01% for A.u_i_hihi (dimension 2048x64).
Figure 6.8 presents the graphical comparison of the average pu-CHC improvements
regarding each problem dimension, consistency type, and heterogeneity model studied.
Three threshold lines (7%, 10%, and 12 %) are depicted to represent the lower levels of
the improvement factors (averaged per problem dimension) for each consistency type.
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Figure 6.8: pu~-CHC improvements regarding the consistency classification.

pCHC and pu-CHC comparison

Table 6.24 presents a comparative analysis of the results obtained with pCHC and ppu-
CHC, oriented to study the effectiveness of the new pu-CHC method to solve large
HCSP instances. The table reports the best makespan values obtained with pCHC and
pu-CHC, and the improvement factors in the best and average makespan values obtained
when using pu-CHC over the pCHC results.
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dimension: 1024x32 dimension: 2048 x64
pCHC pu-CHC impr. pCHC pu-CHC impr.

Instance best best best avg. best best best avg.

A.u_c hihi | 20327924.0 19676858.0 3.20% 3.86% | 18110479.1 17474552.0 3.51% 3.97%
A.uchilo| 2048582.7 1969980.0 3.84% 4.03% | 1748509.2 1692750.0 3.19% 3.44%
A.u_c_lohi 1956.7 1887.3 3.55% 5.37% 1798.4 1731.9 3.70% 3.93%
A.uclolo 207.5 201.2 3.04% 17.48% 177.6 171.7 3.32% 3.56%
A.uihihi| 5169960.5 5126273.0 0.85% 1.85% | 2506258.5 2477753.9 1.14% 2.10%
A.u_ihilo 490280.3 485189.8 1.04% 0.98% 272741.3 272181.1 0.21% 0.49%
A.u_i lohi 518.2 513.8 0.85% 1.29% 266.3 265.6 0.26% 0.47%
A.uilolo 50.6 50.2 0.79% 2.51% 26.4 26.3 0.38% 0.35%
A.u s hihi | 12243560.0 11837170.0 3.32% 4.58% | 9756499.7 9359727.3 4.07% 4.50%
Aushilo| 1187506.4 1148940.7 3.25% 4.85% 924094.9 878838.4 4.90% 6.17%
A.u_s lohi 1186.8 1152.5 2.89% 3.66% 947.1 911.8 3.73% 4.05%
A.u_s_lolo 122.4 1189 2.86% 5.61% 99.6 95.0 4.62% 5.26%
B.u_c hihi | 6169823.0 6049220.5 1.95% 2.38% | 5290128.2 5085005.2 3.88% 3.93%
B.uchilo 61114.7 59679.5 2.35% 2.70% 55316.2 53236.9 3.76% 3.68%
B.u_c_lohi 215149.2 210005.1 2.39% 3.56% 177063.4 170659.4 3.62% 3.76%
B.u_c_lolo 2164.3 2100.0 2.97% 4.76% 1814.7 1749.4 3.60% 3.50%
B.u-i-hihi | 1630288.6 1616697.4 0.83% 2.90% 770110.6 763701.5 0.83% 1.11%
B.u.i hilo 15121.5 14993.2 0.85% 2.69% 7906.5 7859.0 0.60% 0.25%
B.u_i_lohi 49569.9 49060.5 1.03% 1.55% 26941.2 26769.6 0.64% 0.86%
B.u_-i_lolo 496.1 487.5 1.73% 3.07% 262.4 261.8 0.23% 0.55%
B.u_s_hihi | 3393010.2 3255266.8 4.06% 4.61% | 2910507.6 2789531.9 4.16% 4.35%
B.u_s hilo 35988.4 34675.2 3.65% 4.84% 29442.2 28170.9 4.32% 4.43%
B.u_s_lohi 115179.2 110749.7 3.85% 5.93% 98607.0 93798.0 4.88% 4.82%
B.us_lolo 1191.7 1153.1 3.24% 5.88% 1014.3 969.7 4.40% 4.59%

dimension: 4096x128 dimension: 8192x256
pCHC pu~-CHC impr. pCHC pu-CHC impr.

Instance best best best avg. best best best avg.

A.u_chihi | 15722681.0 15260752.4 2.94% 3.07% | 14070023.0 13708686.6 2.57% 2.79%
A.uchilo| 1562810.9 1520225.1 2.72% 2.82% | 1426068.0 1388689.3 2.62% 2.79%
A.u_c_lohi 1540.9 1493.8 3.06% 3.24% 1384.8 1344.2 2.93% 3.03%
A.u_c_lolo 155.7 151.1 2.95% 3.18% 140.9 136.6 3.05% 3.17%
A.uihihi| 1309493.5 1295054.0 1.10% 1.43% 702540.6 690223.8 1.75% 3.03%
A.uihilo 137158.4 135985.3 0.86% 1.27% 70199.3 68428.1 2.52% 0.48%
A.u_i lohi 136.1 135.3 0.59% 0.78% 71.0 68.9 2.96% 2.80%
A.u_ilolo 13.7 13.6 0.73% 5.90% 7.1 6.9 2.82% 2.99%
A.u_s hihi | 8089853.5 7831962.8 3.19% 3.36% | 7428847.5 7112313.0 4.26% 4.45%
A.u_shilo 828912.4 799499.4 3.55% 4.00% 711087.9 685350.9 3.62% 3.94%
A.u_s_lohi 807.6 778.3 3.63% 4.07% 722.2 691.5 4.25% 4.36%
A.u_s lolo 84.2 81.6 3.09% 3.32% 73.8 70.9 3.93% 4.13%
B.u_c hihi | 4767774.5 4649566.5 2.48% 2.87% | 4254320.5 4136265.2 2.77% 2.91%
B.uc hilo 46350.1 45142.7 2.60% 2.75% 41535.6 40410.0 2.71% 2.86%
B.u_c_lohi 158780.8 154504.7 2.69% 2.94% 140752.1 136499.6 3.02% 3.10%
B.u_c_lolo 1556.8 1516.2 2.61% 2.87% 1393.4 1357.0 2.61% 2.81%
B.u_i hihi 402182.1 398655.1 0.88% 0.58% 211439.3 205347.6 2.88% 1.74%
B.u_ihilo 4224.8 4174.5 1.19% 0.32% 2099.7 2043.0 2.70% 1.80%
B.u_i_lohi 13847.8 13614.6 1.68% 0.21% 7017.2 6812.3 2.92% 1.07%
B.u_i_lolo 137.4 136.3 0.80% 0.74% 71.0 69.2 2.54% 1.32%
B.us_hihi | 2508467.3 2437604.5 2.82% 3.32% | 2155649.3 2087688.3 3.15% 3.64%
B.u_s hilo 25244.1 24353.7 3.53% 3.74% 21799.3 21004.6 3.65% 3.79%
B.u_s_lohi 81118.5 78296.8 3.48% 3.81% 72303.5 69347.8 4.09% 4.11%
B.u_s_lolo 825.7 800.7 3.03% 3.58% 726.2 696.3 4.12% 4.23%

Table 6.24: pCHC and pu-CHC comparative results for new HCSP instances.
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The analysis of Table 6.24 shows that pu-CHC consistently improves over the pre-
vious best-known results for the new test suite of HCSP instances, obtained with pCHC.
The makespan improvements ranged from 0.21% to 4.90%, and they tend to increase
as the problem instances grow: the average improvement factor increases from 1.61%
for the smaller instances to 3.09% for HCSP instances with dimension 8192x256.

The previous results demonstrate the usefulness of the improved local search provided
by the randomized PALS operator (the main algorithmic difference between pu-CHC
and pCHC). The specific local search procedure designed to introduce diversity in the
population allows improving over the results of pCHC in more than a 3% improvement
factor in the makespan values.

Table 6.25 summarizes the improvements obtained by pu-CHC with respect to
pCHC, averaged per problem dimension, and Figure 6.9 presents a graphical comparison
of the overall makespan improvements.

dimension best average
512x16 1.61% 2.10%
1024x32  2.43% 3.79%
2048x64  2.83% 3.09%
4096x128  2.34% 2.68%
8192x256  3.11% 2.97%

Table 6.25: pu-CHC improvements with respect to pCHC.
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Figure 6.9: pu-CHC improvements with respect to pCHC.

Regarding the consistency classification, pu-CHC obtained slight improvements with
respect to pCHC for inconsistent instances (around 1%), but the improvements were
more significant in consistent (over 3%) and semi-consistent (over 4%) scenarios. The
previously commented results demonstrate that pu-CHC overcomes the problem of
pCHC, which was unable to efficiently deal with large structured scenarios modeled
by consistent HCSP instances.

As well as for the set of low-dimension problem instances by Braun et al. (2001), the
previously presented results show that the parallel micro-CHC algorithm is the currently
state-of-the-art scheduler for the large dimension HCSP instances studied.
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6.6 Comparison with lower bounds for the preemptive HCSP

Due to the high computational complexity of the problem, the non-preemptive HSCP
cannot be solved in reasonable execution times using exact methods. However, a lower
bound for the makespan value can be computed by solving the linear relaxation for
the preemptive case of the problem. Under the preemption hypothesis, the scheduler
can temporarily interrupt a task and continue its execution at a later time, without
additional costs for the context switch procedure. In this (unrealistic) situation, an
optimal HCSP solution has all machines with the same value of local makespan, which
corresponds to the optimal makespan of the schedule.

The HCSP linear relaxation was solved using GLPSOL, the free linear programming
solver included in GLPK, the GNU Linear Programming Kit (Makhorin, 2006), for the
small problem instances studied (dimension 512x12 and 1024x32). The high execution
times required by GLPSOL make impractical to compute the lower bounds for larger
problem instances, so a commercial version of CPLEX (ILOG, 2006) was used for large
HCSP instances (dimension 2048x64, 4096x 128, and 8192x256).

GLPSOL and CPLEX use the revised simplex method and the primal-dual interior point
method (Darst, 1991) for solving non-integer optimization problems such as the preemp-
tive version of the HCSP. GLPSOL requires a problem model specification prepared in
the language GMPL (GNU MathProg Language), which is a subset of (and so, shares the
syntax with) the well-known high-level programming language for mathematical opti-
mization AMPL (Fourer et al., 2002). GLPSOL also requires a problem scenario specification
written in AMPL, following a predefined format.

Algorithm 9 presents the linear programming (LP) model for the preemptive version
of HCSP written in GMPL/AMPL.

Algorithm 9 LP model for the preemptive version of HCSP in GMPL/AMPL.
// Variable definitions
set ST;
set SM;
param ETC{t in ST, m in SM};
var z;
var x{t in ST, m in SM} >= 0;
// Objective function
6: minimize makespan : zZ;
// Constraints
7: s.t. assign{t in ST}: sum{m in SM} x[t,m] == 1;
8 s.t. defmakespan{m in SM}: =z >= sum{t in ST} x[t,m] * ETC[t,m];

9: end;

guls o

The GMPL/AMPL model for the preemptive version of HCSP considers two sets: the
set of tasks (ST) and the set of machines (SM). The parameters of the model are the ETC
values (a matrix with N x M elements), the variable z (vector) —which represents the
local makespan for each machine—, and the decision variables x (matrix) used to indicate
the task-to-machine assignments. The objective function to minimize is the makespan
of the schedule, defined as the maximum value of z for all machines in SM. The integrity
constraint in line 7 assures that each task in ST is executed once.
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Figure 6.10 presents an example of scenario specification for the HCSP, where the
data section defines the problem data (tasks and machines) and the param section defines
the scenario parameters (in this case, the ETC for each task on each machine, written
in consecutive lines). The problem model and the scenario specification written in AMPL
are also supported by CPLEX.

data;

set T:= 012 [...] 512;
set M:= 012 [...] 16;
param ETC:=

0 0 132189.530000
0 2 179199.270000

Figure 6.10: HCSP scenario specification in GMPL/AMPL.

The computed lower bounds are useful to determine the accuracy of the results
achieved using the EAs proposed in this work for solving the HCSP. By computing the
relative gap values between the EA’s result and the lower bound (LB) for each pro-
blem instance (GAP(LB), defined by Equation 6.1), the distance between the EA result
and the optimum makespan value (GAP(optimum)) can be estimated. The distance
is bounded by the computed GAP(LB), since the optimum makespan value lays be-
tween the computed lower bound and the result obtained by the EA (see a graphical
representation in Figure 6.11).

result — LB
AP(LB) = -~ =2 1
GAP(LB) I (6.1)
1 EA’s result
GAP (optimum) GAP (LB)

1 optimum

1 lower bound

GAP (optimum) < GAP (LB)

Figure 6.11: Relationship between GAP (optimum) and GAP(LB).
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6.6.1 Small HCSP instances

Table 6.26 shows a comparison between the best and average makespan results achieved
by pu-CHC (the best algorithm among the studied methods) and the lower bounds (LB)
computed for the preemptive case computed for the small-sized (dimension 512x16)
HCSP instances faced in this work (generated using the ETC parametrization from Ali
et al., and proposed by Braun et al.). The table also reports the relative gap values
(GAP(LB)) for the best and average results achieved for each problem instance with
respect to the correspondent lower bound.

random instances generated with the ETC parametrization from Ali et al. (2000)

pu~-CHC GAP avg. pu~-CHC GAP avg.
Instance LB (best) (LB) GAP(LB) (avg.) (LB) GAP(LB)
A.u chihi 21625636.6 21723328.0 0.45% 21790559.1 0.76%
A.uchilo 2375833.1 2390466.5 0.62% 2394957.0 0.80%
A.u_c_lohi 2247.8 2261.7 0.62% 0.56% 2265.6 0.79% 0.78%
A.u_c_lolo 229.4 230.7 0.55% 231.2 0.78%
A.uihihi  8997802.5 9091042.0 1.04% 9118626.4 1.34%
A.u_ihilo 877013.6 886644.2 1.10% 890981.1 1.59%
A.u_ilohi 954.7 964.4 1.01% 1.09% 969.2 1.51% 1.52%
A.uilolo 99.1 100.4 1.23% 100.8 1.64%
A.u_shihi 16115868.3 16260961.5 0.90% 16321566.5 1.28%
A.ushilo 1509214.7 1523632.3 0.96% 1528680.6 1.29%
A.u_s_lohi 1455.3 1470.0 1.01% 0.86% 1475.7 1.40% 1.33%
A.u_s_lolo 155.1 156.6 0.98% 157.2 1.34%
de-facto standard benchmark instances from Braun et al. (2001)
puw~-CHC GAP avg. pu~-CHC GAP avg.

Instance LB (best) (LB) GAP(LB) (ave.) (LB) GAP(LB)
u_chihi.0 7346524.2 7381570.0 0.48% 7394702.7 0.66%
u_c_hilo.O 152700.4 153105.4 0.27% 153193.7 0.32%
welohi.0 2381381  230260.0 0.47%  O3%% 9397062 o0.66% 0007
u-c_lolo.0 5132.8 5147.9 0.29% 5152.3 0.38%
u-ihihi.0  2909326.6 2938380.8 1.00% 2947896.4 1.33%
u-ihilo.O 73057.9 73387.0 0.45% 73531.4 0.65%
u-i_lohi.O 101063.4 102050.6 0.98% 0.78% 102402.8 1.33% 1.00%
u_.i_lolo.0 2529.0 2541.4 0.49% 2547.1 0.72%
us_hihi.0 4063563.7 4103500.3 0.98% 4123537.3 1.48%
u_s_hilo.O 95419.0 95787.4 0.39% 96020.5 0.63%
u-s_lohi.O 120452.3 122083.3 1.35% 0.82% 122744.4 1.90% 1.17%
u-s_lolo.0 3414.8 3433.5 0.55% 3438.3 0.69%

Table 6.26: pu-CHC comparison with lower bounds (dimension 512x16).

The makespan values reported in Table 6.26 show that pu-CHC was able to achieve
accurate results when compared with the (in the general case, unattainable) lower
bounds for the preemptive case. The gaps were below 2% for all instances, and be-
low 1% for half of the instances studied, assuring that there is a small distance between
the obtained results and the optimal makespan value for each problem instance.

The comparison against the results obtained with the best deterministic heuristic
and the computed lower bounds for the preemptive case demonstrate that pu-CHC
was able to achieve more than 90% of the ideal improvement for the studied HCSP
scenarios. Figure 6.12 summarizes the results for the problem instances by Braun et al.
(2001), showing the improvements obtained by pu-CHC with respect to both the Min-
Min results and the ideal improvements considering the computed lower bounds for the
preemptive case.
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Figure 6.12: pu-CHC improvements with respect to the best deterministic heuristic
results and the computed lower bounds for HCSP instances by Braun et al. (2001).

6.6.2 New large HCSP instances

Table 6.27 presents the comparison between the average and best makespan results
obtained using pu-CHC and the lower bounds (LB) computed for the preemptive case
computed for large-dimension HCSP instances. The table also reports the relative gap
values for the best and average results achieved for each problem instance with respect
to the correspondent lower bound (GAP(LB)).

The makespan values reported in Table 6.27 show that pu-CHC was able to achieve
accurate results when compared with the (in the general case, unattainable) lower
bounds for the preemptive case. The gaps were below 9% for all instances and di-
mensions, and below 5% for 80 out of 96 instances studied, assuring that there is a
small distance between the obtained results and the optimal makespan value for each
problem instance.

6.6.3 Summary

Table 6.28 summarizes the comparison between the results achieved by pu-CHC and the
lower bounds computed for the preemptive case for each problem dimension studied. It
reports the relative gap value of the best and average results achieved for each pro-
blem dimension with respect to the correspondent lower bound. The table also reports
the improvements over the best deterministic heuristic and the percentage of the ideal
improvement achieved by pu-CHC, considering the computed lower bounds.

The values reported in Table 6.28 show that pu-CHC is able to obtain accurate
results when compared with the lower bounds for the preemptive case. For the 512x16
HCSP instances the gaps were below 1.5%, and below 1% for 11 out of 12 instances.
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dimension: 1024 x32 dimension: 2048 x64
Instance LB pu-CHC GAP(LB) LB pu-CHC GAP(LB)
best avg. best  avg. best avg. best  avg.

u_c_hihi [19449230.0 19676858.0 19717711.4 1.17% 1.38%|17141977.4 17474552.0 17495744.9 1.94% 2.06%
u_c_hilo| 1951345.1 1969980.0 1975398.9 0.95% 1.23%| 1664592.8 1692750.0 1699639.9 1.69% 2.11%
u_c_lohi 1866.4 1887.3 1892.6 1.12% 1.40% 1695.3 1731.9 1734.0 2.16% 2.28%
.u_c_lolo 198.9 201.2 201.5 1.16% 1.31% 168.3 171.7 171.8 2.00% 2.06%
.u-ihihi| 5012207.0 5126273.0 5147216.4 2.28% 2.69%| 2366682.1 2477753.9 2492860.9 4.69% 5.33%
u-ihilo| 474404.6 485189.8 487879.4 2.27% 2.84%| 260904.5 272181.1 272529.4 4.32% 4.46%
u_i_lohi 503.4 513.8 516.8 2.08% 2.67% 255.2 265.6 266.2 4.09% 4.33%
u_i_lolo 49.0 50.2 50.4 2.47% 2.88% 25.1 26.3 26.4 4.58% 4.98%
u-s_hihi [11553632.0 11837170.0 11870719.2 2.45% 2.74%| 9050260.8 9359727.3 9379560.0 3.42% 3.64%
us_hilo| 1126556.2 1148940.7 1155387.1 1.99% 2.56%| 851399.9 878838.4 880125.4 3.22% 3.37%
u_s_lohi 1122.2 1152.5 1155.3 2.70% 2.95% 888.9 911.8 913.7 2.57% 2.79%
u_s_lolo 116.7 118.9 119.4 1.90% 2.33% 92.3 95.0 95.1 2.95% 3.06%
u-c_hihi| 5980871.9 6049220.5 6052322.9 1.14% 1.19%| 4975778.8 5085005.2 5092126.1 2.20% 2.34%
u_c_hilo 58942.5 59679.5 59730.6 1.25% 1.34% 52240.6 53236.9 53306.3 1.91% 2.04%
.uc_lohi| 207892.8 210005.1 210370.4 1.02% 1.19%| 167381.1 170659.4 170940.3 1.96% 2.13%
.u-c_lolo 2078.0 2100.0 2103.3 1.06% 1.22% 1715.0 1749.4 1754.7 2.00% 2.31%
.u-ihihi| 1567178.7 1616697.4 1621628.0 3.16% 3.47%| 735101.5 763701.5 766428.7 3.89% 4.26%
.u-i_hilo 14582.3 14993.2 15047.8 2.82% 3.19% 7536.3 7859.0 7913.4 4.28% 5.00%
.u-i-lohi 47606.9 49060.5 49351.9 3.05% 3.67% 25681.2 26769.6 26973.5 4.24% 5.03%
.uilolo 477.4 487.5 491.8 2.11% 3.01% 250.5 261.8 263.2 4.53% 5.09%
.u_s_hihi| 3178482.2 3255266.8 3272088.3 2.42% 2.94%| 2710023.7 2789531.9 2796655.7 2.93% 3.20%
.u_s_hilo 33948.7 34675.2 34747.2 2.14% 2.35% 27268.0 28170.9 28209.7 3.31% 3.45%
.u_s_lohi| 108330.1 110749.7 111068.5 2.23% 2.53% 90727.3 93798.0 93997.5 3.38% 3.60%
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.u_s_lolo 1128.1 1153.1 1158.0 2.21% 2.65% 939.0 969.7 972.9 3.27% 3.61%
dimension: 4096 x128 dimension: 8192x256
Instance LB pu-CHC GAP(LB) LB pu-CHC GAP(LB)
best avg. best avg. best avg. best  avg.

u-c_hihi [14829360.6 15260752.4 15277595.2 2.91% 3.02%|13338612.5 13708686.6 13712470.2 2.77% 2.80%
uchilo| 1478358.1 1520225.1 1521480.9 2.83% 2.92%| 1352062.2 1388689.3 1390076.8 2.71% 2.81%
u_c_lohi 1452.5 1493.8 1495.0 2.84% 2.92% 1307.6 1344.2 1344.8 2.80% 2.84%
u_c_lolo 147.4 151.1 151.2 2.52% 2.58% 132.6 136.6 136.7 3.02% 3.10%
uihihi| 1231099.0 1295054.0 1312530.8 5.19% 6.61%| 634712.8 690223.8 693548.6 8.75% 9.27%
uihilo| 128539.5 135985.3 137480.8 5.79% 6.96% 63530.6 68428.1 70310.8 7.71% 10.67%
u_i_lohi 127.6 135.3 136.6 6.02% 7.04% 63.7 68.9 71.4 8.17% 12.10%
.uilolo 12.9 13.6 13.8 5.51% 7.06% 6.4 6.9 7.1 7.86% 10.99%
.u_s_hihi| 7553763.4 7831962.8 7848970.9 3.68% 3.91%| 6812019.5 7112313.0 7119414.4 4.41% 4.51%
u-s_hilo| 768703.1 799499.4 801468.6 4.01% 4.26%| 657203.0 685350.9 686178.8 4.28% 4.41%
u_s_lohi 748.5 778.3 778.8 3.99% 4.05% 661.9 691.5 692.1 4.47% 4.56%
u_s_lolo 78.4 81.6 81.7 4.14% 4.26% 67.9 70.9 71.0 4.36% 4.51%
.u_c_hihi| 4514305.9 4649566.5 4651738.2 3.00% 3.04%| 4013215.4 4136265.2 4137730.4 3.07% 3.10%
.u-c_hilo 44027.0 45142.7 45190.5 2.53% 2.64% 39256.7 40410.0 40425.6 2.94% 2.98%
.u_c_lohi| 150530.0 154504.7 154627.4 2.64% 2.72%| 132570.1 136499.6 136582.1 2.96% 3.03%
.u_c_lolo 1474.0 1516.2 1517.4 2.86% 2.94% 1319.5 1357.0 1357.4 2.84% 2.87%
.u-ichihi| 374988.9  398655.1  403433.1 6.31% 7.59%| 190045.7 205347.6  212492.0 8.05% 11.81%
.u-i_hilo 3942.5 4174.5 4238.4 5.89% 7.51% 1894.2 2043.0 2108.9 7.85% 11.33%
.u-i_lohi 12825.3 13614.6 13876.5 6.15% 8.20% 6311.4 6812.3 7058.0 7.94% 11.83%
.u-i-lolo 128.8 136.3 137.9 5.79% 7.03% 64.1 69.2 71.5 7.92% 11.50%
.u_s_hihi| 2353555.3 2437604.5 2440304.5 3.57% 3.69%| 2003494.4 2087688.3 2088934.2 4.20% 4.26%
.u_s_hilo 23417.3 24353.7 24397.9 4.00% 4.19% 20179.1 21004.6 21045.2 4.09% 4.29%
.u_s_lohi 75488.9 78296.8 78455.5 3.72% 3.93% 66458.3 69347.8 69454.9 4.35% 4.51%
.u_s_lolo 771.8 800.7 801.2 3.75% 3.81% 668.4 696.3 697.2 4.17% 4.31%
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Table 6.27: Comparison between pu-CHC results and lower bounds calculated for the
preemptive HCSP (large instances).

The gaps increase as the problem dimension grows, but even for the largest problem
dimension tackled, the values are below 6.20% (average) and 5.07% (best). These
results suggest that there is a small difference between the obtained results and the
optimal makespan value for each problem instance, since the optimal makespan value
lays between the computed LB and the pu-CHC result.
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dimension avig;.AP (L]?)Zes : imp. % ideal imp.
512x16 1.05% 0.75% 14.10% 94.93%
1024 x 32 2.32% 1.96% 15.42% 88.70%
2048 x 64 3.44% 3.15% 15.86% 82.18%
4096 x 128 4.70% 4.15% 15.95% 77.23%
8192x256 6.18% 5.07% 15.27% 71.18%

Table 6.28: Summary: gaps between pu-CHC results and lower bounds for the preemp-
tive HCSP version.

Figure 6.13 presents a graphical summary of the improvements obtained by pu-
CHC over the best deterministic heuristic result and the comparison with the ideal
improvement given by the computed lower bounds for each problem dimension.
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Figure 6.13: pu-CHC improvements with respect to the best deterministic heuristic
result and the computed lower bounds for the preemptive HCSP version.

6.7 Tracking the makespan evolution and the execution
time

This subsection analyzes one important aspect of EAs: the objective function/fitness
value evolution over the generations, and the trade-off between the solution quality
obtained using the parallel EAs and the required execution time. When dealing with
scheduling problems, the analysis of the variation of the makespan results with respect
to the wall-clock time is crucial to determine the effectiveness of the scheduler to provide
accurate plannings in reduced execution times.



86 Experimental analysis

6.7.1 Comparative makespan evolution of CHC algorithms

Figures 6.14 and 6.15 present the evolution of the best makespan values observed for the
sequential and parallel CHC algorithms during representative executions over the HCSP
instances u_i_hihi.0 and u_s_lohi.O (the makespan value of the Min-Min and Sufferage
solutions are included as a reference baseline). The slope of the curves show that the
parallel models allows computing accurate schedules faster than the sequential CHC,
which follows a more lethargic makespan evolution pattern. The same lethargic behavior
was verified for the serial and parallel GA, thus they are omitted in the graphical analysis.
These results confirms the ability of parallel EAs to obtain more accurate solutions than
the sequential methods and also to reduce the required computing times.

In addition, the graphics show that pu-CHC is able to find well-suited individuals
in a short time, improving over traditional heuristics in a few seconds. The parallel
CHC also has a good makespan evolution behavior, but it works a little bit slower when
compared with pu-CHC.
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Figure 6.14: Makespan evolution for CHC algorithms on u_i_hihi.O.
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Figure 6.15: Makespan evolution for CHC algorithms on u_s_1ohi.O0.
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Table 6.29 reports the variation of the average makespan values obtained in 20
executions of pCHC and pu-CHC when using 10, 30, and 60 s. of execution time for three
representative small scenarios with high task heterogeneity. The average improvements
over the Min-Min results are also presented.

. . pCHC pu-CHC
Instance | Min-Min 5= 30 s. 60 s. 10 s. 30 s. 60 s.
u_c_lohi.O| 275837.3| 285717.4 254394.6 245213.7| 248712.8 243103.7 241182.4
u_i_hihi.0| 3513919.3|3306819.0 3042056.3 2990121.83051183.7 2980721.6 2952919.0
u_s_lohi.O| 140284.5| 144902.7 130109.2 126219.3| 132014.3 127012.2 124291.6
improvement

10 s. 30 s. 60 s. 10 s. 30 s. 60 s.
u_c_lohi.O -3.6% T7T% 11.10% 9.83% 11.87% 12.56%
u_i hihi.o 59%  13.43% 14.91%| 13.17% 1517% 15.97%
u_s_lohi.O -3.3% 7.25% 10.03% 5.90% 9.46% 11.40%

Table 6.29: Trade-off between solution quality and execution time (pCHC and pu-CHC).

Table 6.29 shows that despite starting from worse solutions than the one computed
by Min-Min, both pCHC and pu-CHC are able to find well-suited schedules in a short
time. Concerning pCHC, 10 s. are enough to achieve 6% of makespan improvement
for inconsistent instances, while for consistent and semiconsistent instances, 30 s. are
required to obtain more than 7% of improvement. When using 60 seconds of execution
time, pCHC obtains an improvement of over 10% for all scenarios (and almost 15%
for inconsistent instances). The pu-CHC algorithm achieved significant makespan im-
provements (6% to 13%) over Min-Min using only 10 s. of wall-clock time, while larger
improvements (11% to 16%) are obtained when using 60 s. of execution time. These
results can be further enhanced by seeding the EA’s populations with the full solution
computed by the Min-Min or Sufferage deterministic heuristic.

The previous results demonstrate that both parallel models of the CHC algorithm
proposed in this work are able to improve the deterministic heuristics results in a short
execution time, a crucial result when scheduling in HC and grid computing systems.

6.7.2 Makespan evolution and execution time of pu-CHC

This subsection extends the analysis of the makespan evolution for pu-CHC, the best
method among the studied EAs, considering the large-dimension HCSP instances de-
signed in this work. Figure 6.16 presents the evolution of the averaged makespan im-
provement ratio achieved by pu-CHC with respect to the best deterministic heuristic (i.e.
the ratio between the pu-CHC and the best deterministic heuristic makespan values),
as a function of the execution time for each problem dimension studied.

The graph in Figure 6.16 shows that pu-CHC was able to achieve accurate results in
low execution times for all HCSP instances studied. Less than fifteen seconds are needed
to achieve significant improvements with respect to the best deterministic heuristic in
low-dimension problem instances (512x16 and 1024x32). The makespan reduction fol-
lows a slower behavior for the largest problem instances faced, but 30 s. are enough
to achieve an improvement large than 5% in the makespan values, except for problems
with dimension 8192x256 (where around a minute is needed to achieve 7% of makespan
reduction).
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Figure 6.16: Evolution of the makespan improvement ratio for pu-CHC.

From an execution time-oriented point of view, Figure 6.17 presents the time required
to achieve a given improvement threshold in the makespan value with respect to the best
deterministic heuristic result.
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Figure 6.17: Execution times required to achieve a given improvement threshold.

The graphic in Figure 6.17 shows that pu-CHC needs in average from 8 s. (for
HCSP instances with dimension 512x16) to 45 s. (for HCSP instances with dimension
8192x256) of execution time to improve over the 5% threshold value. In addition,
15 s. (for HCSP instances with dimension 512x16) to 80 s. (for HCSP instances with
dimension 8192x256) of execution time are required to achieve an improvement of 10%
over the best deterministic result.

The previously commented results demonstrate the capacity of pu-CHC to act as
an efficient and accurate scheduler for HC and grid environments, able to improve over
deterministic results in short execution times.
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6.8 Scalability analysis and parallel performance

This section presents additional experiments performed to analyze the scalability and
parallel performance of the proposed parallel CHC algorithms. The parameter setting
experiments showed that the best makespan results for low-dimension HCSP instances
were obtained using eight demes in pCHC and 16 demes in pu-CHC. However, the
parallel models could be able to achieve improved results by splitting the population in
a different number of demes when facing the large HCSP instances.

The scalability analysis was aimed at studying the efficacy of pCHC and pu-CHC
as the HCSP instances dimension grows, and the parallel performance analysis was
devoted to evaluate the results of pCHC and pu-CHC when using different number of
subpopulations to solve large-dimension problem instances. Instead of working with
a fixed number of demes, the parallel CHC algorithms were executed using 2 to 16
subpopulations until reaching the time stopping criterion of 90 s. Mean values of the
normalized makespan improvements (i.e. the quotient between the makespan achieved
using p subpopulations and the makespan obtained with a single panmictic population)
were evaluated for each problem instance, dimension, and consistency category. The
results are presented and discussed in the next subsections.

6.8.1 Parallel CHC

Figure 6.18 presents the results in the scalability analysis that studied the behavior of
pCHC when solving HCSP instances of increasing size. Mean values of the average nor-
malized makespan achieved by pCHC using eight subpopulations in 30 independent exe-
cutions of pu-CHC are reported for consistent, inconsistent and semiconsistent instances
for each problem dimension studied. The plot shows that the normalized makespan val-
ues diminish when solving large-dimension problem instances, specially for inconsistent
and semiconsistent instances. Reductions of up to 10% in the mean makespan values
were obtained when solving the largest problem instances (8192x256, semiconsistent
instances), while the baseline results were around 3-5% for the smaller problem instan-
ces (512x16). These results demonstrate that the parallel model allows pCHC to have
a good scalability behavior, able to achieve improved makespan reductions with respect
to a panmictic model as the search space dimension grows.

097
—B— semiconsistent
0.96 4 .
- —e— consistent
c *
o 0.95 4 —x—inconsistent
%
g 0.94 4
k=]
N 0934
o
E o092
[=]
=
0.91 4
0.9
512»16 1024%32 2045%64 4096126 6192»256
dimension

Figure 6.18: Scalability analysis for pCHC.
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Figure 6.19 presents a three-dimensional graphical analysis of the parallel perfor-
mance and scalability analysis of pCHC. By splitting the population, pCHC has a
more focused exploration pattern than the panmictic search. However, the normalized
makespan values show that splitting the population in more than eight demes causes
the pCHC results to deteriorate, mainly due to the lose of diversity in each deme. A
sample cut of the three-dimensional graphics for a representative dimension (2048x64,
including error marks) is presented in Figure 6.19(d), showing the reduction of the nor-
malized makespan values up to 8 subpopulations, and the slight worse results achieved
when using additional subpopulations. Similar results were obtained when solving other
HSCP instances. This behavior suggested that there was still work to be done to en-
hance the pCHC method in order to achieve a fully scalable scheduler, able to improve
over its own results by using additional available computational resources. This idea led
to the design of the pu-CHC algorithm in a subsequent step of the project.
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6.8.2 Parallel micro CHC

Figure 6.20 reports the results in the scalability analysis that studied the behavior of
pu-CHC when solving HCSP instances of increasing size. Mean values of the average
normalized makespan improvements achieved in 30 independent executions of pu-CHC
using 16 subpopulations are reported for consistent, inconsistent and semiconsistent
instances for each problem dimension studied. The graphic shows that the normalized
makespan values diminishes when solving large-dimension problem instances. Reduc-
tions of up to 10% in the mean makespan values were achieved when solving the largest
problem instances (8192x256, semiconsistent instances), while the baseline results were
around 5% for the smaller problem instances (512x16).
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Figure 6.20: Scalability analysis for pu-CHC.

Figure 6.21 presents a 3D graphical analysis of the parallel performance and sca-
lability analysis of pu-CHC. The plots in Figure 6.21 show that pu-CHC has a more
focused exploration pattern than the panmictic search when using additional subpopu-
lations. A sample cut of the 3D graphics for instances with a representative dimension
(2048x64) and problem type (semiconsistent) is presented in Figure 6.21(d), showing
the reduction of the normalized makespan values (including error marks). Similar results
were achieved when solving other HSCP instances. The parallel performance of pCHC,
already presented in the previous subsection, is included in Figure 6.21(d) in order to
perform a comparison with the pu-CHC behavior. The pu-CHC algorithm always ob-
tained the best results when using the maximum number of demes (16), demonstrating
that by using the diversity provided by the randomized PALS operator, pu-CHC over-
comes the main problem of pCHC that suffered a degradation of the makespan results
when more than eight subpopulations are used.
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Figure 6.21: Scalability and parallel performance analysis for pu-CHC.

The previous results demonstrate the ability of pu-CHC of taking advantage of both
the multiple evolutionary search and the randomized PALS operator in an efficient
manner when using additional computational resources. The new pu-CHC is a fully
scalable scheduler, able to improve over its own results when using additional available
computational resources.

6.9 Summary

This chapter presented an exhaustive experimental analysis on applying the proposed
parallel EAs to solve a de-facto benchmark and new large-dimension instances of the
HCSP. The analysis of the numerical results and the comparison with other techniques
and lower bound allowed to conclude that the new pu-CHC is the current state-of-art
algorithm for scheduling in HCSP instances that follow the ETC performance estimation
model by Ali et al. (2000). The pu-CHC method improved over the previous best-
known results for all the problem instances by Braun et al. (2001) and significantly
improved over the results obtained with deterministic heuristics for the large-sized HCSP
instances. The study of the scalability and parallel performance showed that pu-CHC is
able to obtain accurate schedules for all the studied HCSP instances in short execution
times, while it is able to improve over its own makespan results when using additional
computational resources, often available in HC and grid computing systems.



Chapter 7

Two HCSP variants: rescheduling
and multiobjective approach

7.1 Introduction

This chapter presents the advances on using the new pu-CHC algorithm and other
parallel EAs to solve two HCSP variants: the scheduling problem that optimizes the
makespan in a dynamic scenario where tasks arrive at certain intervals of time, and
a multiobjective HCSP version that proposes the simultaneous optimization of the
makespan and flowtime metrics. These two lines of research are proposed as future
work to further investigate the applicability of parallel EAs for solving HCSP variants
—more complex than the traditional one—, but some initial approaches have already been
developed to tackle both problem versions. The main results of the preliminary analysis
on both lines of research are presented in this chapter.

7.2 Dynamic HCSP: rescheduling with pu-CHC

This section presents the application of the new pu-CHC algorithm to the HCSP in
dynamic scenarios following the rescheduling strategy, which performs several executions
of the scheduling algorithm at certain intervals of time. The problem model and the
main features of the rescheduling algorithms are described in the next subsections. After
that, the following subsection presents the experimental analysis performed on three
representative large-sized dynamic HCSP scenarios. Finally, brief conclusions about
this preliminary analysis are formulated.

7.2.1 Dynamic HCSP model

The HCSP version faced in this section considers several bunches of tasks submitted
to execution in a HC system. This is the typical scenario for scheduling in dynamic
computing environments, where not all tasks are available a priori, but they arrive
during the execution of previously submitted tasks.

93
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In the problem model considered in this section, each bunch of tasks periodically
arrives at certain intervals of time. Tasks are supposed to be submitted at the HC system
according to a stochastic homogeneous Poisson process with rate A (in the proposed
scenarios A = 4 X (NT'/3) x makespan, where NT is the number of tasks in each bunch
and makespan is the computed makespan value for the previous bunch).

FEach time that a new bunch of tasks arrives for execution, a rescheduling process is
activated. The rescheduling strategy consists in finding a new schedule for executing the
incoming tasks and also those tasks already submitted that have not been executed yet.
Figure 7.1 graphically describes the process: in time Tk a reschedule is performed, and
the new optimization problem considers the new tasks arrived plus all the tasks that have
not started their execution at the time T'r, regarding the previously computed schedule.
In the new scheduling problem, the calculation of the makespan metric must consider
the remaining time of those tasks already in execution at time Tg in each machine.
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Figure 7.1: Rescheduling in a dynamic scenario.

By using this rescheduling strategy, the scheduler is able to handle dynamic envi-
ronments in which tasks are supposed to arrive during the execution. Instead of solving
several independent off-line scheduling problems for each bunch of tasks, performing a
rescheduling at time T allows to take advantage of possible assignments of the remai-
ning tasks to machines in order to improve the makespan metric of the whole schedule.

The rescheduling approach has been seldom studied in the related literature. One
of the few antecedents in this line of research is the work by Theys et al. (2001), who
proposed a methodology to perform online task rescheduling (in real time) using the off-
line static mapping computed by a GA as a reference baseline. However, the approach
by Theys et al. (2001) was not generic but corresponded to a problem-specific domain
for a particular case of hardware platform.
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7.2.2 Rescheduling algorithms

A specific pu-CHC implementation was designed in order to deal with dynamic scenarios
following the rescheduling strategy. The modifications performed over the traditional
implementation of pu-CHC —described in Chapter 5 included:

e a routine for reading ETC scenarios which is different to the one used for the
traditional HCSP, since in the dynamic version the ETC matrix must consider the
new tasks arrived in each bunch and those unexecuted tasks from the previous
bunches;

e a modified fitness function that takes into account the local makespan values for
each machine, considering the remaining time of those tasks already in execution
at time T in each machine;

e a new function for storing the solutions —schedules— that must be read in the next
rescheduling step in order to determine those tasks already executed, those tasks
currently in execution at time 7'r, and those tasks that have not been executed
yet. All this information is required in order to perform the rescheduling using the
new pu-CHC method.

Two variants of the rescheduling pu-CHC were studied: the first variant uses the
seeded initialization described in Chapter 5 for the traditional HCSP, while the second
variant employs an initialization operator that reuses the information already present in
a previously computed schedule (i.e., the unexecuted tasks from the previous bunches
are initially placed in those machines in which there were assigned in the best schedule
computed in the last rescheduling step).

A modified version of the Min-Min deterministic heuristic was also implemented in
order to evaluate the results obtained using the rescheduling pu-CHC method. This Min-
Min variant implements the rescheduling strategy in the same way that it was already
described in the previous paragraphs for the pu-CHC algorithm, by including the three
features (reading routine, modified fitness function, and solution storing) needed to deal
with dynamic scenarios.

In addition, a simple HC/grid simulator was designed and implemented. This soft-
ware performs all the operations needed for simulating the scheduling and rescheduling in
a dynamic HC/grid scenario, including the simulation of the tasks arrivals, the creation
of ETC files for each bunch of tasks —using the generator program already introduced in
Chapter 3—, the invocation of the scheduling/rescheduling method, and performing all
the intermediate operations to communicate results from a previously computed sche-
dule each time that a rescheduling is applied. The HC/grid simulator program follows
the logic presented in the pseudocode in Algorithm 10. The Mersenne Twister pseudo-
random number generator (Matsumoto and Nishimura, 1998) was used to implement the
Poisson process for the arriving of tasks and the calculation of random times to perform
the rescheduling. Mersenne Twister is a popular tool in the Monte Carlo simulation
field, since it supplies high quality pseudorandom number sequences while also provides
an efficient and portable implementation.
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Algorithm 10 Pseudo-code of the HC/grid simulator program.

1: Configure simulator
2: Initialize pseudorandom number generator
3: Generate ETC matrices for all the bunches of tasks
4: for i = 1 to NUM_RESCHEDULING do
{Rescheduling cycle}
Configure execution
if i > 1 then
NT <— NT + NT_replan
Add ETC of replanned tasks
end if
{Create child process to perform the schedule}
10:  if fork() == 0 then

11: execlp(scheduler)
{scheduler: pu-CHC or Min-Min}
12:  end if
{Wait for child process to execute}
13: wait
14:  Process the computed schedule (read makespan, tasks, etc.)

15:  NT_replan « 0
{Compute new rescheduling time (TR)}
16: TR « TR = 0.5x makespan X (1+genrand64 reall());

17: for each machine M do

18: for each unexecuted task in time TR do
{Add task to the list of replanned tasks}

19: NT_replan <— NT_replan + 1

20: end for

21: end for

22: end for

The HC/grid simulator described by the pseudocode in Algorithm 10 performs a
rescheduling cycle (from 1 to NUM_RESCHEDULING scheduling steps). Except for the first
bunch of tasks (when no previous tasks exist), the number of tasks to schedule in the
current iteration is the sum of the NT arriving tasks plus the NT_replan replanned tasks in
the previous iteration. In each rescheduling step, the HC/grid simulator configures and
creates a child process to execute the scheduling algorithm (either pu-CHC or Min-Min,
in their correspondent variants adapted to apply the rescheduling strategy). The next
rescheduling time TR is randomly chosen in the interval [makespan/2,makespan|, where
makespan is the value of the makespan metric computed by the execution of the corre-
spondent scheduling method for the previous bunch of tasks. After that, the previous
best schedule is analyzed, and for each machine, each unexecuted task is included in the
list of replanned tasks, in order to be considered in the next rescheduling iteration.

7.2.3 Experimental analysis

This subsection presents the experimental evaluation of the pu-CHC method for solving
the dynamic version of the HCSP using the rescheduling strategy. Three representa-
tive dynamic scenarios with large dimension are studied, and the Min-Min results are
included as a reference baseline for the comparison.
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HCSP instances

The experimental evaluation was performed using a set of three HCSP instances: a
medium-size instance with 25 machines and 10000 tasks (arriving in 10 bunches of 1000
tasks), and two large HCSP instances: one with 50 machines and 25000 tasks (arriving
in 25 bunches of 1000 tasks), and the other with 100 machines and 50000 tasks (arriving
in 50 bunches of 1000 tasks). All the problem instances were generated using the HCSP
generator program introduced in Chapter 3, following the parametrization model from
Braun et al. (2001) for high task and machine heterogeneity, since this model represents
the most generic scenario for scheduling in HC systems. The HCSP instances are labeled
with a name that indicates the number of tasks and machines involved in the scenario (i.e.
the medium-size HCSP instance named 10000_25 represents a HC scheduling scenario
with 10000 tasks and 25 machines).

Development and execution platform

The standard pu-CHC implementation already developed in MALLBA was used as a
skeleton to implement the modifications needed to perform the rescheduling strategy.
The HC/grid simulator was implemented in C++, including the mt19937-64.c C/C++
implementation of the Mersenne Twister pseudorandom number generator, a variant
that uses a 64-bit word length for defining the period of the pseudorandom sequence.
The code of mt19937-64.c is publicly available at the Hiroshima University website
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/VERSIONS/C-LANG/mt19937-64.c
(Nishimura, 2000).

The experimental analysis was performed using the cluster of four Dell PowerEdge
servers in our workgroup, whose details were already described in Chapter 6 (cluster
website: http://www.fing.edu.uy/cluster).

Experimental results

Table 7.1 presents the best and average makespan results obtained in 10 independent
executions of the HC/grid simulator using the pu-CHC and Min-Min algorithms follo-
wing the rescheduling strategy for each studied scenario. The results obtained using
the traditional pu-CHC and Min-Min (without rescheduling) are also presented as a
reference baseline for the comparison. In both the rescheduling and traditional variants,
pu-CHC was executed using a stopping criterion of 60 s. for scheduling/rescheduling
each bunch of tasks.

pu-CHC pu-CHC Min-Min Min-Min

Instance (rescheduling) (traditional)
best avg. best avg.
1000025 22785530.0 22894922.5 23138767.9 23172507.6 28275400.0  28902847.5
2500050 15747029.1 16030865.0 16119560.1 16223856.7 21154820.2  22416536.4
50000100 9619025.0 10088298.9 10450847.0 10676603.5 12519651.4  15651766.5

(rescheduling) (traditional)

Table 7.1: Makespan results of pu-CHC and Min-Min for the dynamic HCSP.
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The results reported in Table 7.1 correspond to the rescheduling pu-CHC algorithm
using the seeded initialization described in Chapter 5 for the single-objective HCSP. No
significant improvements were detected in the makespan results obtained by the other
studied variant of pu-CHC —using the initialization operator that reuses the information
already present in a previously computed schedule—, so it was omitted in the comparative
analysis of makespan results.

The analysis of Table 7.1 show that the pu-CHC algorithm using the reschedul-
ing strategy significantly improves over the makespan results computed with the other
scheduling methods studied (traditional Min-Min, Min-Min with rescheduling and tradi-
tional pu-CHC). The largest makespan improvements were obtained for those scenarios
involving the highest number of tasks. Table 7.2 summarizes the makespan improve-
ments when using the rescheduling strategy in pu-CHC with respect to the other sche-
duling methods.

Min-Min Min-Min pu~-CHC

Instance (traditional) (rescheduling) (traditional)
oo zs D 2L
2500050 Zvezt 32135; iigggi ??1);2
50000100 zvezt gggggz fgggj g,gfé

Table 7.2: Improvements of pu~-CHC using the rescheduling strategy over the traditional
pu-CHC and the two Min-Min variants.

The analysis of Table 7.2 shows that the makespan improvements obtained with the
rescheduling pu-CHC over the traditional pu-CHC and the two Min-Min variants signi-
ficantly increase when a large number of tasks are submitted to execution. Up to 7.96%
of improvement in the makespan values over the traditional pu-CHC was achieved for
the 50000.100 HCSP instance (5.51% in average). The improvements over the Min-Min
schedulers were above 19% for the three dynamic problem instances studied. The pre-
vious results suggest that pu-CHC is able to efficiently handle dynamic HC scenarios by
using the rescheduling strategy.

7.2.4 Concluding remarks

The preliminary study presented in this section analyzed the ability of the pu-CHC
algorithm using a rescheduling strategy to deal with dynamic HCSP scenarios. The
reported results show that significant makespan improvements can be obtained when
using the rescheduling pu-CHC method, specially in those HCSP scenarios where a large
number of tasks are submitted to execution. Further work and experimental analysis
are needed in order to clearly determine the benefits of the rescheduling strategy and
comparing the rescheduling pu-CHC algorithm with other dynamic and on-line methods
for scheduling.
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7.3 Multiobjective HCSP: makespan and flowtime

This section presents the application of the new pu-CHC algorithm and other para-
llel EAs to the multiobjective HCSP variant aimed at simultaneously optimizing the
makespan and flowtime metrics. Next sections provide a brief introduction to multiob-
jective optimization problems, just before presenting the multiobjective HCSP formu-
lation. After that, generic concepts about multiobjective evolutionary algorithms are
introduced, and the specific parallel MOEAS for the HCSP are described. The following
subsection presents the details of the experimental analysis, mainly focused in study-
ing several metrics of solutions quality and diversity. Finally, brief conclusions of the
preliminary research are provided and the main lines for future work are commented.

7.3.1 Introduction

Most traditional optimization problems tackled in the past considered only one objective
function. Taking into account the multiobjective nature of most real world problems, in
the last fifteen years more attention has been focused on multiobjective problems, which
propose the optimization of a wvector function representing several objectives, usually
in conflict with each other. In this context, optimizing means finding solutions that
represent all combinations of the objective function values that are acceptable for the
problem. There is not a unique “optimum” solution as in single-objective optimization,
and the decision about determining the “best” results corresponds to the —often human,
rarely automatized— decision making procedure, applied after the search. From a global
point of view, there exists a set of “optimal” solutions (called Pareto optimal solutions),
which represent different trade-offs among the objective values (Coello et al., 2002).

EAs have been successfully applied to solve problems requiring the simultaneous
optimization of many objectives. By taking advantage of working with a set of possible
solutions in each generation, multiobjective evolutionary algorithms (MOEAs) perform
a robust search, frequently finding several members of the Pareto optimal set in a single
execution, and being able to explore intractably large spaces of complex problems (Deb,
2001; Coello et al., 2002).

7.3.2 Multiobjective optimization problems

This subsection presents a brief introduction to multiobjective optimization problems
and related concepts.

A multiobjective optimization problem (MOP) proposes the optimization (minimiza-
tion or maximization) of a group of functions, usually in conflict with each other. The
existence of several objective functions implies a fundamental difference with a single-
optimization problem: there is not a unique solution for the optimization problem, but
a set of solutions that represent several trade-offs among the values of the functions to
optimize. The general formulation of a MOP is presented in the following lines:

minimize/maximize  F(x) = (f1(x), fa(x),..., fr(x))

subject to  G(x) =
(
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The solution of the MOP is a vector of decision variables x = (x1,x2,...,2y5) €
which satisfies the constraints formulated by the functions G(x) and H(x), offering
adequate compromise values for the functions fi(x), fa(x),..., fr(x). Let’s suppose a
minimization MOP for introducing the following definitions. A solution x* is Pareto
optimal if for all x, f;(x) > f;(x*) and for some i, f;(x) > fi(x*). This condition means
that there not exists a feasible solution that is “better” than x* in any objective function
without being “worse” in other functions.

Associated with the precedent definition, a partial order relation named dominance
is introduced among solutions of the MOP. A vector w = (w1, ws,...,wy) is said to
dominate the other solution v = (v1,vs,...,vy) (it is denoted w < v), if fi(x) > fi(w)
and it exists at least one objective function f; such as fj(x) > f;(w).

Since different values of the decision variables represent diverse compromise among
the solutions, the resolution of a MOP does not focus on finding a unique solution, but
a set of non-dominated solutions. The set of optimal solutions for a MOP is composed
by the non-dominated feasible vectors, named Pareto optimal set. It is defined by
P* = {x € Q/x € Q,F(x') < F(x)}. The region of points defined by the optimal
Pareto set in the objective function space is known as Pareto front, formally defined by
PF* ={u= (fi(x), f2(x),...., fr(x)),x € P}.

7.3.3 Multiobjective HCSP formulation

The multiobjective formulation of the HCSP faced in this work considers the minimiza-
tion of the makespan and the flowtime metrics. The makespan was already defined in
Chapter 3, while the flowtime evaluates the sum of the finishing times of tasks executed
in a HC system. The flowtime is an important metric from the user point-of-view, since
it reflects the response (in time) of the computational system for a set of tasks submitted
to execution by the users.

Based on problem model introduced in Chapter 3, the following formulation de-
fines the multiobjective version of the HCSP aimed at simultaneously minimizing the
makespan and flowtime:

e Given an HC system composed of a set of computational resources (machines) P =
{m1,ma,...,mp} (dimension M), and a collection of tasks T" = {t1,to,...,tN}
(dimension N) to be executed on the HC system;

e let there be an ezecution time function ET : P x T — R*, where ET(t;,m;) is
the time required to execute the task ¢; in the machine m;

e let F'(¢;) be the finishing time of task ¢; in the HC system,;

e the goal of the multiobjective HCSP is to find a set of assignment of tasks to
machines which simultaneously minimizes the makespan —defined in Equation 7.1-
and the flowtime —defined in Equation 7.2—.

ET(t;,m; 7.1
%g@ tize;: (ti,m;) (7.1)
F(ty)=m;

> F) (72)

t; €T
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Computing the makespan metric does not need sorting the set of tasks to be executed
in every machine, but the flowtime calculation assumes an explicit order: the assigned
tasks are supposed to be executed in ascending order of their ETC value, since this
order minimizes the finishing times of the tasks. While makespan and flowtime are
somehow related metrics, they are also conflicting objectives to minimize, specially for
near-optimal schedules (Xhafa et al., 2008b).

The presented multiobjective HCSP version has been previously solved with evolu-
tionary techniques in the works by Xhafa et al. (2008a) using a cellular MA, and by
Xhafa (2007) using a hybrid method combining MA and TS. However, both works used
single objective methods using a linear aggregation approach to deal with an explicit
multiobjective problem. There have not been precedents in the related literature about
solving the makespan-flowtime HCSP variant using explicit multiobjective algorithms,
thus the proposed MOEAs are a direct contribution in this line of research.

7.3.4 Multiobjective evolutionary algorithms

Back in 1967, Rosenberg hinted at the capability of evolutionary computation tech-
niques for solving multiobjective optimization problems. However, the first algorithmic
proposal for a MOEA was not presented until a pioneering work by Schaffer in 1984.
Since 1990, multiple MOEAs have been proposed by a growing research community that
works actively in the present days. In those works, EAs have been successfully extended
to deal with multiobjective problems, showing promising results in multiple application
areas (Deb, 2001; Coello et al., 2002).

Unlike many traditional methods for multiobjective optimization, EAs are able to
find a set of multiobjective solutions in a single execution, since they work with a
population of tentative solutions in each generation. MOEASs have to be designed having
in mind two goals at the same time: to approximate the Pareto front and to maintain
the diversity among solutions, obtaining a good sampling of the whole Pareto front
instead of converging to a single solution or a reduced section. A modified version of the
evolutionary search leads to the first goal, while the second one is accomplished by using
specific techniques also employed in multimodal function optimization (niches, sharing,
crowding, etc.).

The multiobjective HCSP version faced in this section was solved using four di-
fferent parallel MOEAs: two implementations of a distributed subpopulations parallel
version of NSGA-II, a master-slave parallel version of SPEA-2 and the new pu-CHC
algorithm proposed in this thesis. The approach that proposes using explicit multi-
objective algorithms —instead of applying single-objective EAs adapted to work with a
linear aggregation fitness function— to solve the makespan-flowtime optimization version
of the HCSP is a novel contribution of this work. The details of the proposed MOEAs
are briefly presented in the following subsections.

NSGA-II multiobjective evolutionary algorithm

Non-dominated Sorting Genetic Algorithm, version II (NSGA-II) (Deb et al., 2000)
surged as an improved version of its predecessor NSGA (Srinivas and Deb, 1994). NSGA-
IT inherited the main structure of NSGA, but it incorporated distinctive features to deal
with tree algorithmic issues strongly criticized on the previous version: the inefficient
non-dominated ordering, the lack of elitism, and the ogy parameter dependence.
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The main features of NSGA-II include:

e the non-dominated elitist ordering using an auxiliary subpopulation, diminishing
the dominance checking complexity from O(M.P3) to O(M.P?), being M the
number of objective functions and P the population size;

e the mechanism for diversity preservation eliminates the ogy dependence by using
a crowding technique that does not demand to specify additional parameters.

e the fitness assignment procedure, still based on non-dominance ranks but incor-
porating the crowding distance values which are used to evaluate the diversity of
the solutions.

The multiobjective HCSP was solved using two parallel versions of NSGA-II fo-
llowing the distributed subpopulations model for EAs (Alba et al., 2002): pNSGA-II,
a parallel NSGA-II implementation designed by the author (Nesmachnow, 2004), and
MOE-NSGA-II an implementation included in the MOE framework (Rodriguez and
Nesmachnow, 2009). Both parallel implementations use MPI for the interprocess com-
munication and synchronization. pNSGA-II uses an explicit send/receive schema for
communication, while MOE-NSGA-II employs a more sophisticated protocol similar to
the one implemented in the Netstream class in the MALLBA library.

The pNSGA-IT algorithm was previously applied with success to solve twelve well-
known standard multiobjective test problems, showing super-linear speedup behavior
and also finding accurate solutions for a hard multiobjective network design problem
(Nesmachnow, 2005). The parallel NSGA-IT implementation in the MOE framework was
also tested for a set of standard multiobjective problems, obtaining accurate numerical
and efficiency results (Rodriguez and Nesmachnow, 2009).

SPEA-2 multiobjective evolutionary algorithm

Strength Pareto Evolutionary Algorithm, version 2 (SPEA-2) was introduced by Zitzler
et al. (2001) to eliminate the potential weaknesses of the original SPEA algorithm (Zit-
zler and Thiele, 1999) in order to design a powerful and up-to-date MOEA. The main
differences of SPEA-2 in comparison to SPEA are:

e SPEA-2 includes an improved fitness assignment scheme, taking for each individual
into account how many individuals it dominates and it is dominated by;

e a nearest neighbor density estimation technique was incorporated in SPEA-2
which allows a more precise guidance of the search process;

e SPEA-2 uses an improved archive truncation method that guarantees the preser-
vation of boundary solutions in the elite population.

The SPEA-2 algorithm used in this work is implemented in jMetal (Durillo et al.,
2006), a software framework aimed at making easy to develop metaheuristic algorithms
for solving MOPs. jMetal does not provide support for the execution of parallel MOEAs.
The parallel version of SPEA-2 (pSPEA-2) was implemented using the sparrow library
(Durillo et al., 2008), which allows defining and executing concurrent tasks. A master-
slave PEA model was used in the parallel version of SPEA-2 —mainly due to the simplicity
of the model- using the three components available in sparrow: worker, driver, and
workerServer. The pSPEA-2 algorithm follows the traditional master-slave approach
that distributes the fitness function evaluation, already described in Chapter 2.
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pu-CHC

The pu-CHC algorithm was not initially conceived to solve multiobjective optimization
problems. The random PALS operator was used in pu-CHC to implicitly improve the
population diversity, without using an explicit method for sampling Pareto-optimal so-
lutions. In addition, pu-CHC does not use a Pareto-based schema for assigning fitness
to solutions, then the algorithm does not guarantee —a-priori— a good sampling of the
Pareto front for multiobjective optimization problems.

In order to study the applicability of pu-CHC to solve the multiobjective HCSP
version aimed at minimizing makespan and flowtime, the research reported in this sec-
tion uses a linear aggregation function for fitness assignment, following the approaches
previously used by Xhafa et al. (2007b, 2008a,b).

Many shortfalls and drawbacks have been identified for the linear combination tech-
nique for fitness assignment in multiobjective optimization (Das and Dennis, 1997; Fon-
seca and Fleming, 1997). However, the linear aggregation is still a popular approach due
to its simplicity, which often allows finding accurate compromise solutions for problems
with convex Pareto fronts.

In the pu-CHC algorithm, the makespan and flowtime objective functions are com-
bined using the weights already employed in previous works by Xhafa et al. (2007b,
2008a,b). The aggregation fitness function is given by the expression in Equation 7.3.

0.75 x makespan + 0.25 x flowtime (7.3)

This decision allows performing a fair comparison of the pu-CHC results with those
obtained by Xhafa et al. (2007b, 2008a,b) for the set of HCSP instances by Braun et al.
(2001).

7.3.5 MOEAs for the HCSP

The implemented MOEAs for the HCSP follow the generic proposal used in the single
objective GA and CHC presented in Chapter 5. The machine-oriented encoding was
employed in all MOEAs, since it provides a simple and efficient way to compute the
makespan and flowtime metrics. pNSGA-II, MOE-NSGA-II, and pSPEA-2 use the
uniform crossover and the mutation/local search already employed in the single objective
pCHC implementation. pNSGA-II and pSPEA-2 follow a traditional evolution model,
applying the mutation operator with probability pas. The accelerated evolution model
proposed for the pu-CHC algorithm was adopted in MOE-NSGA-II, which applies the
mutation/local search operator after five generations pass, disregarding convergence
issues.

No special parameter setting experiments were performed to determine the best
values for population size, and crossover and mutation/local search probabilities (pc
and pyy, respectively). Instead, probability values derived from the parameter settings
experiments for the single-objective EAs were employed (population size = 120 indivi-
duals, pc = 0.7, ppsr = 0.1). The migration in the distributed subpopulations parallel
MOEAs also used the parametrization from the single objective pu-CHC algorithm:
the migration operator exchanges the best two individuals between subpopulations (eli-
tist selection), considering the demes connected in a unidirectional ring topology. The
migration frequency was set at 500 generations, trying to achieve a balance between
providing diversity and reducing the time spent in communications.
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Regarding the number of subpopulations, pNSGA-II and MOE-NSGA-II worked
using eight demes (this value was derived from preliminary experiments on configuring
the parallel MOEAs), and pu-CHC used 16 subpopulations. A unique panmictic popula-
tion was used in pSPEA-2, since this algorithm adopted the master-slave parallelization
approach.

7.3.6 Experimental analysis

This subsection presents the experimental evaluation of the proposed parallel MOEAs
for solving the multiobjective version of the HCSP.

HCSP instances

The experimental evaluation was performed using the set of small-sized de-facto standard
benchmark HCSP instances from Braun et al. (2001). Some preliminary experiments
have been performed using the set of large-sized HCSP instances with pNSGA-II and
pu-CHC, but the results are still not formalized, thus they are not presented in this
thesis.

Development and execution platform

The pNSGA-IT algorithm was implemented in C, using the publicly available code from
the Kanpur Genetic Algorithms Laboratory (website http://www.iitk.ac.in/kangal)
(Nesmachnow, 2004). MOE-NSGA-II was implemented in C++, using and extending
some classes from the MALLBA library (Rodriguez and Nesmachnow, 2009). pu-CHC
was also implemented in C++, using the MALLBA library. All the previously mentioned
parallel MOEAs use MPICH for performing the interprocess communication. pSPEA-2
is implemented in Java, using the jMetal framework and the sparrow library for the
definition and the execution of concurrent tasks, and also for performing the interprocess
communication.

The experimental analysis was performed using the cluster of four Dell PowerEdge
servers in our workgroup, whose details were already described in Chapter 6 (cluster
website: http://www.fing.edu.uy/cluster).

Performance metrics

Many metrics have been proposed in the related literature in order to evaluate the
results obtained by MOEAs (Coello et al., 2002). Several relevant metrics have been
considered in this work to evaluate the proposed parallel MOEAs, regarding the purposes
of converging to the Pareto front and sampling the set of non-dominated solutions:

e The number of (different) non-dominated solutions found (denoted by ND).
e The number of optimal Pareto solutions found (#P).

e Generational Distance (GD): the average distance among the non-dominated so-
lutions found and the true Pareto front, as defined in Equation 7.4.

ND

1 QO
GD =+ (Z (dF?) ) (7.4)

i=1
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e Spacing: a metric that evaluates the distribution of non-dominated solutions in
the calculated Pareto front, defined by the expression given in Equation 7.5.

ND
spacing = ﬁ Z (d— di)2 (7.5)
i=1

e Spread: a metric that evaluates the distribution of non-dominated solutions in the
calculated Pareto front. Unlike spacing, the spread metric includes the information
about the extreme points of the true Pareto front in order to compute a most
precise value of the distribution (Deb, 2001). The spread metric is defined by the
expression given in Equation 7.6.

k ND _ )
Z dp® + Z (d—di)
spread = h:lk =1 (7.6)
Z dp®+ ND x d
h=1

In Equation 7.4, dZF P stands for the distance in the objective functions space between
the i-th solution in the calculated Pareto front and the nearest point in the true Pareto
front. In Equations 7.5 and 7.6 d; denotes the distance between the i-th solution in
the calculated Pareto front and its nearest neighbor (the j-th solution), while d is the
average distance value of all d;. In Equation 7.6 d° is the distance between the extreme
point of the true Pareto front, considering the h-th objective function and the closest
point in the calculated Pareto front.

The efficacy metrics (ND, #P, and GD) evaluate the quality of the results obtained
using a MOEA, by computing measures related to the convergence towards the Pareto
front. On the other hand, the diversity metrics (spacing and spread) evaluate the distri-
bution of the computed non-dominated solutions, measuring the capability of sampling
the Pareto front of the problem.

Some of the presented metrics require to know the true Pareto front for the problem,
which is unknown for HCSP the instances studied. In order to compute those metrics,
an approximation of the true Pareto front was built gathering the non-dominated solu-
tions obtained using the four EAs in the 30 independent executions performed for each
algorithm.

Results and discussion

Table 7.3 presents the best makespan and flowtime results obtained in 30 independent
executions of the four parallel MOEAs studied for solving the HCSP instances by Braun
et al. (2001). The best makespan and flowtime results computed for each problem
instance —which correspond with the extreme values for each objective function— are
marked with bold font.
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pNSGA-II pSPEA-2 MOE-NSGA-II pu-CHC

makespan flowtime makespan flowtime  makespan flowtime makespan flowtime

u_c_hihi.02968900.0 1035113210.0 7664708.5 1035559104.0 7669870.0 1034100000.0 7595027.5 1033251173.4
u-c.hilo.0 78033.8 12430900.0 154800.4 27511050.0 154650.0 27470600.0 153997.5 27494220.4
u.c_lohi.0 253509.0 34441600.0 250619.2 34406000.0 250148.0 34319000.0 246392.7 34340362.5
u-c_lolo.0 5245.7 915685.0 5239.0 915994.4 5230.9 914269.0 5187.4 913252.5
u_i hihi.02968900.0 350100992.0 2972172.0 350388640.0 2964590.0 350056000.0 2966065.8  350190000.5
u.ihilo.0 73780.6 12430900.0 74043.5 12434667.0 73825.1  12433400.0 73674.4 12433973.2
u_ilohi.0 103286.0 12240400.0 103379.6 12228552.0 103336.0 12230400.0 102732.6 12231807.1
u.i_lolo.0 2562.5 434221.0 2567.3 434309.0 2561.5 434148.0 2564.7 434524.3
u_s_hihi.0 4303110.0 3497.5 4313499.0 505288224.0 4273710.0 504447000.0 4201963.5 505027968.6
us hilo.0 96874.4 16194100.0 97138.2 16194711.0 96855.9 16181900.0 96649.5 16187925.1
u_s_lohi.0 125140.0 14858600.0 125533.7 14863620.0 125121.0 14848700.0 124650.2 14843952.2
u_s_lolo.0 3497.5 591431.0 3497.7 591651.1 3490.2 591381.0 3482.1 591169.6

Instance

Table 7.3: Results of MOEAs for the multiobjective HCSP.

The analysis of Table 7.3 shows that MOE-NSGA-II and pu-CHC obtained the best
values of makespan and flowtime for the majority of the HCSP instances faced. pNSGA-
IT and pSPEA-2 only obtained the best flowtime solutions in one inconsistent HCSP
instance each. These results demonstrate the usefulness of the accelerated evolution
model employed in MOE-NSGA-II and pu-CHC to achieve accurate solutions in short
execution times, confirming previous results obtained for the single-objective HCSP.

pu-CHC consistently obtained the best makespan values, mainly due to the makespan-
oriented local search provided by the randomized PALS method, but its best flowtime
results were not as good as the makespan ones. MOE-NSGA-II found solutions with
accurate values for the flowtime metric and reasonable values of makespan, suggesting
that the Pareto-based fitness assignment technique is useful for obtaining solutions with
better trade-off values between the two objectives than the linear aggregation model
used in pu-CHC.

Table 7.4 presents the average number of non-dominated solutions, the average num-
ber of Pareto-optimal solutions and the average values of the generational distance met-
ric, all computed in the 30 independent executions for each parallel MOEA.

Instance pPNSGA-II pSPEA-2 MOE-NSGA-II pu-CHC
ND #P GD ND #P GD ND #P GD ND #P GD

u_c_hihi.0 39.1 0.0 1561423.0 20.0 0.0 99094.2 20.9 0.0 405480.5 6.2 6.0 0.0
u_c.hilo.0 29.0 0.0 124341 185 0.0 15961.1 21.6 11.9 3709.3 6.4 4.7 199.0
u_.c_lohi.0 17.8 0.0 18990.3 20.7 0.0 17120.8 28.2 4.0 7682.1 8.0 8.0 0.0
u.c_lolo.0 26.2 0.0 1256.9 30.1 0.0 698.8 16.7 0.0 333.5 6.7 5.8 0.0
u_i_hihi.0 38.1 2.1 3414184 29.2 2.0 98615.1 36.0 19.5 67952.4 9.7 3.3 39082.9
u_ihilo.0 27.7 10.7 4372.1 274 0.0 76941 156 0.0 4152.8 84 5.6 2039.6
uilohi.0 34.1 0.0 5993.0 35.0 14.7 22721 323 5.7 27095 9.1 82 0.0
u-ilolo.0 23.0 4.0 416.7 15.1 0.5 427 20.2 13.3 7.5 87 0.0 856.5
u_s_hihi.0 37.4 0.0 248024.0 33.30 0.0 267548.7 31.4 5.8 215693.3 12.8 9.6 30321.9
u_s_hilo.0 20.9 12.9 119.1 178 0.7 37353 28.5 109 10723 9.1 1.3  1483.5
u_s_lohi.0 39.5 10.7 5921.3 299 1.2 54371 29.1 94 39588 85 5.1 977.2
u_s_lolo.0 25.1 3.0 571.5 272 0.0 1389 31.6 3.8 199.2 7.0 6.3 0.0

Table 7.4: Efficacy metrics of MOEAs for the multiobjective HCSP.
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Table 7.5 presents the average values of the spread and spacing metrics computed in
the 30 independent executions of each parallel MOEA.

pPNSGA-II pPSPEA-2 MOE-NSGA-II pu~-CHC

Instance - - - -

spacing spread spacing spread spacing spread spacing spread
u_c hihi.O 321.9 0.89 418.5 0.84 410.2 1.12  1095.7 0.68
u_c_hilo.O 38.6 0.91 50.3 0.94 61.8 1.00 204.4 0.75
u_c_lohi.O 87.0 0.77 61.1 0.91 64.5 0.55 221.1 0.37
u_c_lolo.0 7.4 0.87 7.1 0.96 11.0 0.96 23.0 0.76
u_i-hihi.O 354.4 0.83 321.6 0.63 305.2 0.72 494.8 0.82
uihilo.O 41.9 0.88 28.1 0.99 47.1 0.89 99.9 0.62
ui_lohi.O 57.9 0.87 58.1 0.89 55.2 0.91 109.2 0.64
u-i-lolo.0 8.3 0.82 6.7 0.99 7.4 1.30 23.6 0.98
u_s_hihi.O 357.3 0.65 385.8 0.87 351.6 0.67 769.2 0.50
u_s_hilo.O 41.6 1.10 46.4 0.88 45.0 0.91 74.7 0.43
u_s_lohi.O 58.5 0.74 75.4 1.19 61.5 0.69 176.5 0.65
u_s_lolo.0 10.6 1.04 7.7 0.77 8.4 1.01 16.8 0.44

Table 7.5: Diversity metrics of MOEAs for the multiobjective HCSP.

Regarding the efficiency metrics for multiobjective optimization, the results in Table
7.4 show that all the MOEAs —except pu-CHC— were capable to find a reasonable
number of non-dominated solutions for the twelve HCSP instances tackled, when using
a population of 120 individuals. The pNSGA-II algorithm achieved a higher number of
non-dominated solutions than the other MOEAs in more than half of the HCSP instances
studied, while pSPEA-2 and MOE-NSGA-II usually obtained a slightly smaller number
of non-dominated solutions. The aggregation approach in pu-CHC frequently converged
to a specific part of the Pareto front, obtaining a reduced number of non-dominated
solutions (less than 10 non-dominated solutions for each problem instance, except for
u_s_hihi.0). In contrast, pu-CHC and MOE-NSGA-II obtained a significant largest
number of Pareto-optimal solutions than the other two algorithms. The generational
distance values confirm that pu-CHC obtained the best solutions for the multiobjective
HCSP, whose GD values have a significant difference with the other methods (in five
out of twelve studied HCSP instances, the computed Pareto front is composed entirely
by solutions found using pu-CHC).

Concerning the diversity metrics for multiobjective optimization, the results in Table
7.5 show that pNSGA-II, pSPEA-2 and MOE-NSGA-II obtained similar values of the
spacing metric. Instead, the pu-CHC algorithm performed the worst, since it found few
non-dominated solutions and was unable to correctly sample the region of the Pareto
front associated to solutions with low flowtime metric values. These results are a po-
ssible consequence of the parameters (weights) used in the linear aggregation model for
the fitness function in pu-CHC. The weighted sum clearly defines an implicit trade-off
between makespan and flowtime values and prevents pu-CHC from computing schedules
with low flowtime values. When considering the extreme points for each Pareto front
in the calculation, the values of the spread metric show that despite it found few non-
dominated solutions, the accuracy of the schedules computed by pu-CHC is better than
the results achieved with the other methods for nine out of twelve of the HCSP instances
studied.
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Figures 7.2, 7.3, and 7.4 present the Pareto fronts obtained for each evaluated MOEA
for consistent, inconsistent and semiconsistent instances, respectively. Each Pareto front
was built considering the non-dominated solutions found in the 30 independent execu-
tions performed for each algorithm. Due to the small values of the standard deviation
found in the results and metrics for each MOEA the Pareto front computed in a single
execution of a specific MOEA does not differ significantly from the best results presented
in the following figures.
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Figure 7.2: Pareto fronts for consistent HCSP instances.

The analysis of Figures 7.2, 7.3, and 7.4 shows a different behavior of the proposed
algorithms for each type of problem instances solved. For the consistent HCSP instances,
pu-CHC obtained schedules with significantly better values of both makespan and flow-
time metrics than the solutions achieved using the other MOEAs. These results confirm
the usefulness of the PALS search for solving consistent scenarios, already detected for
the single-objective HCSP. MOE-NSGA-II was able to compute quite accurate Pareto
solutions, while pSPEA-2 and pNSGA-II performed the worst.
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Figure 7.3: Pareto fronts for inconsistent HCSP instances.

All algorithms obtained similar results for inconsistent instances, accurately sampling
the best compromise solutions, but pu-CHC was unable to sample the zone of the Pareto
front associated to schedules with low flowtime values. pNSGA-II and MOE-NSGA-II
adequately sampled the Pareto front for all semiconsistent instances, while pu-CHC was
unable to compute precise solutions for u_s_hihi.0. In all cases the central region of each
Pareto front —corresponding to interesting solutions with balanced compromise values
between makespan and flowtime— was adequately sampled by all MOEAs.

Table 7.6 presents a comparison of the makespan and flowtime results obtained by
MOE-NSGA-II and pu-CHC —the best two methods among the studied MOEAs— against
previous results reported for the two EAs previously applied to the makespan-flowtime
optimization version of the HCSP: the cMA method by Xhafa et al. (2008a) and the
hybrid combining MA and TS by Xhafa (2007). The previous work by Xhafa et al.
(2008b), which applied a TS method for the makespan-flowtime multiobjective HCSP,
has not been included in the comparison, since the flowtime results were not explicitly
reported in the article by Xhafa et al. (2008b).
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Figure 7.4: Pareto fronts for semiconsistent HCSP instances.
Instance cMA MA4+TS MOE-NSGA-II pu-CHC
makespan  flowtime makespan flowtime makespan flowtime makespan flowtime
u_c_hihi.0 7700929.8 1037049914.2 7530020.2 1046309158.0 7669870.0 1034100000.0 7595027.5 1033251173.4
uchilo.0 155334.8 27487998.9 153917.2 27659089.9  154650.0 27470600.0 153997.5 27494220.4
uc_lohi.0 251360.2 34454029.4  245288.9 34787262.8 250148.0 34319000.0 246392.7 34340362.5
u_c_lolo.0 5218.2 913976.2 5173.7 920222.3 5230.9 914269.0 5187.4 913252.5
u_i_hihi.0 3186664.7 361613627.3 3058474.9 368332234.0 2964590.0 350056000.0 2966065.8 350190000.5
u_i_hilo.O 75856.6 12572126.6 75108.5 12757607.2 73825.1 12433400.0 73674.4 12433973.2
uilohi.0 110620.8 12707611.5  105808.6  12912987.9  103336.0 12230400.0 102732.6 12231807.1
u-i-lolo.0 2624.2 439073.7 2596.6 444764.9 2561.5 434148.0 2564.7 434524.3
u_s_hihi.0 4424540.9 513769399.1 4321015.4 532319945.0 4273710.0 504447000.0 4201963.5 505027968.6
u-s_hilo.O 98283.7 16300484.9 97177.3 16616505.4 96855.9 16181900.0 96649.5 16187925.1
u_s_lohi.0 130014.5 15179363.5 127633.0 15743720.0 125121.0 14848700.0 124650.2 14843952.2
u_s_lolo.0 3522.1 594666.0 3484.1 604519.1 3490.2 591381.0 3482.1 591169.6

Table 7.6: Comparison of MOE-NSGA-II and pu-CHC against previous evolutionary
techniques for the multiobjective HCSP.
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The comparative analysis of the results presented in Table 7.6 shows that MOE-
NSGA-II and pu-CHC were able to compute accurate compromise solutions for the
multiobjective HCSP, outperforming the previous results obtained with evolutionary
techniques for the problem (the best results for each metric are marked with bold font
in Table 7.6). The MOE-NSGA-II and pu-CHC algorithms obtained better solutions
than the previous cMA and MA+TS, except for the makespan metric in consistent
instances. As well as for the single-objective HCSP, consistent problems appear to be
the most difficult class of instances to solve with the multiobjective approach proposed
in this work.

The previously reported results suggest that using explicit multiobjective EAs is a
promising idea for solving the multiobjective version of the HCSP aimed at minimi-
zing makespan and flowtime. The reported results could be further improved by using
flowtime-oriented evolutionary operators, which were not explicitly included in the im-
plemented MOEAsS.

7.3.7 Concluding remarks

The analysis of EAs applied to the multiobjective version of the HCSP showed that the
MOE-NSGA-II algorithm and the pu-CHC algorithm using the aggregation approach are
promising methods to simultaneously optimize the makespan and flowtime metrics. The
explicit multiobjective approach applied in MOE-NSGA-II was capable to obtain accu-
rate solutions for the problem instances by Braun et al. (2001), achieving schedules with
good compromise values between the makespan and flowtime objectives and a correct
sampling of the Pareto front. MOE-NSGA-II and pu-CHC obtained better solutions
than previous single-objective EAs applied to the problem, improving the makespan
and flowtime metrics for all problem instances by Braun et al. (2001), except for three
out of four consistent instances. These results suggest that the proposed MOEAs are
useful schedulers for HC systems when considering the makespan and flowtime metrics
to optimize. Further work is needed in order to confirm the suitability of the proposed
MOEAs for solving large HCSP instances (several non-formalized experiments have been
successfully performed using the new set of large-sized HCSP instances, but the results
are still non-conclusive). Using flowtime-oriented exploration operators and including
a Pareto-based fitness assignment schema in pu-CHC are clear lines of future work in
order to improve the flowtime results and the population diversity of the new pu-CHC
method applied to the problem.

7.4 Summary

This chapter presented the advances on applying the new pu-CHC algorithm to solve
two HCSP variants: a dynamic HCSP version applying the rescheduling strategy and a
multiobjective HCSP version that simultaneously optimizes the makespan and flowtime
metrics.

The initial studies showed that pu-CHC is a promising method for solving both
HCSP variants tackled. The pu-CHC algorithm using the rescheduling strategy signi-
ficantly improves over a traditional pu-CHC, the traditional Min-Min, and a Min-Min
using the rescheduling strategy, specially when scheduling a large number of tasks. The
makespan improvements were up to 8% over the traditional pu-CHC and above 19%
over the Min-Min schedulers.
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The previously commented results suggest that pu-CHC is able to efficiently handle
dynamic HC scenarios by using the rescheduling strategy. On the other hand, the
analysis of EAs applied to the multiobjective version of the HCSP showed that pu-
CHC and the MOE-NSGA-II methods were able to obtain accurate schedules regarding
the makespan and flowtime metrics. Both methods outperformed the best solutions
previously obtained with single-objective EAs applied to the problem.

Further work and experimental analysis are needed in order to clearly determine
the benefits of the rescheduling strategy and comparing the rescheduling pu-CHC with
other dynamic and on-line methods for scheduling. Further work is also needed to study
the efficacy and efficiency of the proposed MOEAs for solving large HCSP instances,
possibly using flowtime-oriented exploration operators and including a Pareto-based
fitness assignment schema in pu-CHC.



Chapter 8

Conclusions and future work

This chapter presents the conclusions of the work on applying sequential and parallel
EAs to the HCSP. It also formulates the main lines for future work that arose during
the preparation of this thesis.

8.1 Conclusions

This work presented the application of sequential and parallel EAs for solving the sche-
duling problem in HC and grid computing environments.

The last decade saw a massive popularization of distributed computing for cooperati-
vely solving complex problem. So, the HCSP became a capital problem when executing
tasks in distributed heterogeneous computing and grid platforms. In its classical formu-
lation, the HCSP assumes the minimization of the makespan metric, which evaluates
the time spent from the moment when the first task starts its execution to the moment
when the last task is completed. The static version of the problem was tackled, since it
adequately models the planning in distributed clusters and HC multiprocessors, while
it also provides a first step for solving more complex scheduling problems arising in
distributed and dynamic environments. The independent task model was used because
it captures the reality of most distributed and grid computing environments where di-
fferent users submit their (obviously independent) tasks to execute in a HC cluster or
grid computing service.

The proposed EAs were designed to find accurate HCSP solutions in an efficient way,
using a bounded time stopping criterion that allows a quick planning and eventually the
rescheduling of incoming tasks. Fast parallel versions of GA and CHC were designed
aiming at exploiting both the intrinsic parallel nature of EAs and the resource availability
in distributed computing environments and modern multicore computers.

The EAs were implemented using the MALLBA library and they were executed in
a high performance cluster for solving a large set of HCSP instances. In a first stage,
the accuracy of sequential and parallel EAs to solve a low-sized standard test suite of
HCSP instances was studied, before scaling up to solve larger scenarios. In a second
stage, a new set of large-sized HCSP instances was introduced, in order to model realistic
distributed HC and grid scenarios, specially relevant to analyze the scalability behavior
of the proposed EAs. The test suite comprises several problem instances that were
designed following a methodology based on the well-known ETC model for execution
time estimation by Ali et al. (2000).
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The first experimental analysis allowed drawing some conclusions about the applica-
bility of EAs to solve the HCSP. The traditional GA is not well-suited to solve the HCSP
efficiently, mainly because its slow fitness evolution conspires against finding accurate
results in short times. CHC is a more adequate strategy for solving the HCSP when com-
pared with a traditional GA model. The parallel EAs significantly improved the results
of the sequential algorithms taking advantage of their multiple search mechanism and
the diversity provided by the subpopulation model. The parallel algorithms were able to
exploit working with small populations to improve the search efficacy and efficiency by
using the available computing power in a parallel-distributed environment. The parallel
CHC method showed good trade-off values when considering the solution quality and
the execution time required to compute it. Despite starting from suboptimal schedules,
it was able to find well-suited schedules in a reasonable low number of generations, and
was able to improve the makespan values faster than the other EAs. The pCHC method
was capable of improving upon the previous best-known makespan results for six ins-
tances out of twelve in the problem set by Braun et al. (2001), a remarkable efficiency
result when considering the exhaustive work done by previous researchers to solve this
small-sized HCSP test suite.

The scalability results showed that pCHC has a more focused exploration pattern
when using smaller populations. However, the loss of diversity caused the makespan re-
sults to deteriorate when splitting the population in demes with less than 15 individuals,
suggesting that further improvements were needed in order to achieve a fully scalable
scheduler. These results lead to the design of the new pu-CHC algorithm.

The new algorithmic proposal in pu-CHC is inspired by concepts from multiobjec-
tive EAs, and it is aimed at exploiting both the intrinsic parallel nature of EAs and
the resource availability in grid environments. The pu-CHC algorithm uses a small
population of eight individuals and follows an accelerated evolution model, using a po-
werful randomized local search method based in PALS to enhance the search. The new
method was implemented using the MALLBA library, employing a two-level parallel
model that uses shared memory and message passing communication paradigms. The
numerical analysis allowed to conclude that pu-CHC is an efficient scheduler for HC
and grid environments, which is able to obtain accurate schedules in reduced execution
times. pu-CHC is the new state-of-the-art algorithm for the benchmark set of twelve
HCSP instances by Braun et al. (2001), since it was able to improve over the previous
best-known solutions achieved with diverse metaheuristic techniques.

Experiments performed over the new large-sized HCSP instances provided a first
step toward a grid-level scalability analysis of pCHC and pu-CHC for solving the HCSP
on realistic grid scenarios up to 256 processors and 8192 tasks. When solving those high
dimension HCSP instances, pu-CHC was also capable of computing accurate results
with respect to those obtained using deterministic heuristics and the pCHC algorithm.
The makespan improvement factors attained by pu-CHC were 15% with respect to the
Min-Min heuristic, and 20% (more than 25% for the largest instances) with respect to
the Sufferage heuristic. Lower improvements were obtained when comparing against the
pCHC method, but the improvements increased as the instances grew, achieving a 3.5%
overall improvement factor for HCSP instances with dimension 8192x256 (over 4% for
consistent and semi-consistent instances, overcoming the problem of pCHC to deal with
structured scenarios). The scalability and parallel performance analysis showed that
pu-CHC is able to improve the makespan results when using more computing resources.
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The experimental analysis showed that the pu-CHC algorithm successfully solved
HCSP instances with up to thousands of tasks and several hundred of machines. From
the previous results, the main conclusion of this work is the assertion that pu-CHC
is a powerful tool for scheduling in large distributed HC and grid environments when
dealing with tasks having large execution times. In these scenarios, it is worth to invest
the time required for computing the schedule (i.e. less than two minutes) in order to
achieve significant improvements (over 15%) in the makespan values over traditional
deterministic heuristics.

Summarizing, the main contributions of the research reported in this thesis are:

e A conceptualization of the scheduling problem in heterogeneous computing envi-
ronments has been presented.

e Parallel evolutionary algorithms have been described, and the main features that
make them useful for finding accurate solutions for the HCSP have been identified.

e A new parallel micro CHC algorithm, aimed at computing accurate schedules for
HCSP scenarios of increasing complexity, has been introduced.

e A comprehensive survey of related works that have proposed to apply EAs for
solving the HCSP was provided.

e Sequential and parallel EAs have been applied to the HCSP. The new pu-CHC
was identified as the state-of-the-art method for solving the HCSP, outperforming
the previously best-known methods for standard HCSP instances and also demon-
strating a good scalability behavior when solving large HCSP instances. The main
experimental results are summarized in Table 8.1.

e Two variants of the HCSP (scheduling in dynamic scenarios and multiobjective
HCSP) have been initially studied. The analysis showed that parallel EAs are able
to compute accurate solutions for both problems variants.

metric scenarios main results (pu-CHQ)

512x16 (Braun et al.) new best solutions for all instances

makespan new laree instances 15-20% of improvement over deterministic heuristics
& 3.5% of improvement over pCHC
512x16 (Braun et al.) SloArlz(tIlJn]iil 2202(722 the ideal improvement
GAP(LB) 270 P

GAP(LB) below 6.20%

new large instances more than 71% of the ideal improvement

5% of improvement in less than 10 s.

512x16 (Braun ef al.) 10% of improvement in 15 s.

execution time

5% of improvement in 45 s.

new large instances 10% of improvement in 85 s.

512x16 (Braun et al.) 5% of normalized makespan reduction

scalabilit : i i
scalability new large instances up to 10% of normalized makespan reduction
parallel all scenarios best results when using additional demes
performance

Table 8.1: Summary of the main experimental results.
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8.2 Future work

The main lines of future work identified during the research are already in progress, and
some preliminary results were already presented in Chapter 7.

An important issue from a practical point of view involves studying the applicability
of pu-CHC and other parallel EAs for solving dynamic versions of HCSP by using a
rescheduling strategy. The pu-CHC method is a powerful tool for quickly scheduling
a bunch of tasks; thus an iterated version of the algorithm could be used to perform
rescheduling on dynamic scenarios every time that specific events occur (such as new
tasks arriving, adding or deleting computing resources, etc.). Specifically, a simple
dynamic version of the HCSP was tackled, which proposes facing dynamic environments
using the rescheduling strategy. The preliminary analysis performed on a set of three
dynamic HCSP instances with up to 50000 tasks and 100 machines showed that pu-CHC
using the rescheduling strategy was able to deal with dynamic scenarios. The reported
results show that significant makespan improvements can be obtained when using the
rescheduling pu-CHC, specially in those HCSP scenarios involving the execution of a
large number of tasks. Further work and experimental analysis are needed in order to
clearly determine the benefits of the rescheduling strategy and compare the rescheduling
pu-CHC with other dynamic and on-line methods for scheduling in HC environments.

In addition, a multiobjective version of the HCSP that proposes minimizing the
makespan and flowtime objectives was solved with the pu-CHC method and several
MOEAs. Despite using a single-objective approach that combines these two objectives
using a linear aggregation function, pu-CHC was able to obtain the best solutions when
considering the compromise values of makespan and flowtime. However, the linear
aggregation approach in pu-CHC frequently converged to the low-makespan section of
the Pareto front, seldom sampling the low-flowtime section. Including a Pareto-based
fitness assignment schema in ppu-CHC is a certain line of future work in order to improve
the flowtime results and the population diversity of the new pu-CHC method. A parallel
implementation of the NSGA-II algorithm obtained the best sampling patterns for the
Pareto front of the problem, demonstrating that MOEAs are suitable to solve the HCSP
version faced. Further work needs to be done in order to improve the results, possibly
by using flowtime-oriented evolutionary operators —which were not explicitly used in the
implemented MOEAs— and also to confirm the suitability of the proposed MOEAs for
solving large HCSP instances.

These lines of work are currently being investigated.

On the other hand, some ideas for future work have not been presented in Chapter
7. A third line of future work should focus on improving the efficacy and efficiency of
the proposed methods, exploring the ability of pu-CHC and the other parallel EAs to
face scenarios that model still larger HC environments than the ones studied in this
work. In order to face those larger scenarios, new compact problem encodings and
evolutionary operators that perform large schedule modifications need to be devised
to overcome the slow evolution pattern for large instances. A new scalable pu-CHC
algorithm, capable of improving the search speed by using the computational power of
large clusters of machines, could be applied to efficiently solve HCSP instances with
more than a thousand machines.

From a different point of view, an additional line of research involves studying the
fitness landscape for the HCSP. Following the recent theoretical works by Whitley et al.
(2008) and Whitley and Sutton (2009), it is possible to provide a theoretical character-
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ization of any optimization problem aimed at modeling the behavior of a local search
method to solve it. If the HCSP can be classified into the elementary landscape class of
problems, new ideas can be devised in order to design powerful local search operators for
the problem. Furthermore, if the recent results demonstrated for local search operators
for the Traveling Salesman Problem could be extended to the HCSP, the solution space
could be explored without performing an explicit search. This line of research would
lead to a novel theoretical analysis of the HCSP and related scheduling problems, and
also provide a promising advance for tackling large-sized problem instances involving
thousands of tasks and machines.






Appendix A

HCSP instances generator and
test suites

This appendix presents the code of the generator program used to create the new large-
sized HCSP instances introduced in this thesis. After that, the parametrization used to
create the large-sized HCSP instances are presented, in order to allow the replication of
the experiments performed in this project.

A.1 HCSP instances generator

The HCSP instances generator program is implemented in the C language using the

standard C libraries stdlib.h and math.h, without requiring any additional software.

The generator implements the range based method from Ali et al. (2000), regarding

the relevant scenario parameters: dimension (number of tasks and machines), task and

machine heterogeneity, consistency, and two different parametrization models of ETC.
The following code implements the HCSP instances generator program.

// Generator program for HC and grid scheduling.

// Implements the range-based method by Ali et al. (2000)

//

// Output file format: similar to the one used by Braun et al. (2001), column vector used
//  to represent the expected time to compute matrix ETC(t_i,m_j):

//  floating point numbers, dimension (TXM)x1l, ordered by task identifier

/7 E1,mDANCE1,m2)\\. . AN, mD\\ (2, nD\\ (£2,m2) . . . \\NGET,mn\\. . A\ (tT,mM) .

// The first line in the input file specifies the number of tasks and machines in the
//  generated scenario.

// Input parameters:

//  Number of tasks, number of machines, task heterogeneity level (0-Low, 1-High),
//  machine heterogeneity level (0-Low, 1-High), consistency type (O-consistent,

// 1-semiconsistent, 2-inconsistent).

// Optional parameters:

//  [heterogeneity model: 0-Ali et al., 1-Braun et al.] [variable type: O-real, 1-integer].

//  Heterogeneity ranks (tasks, machines): Ali et al. (10-100000,10-100), Braun et al.
//  (100-3000,10-1000) .

//  Heterogeneity model by Braun et al. (100-3000,10-1000) assumed by default.

//

// Bibliographic references

// Ali, S., Siegel, H. J., Maheswaran, M., Ali, S., and Hensgen, D. (2000). Task Execution
//  Time Modeling for Heterogeneous Computing Systems. In Proceedings of the 9th

//  Heterogeneous Computing Workshop. IEEE Computer Society, Washington, DC, pp. 185.
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// B
//
//
//
//

#inc
#inc
#inc
#inc
#inc

int

if (

char
char
char
char
char

int
char

ht_s
hm_s

if (

} el

}

if (

raun, T. D., Siegel, H. J., Beck, N., Blni, L. L., Maheswaran, M., Reuther, A. I.,
Robertson, J. P., Theys, M. D., Yao, B., Hensgen, D., and Freund, R. F. (2001). A
comparison of eleven static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems. Journal of Parallel and Distributed
Computing 61, 6, pp. 810-837.

lude <math.h>
lude <stdio.h>
lude <time.h>
lude <stdlib.h>
lude <string.h>

main(int argc, char *argv[]){

argc < 6){
printf("SintaXis: %s <num_tasks> <num_machines> <task_heterogeneity> <machine_heterogeneity>
<consistency> [model] [type] [seed]\n", argv[0]);
printf ("Task heterogeneity levels: (0O-Low, 1-High), machine heterogeneity levels:
(0-Low, 1-High).\n");
printf("Consistency type: (0-Consistent, 1-Semiconsistent, 2-Inconsistent).\n");
printf ("Optional: heterogeneity model: (0-Ali et al., 1-Braun et al.).\n");
printf ("\tRanks (tasks, machines) 0(Ali):(10-100000,10-100), 1(Braun):(100-3000,10-1000).\n");
printf ("\t(ranks by Braun et al. (100-3000,10-1000) assumed by default).\n");
printf("Optional: type of task execution times: (O-real, l-integer).\n");
printf("Optional: seed for the pseudorandom number generator.\n");

exit(1);

* ht_st; // "hi" or "lo"

* hm_st; // "hi" or "lo"

consist; // "c": consistent, "u": inconsistent, "s" semiconsistent.
mod; // "A": Ali et al. (2000), "B": Braun et al. (2001).

dist; // "u": uniform.

RT, RM, model
type;
t = (char *) malloc (sizeof (char)=*2);

t

(char *) malloc (sizeof (char)*2);

argc > 6){
model = atoi(argvl[6]);
if (model == 0){
mod = ’A’;
} else {
if (model > 1){
printf ("Heterogeneity model by Braun et al. (2001) assumed by default\n");
}
mod="B’;
}
se {
model = 1;
mod="B’;

printf ("Heterogeneity model by Braun et al. (2001) assumed by default\n");

arge > 7){
type = atoi(argv[7]);
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if (type == 1){
printf ("Type of task execution times: integer.\n");

} else {
type = 0;
printf ("Type of task execution times: real.\n");
}
} else {
type = 0;
printf ("Type of task execution times: real (assumed by default).\n");
¥
int seed;

if (arge > 8){
printf("argv_8: %s\n",argv[8]);
seed = atoi(argv[8]);
printf("seed: %d\n",seed);

} else {
seed=time (NULL) ;

}

// Initialization of the pseudorandom number generator.
srand48(seed) ;

int NT = atoi(argv[1]);
int NM = atoi(argv([2]);

dist = ’u’; // Uniform distribution.

int HT = atoi(argv([3]);

if (HT == 0){
strcpy(ht_st,"1lo");
if (model == 0){

RT = 10;

} else {
RT = 100;

}

} else {

strcpy (ht_st,"hi");

if (HT > 1){
printf ("Task heterogeneity level: 1-High (by default).\n");
HT = 1;

}

if (model == 0){
RT = 100000;

} else {
RT = 3000;

}

}

int HM = atoi(argv([4]);
if (HM == 0){
strcpy(hm_st,"1o");
RM = 10;
} else {
strcpy(hm_st,"hi");
if (HM > 1){
printf ("Machine heterogeneity level: 1-High (by default).\n");
HM = 1;
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}

if (model == 0){
RM = 100;

} else {
RM = 1000;

}

int cons = atoi(argv[5]);
if (coms == 0){

consist=’c’;
} else if (comns == 1){

consist=’s’;
} else {

if (cons > 2){

printf("Consistency type: 2-Inconsistent (by default).\n");

cons = 2;
consist=’1i’;
int 1i,j;

float **ETC = (float **) malloc(sizeof (float *)*NT);

if (ETC == NULL){
printf ("Error in memory allocation for ETC, dimension %dx%d\n",NT,NM);
exit(2);

}

for (i=0;i<NT;i++){
ETC[i] = (float *) malloc(sizeof (float)*NM);
if (ETC[i] == NULL){
printf ("Error in memory allocation for row %d of ETC.\n",i);
exit(2);

}

char file_out[15];
char file_log[15];

sprintf (file_out,"Yc.%c_lc_%s%s" ,mod,dist,consist,ht_st,hm_st);
printf("file out: [%s]\n",file_out);

sprintf(file_log,"%s.log",file_out);

FILE *fp;
FILE *f1;

if ((f1=fopen(file_log, "w"))==NULL){
printf("Cannot write in file %s\n",file_log);
exit(1);

}

fprintf(f1,"File: [%s]\n",file_out);

fprintf (f1,"Test scenario with Jd tasks and ’%d machines\n",NT,NM);

fprintf (£f1,"Model %c, distribution %c, consistency %c\n",mod,dist,consist);
fprintf(fl,"RT:%d, RM:%d\n" ,RT,RM) ;

fprintf (f1,"Task heterogeneity: ’%s, Machine heterogeneity: %s\n",ht_st,hm_st);
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if ((fp=fopen(file_out, "w"))==NULL){
printf ("Cannot write in file %s\n",file_out);
exit(1);

}

if (type == 1){

// ETC: integer values.

fprintf (f1,"Type of task execution times: integer.\n");
} else {

fprintf(f1,"Type of task execution times: real.\n");
}

fprintf (f1,"seed: [/d]\n",seed);

float p;
float *fila = (float *)malloc(sizeof (float)*NM);

for (i=0;i<NT;i++){
p = RT*drand48();

for (j=0;j<NM;j++){
fila[j]l = p*RM*drand48(Q);

}
// Consistent instance: reordering of rows is required.
if (cons == 0){

// Sort row
quickSort(fila,0,NM-1);
} else {
if (cons == 1){
// Semiconsistent instance: reordering of odd rows is required.
if ( (1% 2 ==0){
quickSort(fila,0,NM-1);

for (j=0;j<NM;j++){
ETC[i] [j]1 = filalj];
}
}

// The first row in the file specifies the number of tasks and machines in the scenario.
fprintf (fp,"%d %d\n",NT,NM);

for (i=0;i<NT;i++){
for (j=0;j<NM;j++){

if (type == 1){
// ETC: real values
fprintf (£fp,"%.0f\n",floor (ETC[i] [j1));

} else {
// ETIC: integer values
fprintf (£fp,"%.2f\n",ETC[i] [j1);

}

close(fp);
close(fl);
}
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A.2 Test suites

The set of low-sized de-facto standard HCSP by Braun et al. (2001) was provided by F.
Xhafa. The problem set is publicly available to download at the HCSP website (down-
load section) http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP/download.

The new large-sized HCSP instances introduced in this thesis were generated using
the previously presented generator program, executed with the seeds for the pseudoran-
dom number generator presented in the following tables.

Files containing the seeds used to generate the new large-sized HCSP instances are
also publicly available to download at the HCSP website (download section).

dimension:512x 16 (heterogeneity parameters by Ali et al. (2000))
.u_c_hihi, seed: [1245940097]
.u_c_hilo, seed: [1245940161]
.u_c_lohi, seed: [1245940157]
.u_c_lolo, seed: [1245940165]
.u_i_hihi, seed: [1245940197]
.u_i_hilo, seed: [1245940194]
.u_i_lohi, seed: [1245940189]
.u_i_lolo, seed: [1245940192]
.u_s_hihi, seed: [1245940177]
.u_s_hilo, seed: [1245940174]
.u_s_lohi, seed: [1245940180]
.u_s_lolo, seed: [1245940170]
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dimension: 1024 x32

dimension: 2048 x 64

A.u_c_hihi, seed: [1214388943] A.u_c_hihi, seed: [1214389178]
A.u_c_hilo, seed: [1214388934] A.u_c_hilo, seed: [1214389175]
A.u_c_lohi, seed: [1214388952] A.u_c_lohi, seed: [1214389170]
A.u_c_lolo, seed: [1214389061] A.u_c_lolo, seed: [1214389159]
A.u_i_hihi, seed: [1214389090] A.u_i_hihi, seed: [1214389262]
A.u_i_hilo, seed: [1214389023] A.u_i_hilo, seed: [1214389259]
A.u_i_lohi, seed: [1214389052] A.u_i_lohi, seed: [1214389253]
A.u_i_lolo, seed: [1214389075] A.u_i_lolo, seed: [1214389256]
A.u_s_hihi, seed: [1214389037] A.u_s_hihi, seed: [1214389217]
A.u_s_hilo, seed: [1214389032] A.u_s_hilo, seed: [1214389221]
A.u_s_lohi, seed: [1214389040] A.u_s_lohi, seed: [1214389227]
A.u_s_lolo, seed: [1214388834] A.u_s_lolo, seed: [1214389224]
B.u_c_hihi, seed: [1214388890] B.u_c_hihi, seed: [1214389181]
B.u_c_hilo, seed: [1214388893] B.u_c_hilo, seed: [1214389187]
B.u_c_lohi, seed: [1214388886] B.u_c_lohi, seed: [1214389194]
B.u_c_lolo, seed: [1214389064] B.u_c_lolo, seed: [1214389191]
B.u_i_hihi, seed: [1214388851] B.u_i_hihi, seed: [1214389267]
B.u_i_hilo, seed: [1214388857] B.u_i_hilo, seed: [1214389271]
B.u_i_lohi, seed: [1214388846] B.u_i_lohi, seed: [1214389278]
B.u_i_lolo, seed: [1214388841] B.u_i_lolo, seed: [1214389281]
B.u_s_hihi, seed: [1214388865] B.u_s_hihi, seed: [1214389214]
B.u_s_hilo, seed: [1214388861] B.u_s_hilo, seed: [1214389211]
B.u_s_lohi, seed: [1214388871] B.u_s_lohi, seed: [1214389207]
B.u_s_lolo, seed: [1214388875] B.u_s_lolo, seed: [1214389204]

dimension: 4096x128

dimension: 8192x256

A.u_c_hihi, seed: [1240440634] A.u_c_hihi, seed: [1241443018]
A.u_c_hilo, seed: [1240440631] A.u_c_hilo, seed: [1241443031]
A.u_c_lohi, seed: [1240440639] A.u_c_lohi, seed: [1241443049]
A.u_c_lolo, seed: [1240440550] A.u_c_lolo, seed: [1241443036]
A.u_i_hihi, seed: [1240440654] A.u_i_hihi, seed: [1241443011]
A.u_i_hilo, seed: [1240440649] A.u_i_hilo, seed: [1241442991]
A.u_i_lohi, seed: [1240440643] A.u_i_lohi, seed: [1241442999]
A.u_i_lolo, seed: [1240440646] A.u_i_lolo, seed: [1241442981]
A.u_s_hihi, seed: [1240440656] A.u_s_hihi, seed: [1241034415]
A.u_s_hilo, seed: [1240440659] A.u_s_hilo, seed: [1241442958]
A.u_s_lohi, seed: [1240440665] A.u_s_lohi, seed: [1241442966]
A.u_s_lolo, seed: [1240440662] A.u_s_lolo, seed: [1241442977]
B.u_c_hihi, seed: [1240440738] B.u_c_hihi, seed: [1241443021]
B.u_c_hilo, seed: [1240440735] B.u_c_hilo, seed: [1241443026]
B.u_c_lohi, seed: [1240440730] B.u_c_lohi, seed: [1241443043]
B.u_c_lolo, seed: [1240440732] B.u_c_lolo, seed: [1241443040]
B.u_i_hihi, seed: [1240440701] B.u_i_hihi, seed: [1241443006]
B.u_i_hilo, seed: [1240440707] B.u_i_hilo, seed: [1241442988]
B.u_i_lohi, seed: [1240440724] B.u_i_lohi, seed: [1241443001]
B.u_i_lolo, seed: [1240440710] B.u_i_lolo, seed: [1241442984]
B.u_s_hihi, seed: [1240440687] B.u_s_hihi, seed: [1241445656]
B.u_s_hilo, seed: [1240440679] B.u_s_hilo, seed: [1241442950]
B.u_s_lohi, seed: [1240440669] B.u_s_lohi, seed: [1241442969]
B.u_s_lolo, seed: [1240440676] B.u_s_lolo, seed: [1241442974]







Appendix B

Best solutions for the HCSP test
suite from Braun et al. (2001)

This appendix presents the best solutions (schedules) found using pCHC and pu-CHC
for the HCSP instances in the test suite by Braun et al. (2001).

For the sake of simplicity, the solutions are presented using the task-oriented repre-
sentation (an array of machine identifiers, where the presence of m; in the position t;
means that the task t; is scheduled to execute on machine m;, see Section 5.2).

The best solutions are also publicly available to download at the HCSP website
(results section) http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP/HCSP res.
The best solutions obtained for the new large-sized HCSP instances specifically designed
in this work are also presented in the HCSP website. They have been omitted here due
to the large space required to present it.

pCHC

Instance: u_c_lohi.0, makespan: 241524.0 Solution: [001012112005291115200003901401
03140096400006000914121021007110143021813111001142750600100400
60102000002314121505111011114611120004104000067153400010608131
0027205040221800011458120005300056210009120236603100204050130
1223030100202000700201106030052000010101318804000060322305303
139139010004005101201100300153490120547800002370700714121102001
14103091415002000471120210002705000010230151010031001300300091
00300000020130018001111122200101041131000403620240007400408600
43701200150010210000115101094080070760082011003100000832511002
8013009005090010823004000020]

Instance: u_i_hilo.0, makespan: 73639.8 Solution: (42013108 1471313041116815513061
1114341211715151212101041288121131151058643814116011291578911118239
1244150391481321515112810121031108279424141513894615111411311210609
713712811281071242012308712464102317301411112112153210810014101120
351361110110106126012261102964703103111915841314600612612119310129
15671010131490531501112301101163659102710413915612051312131014890501
0101013137131267121215101265131010515131531211411101314113123694615111
613311126149583108501081119111364487111412059131515480914117131497
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5141341549331120213101181214125212515112138014149131514111513213488 14
955371410342101289311108413156151016710251057212771511454191451270
15252213812711497151213151049109133141315214108151581311108102713874
1291553 1]

Instance: u_-i_lohi.0, makespan: 102136.0 Solution: [10 11 711140131089 1013055451013 5
3181104105411005427841146311615432212121281121024168123124411131415
310810115612481210123127710388135315114561114010711071151281188 1015
6032050515321311144111611132001341491113612151011140151104714121316
1410141461511981158101514121213910761015315651414688 3021082121275 7715
11141212101313115851001215115312920615324151041221160481115134702949
4854143901143214438314914152810156147915310110211811471441415610438
141111271332117106913161110631414115133106215815715141109014111381394
121513788815161381411291411547490631094510145117311211154102159 1510
1268711010121472150132156671091313118623954121347883111391475101519
11691411341513411121150061429115111441121191274143021311214141086 147
51048121046024 14 30

Instance: u.i_lolo.0, makespan: 2549.8 Solution: [4127147691131491438312461015257
824401360610912156415113313513116061114891256465487210951110141170
14952914612413131911151255152215115515410032815110011119121327014158
101543071418673130164215391317105553341147116122291210121168810940
2962710002122215123643715121101549410713150111188114411064131115134
0121136871150998401131510810141010151517856134331415413111137181032
6157159014128301051361513149371235010787141211178201211141444127983
1531011012111268210102127751291411135811511154311156141346107471490 12
631231522155891412110911131656238754138815714122465119115157136107
1024741391321319211135101331313013140111256137171015133290114901401
314172104091251410531125014742026999110112341108111331112106 14137

Instance: u_s_lohi.O, makespan: 123251.5 Solution: [470011792021143990913432493
1215200111102715070813210032041813119431394304559137140210313131
211055112113041307137123251591512947331313015033502159505200151115
501119110901513015113021141151321521155130014991521511559131399307
1515132213781111070010130221304111300141015008000056541298720559
100157159415041133469921011537200413014379289114513011128131371112
3510110141516157780500030111110113090091511190911740116743952011
1305113150000130110011150131111400759151401510613766117713013131550
0119141340133135134178956115979155119130153130501351307297115714515
0330111141115131512942130001513021409139737139011149133023791321521
13139019751516401514151515000911020]

Instance: u_s_lolo.0, makespan: 3450.1 Solution: 6568 1015115601131192454999575
6310132154111415397101579731179122304151512121371072411411153901240
431323641713250151513971151416313113499700121441115105391315591117
34711311712115011281513111315153976003911560015351513117900159001
1328155313522515131513092134411156114391552961111311323711159115141
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45213116957271597311139876903153944157142111012911131311242122813
11714061019150111552771113101051272315125708877132260513341201110
1199133130132155110891421011551059672111521120132827131137105310111
270029761514601157111351311125131361337591358156191101583571681564
41391847141110011982010049000313213615138471111114141210091407713
11541015257150113101301077021111807045301013311515]

pu~-CHC

Instance: u_c_hihi.O, makespan: 7381570.0 Solution: 6000000310008660000201333010
001040001406564016171147101201002331533568000070101431000200 13
800050410000300040200110130000003100729210006012108115300052
1551109900710120014011012150911021000523111031310610040000057022
30302900051013210228010410002100150119507000130071000105004011
471003001206011014371200113000015100014021209213100101050000081
01411508120001000018101300080001014201107195130504010000431064
20041512101008121100030200102122002100830800110312002937023529
01020001000201101641200100900120390110103310061600800020021170
101302141017621333010408006120000194]

Instance: u_c_hilo.0, makespan: 153105.4 Solution: [1110095112133944601300211240
312411015147511305037892700131000150551320003221110081030101147
1351312101400401602994800930111156242711107739114401749045000101
32011015662409715110125806925571271415250216155581141011941633
100410138621311116631111301131214810128900112293002603204101711
10212143140018031010151250921421321068130062101189311692182111534
000178620707210102712327212312436140184310131020451610620191512
6071337151531157712300161542801413905112440337271539125149450200
135508351239110421215558158014240236300136243662521640866146621
00111155111210121003120312541101141282101039011609312538144333]

Instance: u_c_1ohi.0, makespan: 239260.0 Solution: [001081110062911152000039014
01031400915400006000136810320071101430216111111010275060010000
0601020010011014121505111011101111120004104000167148400010308
1310007205040221100011458120005300059230000114053650330000105
01301223031100205011070020110600005200001010131880130000703223
04302110149011004106100211200000214801205548000024707000910302
1011103091515002000571120410002202000072301530100310013003000
41003000000201200110011011222001084112100040062024000640040860
05320120012001321000011511070080070136001120110031000008325110
0270950290030900147230040000 2 0]

Instance: u_c_lolo.0, makespan: 5147.9 Solution: [4610695610331511324506503005
4142411120263131513521090614018760131211100074417012022141510020
1024132126396513302105115881050103178152212502156235851423737312
14159308401011111271461141073912120610110205311044103190101991821
150681214024140271232740213044251450141350154616214051101014031574
90229678377116113214012201113140991158736281006221012481130820014
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1131111091407110108211090310730436401330132123421143882145381510
7100721101715142040012101424141141420201020013131000154263311262
4614539151151584223115013079211111526453413117471533450529806119
1350573924416903143936415411141010002701013113607114061117800159 §]

Instance: u-i_hihi.0, makespan: 2938380.8 Solution: [9 1011112767 7152215918 15150 13
1410451813311354106614111144101268090709230918115241413112987151265
708310121172270141009110142313127241181418104801025141210091513134 14
12810514601104131091416411551561115121251051623567314724286452511
691011338215591513811149930414501221589612801310044526261523121445
117151213151211151367131441513811151064815141101251243210366211755347
0130861012791011215679663515631113770524011514214914148131413863119
11612910441113131995121021581414130121151555145310613861238101269293
61111269118131512601487581214405146721415051415810131810976144 1481312
14109451100481111144141410911103871411512514120215513531231437312122
8212619511101211461193504121371131251181511139604682912101414131529]

Instance: u_i_hilo.0, makespan: 73378.0 Solution: [410135814101313041116 14155130 2
11114341247151512121010412881211311510586438141460142912789118823984
4155391412132531128141210111087597241415131946151114184121860179712
81281078421114101471246410231730141111211215321081001421115035161
110111010612601226110296270310311111158413116006126123931012915679
1013149053150110301171161565910271031391560051312131014891100103 1013
157131267121215101265131035013153121141111412141131236940151116133 1112
61495831085068110911106148711512359131415490914157716971414134154
10134112107131013812512221251511213801414913151411151321348849553714
103321012893114841315115101671025135721277151145419145107015252214
21271149315128151049149133149521410815981311130810271387412915531]

Instance: u_i_lohi.0, makespan: 102050.6 Solution: [10 1171114013128 915130554 510135
318110410541100532784111463116114322121212121122341181231244111314
153158811561249121012387710158813531511456111401071371155891810156
0320545732131114511161113200134491513672158111409204714121314141014
146151193115851514121213910761015315651414688302108212101577 151151212
313711585100121511531292061532415104122116048111513470294948511439
01141521443831491415281015614791531011321181147144141504481411112713
32114769131611101031414115133106215111571514110901311138094121513211
128151013151411291411547480631094121014511731121215410215915101268 311
010125721513132156671091313116623954121347886111391475915191169141
13415134111211500542911511144112119127414302131514141086 1475104 1312
10460241420

Instance: u_i_lolo.0, makespan: 2541.4 Solution: [4 127 14711911315914383 1246101525
78143461360610912156415113313513116061114891251146548721095111014 12
70149529146124131319111505515221211551241403281511001111951327014 15
811543012141867413014421539133710565334114715612221412621161381093
02962710002122215133643715111015494107131501111881014411064 13111513
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4012113987115099810113151188141010151517856134315141544111237101032
6151115901412830051361514145371235010787312111118201211141444127783
143851012111268210106127751291411135811511154311151212134667871490126
31238221558914121109111216562310754138810714125465119141214713693 10
211741391321319211135101331313013521112561373710151332915114906013
14171060809125141055112501471014021999110112549081191031112106 14137]

Instance: u_s_hihi.0, makespan: 4103500.3 Solution: [0 130123291110315003013490113
01100027152131500522112208313002902130326157211037139615131013715
10110363719011911551135130157701195114313004702155219501190901913
091551370551132159511192209151315100111113190110111003257494130000
79015913313001403111309150125394011105041510315531572921511131137
115112991501301117710511455121396313511101102538213013701557512560
0131315693750110014430426401500895153141021094071300133821537513
41021507613401139037700331101313977134740230301101151391571112523
4353015413015992310721114233010099015753143701105989509271100193
751137007713931377045011151139117122154033110713110314801770111090
51311501225131559212006 7 5]

Instance: u_s_hilo.0, makespan: 95787.4 Solution: [471041556315211150215512116 3
15121301513936609344715338132101117423266115407573169131269120215
12139152336711411581515159545811312011194999134152107155154212219
131311771311319012505215211320141436115275913111113311575531355099
3111342149131113241141337401311241422533411313113515115320401058111
043431108015015747711157291311503690311913951512152761009725815116
32159149155862893010401342156857159259210211152713451336402761134
911471551509467983101320121193137117134147531411315101370771470556
70815201520089411015115603157105131181113450511211111513701351413130
3067013601311156311313192911010020121571405105513313151311011513811
11110103111992918119193095110535012110715107 7]

Instance: u_s_1lohi.0, makespan: 122083.3 Solution: [1570011792021439109134324153
317200511027150708131050320411813119251394104550137732103131312
11055112113041307137123251591529275313140150335021595352029111550
1119110901513015113721141111132152155513001409152151155913139930715
1513221508112070010130226041313022101504200005002129072055912015
715941501415153260021211537101504901437938911451301112101313711123
210110515121577801400030111110113070091511190911740116783951101113
059131500001315110001501311118007591515071061336611671531301150011
921340133051341789561159791551131311531305013513071597115715515033
0111141115131513942130001513021205139737490112101330237002152113139
019751516201511415415070911020]

Instance: u_s_lolo.0, makespan: 3433.5 Solution: [6 568157 1156011311924549995756
31732154111151391510157973117982304151551213787241191115398124033
1393841713250151513673152123131149970012541115853913155911103471
1311 71311501111821311101503941202301152013153515131179501591011328
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1556353522315131513097144411154114391552761111311323711159115121452
130109573711979111398769031539482714211101091113131124214414136132
06101915011155277111321505127234125708877132260513341201110119913
313013215511089142101155145967211321121132827131137101231011127009
9761513601557111351311155131361337591351015611311101510357161015044 14
91847101520011982010049000313213615138477113511210091407313115410
15527150111280310770211118976453051311115 15]



Appendix C

Related publications by the
author

This appendix briefly comments related publications by the author and their relevance
within the research reported in this thesis.

e Evolucion en el diseno y clasificacién de algoritmos genéticos paralelos
(Nesmachnow, 2002), published in Actas de la XXVIII Conferencia Latinoameri-
cana de Informdtica, Montevideo, Uruguay, 2002 (text in Spanish).

The article presented a complete review of parallel models of genetic algorithms,
and a historical survey of the taxonomic classifications proposed by the research
community. Each parallel genetic algorithm proposal was classified into a compre-
hensive categorization.

e Una versién paralela del algoritmo evolutivo para optimizacion mul-
tiobjetivo NSGA-II (Nesmachnow, 2004), published in Actas del X Congreso
Argentino de Ciencias de Computacién, La Matanza, Argentina, 2004 (text in
Spanish).

The article presented the parallel version of the NSGA-II multiobjective evolu-
tionary algorithm. The implementation was validated by applying the method to
solve 18 well-known benchmark problems in multiobjective optimization, achieving
accurate results.

e Un algoritmo evolutivo multiobjetivo paralelo aplicado al diseno de re-
des de comunicaciones confiables (Nesmachnow, 2005), publicado en Actas
del IV Congreso Espafiol sobre Metaheuristicas, Algoritmos Evolutivos y Bioin-
spirados, Granada, Espana, 2005, (text in Spanish).

In this article, the previously designed parallel version of NSGA-II was applied
to solve a hard combinatorial optimization problem that models the design of
reliable communication networks. Accurate and efficient results were obtained for
medium-sized problem instances.

e Evolutionary Algorithms Applied to Reliable Network Communication
Design (Nesmachnow et al., 2007), published in Engineering Optimization 39 (7),
2007.

133



134 Related publications by the author

This work applied sequential and parallel evolutionary algorithms to the General-
ized Steiner Problem, an NP-hard optimization problem arising in network design.
A parallel version of CHC achieved the best results in terms of solution quality
and computational efficiency.

e Algoritmos evolutivos paralelos para despacho de tareas en entornos he-
terogéneos (Nesmachnow, 2009), published in Actas del VI Congreso Espanol
sobre Metaheuristicas, Algoritmos Evolutivos y Bioinspirados, Malaga, Espana,
2009, (text in Spanish).

This conference article presented the first results on applying traditional evolutio-
nary algorithms to solve the standard HCSP instances by Braun et al. (2001). The
evolutionary model of CHC showed promising results when solving the low-sized
HCSP instances.

e Heterogeneous computing scheduling with evolutionary algorithms (Nes-

machnow et al., 2010), accepted for publication in Soft Computing, 2010 (to ap-
pear).
The article presented the application of sequential and parallel evolutionary algo-
rithms to solve the standard HCSP instances by Braun et al. (2001). The parallel
version of CHC obtained the best results for the set of HCSP instances faced, and
a preliminary study of the scalability of the parallel algorithm was provided.

e Scheduling in heterogeneous computing and grid environments using a
parallel CHC evolutionary algorithm, Computational Intelligence, submitted
to publication.

The work introduced the new set of large-sized HCSP instances designed to model
realistic HC and grid infrastructures. The parallel CHC method was applied to
solve all the new problem instances. Accurate results were obtained when com-
paring with those computed by deterministic heuristics and the parallel algorithm
showed a good scalability behavior when solving large HCSP instances.

e A parallel micro-CHC evolutionary algorithm for heterogeneous com-
puting and grid scheduling, IEEE Transactions of Evolutionary Computation
submitted to publication.

The article presented the design and implementation of the new parallel micro
CHC algorithm. The new method was applied to solve the standard HCSP ins-
tances from Braun et al. (2001) and the previously proposed large-sized HCSP
instances. The results demonstrated that the parallel micro CHC algorithm is
the current state-of-the-art method for the HCSP, significantly improving over the
makespan results computed by deterministic heuristics and the previous parallel
CHC method.
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