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Abstract. It is shown that stable accessibility property is Cr-dense among
partially hyperbolic diffeomorphisms with one-dimensional center bundle,
for r ≥ 2, volume preserving or not. This answers a conjecture by Pugh
and Shub for these systems.

1. Introduction

Partially hyperbolic systems are diffeomorphisms f : M → M with a Tf -
invariant splitting TM = Es ⊕ Ec ⊕ Eu such that Tf is contracting on Es,
expanding on Eu, and has an intermediate behavior on Ec. For more details,
see §2. The “hyperbolic part” of the system, and hence the most relevant
dynamical information, is given by the plane fields Es and Eu. It is natural,
then, to study (Es, Eu) accessibility.

Accessibility is a concept arising from control theory (see for instance [13]
and [22]). In this setting, one has two plane fields X, Y and states that the
system (X, Y ) is accessible if one can join any two points in the manifold by a
path which is piecewise tangent to either X or Y . See also [17] for an account
of this. Essential accessibility is the weaker property that if A and B are
measurable sets with positive measure, then some point of A must be joined
to some point of B by such a path.

It was Brin and Pesin [1] (see also Sacksteder [21]) who first suggested that
accessibility (i.e. (Es, Eu) accessibility) should be relevant in the context of er-
godic theory, more precisely, to study ergodic properties of partially hyperbolic
systems.
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Around 1995, Pugh and Shub developed a program to obtain ergodicity for
(at least) a C1 open and Cr dense set of partially hyperbolic systems [16, 17].
More precisely they formulated the following:

Conjecture 1. Stable ergodicity is Cr dense among partially hyperbolic dif-

feomorphisms for r ≥ 2

A stably ergodic diffeomorphism is a C2 diffeomorphism such that all C1-
perturbations among C2 volume preserving diffeomorphisms are ergodic.

Pugh and Shub divided this conjecture into two:

Conjecture 2. Essential accessibility implies ergodicity for a C2 volume pre-

serving partially hyperbolic diffeomorphism.

Conjecture 3. Stable accessibility is Cr-dense among partially hyperbolic

diffeomorphisms, volume preserving or not.

Conjectures 2 and 3 have been attacked by many authors, and there are
now many partial results about them, an account of which may be found, for
instance, in [10]. Let us recall some of these advances:

Conjecture 2 was proved by Brin and Pesin in [1] under the additional hy-
potheses of dynamical coherence (that is, unique integrability of the center
bundle), a technical condition on the rates of contraction/expansion of the
invariant bundles, called center bunching, which requires Tf to behave close
to conformally on Ec, and Lipschitzness of Ec.

It took another 20 years until, Grayson, Pugh and Shub [9] obtained the first
result without using Lipschitzness of Ec by proving Conjecture 2 for pertur-
bations of the time-one map of the geodesic flow of a surface of constant nega-
tive curvature. This provided the first non-hyperbolic stably ergodic example.
Their result was extended by A. Wilkinson in her PhD thesis to non-constant
curvature [23].

In [17] and [18], Pugh and Shub proved Conjecture 2 under the additional
hypotheses of dynamical coherence, and a rather strong center bunching con-
dition requiring that the action of Tf on Ec be close to isometric. This result
was used, for instance, by Burns, Pugh, Wilkinson in [3] to establish stable er-
godicity of time-one maps of Anosov flows that are not suspensions of Anosov
diffeomorphisms, and by Burns and Wilkinson in [4] to establish denseness of
stable ergodicity among compact Lie group extensions of Anosov diffeomor-
phisms.

Finally, Burns and Wilkinson in [5] removed the dynamical coherence hy-
pothesis and proved Conjecture 2 with a weaker center bunching hypothesis,
proving the strongest version of the conjecture known so far. This center
bunching hypothesis requires that the action of Tf on Ec be close enough to
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conformal, and is always satisfied if dim Ec = 1. Another proof of the con-
jecture in the case dim Ec = 1 was obtained by Rodriguez Hertz, Rodriguez
Hertz and Ures in [19].

With respect to Conjecture 3, Brin and Pesin showed in [1] that the time-
one map of a k-frame flow on a manifold of constant negative curvature has
the accessibility property. Grayson, Pugh and Shub [9] and Wilkinson [23]
proved the accessibility property for perturbations of the time one map of the
geodesic flow of negatively curved surfaces. Katok and Kononenko [12] proved
accessibility for all diffeomorphisms such that Es ⊕ Eu is a contact bundle,
and for certain perturbations, in particular, for C2 perturbations of time-one
maps of contact Anosov flows. This was used by Pugh and Shub in [17] to
show that the time-one maps of the geodesic flows of manifolds of negative
sectional curvature are stably accessible. In [3], Burns, Pugh and Wilkinson
proved that the time-one map of any 3-dimensional Anosov flow that is not a
suspension is stably accessible.

In [15], Niţică and Török found a Cr-dense set of stably accessible diffeomor-
phisms among the following ones: r-normally hyperbolic diffeomorphisms with
one-dimensional center distribution, having two close compact periodic leaves,
volume preserving or not. Dolgopyat and Wilkinson proved Conjecture 3 with
Cr density weakened to C1 density [7]. When the center distribution is one-
dimensional, Didier showed that accessibility is C1-open [6].

Rodriguez Hertz, Rodriguez Hertz and Ures found a C∞-dense set of stably
accessible diffeomorphisms among the Cr volume preserving partially hyper-
bolic diffeomorphisms with one-dimensional center distribution, proving the
volume preserving part of Conjecture 3 for this case [19].

In this paper we extend the arguments in [19] to show that accessible dif-
feomorphisms are Cr dense in the space of all Cr partially hyperbolic dif-
feomorphisms with one-dimensional center, thereby completing the proof of
Conjecture 3 for the case of one-dimensional center.

2. Preliminaries

Let f : M → M be a diffeomorphism of a compact manifold M . We say
that f is partially hyperbolic if the following holds. First, there is a nontrivial
splitting of the tangent bundle, TM = Es ⊕ Ec ⊕ Eu that is invariant under
the derivative map Tf . Further, there is a Riemannian metric for which we
can choose continuous positive functions ν, ν̂, γ and γ̂ with

ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1(2.1)



4 K. BURNS, F. RODRIGUEZ HERTZ, M. RODRIGUEZ HERTZ, A. TALITSKAYA, AND R. URES

such that, for any unit vector v ∈ TpM ,

‖Tfv‖ < ν(p), if v ∈ Es(p),(2.2)

γ(p) < ‖Tfv‖ < γ̂(p)−1, if v ∈ Ec(p),(2.3)

ν̂(p)−1 < ‖Tfv‖, if v ∈ Eu(p).(2.4)

Denote by PHD r
1(M) the set of (not necessarily volume-preserving) Cr par-

tially hyperbolic diffeomorphisms of M with 1-dimensional center distribution.
Unless otherwise specified we give PHD r

1(M) the Cr topology. It is convenient
to let s, c and u denote the dimensions of Es, Ec, and Eu, respectively. When
necessary we use a subscript to indicate the dependence of the bundles on the
diffeomorphism.

We say that f is center bunched if the functions ν, ν̂, γ, and γ̂ can be chosen
so that:

max{ν, ν̂} < γγ̂.(2.5)

Center bunching means that the hyperbolicity of f dominates the nonconfor-
mality of Tf on the center. Inequality (2.5) always holds when Tf |Ec is con-
formal. For then we have ‖Tpfv‖ = ‖Tpf |Ec(p)‖ for any unit vector v ∈ Ec(p),
and hence we can choose γ(p) slightly smaller and γ̂(p)−1 slightly bigger than

‖Tpf |Ec(p)‖.

By doing this we may make the ratio γ(p)/γ̂(p)−1 = γ(p)γ̂(p) arbitrarily close
to 1, and hence larger than both ν(p) and ν̂(p). In particular, center bunching
holds whenever Ec is one-dimensional.

The bundles Eu and Es are uniquely integrable. As usual Wu and Ws will
denote the foliations to which they are tangent. There are partially hyper-
bolic diffeomorphisms for which Ec is not integrable, but none of the known
examples has one dimensional center. The question of whether the center dis-
tribution must be uniquely integrable if it is one dimensional is still open, even
for partially hyperbolic diffeomorphisms of three dimensional manifolds.

We assume that we have a Riemannian metric on M adapted to f so that
the inequalities at the beginning of this section hold. Distance with respect to
this metric will be denoted by d(·, ·).

If W is a foliation of M , Wρ(x) will denote the set of points that can be
reached from x by a C1 path of length less than ρ tangent to the foliation; this
set is a disc for small enough ρ. We define Wloc(x) to be WR(x) for a suitably
small R. The radii such as ε and δ considered in the paper are, of course, much
smaller than R.
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3. Accessibility

A partially hyperbolic diffeomorphism has the accessibility property if any
two points are joined by a us-path. A us-path from x to y is a finite sequence
of points z0, . . . , zm such that z0 = x, zm = y and zi ∈ Wu(zi−1) ∪ Ws(zi−1)
for 1 ≤ i ≤ m.

Denote by A the set of all diffeomorphisms in PHDr
1(M) with the accessi-

bility property. Didier [6] showed that A is a C1 open subset of PHD r
1(M).

Note that the assumption of one dimensional center is crucial in Didier’s work.
It is not known whether accessibility is an open property when the center is
higher dimensional.

In this paper we prove the following result.

Theorem 1. A is Cr dense in PHDr
1(M).

We extend the arguments in [19] where the analogous result is proved for
the subspace of volume preserving diffeomorphisms in PHDr

1(M). The proof
in this paper can also be adapted to the volume preserving case; all of the
perturbations that we need can be made in a volume preserving way. Together
with Didier’s result, Theorem 1 and its analogue in [19] establish the conjecture
of Pugh and Shub about the density of accessibility (Conjecture 3) in the case
when the center bundle Ec is one dimensional.

Given a diffeomorphism f ∈ PHD r
1(M), the accessibility class AC(x, f) of

a point x is the set of all points that can be joined to x by us-paths for f .
We denote by Γ(f) the set of points x ∈ M for which the accessibility class

is not open. The map f has the accessibility property if and only if Γ(f) = ∅.
The set Γ(f) is a compact invariant subset of M .

Denote by K(M) the set of compact subsets of M with Hausdorff distance.
In Section 4 we prove the following:

Theorem 2. The map Γ: PHD r
1(M) → K(M) is upper-semicontinuous with

respect to the Cr topology on PHDr
1(M).

Upper semi-continuity means that if fn → f , xn → x in M and xn ∈ Γ(fn)
for each n, then x ∈ Γ(f).

Remark 3. Recall that Γ(f) = ∅ is equivalent to accessibility of f . Theorem 2
above implies Didier’s result in [6] that the set of diffeomorphisms in PHD r

1(M)
with the accessibility property is open. Indeed, if this were not the case, we
could find f ∈ PHD r

1(M) with Γ(f) = ∅ and a sequence fn → f in PHD r
1(M)

such that Γ(fn) 6= ∅ for each n. But then Theorem 2 and compactness of M
give Γ(f) 6= ∅, which is a contradiction.
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It is a classical result that the set of continuity points of an upper-semicontinous
function such as Γ is dense; see e.g. §39.IV.2 in [11]. Theorem 1 now follows
immediately from the next result.

Theorem 4. If f is a continuity point of Γ, then Γ(f) = ∅.

From Section 5 on, this paper is dedicated to proving Theorem 4. Here is
an outline of its proof:

In the first place, we show that there is a Cr dense set of diffeomorphisms
of PHDr

1(M) for which the accessibility class of every periodic point is open,
this is, Γ(g)∩Per(g) = ∅ for a Cr dense set of g ∈ PHDr

1(M) (Proposition 12).
In order to get this dense set we use an unweaving method (see Lemma 11),
which allows us to break up the joint integrability of Es and Eu on periodic
orbits. In this way, we “open” the accessibility class of a periodic point by
means of a Cr small perturbation. The unweaving method, in turn, is based
on the Keepaway Lemma (Lemma 9) which may be found in Section 5.

On the other hand, in Section 8, we assume there exists a continuity point f
of Γ with Γ(f) 6= ∅. Under this hypothesis, we find an open set N in PHD r

1(M)
such that every h ∈ N has a periodic point with nonopen accessibility class,
that is, Γ(h) ∩Per(h) 6= ∅ for every h ∈ N (Lemma 16). Therefore, we obtain
a contradiction.

4. Theorem 2

Let us say that a diffeomorphism f in PHDr
1(M) is jointly integrable at a

point x ∈ M if there exists ε > 0 such that for all y ∈ Wu
ε (x) and z ∈ Ws

ε (x)
we have

Ws
loc(y) ∩Wu

loc(z) 6= ∅.

See Figure 1.

Proposition 5. If x ∈ Γ(f), then f is jointly integrable at x.

Proof. Lemma 2 of [6]; see also Remark 3.1 of [19]. �

Conversely, if x /∈ Γ(f), we have a point of non-joint integrability in Γ(f).

Proposition 6. If x /∈ Γ(f), there is a point in AC(x, f) at which f is not

jointly integrable.

Proof. See Proposition 3 of [6] in the case where Γ(f) is empty and Section
3.1 of [19] for the general case. �

Proposition 7. For x /∈ Γ(f) there exist a C1-neighborhood U of f , and ε > 0
such that

B(x, ε) ⊂ AC(x, g) for all g ∈ U .
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Figure 1. f is jointly integrable at x

Proof. Combining Proposition 6 above with Proposition 5 of [6], we obtain
that for x /∈ Γ(f) there exist a C1-neighborhood V of f , α > 0 and z ∈ M
such that B(z, α) ⊂ AC(x, g) for all g ∈ V.

Strong foliations vary continuously, in the following sense: if xn → x in M ,
and fn → f in the C1-topology, then for each ρ > 0

(4.6) Ws
fn,ρ(xn) → Ws

f,ρ(x) and Wu
fn,ρ(xn) → Wu

f,ρ(x) in K(M).

Let z = y1, y2, . . . , ym = x be a us-path for f joining z to x such that yi ∈
Ws

f,ρ(yi−1)∪Ws
f,ρ(yi−1) for all i. An inductive argument using (4.6) shows that

if we start with any small enough ε1 > 0 we can find C1-neighborhoods Vi of
f and εi > 0 such that for 2 ≤ i ≤ m we have

B(yi, εi) ⊂ Ws
g,ρ(B(yi−1, εi−1)) ∪Wu

g,ρ(B(yi−1, εi−1)) for all g ∈ Vi.

We obtain the proposition by considering ε1 < α and taking ε = εm and
U =

⋂m
i=1 Vi. �

Proof of Theorem 2. Let us note that the accessibility class of a point x is
open if it has non-empty interior (see for instance [19, Proposition A.4.]). If
x /∈ Γ(f), then for all y ∈ B(x, ε), and all g ∈ U as above, we have B(x, ε) ⊂
AC(y, g), so y /∈ Γ(g). This proves Theorem 2. �

Finally, let us emphasize the fact that the compact invariant set Γ(f) is a
lamination [19, Proposition A.3], whose laminae are codimension one immersed
submanifolds, everywhere tangent to Es ⊕Eu [6, Proposition 3]. Each lamina
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is an accessibility class. We will denote by Γ(x, f) the lamina of Γ(f) that
contains x. Note that Γ(x, f) = AC(x, f) for x ∈ Γ(f).

Now, compactness of Γ(f) and semicontinuity of the operator Γ guarantee
the uniformity of jointly integrability in a Cr-neighborhood of f :

Proposition 8. For f ∈ PHDr
1(M), there are a Cr neighborhood U0 and an

ε > 0 such that if x ∈ Γ(g), y ∈ Wu
g,ε(x) and z ∈ Ws

g,ε(x) then

Ws
g,loc(y) ∩Wu

g,loc(z) 6= ∅

for all g ∈ U0. See Figure 1.

5. The Keepaway Lemma

Let f be a diffeomorphism preserving a foliation W tangent to a continuous
sub-bundle E of TM . Call W(x) the leaf of W through x and Wε(x) the set of
points that are reached from x by a curve contained in W(x) of length less than
ε. We are interested in the case where the bundle E is uniformly expanded by
Tf . This means that there is a constant µ < 1 such that ‖Tf−1|E‖ < µ < 1.

The following lemma was already proved by R. Mañé [14, Lemma 5.2.] when
the dimension of E is 1. The general case is presented in [19]. We reproduce
the proof since it is quite short and the lemma is fundamental to this paper.

Given a (small) embedded manifold V transverse to W whose dimension
equals the codimension of E and δ > 0, define

Bδ(V ) =
⋃

y∈V

Wδ(y).

We will always assume that V and δ are chosen so that the discs W5δ(y) for
y ∈ V are pairwise disjoint. There is no need for V to be connected.

Lemma 9 (Keepaway Lemma). Assume that the bundle E is uniformly ex-

panded by Tf , i.e. there is a constant µ < 1 such that ‖Tf−1|E‖ < µ < 1. Let

N > 0 be such that µ−N > 5 and let V be a small manifold transverse to W
whose dimension is complementary to that of the leaves of W. Suppose that

for some ε > 0 we have

fn(B5ε(V )) ∩ Bε(V ) = ∅ for n = 1, . . . , N .

Then for each x ∈ M there is a point z ∈ Wε(x) such that fn(z) /∈ Bε(V ) for

all n ≥ 1.

Proof. We shall construct a sequence of closed discs D0, D1, D2, . . . starting
from D0 = Wε(x) such that f−1(Dn) ⊂ Dn−1 for all n > 0 and Dn∩Bε(V ) = ∅.
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Then z can be chosen to be any point in

∞⋂

n=0

f−n(Dn).

In fact this intersection will consist of a unique point in our construction.
Observe that for any δ > 0 and any point p ∈ M we have

(5.7) Wδ(f(p)) ⊂ Wδ/µ(f(p)) ⊂ f(Wδ(p)).

The construction is as follows:

(0) Set D0 = Wε(w0), where w0 = x.
(1) If n < N , put Dn = fn(D0).
(2) For the N th iterate, observe that we still have fN(D0) ∩ Bε(V ) = ∅

and now we also know that fN(D0) contains the round ball of radius
5ε centered at fN(w), that is,

W5ε(fN(w)) ⊂ fN(D0).

We set DN = W5ε(fN(w0)).

(3) For n > N , we continue to set Dn = W5ε(fn(w)) until we reach n = n1,
where n1 is the first n such that

W5ε(fn1(w0)) ∩ Bε(V ) 6= ∅.

We get Dn ⊂ f(Dn−1) for N < n < n1 from (5.7) with δ = 5ε and
p = fn−1(w0).

(4) For the nth
1 iterate, we do not take W5ε(fn1(w0)), since this disc in-

tersects Bε(V ). But there is a point wn1
∈ W4ε(fn1(w0)) such that

Wε(wn1
) ⊂ B5ε(V )\Bε(V ). Indeed, let yn1

∈ V be the center of the leaf

in Bε(V ) that intersects W5ε(fn1(w0)). If yn1
lies outside W2ε(fn1(w)),

then we can take wn1
= fn1(w0). If yn1

lies outside W2ε(fn1(w)), then

wn1
can be any point in W5ε(fn1(w0)) whose distance from fn1(w0)) is

4ε.
Choose Dn1

= Wε(wn1
). We get Dn1

⊂ f(Dn1−1) using (5.7) with

δ = 5ε and p = fn1−1(w0) and the fact that Dn1
⊂ W5ε(fn1(w0)).

(5) Now, go to Step 1, replace D0 by Dn1
, and continue the construction

with the obvious modifications.

This algorithm gives the desired sequence of discs, and then the point z,
proving the lemma. �

The Keepaway Lemma gives us an abundance of nonrecurrent points.
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Corollary 10. Suppose f : M → M has an invariant foliation W tangent to

a bundle that is uniformly expanded by Tf . Then the set {z : z /∈ ω(z)} of

points that are nonrecurrent in the future is dense in every leaf of W.

Proof. Let y be a point in M . If y is not periodic, we can choose a transversal
V to W that passes through y such that the hypothesis of the previous lemma
is satisfied for any small enough ε > 0; the lemma then gives us a point
z ∈ Wε(y) that is not forward recurrent. If y is periodic, no other point
of W(y) is recurrent, so for any small ε > 0 we can choose a nonrecurrent
point y′ ∈ Wε/2(y) and then find a point z ∈ Wε/2(y

′) that is not forward
recurrent. �

6. Unweaving

The results of the previous section allow us to break up integrability of Eu

and Es.

Lemma 11. Let K ⊂ Γ(f) be a minimal set for a diffeomorphism f ∈
PHDr

1(M). Then we can find g ∈ PHDr
1(M) as close to f in the Cr topology

as we wish such that f |K = g|K and AC(x, g) is open for some point x ∈ K.

Note that this lemma includes the case when K is a periodic orbit, which
was treated in [19].

Proof. We construct g by perturbing f in the complement of the closed f -
invariant set K. This ensures that K remains invariant under g.

The construction is an application of the Brin quadrilateral argument. We
choose a closed us-quadrilateral with corners x, y, z, w such that x ∈ K and
y /∈ K, as in Figure 1. The quadrilateral is constructed so that there are radii
ρ, ρ1, ρ2, ρ3, ρ4 > 0 such that B(y, ρ) ∩ K = ∅ and:

(1) w ∈ Ws
ρ1

(y) and fn(Ws
ρ1

(y)) ∩ B(y, ρ) = ∅ for any n ≥ 1;

(2) y ∈ Wu
ρ2

(x) and f−n(Wu
ρ2

(x)) ∩ B(y, ρ) = ∅ for any n ≥ 1;

(3) z ∈ Ws
ρ3

(x) and fn(Ws
ρ3

(x)) ∩ B(y, ρ) = ∅ for any n ≥ 0;

(4) w ∈ Wu
ρ4

(z) and f−n(Wu
ρ4

(z)) ∩ B(y, ρ) = ∅ for any n ≥ 0.

A perturbation that changes f only inside B(y, ρ) leaves x, z and w joined
by a us-path. It is easy to break the us-connection from x to w through y by
composing f with a “push” in the central direction that is restricted to B(y, ρ)
(see Figure 2).

In order to create the desired quadrilateral, we first choose x0 ∈ K. We
can then apply Corollary 10 with W = Wu to find a point y ∈ Wu

loc(x0) that
is not forward recurrent and is as close to x as we wish. We make sure that
y ∈ Wu

β (x0), where β is very small compared to the radius R of the local stable
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and unstable manifolds. Since y is not forward recurrent, it does not belong
to the minimal set K. Choose δ > 0 small enough so that K ∩B(y, δ) = ∅ and
fn(y) /∈ B(y, δ) for n ≥ 1.

We now choose the point x. It must belong to Wu
loc(y) ∩ K and have the

property that no other point of Wu
loc(y) ∩ K is closer to y. Note that fn(x) /∈

B(y, δ) for all n.
Next we apply Lemma 9 with f replaced by f−1 to choose a point z ∈ Ws

loc(x)
very close to x. We choose V to be a disc tranverse to Ws that contains Wu

loc(x)
and ε � δ small enough so that the stable discs of radius 5ε centered at points
of V are pairwise disjoint. We may assume that V was chosen so that Bε(V )
contains Wu

2β(y′) for all points y′ close enough to y. Lemma 9 gives us a point
z ∈ Ws

ε (x) whose backward orbit under f avoids Bε(V ).
Since x ∈ K ⊂ Γ(f), the points y and z are in the immersed codimension

one submanifold Γ(x, f) and Ws
loc(y) and Wu

loc(z) intersect in a unique point
w. We may assume that ε was chosen small enough so that w ∈ Wu

2β(z). We
now verify properties (1)–(4) above.

Let ρ3 be the distance in Ws
loc(x) from x to z. Then ρ3 ≤ ε � δ. The

stable manifold Ws
loc(x) contracts under forward iteration of f , so we have

d(fn(x), fn(z)) � δ for all n ≥ 0. Since fn(x) /∈ B(y, δ) for n ≥ 0, we see that
(3) holds as long as ρ < δ/2.

The proof of (1) is similar. Let ρ1 be the distance in Ws
loc(y) from y to w.

We may assume that ε was chosen small enough so that ρ1 � δ. Since iteration
of f contracts Ws

loc(y) and fn(y) /∈ B(y, δ) for n ≥ 1, we see as before that (1)
will hold if ρ < δ/2.

To prove (4), let ρ4 be the distance in Wu
loc(z) from z to w. Then ρ4 < 2β.

Since Wu
loc(z) contracts under iteration of f−1, we see from the choices made

above that (4) will hold if ρ is small enough.
Finally let ρ2 be the distance in Wu

loc(x) from x to y. Then β ≥ ρ2 >
δ. Iteration of f−1 contracts Wu

ρ2
(x). Choose n0 so that the diameter of

f−n(Wu
ρ2

(x)) is less than δ/2 for n ≥ n0. Then f−n((Wu
ρ2

(x))∩Bδ/2(y) = ∅ for
n ≥ n0, since otherwise f−n(x) would be a point of K in Bδ(y).

On the other hand, there is ρ′
2 < ρ such that such that f−n((Wu

ρ2
(x)) ⊂

Wu
ρ′
2

(y) for all n ≥ 1. This means that f−n((Wu
ρ2

(x)) ∩ Wu
ρ2−ρ′

2

(y) = ∅, for

otherwise f−n(x) would be a point of K ∩Wu
loc(y) closer to y than x. It now

follows from a compactness argument that we can choose a positive ρ < δ/2

such that f−n((Wu
ρ2

(x)) ∩ Bρ(y) = ∅ for 1 ≤ n ≤ n0. Property (2) holds for
any such ρ > 0.

Let us consider a Cr perturbation of f of the form g = f◦h, where supp(h) ⊂
B(y, ρ) see Figure 2. We can choose h so that g be in the Cr-neighborhood U0
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x

y z

w

Wu
g,loc(z)

Ws
g,loc(w)

Ws
g,loc(z)Wu

f,loc(y)

Figure 2. Lemma 11: Opening the accessibility class of x

found in Proposition 8. We produce a push so that W u
f,loc(y) ∩ W s

g,loc(w) = ∅.
See Figure 2. Now, Properties (1)–(4) above imply that Wu

g,loc(y) = Wu
f,loc(y),

Ws
g,loc(z) = Ws

f,loc(z) and Wu
g,loc(z) = Ws

g,loc(z), so we do not change the fact
that there is a us-path from x to z to w, but we do change the local stable
disc of w. Now, we have x ∈ Ws

g,ε(z) and w ∈ Wu
g,ε(z). If z belonged to Γ(g),

we would have Ws
g,loc(w) ∩ Wu

g,loc(x) 6= ∅. But this does not happen. Hence
z /∈ Γ(g), and thus AC(z, g) = AC(x, g) is open. �

Proposition 12. PHDr
1(M) contains a Cr dense set of diffeomorphisms with

the property that the accessibility class of every periodic point is open.

Proof. For k ≥ 1 let Uk denote the set of all diffeomorphisms in PHD r
1(M)

with the property that the periodic points of period k are finite in number
and are all hyperbolic. Each Uk is open and Cr dense by the Kupka-Smale
theorem. The number of points of period k is constant on each component of
Uk. It is immediate from the previous lemma that Uk has a Cr dense subset
U ′

k such that the accessibility class of every periodic point with period k for
every diffeomorphism in U ′

k is open. The set U ′
k is C1 open, by Proposition 7.

The diffeomorphisms in
⋂

k≥1 U
′
k have the property that the accessibility class

of every period point is open. This set is dense by Baire’s theorem. �

7. Preliminary lemmas

Henceforth we consider a fixed diffeomorphism f ∈ PHDr
1(M). Here we

present two lemmas which will be used in the next section to show that if f is
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a continuity point of Γ, then Γ(f) = ∅. The lemmas apply to all diffeommor-
phisms close enough to f in the Cr topology.

The first lemma is an application of the Anosov Closing Lemma. Let us
denote by Γρ(x, h) the set of points in the lamina Γ(x, h) that can be reached
from x by a C1 path of length less than ρ.

Lemma 13. There are a neighborhood N1 of f in PHD r
1(M), an integer n0 >

0, and a radius ρ > 0 such that the following property holds for any h ∈ N1:

If there is a point y ∈ Γ(h) with hn(y) ∈ Γρ(y, h) for some n ≥ n0, then there

is a periodic point of h in Γ(y, h) with period n.

Proof. This follows from Proposition 8 and the Anosov Closing Lemma. �

We define a central curve to be a C1 curve with unit speed that is tangent to
Ec at all times. The following lemma states that if a (short) central curve hits
the disc Γρ(y, h), then all sufficiently near central curves also hit Γρ(y, h). The
length of the central curves and the proximity of their origins are uniform over
a neighborhood of f in PHD r

1(M). This lemma involves an orientation for the
one dimensional bundle Ec. This bundle may not be globally orientable, but
all that is needed in the lemma is a local orientation in the neighborhood of a
point.

Lemma 14. For each ρ > 0, there are a neighborhood N2 of f in PHD r
1(M),

and ∆ > 0 such that the following holds for any h in N2: Suppose that x0 /∈
Γ(h) and σ0 : [0, ∆] → M is a central curve with σ0(0) = x0 and y0 = σ0(t0) ∈
Γ(h) for some t0 ∈ (0, ∆]. Suppose σ : [0, 2∆] → M is a central curve such that

d(σ(0), x0) < d(x, Γ(h)) and σ̇(0) is oriented in the same direction as σ̇0(0).
Then σ intersects Γρ(y0, h) in a unique point y. Moreover if y0 is the first point

of σ0 that is in Γ(h), then y is the first point of σ that is in Γ(h). See Figure

3.

Proof. This is a consequence of the continuity of h 7→ Ec
h, E

s
h, E

u
h and of the

transversality of central curves and the laminae of the set Γ(h). �

8. Creating a periodic point with non open accessibility class

We now wish to show that for the continuity point f ∈ PHD r
1(M) of the

function Γ : PHD r
1(M) → K(M), we have Γ(f) = ∅. In order to do this,

we assume that Γ(f) 6= ∅ and obtain a contradiction to Proposition 12, by
eventually showing that there is an open set of diffeomorphisms with a periodic
point whose accessibility class is not open (Lemma 16).



14K. BURNS, F. RODRIGUEZ HERTZ, M. RODRIGUEZ HERTZ, A. TALITSKAYA, AND R. URES

Γ(h)

Γ(h)

B(x0, δ)
x0

y0y

σ0
σ

Γρ(y0, h)

Figure 3. Lemma 14: Central curves hitting Γ(y, h)

By continuity of Γ at f there is a neighborhood N3 of f in the Cr topology
on PHDr

1(M) such that for any g ∈ N3, we have dist(x, Γ(g)) < ∆, for all
x ∈ Γ(f), where ∆ is the constant from Lemma 14.

Now, the set Γ(f) is closed and invariant, hence it contains a minimal set
K. Applying Lemma 11, we can choose g in N1 ∩N2 ∩ N3, where N1 and N2

are the neighborhoods of f defined in the previous section, such that AC(x, g)
is open for some x ∈ K. Recall that dist(x, Γ(g)) < ∆.

Let n0, ρ and ∆ be the numbers defined in Lemma 14 and Lemma 13, and
choose an orientation for the one dimensional bundle Ec on the ball B(x, ∆).

Lemma 15. There is n > n0 such that gn(x) ∈ B(x, δ/2) and Tgn(x) preserves

orientation of Ec.

Proof. The point x is recurrent because x ∈ K and f |K = g|K. Hence there
is an integer n1 > n0 such that gn1(x) ∈ B(x, δ/2). If Tgn1(x) preserves
orientation, we can take n = n1.

If Tgn1(x) reverses orientation, we then pick n2 > n0 such that gn2(x) is in
B(x, δ/2) and is close enough to x so that gn1(gn2(x)) ∈ B(x, δ/2). If Tgn2(x)
preserves orientation, we can take n = n2; if not we can take n = n1 + n2.
Figure 4 illustrates the case in which n = n1 + n2. �

Lemma 16. There is a Cr open neighborhood N of g, such any h ∈ N has a

periodic point in Γ(h).

Proof. Any h close enough to g in the Cr topology satisfies the following prop-
erties:

(1) B(x, δ) ⊂ AC(x, h) for some δ < ∆.
(2) h ∈ N1 ∩ N2 ∩ N3.
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Γ(h)

gn1(x)
x

gn2(x)

hn(x) B(x, δ)

σ

y0hn(y0)

Figure 4. Lemmas 15 and 16

(3) There is n > n0 such that hn(x) ∈ B(x, δ) and Thn preserves the
orientation of Ec near x.

The first property follows from Proposition 7. The second holds because g ∈
N1 ∩N2 ∩N3. The third follows from Lemma 15.

We now show that any diffeomorphism h satisfying these three properties
has a periodic point in Γ(h). Let σ be a central arc connecting x and Γ(h).
Choose a point y0 ∈ σ ∩ Γ(h) such that σ contains no point of Γ(h) except y0.
Choose n > n0 such that hn(x) ∈ B(x, δ) and Thn(x) preserves orientation of
Ec.

Then the central arc hn(σ) connects hn(x) to a point y ∈ Γρ(y0, h). Observe
that there are no points of Γ(h) on hn(σ) between hn(x) and y. Since the set
Γ(h) is invariant, the image under hn of the point y0 where the curve σ first
hits Γ(h) must be the point where hn(σ) first hits Γ(h). Hence hn(y0) = y.
We can now apply Lemma 13 to obtain a periodic point of h in Γ(y0, h). �
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