
PARTIAL HYPERBOLICITY AND ERGODICITY IN

DIMENSION THREE.

F.RODRIGUEZ HERTZ, M.RODRIGUEZ HERTZ, AND R. URES

Abstract. In [15] the authors proved the Pugh-Shub conjecture for partially
hyperbolic diffeomorphisms with 1-dimensional center, i.e. stable ergodic dif-
feomorphism are dense among the partially hyperbolic ones. In this work we
address the issue of giving a more accurate description of this abundance of
ergodicity. In particular, we give the first examples of manifolds in which all
conservative partially hyperbolic diffeomorphisms are ergodic.

1. Introduction

A diffeomorphism f : M → M of a closed smooth manifold M is partially
hyperbolic if TM splits into three invariant bundles such that one of them is
contracting, the other is expanding, and the third, called the center bundle, has
an intermediate behavior, that is, not as contracting as the first, nor as expanding
as the second (see the Section 3 for a precise definition). The first and second
bundles are called strong bundles.

A central point in dynamics is to find conditions that guarantee ergodicity. In
1994, the pioneer work of Grayson, Pugh and Shub [10] suggested that partial
hyperbolicity could be “essentially” a sufficient condition for ergodicity. Indeed,
soon afterwards, Pugh and Shub conjectured that stable ergodicity (open sets of
ergodic diffeomorphisms) was dense among partially hyperbolic systems. They
proposed as an important tool the accessibility property (see also the previous
work by Brin and Pesin [2]): f is accessible if any two points of M can be
joined by a curve that is a finite union of arcs tangent to the strong bundles.
Essential accessibility is the weaker property that any two measurable sets of
positive measure can be joined by such a curve. In fact, accessibility will play a
key role in this work.

Pugh and Shub split their Conjecture into two sub-conjectures: (1) essential
accessibility implies ergodicity, (2) accessibility contains an open and dense set
of partially hyperbolic diffeomorphisms.
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Many advances have been made since in the ergodic theory of partially hyper-
bolic diffeomorphisms. In particular, there is a result by Burns and Wilkinson [4]
proving that essential accessibility plus a bunching condition (trivially satisfied if
center bundle is one dimensional) implies ergodicity. There is also a result by the
authors [15] obtaining the complete Pugh-Shub conjecture for one-dimensional
center bundle. See [17] for a recent survey on the subject.

We have therefore that almost all one-dimensional center bundled partially hy-
perbolic diffeomorphisms are ergodic. This means that the non-ergodic partially
hyperbolic systems are very few. Can we describe them? Concretely,

Question 1.1. Which manifolds support a non-ergodic partially hyperbolic dif-
feomorphism?

In this work we address this question on three dimensional manifolds. We study
the sets of points that can be joined by paths everywhere tangent to the strong
bundles (accessibility classes), and arrive, using tools of geometry of laminations,
to the somewhat surprising conclusion that there are strong obstructions to the
non-ergodicity of a partially hyperbolic diffeomorphism. See Theorem 1.3.

This gave us enough evidence to conjecture the following:

Conjecture 1.2. The only orientable manifolds supporting non-ergodic partially
hyperbolic diffeomorphisms in dimension 3 are the mapping tori of diffeomor-
phisms of surfaces which commute with Anosov diffeomorphisms.

Specifically, they are (1) the mapping tori of Anosov diffeomorphisms of T2,
(2) T3, and (3) the mapping torus of −id where id : T2 →T2 is the identity map
on the 2-torus.

Indeed, we believe that for 3-manifolds, all partially hyperbolic diffeomorphisms
are ergodic, unless the manifold is one of the listed above.

We are able to prove this conjecture when the fundamental group of the man-
ifold is nilpotent:

Theorem 1.3. All the conservative C2 partially hyperbolic diffeomorphisms of
a compact orientable 3-manifolds with nilpotent fundamental group are ergodic,
unless the manifold is T3.

A paradigmatic example is the following. Let M be the mapping torus of

Ak : T2 →T2, where Ak is the automorphism given by the matrix

(

1 k
0 1

)

, k a

non-zero integer. That is, M is the quotient of T2× [0, 1] by the relation ∼, where
(x, 1) ∼ (Akx, 0). The manifold M has nilpotent fundamental group; in fact, it
is a nilmanifold (see Section 7). Theorem 1.3 then implies that all conservative
partially hyperbolic diffeomorphisms of M are ergodic.

Let us see that the above case, namely the case of nilmanifolds, is the only one
where Theorem 1.3 is substantial. The Geometrization Conjecture, gives, after
Perelman’s work:
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Theorem 1.4. If M is a compact orientable manifold with nilpotent fundamental
group, then either M is a nilmanifold or else it is finitely covered by S3 or S2×S1.

The second case mentioned in Theorem 1.4 is ruled out by a remarkable result
by Burago and Ivanov:

Theorem 1.5 ([3]). There are no partially hyperbolic diffeomorphisms in S3 or
S2 × S1.

On the other hand, let us note that Theorem 1.3 is not about the empty
set, see for instance [19], where Sacksteder presents examples of ergodic affine
diffeomorphisms of nilmanifolds that are partially hyperbolic. In [17] there is a
detailed treatment of these examples.

The proofs of the theorems above involve deep results of the geometry of codi-
mension one foliations of 3-manifolds. In Section 2 we shall include, for complete-
ness, the basic facts and definitions that we shall be using in this paper. However,
the interested reader is strongly encouraged to consult [5], [6] and [13] for a well
organized and complete introduction to the subject.

We shall split the preliminaries of this paper into two sections. Section 2 is
devoted to the basic facts and definitions about geometry of foliations that will
be used. Section 3 will cover the basic facts and definitions about the dynamics
part of this paper.

Now let us describe the structure of our proof. In the first place, it follows from
the results in [4, 15] that accessibility implies ergodicity. So, our strategy will be to
prove that all partially hyperbolic diffeomorphisms of compact 3-manifolds with
nilpotent fundamental group different from T3 satisfy the accessibility property.

In dimension 3, and in fact, whenever the center bundle is 1-dimensional, the
non-open accessibility classes are codimension one immersed manifolds [15]; the
set of non-open accessibility classes is a compact set laminated by the accessibility
classes (see Section 2 for definitions). So, either f has the accessibility property
or else there is a non-trivial lamination formed by non-open accessibility classes.

Let us first assume that the lamination is not a foliation (i.e. does not cover
the whole manifold). Then we will show that it either extends to a true foliation
without compact leaves, or else it contains a leaf that is a periodic 2-torus with
Anosov dynamics. In the first case, we have that the boundary leaves of the
lamination contain a dense set of periodic points [15], and that their fundamental
group injects in the fundamental group of the manifold, which is nilpotent. There-
fore, it will follow that the boundary leaves of the lamination are, in fact, tori,
which is a contradiction. Henceforth, in case the non-open accessibility classes
are a strict lamination, that is, not a foliation, there is a periodic 2-torus with
Anosov dynamics. This is done in Section 4.

We shall call any embedded 2-torus admitting an Anosov dynamics extendable
to the whole manifold, an Anosov torus. That is, T ⊂M is an Anosov torus if there
exists h : M→M such that h|T is Anosov. In Section 5 we prove that Anosov tori
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are incompressible. The fundamental group of an Anosov torus hence injects in
the (nilpotent) fundamental group of our manifold. In Section 7, Corollary 7.3,
we prove that the only manifold with nilpotent fundamental group admitting
Anosov tori is, in fact, T3.

So, we have arrived to the conclusion that if there are non-open accessibility
classes, they must foliate the whole manifold. Let us see that this foliation can not
have compact leaves. Observe that any such compact leaf must be a 2-torus. So,
we have three possibilities: (1) there is an Anosov torus, (2) the set of compact
leaves forms a strict non-trivial lamination, (3) the manifold is foliated by 2-tori.
The first case has just been ruled out. In the second case, we would have that
the boundary leaves contain a dense set of periodic points, as stated above, and
hence they would be Anosov tori again, which is impossible. Finally, in the third
case, we conclude that the manifold is a fibration of tori over S1 (see Section 8,
page 20). This can only occur, in our setting, if the manifold is T3.

In this way we have that a conservative partially hyperbolic diffeomorphism
of a compact 3-manifold with nilpotent fundamental group different from T3 has
the accessibility property or else the accessibility classes form a codimension one
foliation of the manifold without compact leaves. The rest of the paper is devoted
to excluding this last possibility.

Indeed, in case there is a codimension one invariant foliation by accessibility
classes it is shown, using subtle results of Plante and Roussarie, and the dynamics
of f that this foliation consists of “parallel” cylinders (Section 8).

On the other hand, we show in Section 7 that f should be semi-conjugate to an
Anosov diffeomorphism of the 2-torus. The fact that there is a foliation tangent
to Es ⊕ Eu is used in the construction of this semi-conjugacy. In Section 8 we
show that this leads to a contradiction.

The following theorem summarizes many of the results in this paper. See
definitions in Section 2:

Theorem 1.6. Let f : M → M be a conservative partially hyperbolic diffeo-
morphism of an orientable 3-manifold M . Suppose that the bundles Eσ are also
orientable, σ = s, c, u, and that f is not accessible. Then one of the following
possibilities holds:

(1) there is an f -periodic incompressible torus tangent to Es ⊕ Eu.
(2) there is an f -invariant lamination ∅ 6= Γ(f) 6= M tangent to Es⊕Eu that

trivially extends to a (not necessarily invariant) foliation without compact
leaves of M . Moreover, the boundary leaves of Γ(f) are periodic, have
Anosov dynamics and dense periodic points.

(3) there is a Reebless invariant foliation tangent to Es ⊕ Eu.

The assumption on the orientability of the bundles and M is not essential, in
fact, it can be achieved by a finite covering. We do not know of any example
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satisfying (2) in the theorem above (see Question 1.7). The proof of Theorem 1.6
appears at the end of Section 5.

In [17] (Theorem 4.11) we had announced that Γ(f) has always an invariant
torus leaf in case it is a strict lamination. Unfortunately our proof has a gap and
the following question (Problem 22 and commentary below of [17]), up to our
knowledge, remains open even in the codimension one case.

Question 1.7. Let f : N → N be an Anosov diffeomorphism on a complete
Riemannian manifold N . Is it true that if Ω(f) = N then N is compact?

Acknowledgments: We are grateful to S. Matsumoto, A. Candel and, specially,
to A. Verjovsky for kindly answering us many questions about topology and
foliations in 3-dimensional manifolds during the ICM2006 in Madrid. We thank
the referee for many valuable remarks, corrections and suggestions.

2. Geometric preliminaries

In this section we state several definitions and concepts that will be useful in
the rest of this paper. From now on, M will be a compact connected Riemannian
3-manifold.

A lamination is a compact set Λ ⊂M that can be covered by open charts U ⊂ Λ
with a local product structure φ : U→Rn×T , where T is a locally compact subset
of Rk. On the overlaps Uα∩Uβ, the transition functions φβ◦φ

−1
α : Rn×T →Rn×T

are homeomorphisms and take the form:

φβ ◦ φ
−1
α (u, v) = (lαβ(u, v), tαβ(v)),

where lαβ are C1 with respect to the u variable. No differentiability is required
in the transverse direction T . The sets φ−1(Rn × {t}) are called plaques. Each
point x of a lamination belongs to a maximal connected injectively immersed
n-submanifold, called the leaf of x in L. The leaves are union of plaques. Observe
that the leaves are C1, but vary only continuously. The number n is the dimension

of the lamination. If n = dimM − 1, we say Λ is a codimension-one lamination.
The set L is an f -invariant lamination if it is a lamination such that f takes leaves
into leaves.

We call a lamination a foliation if Λ = M . In this case, we shall denote by
F the set of leaves. In principle, we shall not assume any transverse differen-
tiability. However, in case lαβ is Cr with respect to the v variable, we shall say
that the foliation is Cr. Note that even purely C0 codimension-one foliations
admit a transverse 1-dimensional foliation (see Siebenmann [20], Solodov [21]).
This allows to translate many local deformation arguments, usually given in the
C2 category, into the C0 category. In particular, Theorems 2.1 and 2.3, which
were originally formulated for C2 foliations hold in the C0 case. We shall say
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that a codimension-one foliation F , is transversely orientable if the transverse 1-
dimensional foliation mentioned above is orientable. An invariant foliation is a
foliation that is an invariant lamination.

Let Λ be a codimension-one lamination that is not a foliation. A complementary

region V is a component of M \ Λ. A closed complementary region V̂ is the
metric completion of a complementary region V with the path metric induced
by the Riemannian metric, the distance between two points being the infimum
of lengths of paths in V connecting them. A closed complementary region is
independent of the metric. Note that they are not necessarily compact. If Λ does
not have compact leaves, then every closed complementary region decomposes
into a compact gut piece and non-compact interstitial regions which are I-bundles
over non-compact surfaces, and get thinner and thinner as they go away from the
guts (see [13] or [9]). The interstitial regions meet the guts along annuli. The
decomposition into interstitial regions and guts is unique up to isotopy. Moreover,
one can take the interstitial regions as thin as one wishes.

A boundary leaf is a leaf corresponding to a component of ∂V , for V a closed
complementary region. That is, a leaf is a non-boundary leaf if it is not contained
in a closed complementary region.

Figure 1. A Reeb component

The geometry of codimension-one foliations is deeply related to the topology of
the manifold that supports them. The following subset of a foliation is important
in their description. A Reeb component is a solid torus whose interior is foliated
by planes transverse to the core the solid torus, such that each leaf limits on the
boundary torus, which is also a leaf (see Figure 1). A foliation that has no Reeb
components is called Reebless.

The following theorems show better the above mentioned relation:

Theorem 2.1 (Novikov). Let M be a compact orientable 3-manifold and F a
transversely orientable codimension-one foliation. Then each of the following
implies that F has a Reeb component:
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(1) There is a closed, nullhomotopic transversal to F
(2) There is a leaf L in F such that π1(L) does not inject in π1(M)

The statement of this theorem can be found, for instance, in [6] Theorems 9.1.3.
9.1.4., p.288. We shall also use the following theorem

Theorem 2.2 (Haefliger). Let Λ be a lamination in M . Then the set of points
belonging to compact leaves is compact.

This theorem was originally formulated for foliations [11]. However, it also
holds for laminations, see for instance [13].

We have the following consequence of Novikov’s Theorem about Reebless foli-
ations. This theorem is stated in [18] as Corollary 2 on page 44.

Theorem 2.3. If M is a compact 3-manifold and F is a transversely orientable
codimension-one Reebless foliation, then either F is the product foliation of S2 ×
S1, or F̃ , the foliation induced by F on the universal cover M̃ of M , is a foliation
by planes R2. In particular, if M 6= S2 × S1 then M is irreducible.

This theorem was originally stated for C2 foliations, but it also holds for C0

foliations, due to Siebenmann’s theorem mentioned above.

3. Dynamic preliminaries

Throughout this paper we shall work with a partially hyperbolic diffeomorphism

f , that is, a diffeomorphism admitting a non trivial Tf -invariant splitting of
the tangent bundle TM = Es ⊕ Ec ⊕ Eu, such that all unit vectors vσ ∈ Eσ

x

(σ = s, c, u) with x ∈M verify:

‖Txfv
s‖ < ‖Txfv

c‖ < ‖Txfv
u‖

for some suitable Riemannian metric. f also must satisfy that ‖Tf |Es‖ < 1 and
‖Tf−1|Eu‖ < 1.

We shall also assume that f is conservative, i.e. it preserves Lebesgue measure
associated to a smooth volume form.

It is a known fact that there are foliations Wσ tangent to the distributions Eσ

for σ = s, u (see for instance [2]). The leaf of Wσ containing x will be called
W σ(x), for σ = s, u. The connected component of x in the intersection of W s(x)
with a small ε-ball centered at x is the ε-local stable manifold of x, and is denoted
by W s

ε (x).
In general it is not true that there is a foliation tangent to Ec. It is still

unknown if there is such a foliation in case dimEc = 1. However, in Proposition
3.4 of [1] it is shown that if dimEc = 1, then f is weakly dynamically coherent.
This means, for each x ∈ M there are complete immersed C1 manifolds which
contain x and are everywhere tangent to Ec, Ecs and Ecu, respectively. We will
call center curve any curve which is everywhere tangent to Ec. Moreover, we will
use the following fact:
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Proposition 3.1 ([1]). If γ is a center curve through x, then

W s
ε (γ) =

⋃

y∈γ

W s
ε (y) and W u

ε (γ) =
⋃

y∈γ

W u
ε (y)

are C1 immersed manifolds everywhere tangent to Es ⊕ Ec and Ec ⊕ Eu respec-
tively.

We shall say that a set X is s-saturated or u-saturated if it is a union of leaves of
the strong foliations Ws or Wu respectively. We also say that X is su-saturated
if it is both s- and u-saturated. The accessibility class AC(x) of the point x ∈M
is the minimal su-saturated set containing x. Note that the accessibility classes
form a partition of M . If there is some x ∈M whose accessibility class is M , then
the diffeomorphism f is said to have the accessibility property. This is equivalent
to say that any two points of M can be joined by a path which is piecewise
tangent to Es or to Eu.

The theorem below relates accessibility with ergodicity. In fact it is proven in
a more general setting, but we shall use the following formulation:

Theorem 3.2 ([4],[15]). If f is a C2 conservative partially hyperbolic diffeomor-
phism with the accessibility property and dimEc = 1, then f is ergodic.

We will prove that there are manifolds whose topology implies the accessibility
property for all partially hyperbolic diffeomorphisms. In these manifolds, all
partially hyperbolic diffeomorphisms are ergodic.

We will focus on the openness of the accessibility classes. Note that the ac-
cessibility classes form a partition of M . If all of them are open then, in fact,
f has the accessibility property. We will call U(f) = {x ∈ M ;AC(x) is open}
and Γ(f) = M \ U(f). Note that f has the accessibility property if and only if
Γ(f) = ∅. We have the following property of non-open accessibility classes:

Proposition 3.3 ([15]). The set Γ(f) is a codimension-one lamination, having
the accessibility classes as leaves.

In fact, any compact su-saturated subset of Γ(f) is a lamination.

The above proposition is Proposition A.3. of [15]. The fact that the leaves of
Γ(f) are C1 may be found in [7]. The following proposition is Proposition A.5 of
[15]:

Proposition 3.4 ([15]). If Λ is an invariant sub-lamination of Γ(f), then each
boundary leaf of Λ is periodic and the periodic points are dense in it (with the
induced topology).

Moreover, the stable and unstable manifolds of each periodic point are dense in
each plaque of a boundary leaf of Λ

Observe that the proof of Proposition A.5 of [15] shows in fact that periodic
points are dense in the accessibility classes of the boundary leaves of V endowed
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with its intrinsic topology. In other words, periodic points are dense in each
plaque of the boundary leaves of V .

We shall also use the following theorem by Brin, Burago and Ivanov, whose
proof is in [1], after Proposition 2.1.

Theorem 3.5 ([1]). If f : M3 →M3 is a partially hyperbolic diffeomorphism,
and there is an open set V foliated by center-unstable leaves, then there cannot
be a closed center-unstable leaf bounding a solid torus in V .

4. The su-lamination Γ(f)

Let f be a partially hyperbolic diffeomorphism of a compact 3-manifold M .
From Section 3 it follows that we have three possibilities: (1) f has the acces-
sibility property, (2) the set of non-open accessibility classes is a strict lamina-
tion, ∅  Γ(f)  M or (3) the set of non-open accessibility classes foliates M :
Γ(f) = M . Our goal is to discard possibilities (2) and (3).

Now, we shall distinguish two possible cases in situations (2) and (3):

(a) the lamination Γ(f) does not contain compact leaves
(b) the lamination Γ(f) contains compact leaves

In this section we deal with the case (2a). In fact, for our purposes it will be
sufficient to assume that there exists an f -invariant sub-lamination Λ of Γ(f)
without compact leaves. Section 5 treats the cases (2b) and (3b). Section 8
treats the case (3a).

In this section, we will prove that the complement of Λ consists of I-bundles.
To this end, we shall assume that the bundles Eσ (σ = s, c, u) and the manifold
M are orientable (we can achieve this by considering a finite covering).

Theorem 4.1. If ∅  Λ ⊂ Γ(f) is an orientable and transversely orientable f -
invariant sub-lamination without compact leaves such that Λ 6= M , then all closed
complementary regions of Λ are I-bundles.

We will prove Theorem 4.1 by showing:

Proposition 4.2. Let Λ ⊂ Γ(f) be a nonempty f -invariant sub-lamination with-
out compact leaves. Then Ec is uniquely integrable in the closed complementary
regions of Λ.

Let us consider V̂ a closed complementary region of Λ, and call I(V ) the union

of all interstitial regions of V and G(V ) the gut of V̂ (see Section 2), so that

V̂ = I(V ) ∪ G(V ).

In the Remark 3.7 of [16] it is proved:

Lemma 4.3 ([16]). There exists δ > 0 such that if Ec is not uniquely integrable
at x and γ is a central curve through x, then there exists N > 0 for which the
length of fn(γ) or of f−n(γ) is greater than δ for all n > N .
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Proof of Proposition 4.2. Let I(V ) be so thin that any center curve in I(V ) meets
two boundary leaves of I(V ) and is bounded from above by δ/2. This is possible
for a small δ > 0, since Ec is transverse to the boundary leaves, and I(V ) can be
chosen arbitrarily thin (see Section 2).

Let y be a recurrent point in the interior of I(V ). Take γ a center curve through
y. If Ec were not uniquely integrable at y, then we would find a sufficiently large
iterate k > 0 of f such that fk(y) is in the interior of I(V ) and the length of
fk(γ) is greater than δ (Lemma 4.3), which contradicts our choice of I(V ).

Note that this implies that Ec is uniquely integrable at each point z in W c(y),
where y is a recurrent point in the interior of I(V ). If Ec were not uniquely
integrable at z ∈ W c(y), then we would have on one hand that for k as above
fk(z) ∈ W c(fk(y)) ⊂ I(V ), and from Lemma 4.3 we would have that length of
fk(W c(y)) is greater than δ, a contradiction.

∂V̂
∂V̂

x

W s
ε (γ1)

W s
ε (γ2)

Figure 2. A point at which Ec is non uniquely integrable

Now, let us suppose that at x ∈ I(V ) there are two center curves γ1 and γ2. We
may assume that they are not contained in the same center-stable leaf, otherwise,
we consider center-unstable leaves instead. Consider two different center-unstable
leaves CU1 and CU2 very close to x. Then ∂V̂ , W s

ε (γ1), W
s
ε (γ2), CU1 and CU2

enclose an open subset of I(V ). Take a recurrent point y in this open subset. Its
center curve W c(y) meets two boundary leaves. This forces W c(y) to exit through
W s
ε (γ1), W

s
ε (γ2), CU1 or CU2. The point of intersection of W c(y) with any of

these four sets is a point of non-unique integrability of Ec, due to Proposition 3.1.
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But this contradicts what was proven above. Hence Ec is uniquely integrable in
I(V ). See Figure 2.

Let C be an open set in I(V ), consisting of central leaves which join two

boundary leaves of V̂ . And let us prove that

(4.1) D =
⋃

n∈Z

fn(C)

is dense in V̂ . We begin by observing that D, where the closure is taken in the
completion V̂ of V , is an su-saturated set. Indeed, let y be a recurrent point in
the interior of D. There exists a sequence fkn(y)→ y, and a fixed ε > 0 such
that W s

ε (f
kn(y)) is in D. Then W s(y) =

⋃

n>0 f
−kn(W s

ε (f
kn(y))) is in D. Now,

any point z ∈ D can be approximated by a sequence yn of recurrent points. For
each fixed K > 0, the stable manifold W s

K(z) is the limit of the stable manifolds
W s
K(yn), and hence it belongs to D. Taking K→∞ we get the s-saturation of D.

u-saturation of D is obtained analogously, so we obtain that D is su-saturated.
The boundary of D in V̂ consists of leaves of Γ(f). Now, if D were not all V̂ ,

then there would be one of such leaves, L that is contained in V . L is approx-
imated by points in D. The center leaf of any such point must meet L, due to
transversality. But on the other hand, this center leaf joins two boundary leaves
of V̂ , and is fully contained in D, which is open. Hence the interior of D would
meet L, a contradiction. This proves that any open set defined as in Equation
(4.1) is dense.

So, there is an open and dense set of points in V̂ for which there is a unique
center-stable plaque, and moreover, such that Es ⊕ Ec is uniquely integrable
at each point of its plaque. Take a small ball B such that each center-stable
plaque of a point in this ball cuts all unstable arcs of the ball in two connected
components. We can establish an order in the unstable arcs that is coherent
in the ball. Observe that two different plaques cut all unstable arcs in the ball
preserving this order, unless they meet at a point. If two different center-stable
plaques P1, P2 meet at a point B, then there is a component in B \ (P1 ∪ P2)
where all unstable arcs are bounded from below by, say P1, and from above by
P2. All plaques P in this component verify P1 ≤ P ≤ P2. However P1 = P2 at x,
this means that there is an open set of points whose center-stable plaque passes
through x. This is a contradiction.

Therefore, we get that the bundle Es⊕Ec is uniquely integrable in V̂ . Analo-
gously, we get the unique integrability of Ec⊕Eu, whence the unique integrability
of Ec follows. �

The following statement follows, with minor modifications, from the proof
above:



12 F.RODRIGUEZ HERTZ, M.RODRIGUEZ HERTZ, AND R. URES

Lemma 4.4. Let f : M→M be a partially hyperbolic diffeomorphism. If U is an
open invariant set such that U ⊂ Ω(f), then the closure of U is su-saturated.

Let us observe that if V̂ is connected then there are only two boundary leaves of
V̂ . This follows from density of any set defined as in Equation (4.1). Also, since
periodic points are dense in the boundary leaves due to Proposition 3.4, there is
an iterate of f that fixes all connected components of V̂ , so we will assume when
proving Theorem 4.1 that V̂ is connected and has two boundary leaves L0 and
L1.

Proof of Theorem 4.1. The strategy will be to show that all center leaves in V̂
meet both L0 and L1. Let p be a periodic point in L0 ∩ I(V ). Then its center
leaf meets L1, and the same happens for all points in its stable and unstable
manifolds. Now stable and unstable manifolds of a periodic point are dense in
each plaque of L0 (Proposition 3.4). So the set of points in L0 whose center leaf
does not reach L1 is contained in a totally disconnected set.

Let us suppose that x0 is a point in L0 whose center leaf does not reach L1.
Consider a small neighborhood SU0 of x0 in a plaque of L0, such that its boundary
is contained in the union of the stable manifold and the unstable manifold of a
periodic point of L0. The union of center leaves of SU0 gives us a (possibly non-

compact) manifold in V̂ , whose boundary is a prism, consisting of two stable-
unstable discs SU0 and SU1 in L0, L1; two center-stable discs CS0 and CS1,
and two center-unstable discs CU0 and CU1. This manifold with boundary is
contained in G(V ), the compact gut of V̂ . Indeed, the length of the center leaf
of x0 is greater than 2δ, and so are the lengths of the center leaves of all points
in SU0. But, as we have stated at the beginning of the proof of Proposition 4.2,
the length of all center leaves in I(V ) are bounded from above by δ/2.

Let us consider the local unstable leaf through x0, and parameterize it such
that the first parameter point is in CS0, and the last is in CS1. Each point in
this unstable arc belongs to a unique closed curve γt contained in the boundary
prism and consisting of two center and two stable curves.

Note that for the first parameter t = 0, the curve γ0 bounds a disc, the disc
CS0. This is an open property in the set of parameters, so γt bound discs CSt
for small parameters t > 0. Let t0 be the first parameter such that γt0 does not

bound a disc. This implies that there is a center curve in V̂ through a point in
γt0 ∩ SU0 that does not reach L1. Otherwise, by taking all center leaves in V̂
through points in γt0 ∩SU0, we would obtain a disc bounded by γt0 . Call Dt0 the

set of all center leaves in V̂ through γt0 ∩ SU0.
Now, this center leaf that does not reach L1 is complete, but not compact,

and moreover, it cannot accumulate on the boundary of the prism. So, there
are uniformly sized center-stable plaques centered at points in this center leaf,
contained in Dt0 . These center-stable plaques accumulate somewhere in the gut.
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Let us take a limit center-plaque of these, and consider a foliated neighborhood
of it. Then a transverse unstable arc in this foliated neighborhood meets Dt0

infinitely many times. But Dt0 is accumulated by the CSt’s. In particular, we
have that the unstable arc meets infinitely many uniformly sized disjoint center-
stable plaques of CS0, which is compact. This is a contradiction. �

Theorem 4.1 implies that any non trivial invariant sub-lamination Λ ⊂ Γ(f)
without compact leaves can be extended to a foliation of M without compact
leaves. Indeed, any complementary region V is an I-bundle, and hence it is
diffeomorphic to the product of a boundary leaf times the open interval: L0 ×
(0, 1). The foliation Ft = L0 × {t} induces a foliation of V .

This has the following consequence in case the fundamental group of M is
nilpotent:

Proposition 4.5. If M is a compact 3-manifold with nilpotent fundamental
group, and ∅ ( Λ ( M , is an invariant sub-lamination of Γ(f), then there
exists a leaf of Λ that is a periodic 2-torus with Anosov dynamics.

Proof. If Λ has a compact leaf, let us consider the set Λc of all compact leaves
of Λ. Λc is in fact an invariant sub-lamination, due to Theorem 2.2. Hence
Proposition 3.4 implies that the boundary leaves of Λc are periodic 2-tori with
Anosov dynamics, and we obtain the claim.

If, on the contrary, Λ does not have compact leaves, then due to Theorem
4.1 above, we can extend Λ to a foliation F of M without compact leaves. In
particular, F is a Reebless foliation. Item (2) of Theorem 2.1 implies that for all
boundary leaves L of Λ, π1(L) injects in π1(M), henceforth it is nilpotent.

Now, this implies that the boundary leaves can only be planes or cylinders.
Theorem 3.4 implies that stable and unstable leaves of periodic points are dense
in those leaves, which is impossible for the case of the plane or the cylinder.
Therefore, Λ must contain a compact leaf, and due to what was shown above, it
must contain a periodic 2-torus with Anosov dynamics. �

In fact, in Section 7, Corollary 7.3 we shall see that periodic 2-tori with Anosov
dynamics are not possible in 3-manifolds with nilpotent fundamental group, un-
less the manifold is T3. Hence the hypotheses of Proposition 4.5 are not fulfilled,
unless the manifold is T3. This will eliminate case (2) mentioned at the beginning
of this Section.

5. Invariant tori

In this section we will prove Theorem 1.6. This theorem and the results in this
section are valid for any 3-manifold M , and do not require that its fundamental
group be nilpotent. Moreover, Theorem 5.1 does not even require the existence
of a partially hyperbolic diffeomorphism.
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Let T be an embedded 2-torus in M . We shall call T an Anosov torus if
there exists a homeomorphism g : M→M such that T is g-invariant, and g|T is
homotopic to an Anosov diffeomorphism.

Also, let S be a two-sided embedded closed surface ofM3 other than the sphere.
S is incompressible if and only if the homomorphism induced by the inclusion map
i# : π1(S) →֒ π1(M) is injective; or, equivalently, after the Loop Theorem, if there
is no embedded disc D2 ⊂ M such that D ∩ S = ∂D and ∂D ≁ 0 in S (see, for
instance, [12]).

The following theorem is general, and does not depend on the existence of a
partially hyperbolic dynamics in the manifold.

Theorem 5.1. Anosov tori are incompressible.

Proof. Let T be an Anosov torus, and let us assume by contradiction that there
is an embedded disk D2 ⊂ M such that D ∩ T = ∂D and ∂D ≁ 0 in T . Then,
by splitting M along T we obtain a manifold with boundary M such that ∂M =
T1 ∪ T2 where Ti, i = 1, 2, are two tori and at least one of them, say T1, verifies
that the homomorphism induced by the inclusion i# : π1(T1) →֒ π1(M) is not
injective.

Let g : M→M be a homeomorphism such that T is g-invariant, and g is
homotopic to Anosov when restricted to T . The homeomorphism g naturally
induces a homeomorphism g : M → M fixing T1 (take g2 if necessary) and such
that (g|T1

)# : π1(T1) → π1(T1) is a hyperbolic linear automorphism. Moreover,
(g|T1

)# leaves ker(i#) invariant.
Now, since the eigenspaces of (g|T1

)# have irrational slope, it is not difficult
to find (j, 0), (0, k) ∈ ker(i#) such that j, k ∈ N \ {0}. Let α, β be two simple
closed curves in T1 such that α and β meet only at a single point and αj is in
the class (j, 0) and βk in the class (0, k). If we delete all ∂M but a small tubular
neighborhood of α, the Loop Theorem gives us a disc Dα embedded in M with
boundary α and in the same way we obtain Dβ with boundary β (this implies
(1, 0), (0, 1) ∈ ker(i#) and, obviously, ker(i#) = π1(T1)) Since we can assume that
Dα and Dβ are transverse, this leads to a contradiction with the fact that the
intersection between α and β consists of one point. �

We are now in position to prove Theorem 1.6 of Page 4:

Proof of Theorem 1.6. If Γ(f) = M then there are no Reeb components. Indeed,
since f is conservative, if there were a Reeb component, then its boundary torus
should be periodic. We get a contradiction from Theorem 5.1. This gives case
(3).

Let us assume that Γ(f) 6= M . If Γ(f) contains a compact leaf then the set of
compact leaves is a sub-lamination Λ of Γ(f) by Theorem 2.2. Proposition 3.4
implies that the boundary leaves of Λ are Anosov tori, and we obtain case (1).
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If Γ(f) 6= M and contains no compact leaves, then Theorem 4.1 and Proposition
3.4 give us case (2). �

6. Growth of curves

In this section we will show that the diameter of an unstable curve in M̃ grows
exponentially under the action of f . Then, following the ideas in [1], we will use
this fact in Section 7 to prove that the action of the homomorphism f∗ induced
by f on the first homology group is hyperbolic.

The main result in this section is the following:

Proposition 6.1. If f : M→M is a partially hyperbolic diffeomorphism of a
3-nilmanifold, such that either Ec ⊕ Eu or Es ⊕ Eu is tangent to an invariant
foliation F , then there is a constant C > 0 such that length(u) ≤ C (diam(u))4

for all unstable arcs u in the universal covering M̃ of M .
In particular, the diameter of an unstable curve in M̃ grows exponentially fast

under the action of f̃ .

Proposition 6.1 will follow from Proposition 6.2 below and Lemma 6.4. Let us
introduce some definitions first.

Given a compact manifold M and x in M̃ , the universal covering of M , let
us define the function v : R+ →R+ in the following way: for any x ∈ M̃ let
vx(r) = vol (B(x, r)), where B(x, r) is the ball centered at x of radius r. Notice
that there is K > 0 such that vx(r) ≤ Kvy(r) for any two points x and y in M̃ .

So let us fix x0 ∈ M̃ and call v(r) = vx0
(r). The following proposition holds for

a general 3-manifold M .

Proposition 6.2. Let f : M→M be a partially hyperbolic diffeomorphism of a
3-manifold. Assume that either Es ⊕ Eu or Ec ⊕ Eu is tangent to an invariant
foliation F . Then there is a constant C > 0 such that if u ⊂ M̃ is an unstable
arc then length(u) ≤ Cv (diam(u)).

Proof. In the first place, we have that F is a Reebless foliation. This is a
consequence of Theorem 3.5 in the case of a foliation tangent to Ec⊕Eu, and of
Theorem 5.1 in case of a foliation tangent to Es ⊕ Eu, because the boundary of
a Reeb component must be periodic.

Let us prove the following lemma:

Lemma 6.3. If F̃ is the lift to the universal cover of a transversely orientable
Reebless foliation, then there exists ε > 0 such that B(x, ε) ∩ L̃ is connected for
all leaves L̃ of F̃ for all x ∈ M̃ .

Proof of Lemma. Otherwise we would find a product neighborhood of x such that
there are two disjoint plaques of L̃ met by the same short transverse arc s. Recall
that F is transversely orientable. Let us consider an arc α ⊂ L̃ joining these two
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intersections of s and L̃. Cover α with foliated neighborhoods. It is easy to find
an arc β close to α, such that β is transverse to F̃ , and β∪s contains a close curve
γ̃ transverse to F̃ . This would produce a curve γ in M , which is homotopically
trivial and transverse to F . Theorem 2.1 would imply a Reeb component. �

There exists ε0 > 0 such that for all 0 < ε < ε0 there is δ > 0 for which:

length(u) > δ ⇒ dist(endpoint1(u), endpoint2(u)) > ε

Indeed, Lemma 6.3 precludes the possibility that the endpoints of u be in close
disjoint plaques. Now, the endpoints of a long unstable arc cannot be in the same
plaque of L̃, since L̃ (which is a plane, due to Theorem 2.3) is foliated by curves
tangent to Eu. If the ends were in the same plaque, then there would be a short
transverse curve enclosing a region. A Poincaré-Bendixon type argument would
produce a contradiction.

So, given an unstable arc u there exist at least length(u)/2δ disjoint 3-balls
of radius ε/2 with center at a point of u. Clearly, the union of these balls is
contained in B(x, diam(u)) for some x which implies:

length(u) ≤
2δ

min{vy(ε/2); y ∈ M̃}
vx(diam(u)) ≤ Kv(diam(u)).

Lemma 6.4. Three dimensional nilmanifolds have polynomial growth of volume.
More precisely,

v(r) ≤ Kr4

Proof. Let M be a three-nilmanifold, and for each r > 1, consider the isomor-
phism Lr of M̃

Lr(x, t) = (rx, r2t)

for all (x, t) in M̃ . See Section 7 for details of automorphisms of nilmanifolds.

Then, L̂r = D0Lr is induced by the matrix

L̂r =





r 0 0
0 r 0
0 0 r2





Now, we have,

v(r) ≤ vol(LrB(0, 1)) =

∫

LrB(0,r)

dx = det(L̂r)v(1) ≤ v(1)r4

�
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7. Nilmanifolds in dimension 3

In this section we give a more detailed description of three dimensional nil-
manifolds. This is motivated by the fact that the main theorem in this paper,
Theorem 1.3, applies only to nilmanifolds, due to Theorem 1.4.

Also, in this section we will see that Γ(f) cannot have a periodic compact leaf.
This will rule out the possibility (2) mentioned at the beginning of Section 4, and
will impose some restrictions to the possibility (3).

Let H be the group of upper triangular 3×3 matrices with ones in the diagonal.
This is a non-abelian nilpotent simply connected three dimensional Lie group. We
may identify H with the pairs (x, t) where x = (x1, x2) ∈ R

2, t ∈ R,

(x, t) · (y, s) = (x+ y, t+ s+ x1y2) and (x, t)−1 = (−x, x1x2 − t).

We have the projection p : H→R2, p(x, t) = x which is also an homomorphism.
If we denote by h the Lie algebra of H, then we may also identify h with

the pairs (x, t) where x = (x1, x2) ∈ R2, t ∈ R. We have the exponential map
exp : h→H given by exp(x, t) = (x, t + 1

2
x1x2), exp is one to one and onto; and

its inverse, the logarithm, log : H→ h is given by log(x, t) = (x, t− 1
2
x1x2).

The homomorphisms from H to H are of the form L(x, t) = (Ax, l(x, t)), where

A =

(

a b
c d

)

and l(x, y) = αx1 + βx2 + det(A)t+
ac

2
x2

1 +
bd

2
x2

2 + bcx1x2.

Let L̂ = D0L. Then

L̂ =





a b 0
c d 0
α β det(A)





and exp
(

L̂(x, t)
)

= L (exp(x, t)).

The centralizer of H is exactly H1 = [H,H] which consists of the elements of
the form (0, t). Any homomorphism from H to H must leave H1 invariant.

Any lattice in H is isomorphic to Γk = {(x, t) : x ∈ Z2, t ∈ 1
k
Z}, for k a positive

integer.
The automorphisms of H are exactly the ones with det(A) 6= 0 and the au-

tomorphisms leaving Γk invariant are the ones with A ∈ GL(2,Z) (the matrices
with integer entries and determinant ±1) and α, β ∈ 1

k
Z. On the other hand,

every automorphism of Γk extends to an automorphism of H.

Lemma 7.1. If S is a subgroup of Γk isomorphic to Z2, then S ∩H1 6= {(0, 0)}.

Proof. Let (x, t) and (y, s) generate S. Then, (x, t) · (y, s) = (y, s) · (x, t) implies
x1y2 = x2y1. So, y = p

q
x. Now, (x, t)p · (y, s)−q = (0, u) for some u ∈ R. The fact

that (x, t) and (y, s) generate S implies u 6= 0, so (0, u) ∈ H1 ∩ S �
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We define the quotient Nk = H/Γk given by the relation (x, t) ∼ (y, s) iff
(x, t)−1 · (y, s) ∈ Γk. A compact 3-nilmanifold is defined as either Nk for some
k ∈ N, or T3. The first homotopy group is π1(Nk) = Γk and two endomorphisms
of Nk are homotopic if and only if their actions on Γk coincide. Moreover, any
endomorphism of Nk is homotopic to an automorphism as described above leaving
Γk invariant.

Given f : Nk→Nk, with induced automorphism on Γk, f# = L, if F : H→H
is a lift of f to H, then F (zn) = F (z)L(n) for every n ∈ Γk, z ∈ H. Moreover,
F (z) = ξ(z)L(z), where ξ : H→H is such that ξ(zn) = ξ(z) for every n ∈ Γk,
z ∈ H and for k > 0, F k(z) = ξk(z)L

k(z) where

ξk+1(z) = ξ
(

F k(z)
)

L
(

ξ
(

F k−1(z)
))

. . . Lk (ξ(z))Lk+1(z)(7.2)

The projection p : Nk→T2, p ((x, t) · Γk) = x + Z2 induces an isomorphism
p∗ : H1(Nk)→H1(T

2). Let d be a right invariant metric on H, for instance
d ((x, t), 0) = |x| + |t − 1

2
x1x2| where x = (x1, x2). The exponential exp : h→H

is an isometry if the metric in h is |(x, t)| = |x| + |t|.
We have the following proposition:

Proposition 7.2. Let f : Nk→Nk be a partially hyperbolic diffeomorphism. If
f does not have the accessibility property then Es ⊕ Eu integrates to a foliation
such that any f -invariant sub-lamination is the whole manifold M . Moreover, the
action of f∗ = A on H1(Nk,Z) is hyperbolic and hence there is a semiconjugacy
h : Nk→T2 homotopic to p such that h ◦ f = Ah.

Proof. Proposition 4.5 and Theorem 5.1 imply that either Es ⊕ Eu integrates to
a foliation having the minimality property stated above, or there is a torus T
invariant by fk whose homotopy group injects in π1(Nk) and such that fk#|π1(T )
is hyperbolic.

If this were the case, since π1(T ) ∼ Z2, using Lemma 7.1 we get that π1(T ) ∩
H1 6= {0}. On the other hand, for any automorphism L of Γk, L(x, t) = (x, t)±1

for every (x, t) ∈ H1 which gives a contradiction.
So we have that Es ⊕ Eu integrates to a foliation. Let us call L = f#. Notice

that L(x, t) = (Ax, l(x, t)) where A = f∗ the action of f on H1(Nk,Z). Thus, if A
is not hyperbolic, then it is not hard to see that for k > 0, d(Lkz, 0) ≤ Ck2d(z, 0)
for some constant C > 0. Take F (z) = ξ(z)Lz a lift of f to H. Then, using
formula 7.2 and that d is a right invariant metric, we have that for every z ∈ H,

d
(

F k(z), 0
)

≤
k−1
∑

i=0

d
(

Liξ
(

fk−1−i(z)
)

, 0
)

+ d
(

Lk(z), 0
)

≤ d
(

ξ
(

fk−1(z)
)

, 0
)

+
k−1
∑

i=1

Ci2d
(

ξ
(

fk−1−i(z)
)

, 0
)

+ Ck2d (z, 0)

≤ Ck3 + Ck2d(z, 0)
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since d(ξ(z), 0) ≤ C for every z ∈ H.
Thus, if u is an unstable arc in H, then for k > 0, diam

(

F k(u)
)

≤ C(u)k3 for
some constant C(u) that does not depend on k. On the other hand, by Proposition
6.1, the growth of F k(u) should be exponential. Thus we get a contradiction and
hence A must be hyperbolic. The existence of h follows exactly as in [8]. �

Let us note that we have also shown the following general Corollary (it does
not require partial hyperbolicity):

Corrollary 7.3. If M is a compact 3-nilmanifold, and T ⊂ M is an Anosov
torus, then M = T3.

Let us observe that alternatively we can view Nk as the mapping torus of the

toral automorphism Ak =

(

1 k
0 1

)

in the following way. Let us define

Ψk : H→R3 so that Ψk





1 x1 t
0 1 x2

0 0 1



 = (−kt, x1, x2).

It is easy to see that there exists ψk : Nk→Mk, where Mk is the mapping torus
of Ak, making the following diagram commute:

H
Ψk→ R3

≈↓ ↓∼

Nk
ψk→ Mk

Here ≈ is the relation induced by Γk, and ∼ is the relation induced by Ak in the
mapping torus, namely (x, 1) ∼ (Akx, 0).

Moreover, ψk is a diffeomorphism. In the next section we shall view the nil-
manifolds Nk as the mapping tori Mk, and use them indistinctively.

8. Proof of Theorem 1.3

Let f : M→M be a conservative partially hyperbolic diffeomorphism of a
compact orientable three dimensional nilmanifold. As it was shown in Proposi-
tion 7.2, if f does not have the accessibility property, then Es ⊕ Eu integrates
to a foliation F su with the following minimality property: any closed, nonempty,
f -invariant set saturated by leaves is the whole manifold M . In this last section
we shall prove that the existence of such a foliation leads us to a contradiction.
Without loss of generality we may assume, by taking a double covering if neces-
sary, that F su is transversely orientable. Observe that the double covering of a
nilmanifold is again a nilmanifold.

Lemma 8.1. If F su has a compact leaf, then M = T3.
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Proof. Observe that there are no periodic compact leaves due to the minimality
property of the foliation. On the other hand, if there is a compact non-invariant
leaf T (it must be a torus) then {fn(T );n ∈ Z} = M . This implies that all the
leaves are tori, due to Theorem 2.2. Then M is the mapping torus of a linear
automorphism of T2 that commutes with a hyperbolic one. Indeed, M is a torus
bundle over the circle, whose fibers are the tori of the foliation. Let us cut M
along one of these tori T . We obtain a manifold with boundary diffeomorphic
to T × [0, 1]. T has two transverse foliations with irrational slope. In order to
reobtain M we identify T × {0} with T × {1} by means of a diffeomorphism
ψ of T which preserves the two transverse foliations. ψ is isotopic to a linear
automorphism A of T . A preserves the asymptotic directions of both foliations.
Hence, A is either hyperbolic or ±id.

Now, the only orientable three dimensional nilmanifold satisfying this property
is T3. �

We shall say that a set Λ is a minimal set of a foliation F if Λ is a sub-lamination
of F such that all leaves of Λ are dense in Λ. The proof of the following theorem
can be found in [13, Theorem 4.1.3.]

Theorem 8.2. Let F be a codimension one C0-foliation without compact leaves
of a three dimensional compact manifold M . Then, F has a finite number of
minimal sets.

F is a minimal foliation if all leaves of F are dense in M .

Lemma 8.3. F su is a minimal foliation.

Proof. F su has no compact leaves. Call K1, . . . , Kk the minimal sets of F su,
whose number is finite due to Theorem 8.2. K = K1 ∪ · · · ∪Kk is an f -invariant
sub-lamination of F su. Since two different minimal sets have empty intersection,
one Ki is periodic and hence Ki = M proving the minimality of F su.

This kind of foliations is already classified in our context, as it is shown by Plante
in [14]. Concretely, Theorem 4.1 plus Remark (i) of page 227 give:

Theorem 8.4 (Plante). Let M be a compact oriented 3-manifold such that π1(M)
is solvable, and let F be a transversely oriented codimension-one minimal folia-
tion. Then F is homeomorphic to the foliation of the mapping torus

Mφ = T2 × [0, 1]/(x, 1) ∼ (φ(x), 0)

given by G × [0, 1]/ ∼, where G is a φ-invariant foliation of T2, which is covered
by a parallel line foliation of the plane.

The theorem above was originally formulated for C2 foliations. This hypothesis
is necessary only to avoid Denjoy-type exceptional minimal sets. The hypothesis
of the minimality of F avoids this kind of phenomenon, obtaining the same result
for C0 foliations.
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Now, if our manifold is Nk, then φ in Theorem 8.4 must be isotopic to Ak =
(

1 k
0 1

)

, due to the final comment of Section 7. In particular, G is isotopic to

an Ak-invariant foliation of T2. The only possibility is that G is a foliation by
circles.

Figure 3. The foliation F su of the mapping torus Nk

Remark 8.5. Moreover, G is a foliation by horizontal circles, that is, F su is a
foliation isotopic to the one appearing in Figure 3. Indeed, since G is isotopic
to an Ak-invariant foliation of T2, and F su is induced on Nk by the foliation
G × [0, 1], then F su is induced by the foliation of H having leaves of the form

(t, x2) 7→ Ψk





1 x1 t
0 1 x2

0 0 1



 where x1 is constant.

Now, let h : Nk → T2 be the semiconjugacy given by Proposition 7.2.

Lemma 8.6. There is w ∈ Nk such that h(W σ(w)) = W σ(h(w)) with σ = u or s.

Proof. First of all we claim that there exists x such that either h(W s(x)) or
h(W u(x)) contains more than one point. If for all y ∈ Nk we have that h(W u(y)) =
h(W s(y)) = h(y) ∈ T2 then h(AC(x)) = h(x) (where AC(x) is the accessibility
class of x, see Section 3). Observe that AC(x) is a leaf of F su. The minimal-
ity of F su then implies that AC(x) is dense and hence, due to continuity of h,
h(Nk) = h(x) contradicting the surjectivity of h.

Now, take x ∈ Nk such that h(W u(x)) is a nontrivial interval of W u(h(x)) and
let z ∈ W u(x) be such that h(z) is an interior point of h(W u(x)). Any point
w ∈ ω(z) satisfies that h(W u(w)) = W u(h(w)).

Take a point w as in the previous lemma, such that for instance h(W u(w)) =
W u(h(w)), and call F the F su-leaf through w. Since F is a cylinder, there exists
an injective immersion i : R × S1 → Nk such that i(R × S1) = F . Consider
also j = h ◦ i : R× S1 → T2. The previous considerations about F su imply that
j# : π1(R×S

1) → π1(T
2) is trivial (see Remark 8.5). Observe that j# = h#◦i# =
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p# ◦ i#. Then there exists ̃ : R× S1 → R2 such that j = π ◦ ̃ where π : R2 → T2

is a covering projection.
Remark 8.5 also implies that ̃(R× S1) is contained in bounded neighborhood

of W u(̃(i−1(w)) ⊂ ̃(R× S1). See Figure 4

W s(h(w))W u(h(w))

̃(i−1(W s(w)))

W u(̃(i−1(w)))

Figure 4. Proof of Theorem 1.3

Consider now i−1(W s(w)). Since the foliation F s has neither singularities
nor compact leaves, i−1(W s(w)) is unbounded. It is not difficult to see that
this implies that ̃(i−1(W s(w))) is unbounded but it is at bounded distance of
W u(̃(i−1(w))) which is a contradiction. This proves Theorem 1.3.
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