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Abstract. We give a description of ergodic components of SRB measures in
terms of ergodic homoclinic classes associated to hyperbolic periodic points.
For transitive surface diffeomorphisms, we prove that there exists at most one
SRB measure.

1. Introduction

In this paper we attempt to give a more accurate description of the ergodic
components of SRB measures. These measures were introduced by Sinai, Ruelle
and Bowen in the 70’s (see [23, 21, 22, 5]) and are the measures most compatible
with the ambient volume when the system is not conservative.

Sinai-Ruelle-Bowen’s works showed the existence and some desirable proper-
ties of such measures for uniformly hyperbolic systems. Subsequently, SRB mea-
sures were shown to exist for many non-hyperbolic systems such as: diffeomor-
phisms preserving smooth measures ([15]), Hénon’s attractors ([3]), attractors
with mostly contracting center direction ([16, 4]), mostly expanding case ([1]),
partially hyperbolic attractors with one-dimensional center ([6], see also [24]),
when u-Gibbs measures are unique ([7, 8]). Most of these results also include a
proof of uniqueness or at least finiteness of SRB measures. In general, uniqueness
results are based on the knowledge of the geometry of the unstable “foliation”.
In this paper, we give a description of the ergodic components of SRB measures
in terms of ergodic homoclinic classes (see next subsection) associated to periodic
points. Ergodic homoclinic classes were introduced by the authors in [19] (see
also [18]) for the conservative setting. Although SRB measures have a different
nature (in general, an SRB measure for f is not SRB for f−1) we obtain a similar
description that combined with a subtle use of the Sard’s Theorem, allows us to
prove that transitive surface diffeomorphisms have at most one SRB measure.

1.1. Statement of results. Roughly speaking an SRB measure is an invariant
measure that has a positive Lyapunov exponent a.e. and the decomposition of
the measure along unstable manifolds is equivalent to the volume. See 2.4 for a
precise definition.
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By Ledrappier-Young [14], a measure satisfies the entropy formula hµ =
∫

∑

λi>0 λidµ
if and only if it is SRB. If all the Lyappunov exponents are non zero µ−almost
everywhere then µ is called a hyperbolic measure.

We call µ a physical measure if the basin of µ, B(µ) has positive Lebesgue
measure, where by definition for every continuous observable φ : M → R,

1

n

n−1
∑

i=0

φ(f i(x)) →

∫

φdµ

for every x ∈ B(µ). These measures describe the asymptotic average behavior of a
large subset of points of the ambient space and are the basis of the understanding
of dynamics in a statistical sense.

In general, using absolute continuity of unstable lamination for C1+α diffeo-
morphisms, it turns out that any ergodic SRB measure is physical if all of its
Lyapunov exponents are non-zero, see [17]. On the one hand, SRB measures are
better to lead with thanks to the information given by the presence of the positive
exponent. On the other hand, physical measures carry little information (see [26]
for a discussion on the subject). For this reason we focus on the study of SRB
measures.

In this paper we give an accurate description for the ergodic components of SRB
measures. We define ergodic homoclinic classes for hyperbolic periodic points
which are “ergodic” version of homoclinic classes and prove that ergodic compo-
nents of hyperbolic measures are in fact ergodic homoclinic classes.

Given a hyperbolic periodic point p, let us define the ergodic homoclinic class
of p, Λ(p), as the set of points x ∈ M such that

W s(o(p)) ⋔ W u(x) 6= ∅ (1.1)

W u(o(p)) ⋔ W s(x) 6= ∅ (1.2)

Figure 1. x in the ergodic homoclinic class of p

Here W s(x) is the Pesin stable manifold of x, that is,

W s(x) =

{

y ∈ M : lim sup
n→+∞

1

n
log d(fn(x), fn(y)) < 0

}
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and W u(x), is Pesin unstable manifold of x. For almost every point, Pesin stable
and unstable manifolds are, indeed, immersed manifolds.

Note that we can write an ergodic homoclinic class as the intersection of two
invariant sets:

Λ(p) = Λs(p) ∩ Λu(p)

where Λu(p) is the set of x satisfying the relation (1.1) and Λs(p) is the set
of points x satisfying (1.2) . It is clear that Λs(p) and Λu(p) are respectively
s−saturated and u−saturated.

Theorem 1.1. Let f : M → M be a C1+α diffeomorphism over a compact
manifold M and µ a hyperbolic SRB measure. If µ(Λs(p)) and µ(Λu(p)) > 0,
then

Λu(p)
◦
⊂ Λs(p),

Moreover, the restriction of µ to Λ(p) is ergodic and non-uniformly hyperbolic
and physical.

We can drop the hypothesis of the hyperbolicity of the measure under the
hypothesis m(Λs(p)) > 0 where m is the Lebesgue measure. We also give an
example where µ(Λs(p)) and µ(Λu(p)) > 0 and Λu is not a.e. contained in Λs. Of
course in such example µ is neither hyperbolic nor ergodic.

Theorem 1.2. Let f : M → M be a C1+α diffeomorphism over a compact
manifold M and µ an SRB measure. If m(Λs(p)) > 0 and µ(Λu(p)) > 0, then

Λu(p)
◦
⊂ Λs(p),

Moreover, the restriction of µ to Λ(p) is a hyperbolic ergodic measure.

We mention that a similar result for Lebesgue measure has been proved in [19]
without the hypothesis of hyperbolicity of measure. In fact for Lebesgue measure
we did not assume the hyperbolicity the measure and conclude that Λs ◦

= Λu.
But, as we have mentioned before, SRB measures have a different nature. An
SRB measure for f is not SRB for f−1.

Theorem 1.1 has the following corollary:

Corollary 1.3. Let f : M → M be a C1+α diffeomorphism. If µ(Λ(p)) > 0 for
a hyperbolic point p, then µ|Λ(p) is an ergodic component of µ.

If µ is a hyperbolic invariant measure, by a result of A. Katok ([13]), (f, µ) is
approximated by uniformly hyperbolic (homoclinic class of hyperbolic periodic
point) sets with µ−measure zero. Using carefully the construction of such periodic
points, we prove the following theorem which will be used in the proof of Theorem
1.7.

Theorem 1.4. Let f : M → M be a C1+α diffeomorphism over a compact
manifold M and µ a hyperbolic SRB measure. Then for any ergodic component
ν of µ there exists a hyperbolic periodic point P such that ν(Λ(P )) = 1.
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For further use, we state the following simple corollary of the (inclination)
λ-lemma:

Proposition 1.5. If p, q are homoclinically related then Λ(p) = Λ(q).

1.2. Uniqueness of SRB measures. It is a challenging problem in the Ergodic
Theory of Dynamical Systems to prove the existence and uniqueness (finiteness)
of SRB or physical measures.

In this paper we show that ergodic homoclinic classes are usefull object to
distinguish between different hyperbolic ergodic SRB measures. more precisely:

Theorem 1.6. Let µ, ν be ergodic SRB measures such that µ(Λ(p)) = ν(Λ(p)) =
1 for some hyperbolic periodic point p then µ = ν.

In the two dimensional case, using the above theorem we prove that topological
transitivity is enough to guarantee that there exists at most one SRB measure
for surface C2- diffeomorphisms.

It is easy to see that for a surface diffeomorphism any SRB measure is hy-
perbolic. Indeed take an ergodic SRB measure µ with two Lyapunov exponents
λ+ > λ−. By Pesin entropy formula (see Young-Ledrappier [14]) h(µ) = λ+. Since
h(µ, f) = h(µ, f−1) by Ruelle inequality λ+ ≤ −λ−.

Theorem 1.7. Let f : M → M be a C1+α diffeomorphism over a compact surface
M . If f is topologically transitive then there exist at most one SRB measure.

An example due to I. Kan (see [12]) shows that the above theorem can not be
true in higher dimensional manifolds. I. Kan constructed a transitive diffeomor-
phism of T2 × [0, 1] with two SRB measures with intermingled basins. Gluing
along the boundary torus two of these examples and composing with a diffeomor-
phism that interchanges the two components a transitive diffeomorphism of T3

with two SRB-measures is obtained.
We recall that, as a consequence of the absolute continuity of the unstable

“foliation”, Lebesgue measure is SRB if there is a positive exponent a.e. (see
[15]). As a corollary of the above theorem we obtain the following result in the
conservative setting. We thank F. Ledrappier for observing this point in the
Workshop on Partial Hyperbolicity, in Beijing.

Theorem 1.8. Let f : M → M be a C1+α volume preserving diffeomorphism
of a compact surface M with non zero Lyapunov exponents. If f is topologically
transitive then it is ergodic.

Observe that by H. Furstenberg’s example ([9]), without the hypothesis of
non-vanishing Lyapunov exponents, even minimality is not enough to guarantee
ergodicity. Furstenberg constructs a minimal non-ergodic C∞ diffeomorphism of
the two torus.
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2. Preliminaries

2.1. Non-uniform hyperbolicity. Let us review some results about Pesin the-
ory that shall be used in this paper. A good summary of these facts may be
found, for instance, in [17] and [14]. For further references, see Katok’s paper [13]
and the book by Barreira and Pesin [2].

Let f : M → M be a C1 diffeomorphism of a compact Riemannian manifold
of dimension n. Given a vector v ∈ TxM , let the Lyapunov exponent of v be the
exponential growth rate of Df along v, that is

λ(x, v) = lim
|n|→∞

1

n
log |Dfn(x)v| (2.1)

in case this amount is well defined. And let Eλ(x) be the subspace of TxM
consisting of all v such that the Lyapunov exponent of v is λ. Then we have the
following:

Theorem 2.1 (Osedelec). For any C1 diffeomorphism f : M → M there is an
f -invariant Borel set R of total probability (in the sense that µ(R) = 1 for all
invariant probability measures µ), and for each ε > 0 a Borel function Cε : R →
(1,∞) such that for all x ∈ R, v ∈ TxM and n ∈ Z

(1) TxM =
⊕

λ Eλ(x) (Oseledec’s splitting)
(2) For all v ∈ Eλ(x)

Cε(x)−1exp[(λ − ε)n]|v| ≤ |Dfn(x)v| ≤ Cε(x)exp[(λ + ε)n]|v|

(3) ∠ (Eλ(x), Eλ′(x)) ≥ Cε(x)−1 if λ 6= λ′

(4) Cε(f(x)) ≤ exp(ε)Cε(x)

The set R is called the set of regular points. We also have that Df(x)Eλ(x) =
Eλ(f(x)). If an f -invariant measure µ is ergodic then the Lyapunov exponents
and dim Eλ(x) are constant µ-a.e.

For fixed ε > 0 and given l > 0, we define the Pesin blocks:

Rε,l = {x ∈ R : Cε(x) ≤ l} .

Note that Pesin blocks are not necessarily invariant. However f(Rε,l) ⊂ Rε,exp(ε)l.
Also, for each ε > 0, we have

R =
∞
⋃

l=1

Rε,l (2.2)

We loose no generality in assuming that Rε,l are compact. For all x ∈ R we have

TxM =
⊕

λ<0

Eλ(x) ⊕ E0(x)
⊕

λ>0

Eλ(x)

where E0(x) is the subspace generated by the vectors having zero Lyapunov
exponents. Let µ be an invariant measure. When E0(x) = {0} for µ-a.e. x in
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a set N , then we say that f is non-uniformly hyperbolic on N and that µ is a
hyperbolic measure on N .

Now, let us assume that f ∈ C1+α for some α > 0. Given a regular point x,
we define its stable Pesin manifold by

W s(x) =

{

y : lim sup
n→+∞

1

n
log d(fn(x), fn(y)) < 0

}

(2.3)

The unstable Pesin manifold of x, W u(x) is the stable Pesin manifold of x with
respect to f−1. Stable and unstable Pesin manifolds of points in R are immersed
manifolds [15]. We stress that C1+α regularity is crucial for this to happen. In this
way we obtain a partition x 7→ W s(x) , which we call stable partition. Unstable
partition is defined analogously. Stable and unstable partitions are invariant.

On the Pesin blocks we have a continuous variation: Let us call W s
loc(x) the

connected component of W s(x) ∩ Br(x) containing x, where Br(x) denotes the
Riemannian ball of center x and radius r = r(ǫ, l) > 0, which is sufficiently small
but fixed. Then

Theorem 2.2 (Stable Pesin Manifold Theorem [15]). Let f : M → M be a C1+α

diffeomorphism preserving a smooth measure m. Then, for each l > 1 and small
ε > 0, if x ∈ Rε,l:

(1) W s
loc(x) is a disk such that TxW

s
loc(x) =

⊕

λ<0 Eλ(x)
(2) x 7→ W s

loc(x) is continuous over Rε,l in the C1 topology

In particular, the dimension of the disk W s
loc(x) equals the number of negative

Lyapunov exponents of x. An analogous statement holds for the unstable Pesin
manifold.

2.2. Absolute continuity. An important notion behind the criterion we are
going to prove is absolute continuity. Let us state the definitions we will be
using. The point of view we follow is similar to that in [14].

Let ξ be a partition of the manifold M . We shall call ξ a measurable partition

if the quotient space M/ξ is separated by a countable number of measurable
sets. For instance, the partition of the 2-torus by lines of irrational slope is not
measurable, while the partition of [0, 1] by singletons is measurable. The quotient
space M/ξ of a Lebesgue space M by a measurable partition ξ is again a Lebesgue
space [20].

Associated to each measurable partition ξ of a Lebesgue space (M,B, m) there
is a canonical system of conditional measures mξ

x, which are measures on ξ(x),
the element of ξ containing x, and with the property that for each A ∈ B the
set A ∩ ξ(x) is measurable in ξ(x) for almost all ξ(x) in M/ξ, and the function
x 7→ mξ

x(A ∩ ξ(x)) is measurable, with:

m(A) =

∫

M/ξ

mξ
x(A ∩ ξ(x))dmT (2.4)
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where mT is the quotient measure on M/ξ. For each measurable partition this
canonical system of conditional measures is unique (mod 0), i.e. any other system
is the same for almost all ξ(x) ∈ M/ξ. Conversely, if there is a canonical system
for a partition, then the partition is measurable. In our case, we will be interested
in stable and unstable partitions, note that in general these partitions are not
measurable.

A measurable partition ξ is subordinate to the unstable partition W u if for m-
a.e. we have ξ(x) ⊂ W u(x), and ξ(x) contains a neighborhood of x which is open
in the topology of W u(x).

Definition 2.3. m has absolutely continuous conditional measures on unstable man-

ifolds if for every measurable partition ξ subordinate to W u, mξ
x << λu

x for m-a.e.
x, where λu

x is the Riemannian measure on W u(x) given by the Riemannian struc-
ture of W u(x) inherited from M .

We are now able to give a definition of SRB-measure.

Definition 2.4. An f -invariant probability measure µ is called a Sinai-Bowen
Ruelle (SRB) measure if it has a positive Lyapunov exponent a.e. and absolutely
continuous conditional measures on unstable manifolds. After Ledrappier-Young
([14]) this is equivalent to having a positive Lyapunov exponent a.e. and satisfying
the Pesin formula, hµ(f) =

∫
∑

λ(x)>0 λ(x) dµ.

Now, take a point x0 ∈ R, the set of regular points. Assume that x0 has at least
one negative Lyapunov exponent. Take two small discs T and T ′ near x0 which are
transverse to W s(x0). Then we can define the holonomy map with respect to these
transversals as a map h defined on a subset of T such that h(x) = W s

loc(x) ∩ T ′.
The domain of h consists of the points x ∈ T ∩ R whose stable manifold have
the same dimension as W s(x0), and which transversely intersect T and T ′. h is
a bijection.

Definition 2.5. We say that the stable partition is absolutely continuous if all
holonomy maps are measurable and take Lebesgue zero sets of T into Lebesgue
zero sets of T ′.

Absolute continuity of the unstable partition is defined analogously.

Theorem 2.6 ([15]). Let f be a C1+α diffeomorphism. Then, its stable and
unstable partitions are absolutely continuous.

Note that the holonomy maps of the stable foliation are continuous and have
continuous Jacobians when restricted to the Pesin blocks Rε,l.

3. Ergodic components and ergodic homoclinic classes

In this section we prove all theorems except Theorem 1.7. For the sake of
simplicity firstly, we shall prove Corollary 1.3. Let us introduce some lemmas
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before entering into its proof. Let µ be a SRB-measure. For any given function
ϕ ∈ L1

µ(M, R), let

ϕ̃±(x) = lim
n→±∞

1

n

n−1
∑

i=0

ϕ(fn(x)) (3.1)

By Birkhoff Ergodic Theorem, the limit (3.1) exists and ϕ+(x) = ϕ−(x) for µ−a.e.
x ∈ M . Note that ϕ±(x) is f -invariant. Moreover, we have the following:

Lemma 3.1. For all ϕ ∈ C0(M) there exists an invariant set S with µ(S) = 1
such that if x ∈ S we have ϕ̃+(w) = ϕ̃+(x) for all w ∈ W s(x) and mu

x-a.e.
w ∈ W u(x).

Proof of the Lemma. The proof is completely analogous to the one for smooth
measures since SRB-measures, by definition, have absolutely continuous condi-
tional measures along unstable manifolds. �

Proof of Corollary 1.3. Let ϕ : M → R be a continuous function, let S be the set
obtained in Lemma 3.1 and R the set of µ-regular points. We shall see that ϕ̃+

is constant on Λ(p) ∩ S ∩R. This will prove that µ is ergodic when restricted to
Λ(p).

Let x, y ∈ Λ(p) ∩ S ∩ Rε,l = Λ for some ε > 0 and l > 1. Without loss
of generality we may assume that x and y are in the support of the restriction
of µ to Λ and that they return infinitely many times to Λ. Hence there exists
n > 0 such that fn(y) ∈ Λ and d(fn(y), W u(p)) < δ/2 where δ > 0 is as in the
definition of transverse absolute continuity. Hence W s

loc(f
n(y)) ⋔ W u(p) 6= ∅. We

can suppose for simplicity that n = 0, and that p is a hyperbolic fixed point.
As a consequence of the Inclination Lemma, there exists k > 0 such that

fk(x) ∈ Λ and W u(fk(x)) ⋔ W s
loc(y) 6= ∅. As in the case of smooth measures,

due to Lemma 3.1 above, there is a mu
y -positive measure set of w ∈ W u

loc(y) such

that ϕ̃+(w) = ϕ̃+(y) and W s
loc(w) ⋔ W u(fk(x)) 6= ∅. Since ϕ̃+ is constant on

stable leaves and there is transverse absolute continuity, we get a mu
fk(x)-positive

measure set of w′ ∈ W u
loc(f

k(x)) such that ϕ̃+(w′) = ϕ̃+(y). See Figure 2. But
fk(x) ∈ S, so due to Lemma 3.1 again ϕ̃+(y) = ϕ̃+(fk(x)) = ϕ̃+(x) concluding
the proof.

�

In order to prove Theorem 1.1, we shall need a refinement of Lemma 3.1:

Lemma 3.2. Given ϕ ∈ L1(µ) there exists an invariant set Sϕ ⊂ M , µ(Sϕ) = 1
such that if x ∈ Sϕ then mu

x-a.e. y ∈ W u(x) satisfy ϕ+(y) = ϕ+(x).

Proof. Given ϕ ∈ L1(µ) take a sequence of continuous functions ϕn converging
to ϕ in L1(µ). Since ϕ̃+

n converges in L1(µ) to ϕ̃+ there exists a subsequence
ϕ̃nk+ converging a.e. to ϕ̃+. The intersection of this set of almost every where
convergence with the set S obtained in Lemma 3.1 gives the desired set Sϕ. �
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Let us give now the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. To simplify ideas, let us suppose that p is a hyperbolic
fixed point. Let S be the set obtained in Lemma 3.2 for the characteristic function
1Λs(p). Take x ∈ Λu(p) ∩ S, we will prove that x ∈ Λs(p). This proves the first
claim of the Theorem. Let y ∈ Λs(p), and ε > 0, l > 1 be such that x, y ∈ Rε,l.
We loose no generality in assuming that y is in the support of µ restricted to
Λs(p) ∩ Rε,l. We can also assume that x and y return infinitely many times
to Rε,l. Proceeding as in the proof of Corollary 1.3, we may also assume that
d(y, W u(p)) < δ/2 where δ is much smaller than the size of local stable manifolds
of points in Rε,l.

Note that 1Λs(p) is an f -invariant function. This implies that if x /∈ Λs(p) then
mu

x-a.e. y ∈ W u(x) will satisfy y /∈ Λs(p), due to Lemma 3.2 above. The idea
of the proof is to find a mu

x-positive measure set of points z ∈ W u(x) such that
z ∈ Λs(p). This will prove that x ∈ Λs(p).

As a consequence of the Inclination Lemma, and since x returns infinitely many
times to Rε,l, there exists k > 0 such that W u(fk(x)) ⋔ W s

loc(y) 6= ∅. Note that
this intersection a priori can have positive dimension.

Figure 2. Proof of Corollary 1.3

Now, since y is in the support of µ restricted to Rε,l ∩Λs(p), we have µ(Rε,l ∩
Λs(p)∩Bδ(y)) > 0. Since by hypothesis µ is a hyperbolic measure with absolutely
continuous conditional measures along unstable manifolds (SRB-measure) there
exists z ∈ Bδ(y) such that dim(W u(y)) = dim(W u(z)) and mu

z (W
u
loc(z) ∩ Rε,l ∩

Λs(p) ∩ Bδ(y)) > 0. Take a smooth foliation L of a neighborhood of a point
of W s

loc(y) ∩ W u(fk(x)) inside W u(fk(x)) of dimension equal to dim(W u(y)) =
n− dim(W s(y)). This can be done in such a way that every L ∈ L is transversal
to W s

loc(y). In fact

dim(W s(y) ∩ W u(fk(x)) = dim(W u(fk(x))) + dim(W s(y)) − n

= dim(W u(fk(x))) − dim(W u(y)).
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Take an open submanifold T of W u(fk(x)) ⋔ W s
loc(y). Transverse absolute

continuity of the stable foliation implies that mL
ω(Λs(p) ∩ L) > 0 ∀ω ∈ T where

mL is the induced Lebesgue measure of the the leaf L of the smooth foliation L.
Now Fubini theorem for the smooth foliation L implies that

mu
fk(x)(Λ

s(p) ∩ W u(fk(x))) ≥

∫

T

mL
ω(Lω ∩ Λs(p))dmT (ω) > 0

So we have proved that a mu
fk(x)-positive measure subset of W u(fk(x)) belongs

to Λs(p). As x ∈ S and S is invariant this implies that fk(x) ∈ Λs(p) and so

x ∈ Λs(p). This finishes the proof of Λu(p)
◦
⊂ Λs(p).

By a similar argument as above we are able to prove the ergodicity of µ|Λ(p).
Indeed, let ϕ ∈ C(M) and x, y ∈ Λ(p) be as above with S be the full measure
obtained in lemma 3.1 for ϕ. Following the above arguments mutatis mutandis,
we prove that ϕ+(x) = ϕ+(y).

By definition the restriction of f on Λ(p) is non uniformly hyperbolic with the
same index of p.

�

Proof of Theorem 1.2. Let x, y as in the proof of Theorem 1.1 with the difference
that now y is a density point of Rε,l ∩Λs(p) for Lebesgue measure. Now take an
smooth foliation F of dimension equal to dim(W u(y)) inside Bδ(y). By Fubini
theorem there exist a leaf of this foliation F(z), z ∈ Bδ(y) such that mF

z (F(z) ∩
Rε,l ∩ Λs(p) ∩Bδ(y)) > 0 where here mF

z denotes the Lebesgue measure of F(z).
From this point, just changing the role of W u(z) by F(z) in the proof of theorem
1.1 the arguments are the same. �

Proof of Theorem 1.4. Let µ be a hyperbolic SRB measure. Firstly we prove the
following well-known fact.

Lemma 3.3. Almost all ergodic components of µ are hyperbolic and SRB.

Proof. By ergodic decomposition there exists a probability measure µ̂ on M(M(f))
with support on ergodic measures such that

hµ =

∫

M(f)

hνdµ̂(ν),

∫

∑

λ+
i dµ =

∫

∑

λ+
i (ν)dµ̂(ν).

By Ruelle inequality we have that for all ν, h(ν) ≤
∫

∑

λ+
i (ν) and putting

these together it is clear that µ̂−almost every ν will satisfy the entropy formula
and so it is an SRB measure. �

From now on suppose that µ is itself an ergodic hyperbolic SRB measure. By a
Katok result (f, µ) is approximated by uniformly hyperbolic sets with µ−measure
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zero. More precisely, take a Pesin block Γ of large measure such that the size of
stable and unstable manifolds are uniformly bounded from below by a constant
larger than zero. Let x ∈ supp(µ|Γ) and B be a small ball around x such that
µ(B ∩ Γ) > 0. By Katok closing lemma we can find a periodic point p near
enough to x whose stable and unstable manifolds respectively are C1−close to
the stable and unstable manifolds of p and consequently x ∈ Λ(p). As the stable
and unstable lamination vary continuously on Γ we obtain that y ∈ Λ(p) for
any y ∈ B ∩ Γ. This yields that µ(Λ(p)) > 0. The ergodicity of µ implies that
µ(Λ(p)) = 1. �

4. Example

Here we give some examples of systems with SRB measures which shed light
on the difference between our results in smooth and SRB measures case.

We construct a diffeomorphism f : M → M with an SRB measure µ such that
there exists a hyperbolic periodic point p such that µ(Λs(p)) = µ(Λu(p)) = 1/2
but µ(Λs ∩ Λu) = 0. Observe that µ can not be the Lebesgue measure by our
previous work in [19]. In the smooth measure case µ(Λs), µ(Λu) > 0 implies that

Λs ◦
= Λu ◦

= Λ and f |Λ is ergodic.
We will split the construction of f into four steps.

4.1. First Step. We begin with f0 : T2 → T2 be a C1+α, 0 < α < 1 almost
-Anosov diffeomorphism with an SRB measure µ0. Moreover f0 has a fixed point
R such that Df0(R) has two eigenvalues λ1 = 1, λ2 < 1. Such f0 can be obtained
satisfying the following properties:

• µ0-almost every x ∈ T2 has one positive (and consequently one negative)
Lyapunov exponent,

• W s(R) ⋔ W u(P ) for any periodic point P 6= R,
• W u(Q) ⋔ W s(P ) for any two periodic points P, Q ∈ T2.

We emphasize that such example can not be C2. See the work of Hatomoto [10]
(see also [11])

4.2. Second Step. Now we consider a family of skew products over f0 as follows.
Recall that µ0 is an SRB measure of f0 and f0 has a fixed point R with a neutral
direction. We assume also that f0 has two more fixed points P, Q which are
hyperbolic with one dimensional unstable manifold. For x ∈ T2 and t ≥ 1 let
gt

x : S1 → S1 satisfy the following properties:

• For all x ∈ T2, gt
x : S1 → S1, gt

x(0) = 0, 1
3
≤ |Dgt

x(0)| ≤ t,
• For some small ǫ > 0, |Dgt

x(0)| = t, ∀x ∈ Bǫ(Q),
• |Dgt

x(0)| = 1
2
, ∀x /∈ B2ǫ(Q),

• t →
∫

T2 log |Dgt
x(0)|dµ0 is continuous.
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Now we consider the following skew product over f0 :

F t(x, θ) = (f0(x), gt
x(θ))

Lemma 4.1. There exists t0 such that for µ0 × δ0 almost every (x, 0) ∈ T2 × S1,
the Lyapunov exponent of F t0 in the tangent direction to S

1 vanishes.

Proof. Let 0 < α := µ0(Bǫ(Q)) < β := µ(B2ǫ(Q)) < 1. By Birkhoff’s Theorem
for a µ0−typical point x :

∫

T2

log |Dgt
x(0)|dµ0 = lim

n→∞

1

n
log |Πn−1

i=0 Dgt
f i
0
(x)(0)|

and by our choices

α log(t) + (1 − α) log(1/3) ≤

∫

T2

log |Dgt
x(0)|dµ0 ≤ (1 − β) log(1/2) + β log(t).

Using the above estimates and the continuity of
∫

T2 log |Dgt
x(0)|dµ0 with respect

to t, we conclude that there exist t0 such that
∫

T2 log |Dgt
x(0)|dµ0 = 0 which means

that µ0 × δ0-almost every point (x, θ) ∈ T2 × S
1 has zero Lyapunov exponent.

�

4.3. Third Step. Let F := F t0 with t0 as above. Let A : T2 → T2 be a linear
Anosov diffeomorphism and define

f ∈ Diff1+α(T2 × S
1 × T

2), f(x, θ, y) = (F (x, θ), A(y)).

The Lebesgue measure of T2 is an SRB measure for A and we denote it by
m. So, the probability measure µ := µ0+δR

2
× δ0 × m is invariant by f . In what

follows P̃ , Q̃ and R̃ stand for respectively (P, 0, 0), (Q, 0, 0) and (R, 0, 0) points in

T2 × S1 ×T2. We will show that µ is SRB and satisfies µ(Λs(P̃ ) = µ(Λu(P̃ )) = 1
2

and Λs(P̃ ) ∩ Λu(P̃ ) = ∅.
The SRB property is straightforward from the definition and the fact that the

Lyapunov exponent of f along the tangent direction to S1 vanishes and µ0 and
m are SRB.

By our construction R̃, P̃ , Q̃ are fixed points of f with unstable dimension
respectively one, two and three. As W s(R, f0) ⋔ W u(P, f0) and A is Anosov, we
conclude that {R} × {0} × T2 ⊂ Λs(P̃ ) and consequently µ(Λs(P̃ ) ≥ µ({R} ×
{0} × T2) = 1

2
. In fact, as for µ0 × δ0 × m-almost every point the Pesin stable

manifold is two dimensional, no such point belongs to Λs(P̃ ) and we have proved
that µ(Λs(P̃ )) = 1

2
.

Let us now investigate Λu(P̃ ). By construction µ0 × δR ×m-almost avery point

has two dimensional unstable manifold which is transverse to W s(P̃ ). It is clear
that {R}×{0}×T2 /∈ Λu(P̃ ). We proved that µ(Λu(P̃ ) = 1

2
and Λs(P̃ )∩Λu(P̃ ) =

∅.
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5. SRB measure for surface diffeomorphisms

In this section we prove Theorem 1.7. For this aim we will first prove Theorem
1.6. This will be done in the next subsection.

5.1. SRB measures supported on the same ergodic homoclinic class. In
this subsection we will show that ergodic homoclinic classes support at most one
SRB measure. This is the statement of Theorem 1.6.

Proof of Theorem 1.6. Let B(µ) and B(ν) be, respectively, the basins of µ and ν.
By ergodicity we have that µ(B(µ)) = ν(B(ν)) = 1. In fact by Birkhoff’s Ergodic
Theorem there exists Bµ ⊂ B(µ) and Bν ⊂ B(ν) such that µ(Bµ) = ν(Bν) = 1
where

Bµ = {x : lim
n→∞

1

n

n−1
∑

i=0

ϕ(f±i(x)) →

∫

ϕdµ ∀ϕ ∈ C(M)}

Bν = {x : lim
n→∞

1

n

n−1
∑

i=0

ϕ(f±i(x)) →

∫

ϕdν ∀ϕ ∈ C(M)}

Since µ(Λ) = ν(Λ) = 1 it comes out that µ((Bµ)∩Λ) = ν((Bν)∩Λ) = 1. From
now on the technique will be similar to one of the proof of Corollary 1.3.

By absolute continuity of unstable lamination we can take x such that mu
x(Bµ∩

Λ) = 1. Now let y be a point of recurrence of Bν ∩ Λǫ where Λǫ is a Pesin block
for ν|Λ. Again by absolute continuity of unstable lamination we can choose y in
such a way that mu

y(Λǫ ∩ Bν) > 0. Since y returns infinitely many times to the
Pesin’s block we additionally can assume that y is close enough to W u(p). Using
the λ-lemma we have that W u(fk(x)) is also C1−close to W u(p). This implies
that W s

ǫ (z) ⋔ W u(fk(x)), ∀z ∈ Λǫ∩Bν . Now, by the absolute continuity of stable
lamination on Pesin’s blocks, mu

fk(x)(H
s(Λǫ ∩ Bν)) > 0. On the one hand, we

know that the basin of ν is s−saturated so mu
fk(x)(B(ν)) > 0. On the other hand

mu
fk(x)(B(µ)) = 1 and this implies that Bµ ∩ Bν 6= ∅ which implies µ = ν.

�

5.2. Uniqueness for transitive diffeomorphisms of surfaces. Let µ and
ν be two ergodic SRB measures. As mentioned before µ and ν are hyperbolic
measures. By theorem 1.4 we conclude that there exist hyperbolic periodic points
Pµ, Pν such that ν(Λ(Pν)) = µ(Λ(Pµ)) = 1. The following proposition is the main
ingredient of the proof of Theorem 1.7.

Proposition 5.1. Pµ and Pν are homoclinically related and Λ(Pµ) = Λ(Pν).

The above proposition together with Theorem 1.6 immediately implies the
conclusion of Theorem 1.7. To prove the existence of homoclinically relation
between Pµ and Pν we need that the manifold M is two dimensional. Indeed
firstly, using that M is a surface we prove that the invariant maniolds of Pµ and
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Pν are topologically transverse. Then using a finer analysis of laminations and
Sard’s Theorem we prove transversal homoclinical intersection.

Proof. Recall that Pµ and Pν (which we suppose that are fixed points) comes from
Katok’s closing lemma and as µ, ν are hyperbolic ergodic both Pµ and Pν have non
trivial homoclinic classes. Consequently there exist topological rectangles whose
boundaries (∂s and ∂u) are consisted of stable and unstable segments of Pµ, Pν .
(See figure 3.) Choose two such rectangle Rµ,Rν such that Pµ, Pν respectively
belong to the boundary of Rµ and Rν and Rµ ∩Rν = ∅.

fn(Rµ ∩Rν) 6= ∅

PνPµ
RνRµ

Figure 3

By topological transitivity of f there exist n ∈ N such that fn(Rµ) ∩Rν 6= ∅.
Observe that fn(Rµ) and Rν are topological rectangles and as Pν /∈ Rµ it comes
out that Rν is not contained in fn(Rµ). So W u(Pµ) ∩ ∂s(Rν) 6= ∅. Although
∂s(Rν) is a piece of W s(Pν) this intersection may be just topologically transversal
(a tangency). However, we will prove that there should exist also transversal
intersections between W u(Pµ) and W s(Pν).

Lemma 5.2. Taking a rectangle Rν small enough there exist new system of co-
ordinates such that:

(1) Rν = [0, 1]2,
(2) W u(Pµ) ∩Rν is the graph of a C2-function γ : I → [0, 1], I ⊂ [0, 1],
(3) There exists K ⊂ [0, 1] of positive Lebesgue measure such (0, x) ∈ [0, 1]2

has a “large” stable manifold crossing [0, 1]2.

Proof. We will show that it is possible to take Rν ⊂ Rν in such a way that
it satisfies items 2 and 3 after a suitable change of coordinates. Observe that
W u(Pµ) is a C2-curve and we have supposed that it is tangent to local stable
manifold of Pν . So to guarantee the second item of the Lemma, it is enough to
take Rν with small height.

To prove the last item, firstly notice that by construction the stable (unstable)
manifold of Pν has transversal intersection with unstable (stable) manifold of
the points inside a Pesin block of Λ(Pν). Let us denote by Λǫ(Pν) such Pesin
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hyperbolic block of Λ(Pν). By a desintegration argument and using the fact that
the conditional measures of µ along unstable manifolds are absolutely continuous
with respect to Lebesgue measure we get a local Pesin unstable manifold which
intersect Λǫ(Pν) in a positive Lebesgue measure. Now as the stable lamination
is absolutely continuous we slide such points along stable laminae to obtain a
positive measure subset of W u(Pν) which we denote it by K̂.

Now iterating K̂ and using λ-lemma we obtain a positive Lebesgue measure
subset K ⊂ [0, 1] such that {0} × K ⊂ ∂(Rν) and W s(0, x) crosses Rν for any
x ∈ K.

�

Let ϕ(x) := hs(x, γ(x)) where hs is the projection by stable lamination (see
Figure 4).

x

ϕ(x) ∈ K

Figure 4

Observe that a priori ϕ is defined just on a closed subset {x ∈ I : (x, γ(x)) ∈
W s(K)} with positive Lebesgue measure. However we can verify the Whitney
condition to extend it in a C1 fashion on the whole inteval I as we explain below.

We recall a standard treatment of absolute continuity of stable holonomies
in the Pesin’s block following Pugh-Shub [17]. In fact we show that, as the
stable lamination is co-dimension one its holonomy map is differentiable. More
precisely we claim that the stable holonomy can be extended to a C1 function
hs : [0, 1] → [0, 1] and consequently ϕ can be extended to a C1-function on I.

Let F be a C1−foliation which is close to the stable lamination in C1-sense.
Graph transforation arguments show that f−n(F) converges to the stable lami-
nation. Let (hn, Jhn) represent the holonomy hn of f−n(F) with its derivative
Jhn. As the domain of hn is one dimensional Jhn reprsents both the derivative
and the jacobain of the holonomy hn.
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By definition the following diagram commutes

f−n(D)
h0−−−→ f−n(D

′

)

f−n





y





y
f−n

D −−−→
hn

D
′

All holonomies hn are diffrentiable and

Jhn(x) = Jf−n(fn(hn(x))) ◦ Jh0 ◦ Jfn(x)

It is standard that (hn, Jhn) converge uniformly to (h, Jh) where h is the stable
lamination holonomy and for some function Jh. As hn are differentiable with
derivative Jhn, by uniform convergence of Jhn to Jh we conclude that Jh satisfies
the C1-extension Whitney theorem hypothesis (see [25]) and consequently we can
extend ϕ to a C1-function on the whole interval I.

Now it is easy to see that if W s(x, γ(x)) is tangent to the graph of γ then
Dϕ(x) = 0. By Sard’s theorem the Lebesgue measure of critical values of ϕ is
zero. From this we conclude that the graph of γ intersect transversally W s(0, x)
for some x ∈ K.

By invariance there exist z ∈ Λǫ(Pν) such that W s(z) ⋔ W u(Pµ) 6= ∅. Now

using again Katok’s closing lemma we find a hyperbolic periodic point P̂ν with
W s(P̂ν) close enough to W s(z) in C1-topology so that W s(z) ⋔ W u(P̂µ) 6= ∅. It

is clear that Pν and P̂ν are homoclinically related. So using λ−lemma it comes
out that W u(Pµ) has also a transversal intersection with W s(Pν).

A similar argumet shows that W u(Pν) has a transversal intersection with
W s(Pµ). So we proved that Pµ and Pν are homoclinically related. Now using
Proposition 5.1 we obtain that Λ(Pµ) = Λ(Pν). �
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