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Abstract. Let M be a closed orientable irreducible 3-dimensional manifold.
An embedded 2-torus T is an Anosov torus if there exists a diffeomorphism
f over M for which T is f -invariant and f#|T : π1(T) → π1(T) is hyperbolic.
We prove that only few irreducible 3-manifolds admit Anosov tori: (1) the 3-
torus T3, (2) the mapping torus of −id, and (3) the mapping tori of hyperbolic
automorphisms of T2 .

This has consequences for instance in the context of partially hyperbolic
dynamics of 3-manifolds: if there is an invariant foliation Fcu tangent to the
center-unstable bundle Ec ⊕ Eu, then Fcu has no compact leaves [21]. This
has led to the first example of a non-dynamically coherent partially hyperbolic
diffeomorphism with one-dimensional center bundle [21].

1. Introduction

In this article we study 3-manifolds admitting an embedded torus invariant by
a diffeomorphism inducing a hyperbolic automorphism in its first fundamental
group. Our main result is that there are very few such manifolds. Our motivation
in studying these objects come from interesting problems in partially hyperbolic
dynamics.

An embedded 2-torus T in a 3-manifold M is an Anosov torus if there exists a
diffeomorphism f over M such that the induced action of f over the fundamental
group of T is hyperbolic. Our main result is the following:

Theorem 1.1. A closed oriented irreducible 3-manifold admits an Anosov torus
if and only if it is one of the following:

(1) the 3-torus
(2) the mapping torus of −id
(3) the mapping torus of a hyperbolic automorphism

Moreover, we have the following result:

Theorem 1.2. Let M be a compact orientable irreducible 3-manifold with non-
empty boundary such that all the boundary components are incompressible 2-tori.
Then M admits an Anosov torus if and only if M = T2 × [0, 1].
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The main reason to consider only irreducible 3-manifolds is that, as explained
below, this work arises in the context of partially hyperbolic systems. But as an
outcome of Burago, Ivanov [4] we obtain:

Theorem 1.3. A 3-manifold that supports a partially hyperbolic diffeomorphism,
ergodic or not, is always irreducible, that is every 2-sphere embedded in the man-
ifold bounds a 3-ball.

Indeed, a 3-manifold admitting a partially hyperbolic diffeomorphism has a
codimension-one foliation with neither Reeb components nor spherical leaves [4].
This proves the claim since Rosenberg shows in [16] that any codimension-one fo-
liation in a non-irreducible 3-manifold must have a Reeb component or a spherical
leaf, see also [17].

On the other hand, it is easy to construct arbitrarily many different non-
irreducible manifolds admitting Anosov tori. Indeed, if a manifold M supports
an Anosov torus, then it is easy to see that the connected sum of M and any
other 3-manifold will admit an Anosov torus. See Remark 2.6. An interesting
question to solve would be the following:

Question 1.4. Let M be an orientable non-irreducible 3-manifold. Then, the
Kneser-Milnor theorem states that we can decompose M , uniquely up to diffeo-
morphisms, into a finite connected sum:

M = M1#M2# . . .#Mn

where each Mi is either irreducible, or a handle S2 × S1. If M admits an Anosov
torus, is one of the Mi necessarily one of the 3-manifolds listed in Theorem 1.1?

The technical difficulties in answering this question mainly arise from the non-
uniqueness of the prime decomposition modulo isotopies.

1.1. Partially hyperbolic diffeomorphisms. A partially hyperbolic system
is a diffeomorphism that leaves invariant three complementary bundles: Es, on
which the action of the derivative is contracting; Eu, on which it is expanding;
and Ec on which the action is not as contracting as in Es, nor as expanding as
Eu. Namely, f admits a Df -invariant splitting TM = Es ⊕ Ec ⊕ Eu such that
Df and Df−1 are contractions, respectively, on Es and Eu, and all unit vectors
vσ ∈ Eσ with σ = s, c, u satisfy:

‖Dfvs‖ < ‖Dfvc‖ < ‖Dfvu‖

The bundles Es, Ec and Eu are called, respectively, the stable, center, and un-
stable bundles. A recent survey of partially hyperbolic dynamics is for instance
[18].

It was conjectured by Pugh and Shub in 1995 that conservative partially hy-
perbolic diffeomorphisms contain an open and dense set of ergodic systems. This
conjecture was proven true for 3-manifolds by the authors [19]. Our question
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is: can we classify all 3-manifolds supporting non-ergodic partially hyperbolic
diffeomorphisms?

Conjecture 1.5. Only the following orientable 3-manifolds support non-ergodic
partially hyperbolic diffeomorphisms:

(1) the 3-torus,
(2) the mapping torus of −id, or
(3) the mapping torus of a hyperbolic automorphism of the 2-torus.

In [20] we proved that this conjecture is true for nilmanifolds: the only nilman-
ifold supporting a non-ergodic conservative partially hyperbolic diffeomorphism
is the 3-torus. According to this conjecture, the only manifolds supporting non-
ergodic partially hyperbolic diffeomorphisms would be exactly those enumerated
in Theorem 1.1, namely, the manifolds admitting an Anosov torus.

Another problem in partially hyperbolic dynamics concerns the integrability
of the center bundle Ec. Indeed, the stable and unstable bundles are known
to be integrable [10], but the situation is different for the center bundle. It is
an open problem to determine the conditions under which a partially hyperbolic
diffeomorphism of a 3-manifold has an integrable center bundle. In [4], it is shown
that there are always foliations almost tangent to the center bundle. Moreover,
a large class of partially hyperbolic diffeomorphisms of the 3-tori have integrable
center bundle, as it was recently shown in [2]. However, in [21] we give an example
of a partially hyperbolic diffeomorphism of the 3-torus, having a non-integrable
center bundle. This example answers a question that had been posed by many
authors in the recent decades, basically since the study of partially hyperbolic
systems began, see for instance [10] and [3].

This new example was inspired by the theorem below, which is one of the
applications of Theorem 1.1 and gives a more accurate description of dynamically
defined foliations of partially hyperbolic diffeomorphisms of 3-manifolds.

Theorem 1.6. [21] Let M be a closed orientable 3-dimensional manifold and
f : M → M be a partially hyperbolic diffeomorphism with dynamically coherent
center-unstable bundle Ec ⊕ Eu. Then, the center-unstable foliation F cu has no
compact leaves.

Indeed, to study the integrability of the center bundle, it is standard to analyze
the behavior of the so called center-stable and center-unstable bundles, that are
respectively, the Whitney sums Es ⊕Ec and Ec ⊕Eu. One says that the center-
stable bundle Es⊕Ec is dynamically coherent if there exists an invariant foliation
tangent to it. In this case, the tangent foliation is called the center-stable foliation.
Analogously one defines the center-unstable foliation.

Theorem 1.6 does not prevent the existence of tori, even invariant, tangent to
the center-unstable bundle, but it asserts the impossibility of the existence of such
tori as part of an invariant foliation tangent to the center-unstable bundle. In
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[21] we give examples of a partially hyperbolic diffeomorphism of T3 with center-
unstable tori. The center foliation of this example in particular is not uniquely
integrable although some of these examples are dynamically coherent, that is both
the center-stable and the center-unstable bundles are dynamically coherent.

1.2. Organization of paper. This paper is organized as follows. In Section 2
we include preliminary concepts of 3-manifolds in order that this paper be as
self-contained as possible. Proposition 2.4, which is introduced in Section 2 and
proven in Section 3, splits the proof of the main theorem into three distinct cases.
These cases are studied one-at-a-time, in Sections 4, 5 and 6. Then, Section 7
brings these case-by-case results together into a completed proof of Theorem 1.1,
and concludes with a short proof of Theorem 1.2.

Some cases in Theorem 1.1 had already been studied by F. Waldhausen in his
classification of graph manifolds [22]. Namely, he proves Theorem 1.1. when M
is a graph manifold, that is, when every component in the JSJ-decomposition is
Seifert. Indeed, in Lemma 5.7 of [22], Waldlhausen proves, by using coordinates,
that such a manifold can not contain an Anosov torus, unless it is finitely covered
by the 3-torus. Nevertheless, for the sake of completeness, we include a proof of
this case.

Acknowledgements. We are grateful to the referees for several suggestions.

2. Preliminaries

We shall assume from now on, that M is an irreducible 3-manifold. We will
cut M along certain tori, and will obtain certain 3-manifolds with boundary that
are easier to handle.

An orientable surface S 6= S embedded in M is incompressible if the homo-
morphism induced by the inclusion map i# : π1(S) →֒ π1(M) is injective; or,
equivalently, if there is no embedded disc D2 ⊂ M such that D ∩ S = ∂D and
∂D ≁ 0 in S (see, for instance, [11, Page 10]).

A Seifert manifold is one which admits a decomposition into disjoint circles, the
fibers, such that each fiber has a neighborhood diffeomorphic, preserving fibers,
to a neighborhood of a fiber in some model Seifert fibering of S1 × D2. A model
Seifert fibering of S1 × D2 is a decomposition of S1 × D2 into disjoint circles
(fibers), constructed as follows. Starting with [0, 1] × D2, decomposed into the
segments [0, 1] × {x}, identify the disks {0} × D2 and {1} × D2 via a 2πp/q
rotation, for p/q ∈ Q, with p and q relatively prime. The segment [0, 1] × {0}
then becomes a fiber S1 × {0}, while every other fiber in S1 ×D2 is made from q
segments [0, 1]×{x}. A Seifert manifold can have non-empty boundary consisting
of tori. Any 3-manifold supporting a foliation by circles is Seifert (see [7])

A 3-manifold with boundary N is atoroidal if every incompressible torus is ∂-
parallel, that is, isotopic to a subsurface of ∂N . A 3-manifold with boundary N



TORI WITH HYPERBOLIC DYNAMICS IN 3-MANIFOLDS 5

is acylindrical if every incompressible annulus A that is properly embedded, i.e.
∂A ⊂ ∂N , is ∂-parallel, by an isotopy fixing ∂A.

A closed irreducible 3-manifold admits a natural decomposition into Seifert
pieces on one side, and atoroidal and acylindrical components on the other:

Theorem 2.1 (JSJ-decomposition [12], [13]). If M is an irreducible closed ori-
entable 3-manifold, then there exists a collection of disjoint incompressible tori T
such that for each component Mi of M \ T either

(1) Mi is a Seifert manifold, or
(2) Mi is both atoroidal and acylindrical.

Any minimal such collection is unique up to isotopy. This means, if T is a
collection as described above, it contains a minimal sub-collection m(T ) satisfying
the same claim. All collections m(T ) are isotopic.

Any minimal family of incompressible tori as described above is called a JSJ-
decomposition of M . When it is clear from the context we shall also call a JSJ-
decomposition the set of pieces obtained by cutting the manifold along these tori.
Note that if M is either atoroidal or Seifert, then T = ∅.

The idea of the proof of Theorem 1.1 is that, given an Anosov torus T , we
can “place” T so that either T belongs to the family T , or else T is in a Seifert
component, and it is either transverse to all fibers, or it is a union of fibers of
this Seifert component. See Proposition 2.4.

It is important to note the following property of Anosov tori:

Theorem 2.2. [20] Anosov tori are incompressible.

An Anosov torus in an atoroidal component will then be ∂-parallel to a compo-
nent of its boundary. In this case, we can assume T ∈ T . On the other hand, the
theorem of Waldhausen below, guarantees that we can always place an incom-
pressible torus in a Seifert manifold in a “standard” form; namely, the following:
a surface is horizontal in a Seifert manifold if it is transverse to all fibers, and
vertical if it is a union of fibers:

Theorem 2.3 (Waldhausen [22]). Let M be a compact connected Seifert mani-
fold, with or without boundary. Then any incompressible surface can be isotoped
to be horizontal or vertical.

The architecture of the proof of Theorem 1.1, as mentioned above, is contained
in the following proposition.

Proposition 2.4. Let T be an Anosov torus of a closed irreducible orientable
manifold M . Then, there exists a diffeomorphism f : M → M and a JSJ-
decomposition T such that

(1) f |T is a hyperbolic toral automorphism,
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(2) f(T ) = T , and
(3) exactly one of the following holds

(a) T ∈ T
(b) T is a vertical torus in a Seifert component of M \ T , and T is not

∂-parallel in this component.
(c) M is a Seifert manifold (T = ∅), and T is a horizontal torus,

The proposition above allows us to split the proof of Theorem 1.1 into cases.
Note that case (3b) includes the case in which M is a Seifert manifold and T is
a vertical torus. Before addressing the proof of Proposition 2.4, which is done in
Section 3, we need the following lemma:

Lemma 2.5. Let S be a Seifert fibering of a compact orientable irreducible 3-
manifold M .

(1) If a surface with or without boundary is horizontal, it intersects all the
fibers of S.

(2) If ∂M 6= ∅, S does not admit horizontal surfaces without boundary.

Proof. Indeed, let A be the union of all fibers which have non-empty transverse
intersection with the horizontal surface S. Then A is clearly open. To see that A is
closed take a sequence xn →x such that xn ∈ A. If the fiber of x did not intersect
the horizontal surface, then there would be a neighborhood of the fiber of x not
intersecting the horizontal surface. Moreover, there is a fibered neighborhood of
the fiber of x not intersecting S. This neighborhood would contain the fibers of
xn, an absurdity.

To see that a horizontal manifold without boundary can live only in a manifold
without boundary, assume that T is a horizontal surface without boundary and
assume ∂M is not empty. Consider a fiber of x ∈ ∂M . This fiber intersects T .
But then, there is a fibered neighborhood of the fiber of x diffeomorphic to a solid
torus. This contradicts that x is in the boundary of M . �

Let us finish the section by explaining why we focused on irreducible manifolds.

Remark 2.6. It is easy to see that there are arbitrarily many non-irreducible
3-manifolds admitting Anosov tori. Indeed, let M be any closed 3-manifold ad-
mitting an Anosov torus T . Take p a fixed point of f |T . It is easy to see that we
can slightly modify f so that, if T × [−ǫ, ǫ] is a small tubular neighborhood of T ,
then f |T×{t} = f |T×{0} = f |T for all t ∈ [−ǫ, ǫ].

Let us make another slight modification of f : replace p × {ǫ} ⊂ T × {ǫ} by a
small ball B ⊂ M and take g : M →M so that g = f on M \ {p × {ǫ}}, and g
restricted to B is the identity.

If we consider now any manifold M ′, then there is a diffeomorphism h on
M#M ′ such that h is f when restricted to M \ B and h is the identity when



TORI WITH HYPERBOLIC DYNAMICS IN 3-MANIFOLDS 7

restricted to M ′ minus another small ball. This implies that M#M ′ admits an
Anosov torus. In this way we can construct arbitrarily many manifolds admitting
Anosov tori.

3. Proof of Proposition 2.4

This section contains the proof of Proposition 2.4. Let M be an irreducible
orientable closed 3-manifold and T be an Anosov torus. First, note that we can
choose a JSJ-decomposition T such that T is in a Seifert piece. This is because
of the so-called Enclosing Property:

Proposition 3.1 (Enclosing Property [13]). There exists T such that either T ∈
T , or else T is contained in the interior of a Seifert piece of the JSJ-decomposition
generated by T , and is not ∂-parallel in that component.

Hence, either T ∈ T (case (3a)), or else T is in the interior of a Seifert com-
ponent and it is not ∂-parallel. We want to show that in the latter case, we have
either that the whole M is Seifert, and T can be put horizontally (case (3c)); or
else T can be put vertically (case (3b)). Then, assume we are in the latter case.

Now, after Theorem 2.3, there is an isotopy transforming T into a horizontal
or vertical torus in the interior of the Seifert component that contains it. Equiv-
alently, there is an isotopy moving the Seifert component and fixing T , so that T
is either horizontal or vertical in this new Seifert manifold. This produces a new
JSJ-decomposition T ′, so that T is horizontal or vertical in the Seifert component
that contains it.

Assume that T is horizontal in its Seifert component S. Then Lemma 2.5
implies that S is a closed manifold. Hence the whole manifold M is Seifert
(M = S), and we are in case (3c). Note that in this case T ′ = ∅.

If, on the contrary, T is vertical, recall that, by the Enclosing Property (Propo-
sition 3.1), T is not ∂-parallel in its Seifert component, that is, T is not isotopic
to any component of the boundary of the Seifert component of M \ T containing
it. After the isotopy that transforms T into T ′, so that T is a vertical torus of
the Seifert component of M \ T ′ that contains T , we will obviously have that T
is not ∂-parallel in its Seifert component either. Hence we are in case (3b). This
proves part (3) of Proposition 2.4, that is, we have obtained a JSJ-decomposition
T ′.

Now, we want to obtain f : M →M satisfying items (1) and (2) of Proposition
2.4. We begin by looking for an f : M →M satisfying item (1):

Lemma 3.2. Let T be an Anosov torus of any 3-manifold M , that is, with or
without boundary, irreducible or not. Suppose that T is either in the interior of
M , or T ⊂ ∂M . Then, there is a diffeomorphism f : M →M leaving T invariant,
such that f |T is a hyperbolic automorphism.
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Proof. First consider the case in which T is contained in the interior of M . Let
g be a diffeomorphism of M leaving T invariant and such that g|T is isotopic to
a hyperbolic automorphism A. Consider a product neighborhood T × [−1, 1] of
T . Consider a differentiable map h : T × [−1, 1]→T such that, h(t, .) = ht is a
diffeomorphism ∀t ∈ [−1, 1], h0 = A ◦ g−1 and ht(y) = y ∀|t| ≥ 3

4
. Define

ξ(x) =

{
x if x /∈ T × [−1, 1]
ht(y) if x = (y, t) ∈ T × [−1, 1]

Then f = ξ ◦ g is the diffeomorphism we are looking for.
If M is a manifold with boundary and T ⊂ ∂M , then we can consider a

neighborhood of T of the form T×[0, 1]. The rest of the proof follows analogously.
�

In this way, we have obtained a diffeomorphism f : M →M satisfying item
(1) of Proposition 2.4. In order to obtain item (2), we shall need the following
version of the JSJ-decomposition:

Theorem 3.3 (Relative JSJ-decomposition, [12, 13]). If M is a compact ori-
entable irreducible 3-manifold with incompressible boundary, then there exists a
family T of incompressible annuli and tori, such that M \ T consists of either
Seifert or atoroidal and acylindrical components. Any such family T that is min-
imal by inclusion is unique up to proper isotopy.

Let f : M →M be as in Lemma 3.2. Now cut M along T . The resulting
manifold N is as in the hypotheses of Theorem 3.3, and f can be extended
to this new manifold, since f(T ) = T . Consider f(T ), the image by f of the
JSJ-decomposition of M . Then f(T ) and T are JSJ-decompositions for N , due
to the Enclosing Property (Proposition 3.1). Theorem 3.3 implies that there
is an isotopy ht fixing ∂N such that h0 = id, and h1(T ) = f(T ). Now g =
h−1

1 ◦ f is a diffeomorphism satisfying all conditions of Proposition 2.4 for the
JSJ-decomposition T . This finishes the proof.

Observe that in our setting the relative JSJ-decomposition has no annulus.
This is immediate from the fact that the manifold N was obtained from a closed
one by cutting along an incompressible torus.

Remark 3.4. Note that the same idea above shows that, given a closed irre-
ducible orientable 3-manifold M , with or without an Anosov torus, and given
any diffeomorphism f : M →M , a JSJ-decomposition of M , T , can be taken so
that f(T ) = T . Theorem 2.1 is enough to prove this.

This result obviously holds also for compact orientable irreducible 3-manifolds
with incompressible boundary.
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4. Horizontal Anosov tori

We begin the proof of Theorem 1.1. Consider a closed irreducible orientable
3-manifold M , and let T be an Anosov torus. Then Proposition 2.4 states that we
need only study three situations: (3a) T belonging to a JSJ-decomposition, (3b)
T being a non-∂-parallel vertical torus in a Seifert component, or (3c) T being a
horizontal torus in a closed Seifert manifold. In this section we study case (3c).
The conclusion is that there are only two manifolds admitting this situation:

Proposition 4.1. Let M be a closed orientable irreducible Seifert manifold that
supports a horizontal Anosov torus. Then M is either T3 or the mapping torus
of −id on T2.

The rest of this section is devoted to proving this proposition. Let M be a
closed orientable irreducible Seifert manifold, and let T be a horizontal torus in
M . In [11, Page 30] we can see that only six such manifolds admit horizontal
tori:

(1) M1 = T3,
(2) M2 is the mapping torus of −id on T2, that is, S1×̃S1×̃S1

(3) M3 is the mapping torus of

(
−1 −1
1 0

)

(4) M4 is the mapping torus of

(
0 −1
1 0

)

(5) M5 is the mapping torus of

(
0 −1
1 1

)

(6) M6 = N ∪ϕ N

In the last case, N = S1×̃S1×̃[0, 1] is the twisted I-bundle over the Klein bottle.
N can be obtained in the following way: Let ρ : T2 → T2 be an involution
(without fixed points) such that the identification of x with ρ(x) gives the Klein
bottle. We get N from T2 × [−1, 1] by identifying (x, t) with (ρ(x),−t). If
T2 = R2/Z2 take ρ(x, y) = (x + 1

2
,−y).

M6 is the closed manifold formed by two copies of N , glued together along its
boundary. ∂N is a 2-torus and the two copies of ∂N are glued together by the

automorphism ϕ =

(
0 1
1 0

)
. M6 is foliated by tori with the exception of two

fibers that are Klein bottles. Since (ϕ ◦ ρ)4 is the identity map we get that the
interval fibers of the two copies of N glue together to form a Seifert fibering of
M6.

The first five manifolds are torus bundles over S1 and M6 is a fibration by tori
except for two fibers. For all the six manifolds the horizontal torus is isotopic to
a fiber. We shall then assume that T is a fiber of the Mi.

Let f be the hyperbolic automorphism of Proposition 2.4. For Mi with i =
1, . . . , 5, the manifolds are mapping tori for some automorphism hi. Since T is a
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fiber, hi commutes with f . But only id and −id commute with a hyperbolic auto-
morphism. This implies that M3, M4 and M5 do not admit horizontal Anosov tori.

Finally, we will show that M6 does not admit a horizontal Anosov torus. Indeed,
if the manifold is M6, the horizontal Anosov torus T splits the manifold into two
components diffeomorphic to N . We have that ∂N = T . The following general
lemma precludes the possibility that M6 admit a horizontal Anosov torus, and
finishes the proof of Proposition 4.1:

Lemma 4.2. If N is a compact orientable 3-manifold such that ∂N is a torus
T , then T is not an Anosov torus.

In order to prove Lemma 4.2, we shall need the following:

Lemma 4.3. [11, Lemma 3.5] Let M be a compact orientable 3-manifold with
boundary ∂M . Consider the inclusion i∗ : H1(∂M) →֒ H1(M). Let ker(i∗) be the
kernel of the map induced by the inclusion i∗, and let rank(H1(∂M)) be the rank
of H1(∂M). Then

rank(ker(i∗)) =
1

2
rank(H1(∂M)).

Here “rank” means the number of Z summands in a direct sum splitting into
cyclic groups. If the homology with coefficients in Q is used, rank can be replaced
by “dimension”.

In fact, Lemma 3.5 of [11] states that

rank(im(∂)) =
1

2
rank(H1(∂M)) (4.1)

where im(∂) stands for the image of the boundary map ∂ : H2(M, ∂M) →
H1(∂M). The fact that the following sequence

H2(M, ∂M)
∂

−→ H1(∂M)
i∗−→ H1(M)

is exact implies that im(∂) is isomorphic to ker(i∗), hence rank(im(∂)) = rank(ker(i∗)).

To prove Lemma 4.2, consider a compact orientable 3-manifold N such that
∂N is a torus. Then rank(H1(∂N)) = 2. Lemma 4.3 implies that the rank of
the kernel of the inclusion i∗ : H1(T )→H1(M) is one. This implies that K =
ker(i∗) is a one-dimensional subspace of H1(T ). We shall have that f∗(K) = K,
where f∗ : H1(T )→H1(T ) is the isomorphism induced by any diffeomorphism
f : N →N . This implies that f∗ has an eigenvalue which is ±1. Hence f cannot
be isotopic to a hyperbolic automorphism on T . This implies that T cannot be
an Anosov torus. This finishes the proof of Lemma 4.2, and hence of Proposition
4.1.
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5. Vertical Anosov tori

Continuing with the proof of Theorem 1.1, we consider an Anosov torus T
of an irreducible orientable closed 3-manifold M , and study now the situation
(3b) of Proposition 2.4; namely, T is a vertical torus in the interior of a Seifert
component of the JSJ-decomposition of M , that is not ∂-parallel.

The main result of this section is that in this case, M is like in the case (3c):
either M is T3 or M is the mapping torus of −id on T2. More precisely:

Proposition 5.1. Let M be a compact connected orientable irreducible Seifert
manifold, with or without boundary, admitting a vertical Anosov torus T . Then
there are only three possibilities:

(1) M = T × [−1, 1],
(2) M = T3, or
(3) M is the mapping torus of −id on T2.

If M is a Seifert manifold with or without boundary and T is a vertical Anosov
torus in M , then we can split M by cutting it along T , and we obtain a Seifert
manifold with an Anosov torus as one of the boundary components. Hence we
can always consider that M is a Seifert manifold with T ⊂ ∂M . The proof of
Proposition 5.1 is then reduced to the proof of:

Proposition 5.2. Let N be a compact connected orientable irreducible Seifert
manifold with an Anosov torus T ⊂ ∂N . Then, N = T × [0, 1].

Indeed, if M is a manifold as in the hypothesis of Proposition 5.1, and we
split M along the vertical Anosov torus T , then each component of M \ T is a
manifold N in the hypotheses of Proposition 5.2, and hence each component N
is of the form T2 × [0, 1]. If M \ T has two components, this readily implies that
M = T × [−1, 1]. Otherwise, the manifold N obtained by splitting M along T is
connected and is T × [0, 1]. Then M is a mapping torus of an automorphism h
of T = T2.

But, since T is an Anosov torus, there is a diffeomorphism f : N → N such
that f |T = f |∂N is a hyperbolic toral automorphism, see Lemma 3.2. Now, h has
to commute with f on T . The only possibilities for h are then: h = id, h = −id
or h is a hyperbolic automorphism of T2. The last possibility corresponds to a
mapping torus that is not a Seifert manifold. Hence, we can only have that M is
the mapping torus of ±id on T2, as claimed.

To finish the proof of Proposition 5.2, it is convenient to recall that most
Seifert manifolds have a unique Seifert fibration up to isotopy. Namely, we have
the following:
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Lemma 5.3. [11, Lemma 1.15] The only compact connected orientable Seifert
manifolds with boundary, admitting two Seifert fibrations that are non-isotopic in
their boundary are the following:

(1) the solid torus D2 × S1

(2) the twisted I-bundle over the Klein bottle S1×̃S1×̃[0, 1], or
(3) the torus cross the interval T2 × [0, 1]

Now, let T ⊂ ∂N be an Anosov torus of N as in Proposition 5.2. Then there
are two Seifert fibrations of N that are not isotopic on T . Indeed, take any Seifert
fibration of N , and consider the diffeomorphism f : N →N such that f |T is a
hyperbolic automorphism (Lemma 3.2). The fibration of N restricted to T is not
isotopic to its f -image (another Seifert fibration) on T . Then Lemma 5.3 implies
that N is either the solid torus, the twisted I-bundle over the Klein bundle, or
the torus cross the interval.

If N is either the solid torus, or the twisted I-bundle over the Klein bottle then,
N has a connected boundary consisting exactly of one torus, that is, ∂M = T2.
Lemma 4.2 implies that T cannot be the boundary of N . The only possibility
left is that M = T × [0, 1]. This finishes the proof of Proposition 5.2, and hence
of Proposition 5.1.

6. Anosov tori in the JSJ-decomposition

In this section, we consider case (3a) of Proposition 2.4, where the Anosov
torus T is one of the tori of the JSJ-decomposition. Note that T can be either
the boundary of a Seifert component, in which case the component is T × [0, 1],
as we proved in Proposition 5.2; or else T is the boundary of an atoroidal and
acylindrical component.

The main result of this section is that an Anosov torus T is never, in fact,
a boundary of an atoroidal and acylindrical component of a JSJ-decomposition.
This is the most delicate part of the proof of Theorem 1.1. With this result it is
easy to finish the proof of Theorem 1.1, as it is seen in Section 7.

Proposition 6.1. Let M be a compact, connected, orientable, irreducible, atoroidal
and acylindrical 3-manifold such that ∂M consists of incompressible tori. Then
no component of ∂M is an Anosov torus.

The strategy is to assume that there is an Anosov torus T ⊂ ∂M , and then
use its properties to build an incompressible annulus that is not ∂-parallel.

Claim 1. For each torus T ⊂ ∂M , there exists a compact connected orientable
incompressible properly embedded surface S ⊂ M , such that ∂S contains an es-
sential curve γ in T and S is not a ∂-parallel annulus. By essential we mean
non-nullhomotopic.
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By Lemma 4.2 we have that T  ∂M . To obtain S we construct a manifold N
such that ∂N = T ⊔ T : take two copies of M , M ⊔M and glue all corresponding
pairs of connected components of boundaries of M , except T ⊔ T . In this way
we obtain a connected compact orientable 3-manifold N such that ∂N = T ⊔
T . Note that H1(∂N) 6= 0, so proceeding as in the previous case, we obtain
an incompressible compact connected orientable properly embedded surface S
representing a non-trivial homology class in H2(N, ∂N) such that ∂S is non-
trivial in H1(∂M).

Without loss of generality, we may assume that S is transverse to ∂M . Cutting
along ∂M we obtain a new surface R = S ∩ M , possibly non-incompressible and
non-connected, whose boundary is non-trivial in H1(∂M), since R⊔ (R \S) = S.
Let us see that we can cut R along a finite number of curves so that R becomes
incompressible.

Let Ri be a component of R and suppose π1(Ri) →֒ π1(M) is not injective.
Then there is a disk D realizing this non-injectivity [11, Corollary 3.3], that is,
there is a disc D such that ∂D = D ∩ Ri is a non-null homotopic circle in Ri. If
we cut Ri along ∂D we obtain a new surface that is in the same homology class,
since the cutting curve and D are now duplicated in the boundary of Ri, but
counted with different signs. Note that this new Ri is also properly embedded.

Since R is compact, this surgery simplifies Ri. Indeed, either ∂D separates Ri,
in which case the surgery splits Ri into two components of lower genus; or not,
in which case the surgery reduces the genus of Ri. We can perform finitely many
cuttings until each resulting surface Ri satisfies that π1(Ri) →֒ π1(M) is injective,
so Ri is incompressible.

Note that this procedure did not change ∂R. So, we have obtained a new R
that is incompressible, properly embedded, and such that ∂R is non-trivial in
H1(∂M), but with a non-trivial element in H1(T ). Hence, there is a component
Ri of R containing an essential curve in T , and such that ∂Ri is non-trivial in
H1(∂M). Then Ri is not a ∂-parallel annulus. This finishes Claim 1.

Before stating our second claim, let us introduce the following concept:

Definition 6.2. [11, Page 14] Let S be a surface properly embedded in M , that
is, ∂S ⊂ ∂M . A ∂-compressing disk D ⊂ M is a disk such that ∂D consists of
two arcs α and β such that α∩β = ∂α = ∂β, where α = D∩S and β = D∩∂M ,
see Figure 1.

A properly embedded surface S is ∂-incompressible if for each compressing disk
D there is a disk D′ ⊂ S with α ⊂ ∂D′ and ∂D′ \ α ⊂ ∂S, see Figure 2.

Also recall the following property of incompressible surfaces that will be used
in Claim 3;

Lemma 6.3. [11, Lemma 1.10] Let N be a compact irreducible 3-manifold, such
that ∂N consists of incompressible tori. If S is a connected incompressible surface
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∂M

D

S

Figure 1. A ∂-compressing disk D

∂M

D′ ⊂ S

D

Figure 2. A ∂-incompressible surface S

properly embedded in N , then either S is a ∂-parallel annulus or else S is ∂-
incompressible.

Consider now an Anosov torus T ⊂ ∂M , and let f : M →M be a diffeomor-
phism such that f |T is a hyperbolic automorphism. Let S be the surface obtained
in Claim 1, and let γ ⊂ ∂S be an essential curve in T , as obtained in Claim 1.
We loose no generality in assuming that γ is a line in T with rational slope.

Claim 2. For some n0 > 0 and g : M → M a suitable perturbation of fn0, there
exists an annulus A ⊂ S ∪ g(S) such that one component of ∂A is a closed curve
in T formed by one sub-arc γ1 of γ and one sub-arc γ2 of g(γ). A is constructed
in such a way that, after an isotopy, it is properly embedded.

The number of disjoint non-isotopic properly embedded simple curves con-
tained in S has an upper bound κ. By taking n sufficiently large, we can obtain
#(γ ∩ fn(γ)) ≥ 2(κ + 1)2 (note that #fn(γ) ∩ γ goes to infinity as n→∞) We
choose n0 fixed satisfying the latter inequality.

Consider g a small perturbation of fn0 such that g|T = fn0|T and g(S) is
transverse to S. Observe that it is possible to obtain such a g since fn0(S) is
transverse to S when restricted to T . The way we choose n0 implies that there
are at least (κ+1)2 curves in S∩g(S) with an extreme in γ. Then, κ+1 of them
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are isotopic in (S, ∂S). Since the same κ is also an upper bound for the number
of non-isotopic properly embedded simple curves contained in g(S), at least two
of these curves, say α1 and α2, are also isotopic in (g(S), ∂g(S)). Moreover, we
choose α1 and α2 in such a way that if α is a curve of S ∩ g(S) between α1 and
α2 then α is not isotopic to α1 (neither α2) in (g(S), ∂g(S)).

The annulus A is built in the following way. Construct a rectangle R by joining
α1 and α2 by means of an arc γ1 ⊂ γ and and arc β1 ⊂ ∂S. Construct another
rectangle R′ by joining α1 and α2 by means of an arc γ2 ⊂ g(γ) and an arc
β2 ⊂ ∂g(S). This is possible since α1 and α2 are isotopic both in (S, ∂S) and
(g(S), ∂g(S)).

It remains to prove that, after an isotopy, A is properly embedded. The way
we have chosen α1 and α2 implies that there are two possibilities for the curves
in R ∩ R′. Indeed, there are no curves in R ∩ R′ joining the two boundaries of
A then, either the curve is closed or its extreme points are both contained in the
same boundary component of A. Irreducibility of M gives that closed curves can
be eliminated by an isotopy. Suppose now that τ in R ∩ R′ is an arc with both
extremes in the same component of ∂A. Then, τ and an arc of ∂R bound a disk
D ⊂ R. Analogously, we obtain D′ ⊂ R′ bounded by τ and an arc of ∂R′. Thus,
D̄ = D ∪ D′ is a disk whose boundary is contained in ∂M and incompressibility
of ∂M implies that ∂D̄ bounds a disk in ∂M . Again, irreducibility of M allows
us to isotope A in order to eliminate this type of intersections.

In this way we obtain a properly embedded annulus A proving Claim 2.

The rest of the section is devoted to proving that the annulus A obtained in
Claim 2 is non-∂-parallel.

Claim 3. The annulus A is non-∂-parallel.

We begin by proving that A is incompressible. Indeed, we shall see that γ1 ∪
γ2 ⊂ A ∩ T is an essential curve in T . Recall that γ is a line in T with rational
slope. Since f |T is a hyperbolic automorphism, g(γ) is a line with different slope.
The lifts of γ and g(γ) to the universal covering cannot bound a region, as it is
seen in Figure 3. Thus any closed curve formed by a segment in γ and a segment
in g(γ), like γ1 ∪ γ2, is essential in T . This implies that A is incompressible.

So, it remains to prove that A is not ∂-parallel. Arguing by contradiction,
suppose that A is ∂-parallel. This implies that ∂A ⊂ T , and also, that there exists
a ∂-compressing disk D with α ⊂ ∂D for all arcs α properly embedded in A and
with endpoints in different components of ∂A (see Figure 4). In particular, we
can choose an arc α = α1 as in the proof of Claim 2, that is, an arc α1 ⊂ S∩g(S),
with one endpoint in γ ∩ g(γ) and the other endpoint in the other component of
∂A. The rest of the boundary of D, ∂D \ α1 is contained in T .
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γ1

γ2
(0, 0)

(m, n)

Figure 3. A closed curve in T formed by segments of different slope

T DA

α1

Figure 4. ∂-parallel annulus

Now, Claim 1 and Lemma 6.3 imply that both S and g(S) are ∂-incompressible.
Hence, since α1 is properly embedded in S and in g(S), we have that D is a ∂-
compressing disk for S and for g(S).

∂-incompressibility of S and g(S) implies that there are two disks D1 ⊂ S and
D2 ⊂ g(S) such that ∂D1 = α1∪ l1, where l1 is a segment in γ, and ∂D2 = α1∪ l2,
where l2 is a segment in g(γ).

The set D′ = D1 ∪D2 is an immersed disk, and ∂D′ = l1 ∪ l2. Now, l1 ⊂ γ and
l2 ⊂ g(γ). As we have said at the beginning of this proof, this implies that ∂D′ is
essential in T , so D′ cannot be a disk. This implies that A is non-∂-parallel and
finishes Claim 3.

In conclusion, we have seen that the existence of an Anosov tori in the boundary
of a 3-manifold whose boundary consists of incompressible tori, implies that the
3-manifold is not acylindrical. This proves Proposition 6.1.
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7. Proof of Theorems 1.1 and 1.2

In this Section we finish Theorem 1.1, and prove Theorem 1.2. We begin by
finishing the necessity part of Theorem 1.1.

Recall that Proposition 2.4 reduced the proof of the necessity part of Theorem
1.1 to three cases: case (3a): when the Anosov torus is part of the cutting tori
of the JSJ-decomposition, case (3b): when the Anosov torus is in the interior of
a Seifert component of the JSJ-decomposition, and is not ∂-parallel, and (3c):
when M is a Seifert manifold and the Anosov torus is horizontal.

In Proposition 4.1, we show that in case (3c), then M is either the 3-torus, or
else the mapping torus of −id. This proves Theorem 1.1 in this case.

In Proposition 5.1, we prove that if M is a compact connected irreducible
Seifert manifold with or without boundary, admitting an Anosov torus T , then
we have that either M is as in case (3c), namely, M is the 3-torus, or the mapping
torus of −id; or else, M is T × [0, 1]. But in this last case, T is ∂-parallel. So,
this proves Theorem 1.1 in case (3b).

The last case left is (3a), when the Anosov torus is one of the cutting tori
of a minimal JSJ-decomposition. Proposition 6.1 shows that the Anosov torus
cannot bound an atoroidal and acylindrical component of the JSJ-decomposition.
Hence, the Anosov torus is a component of the boundary of a compact connected
irreducible Seifert manifold. Proposition 5.1 shows that the Seifert component
having the Anosov torus T as part of its boundary is T cross the interval. Hence
the boundary of the Seifert component of the Anosov torus consists of two isotopic
tori. Since the cutting tori of the JSJ-decomposition were taken to be a minimal
family, this implies that the JSJ-decomposition consists of only one torus, the
Anosov torus T . If we cut M along T we obtain T cross the interval. Let
A = f |T be the hyperbolic automorphism obtained since T is an Anosov torus,
and let g : T →T be a gluing diffeomorphism so that when we identify x with
g(x) we reobtain M . Then g commutes with A. This gives us three classes of
diffeomorphisms: isotopic to ±id, which would give us a Seifert M , or isotopic to
a hyperbolic automorphism, which would give us that M is the mapping torus of
a hyperbolic automorphism. In the first situations we would have that there are
no cutting tori in the JSJ-decomposition, so we are in the last situation, and this
finishes the proof of the necessity part of Theorem 1.1.

The sufficiency part, as we have said is straightforward. If M is the 3-torus,

we can take f =

(
2 1
1 1

)
× id on T2 × S1, this gives us infinitely many Anosov

tori. If M is the mapping torus of a hyperbolic automorphism A over T2, there is
a natural flow ft which is the suspension of A. The time-one map of this flow f
leaves invariant infinitely many tori, on which its dynamics is hyperbolic. Finally,
let M be the mapping torus of −id. Cut M along an incompressible torus. We
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obtain a torus cross the interval. Define g =

(
2 1
1 1

)
× id on this new manifold

with boundary M̃ = T2× [0, 1]. To reobtain M we identify T2×{0} with T2×{1}
by means of the map (x, 0) 7→ (−x, 1). But this map commutes with g on the
boundary of M̃ , hence g extends to a diffeomorphism on M leaving invariant
infinitely many Anosov tori. This finishes the proof of Theorem 1.1.

Finally, let us prove Theorem 1.2. Let M be a compact orientable irreducible
3-manifold with non-empty boundary consisting of incompressible tori, and ad-
mitting an Anosov torus T . Duplicate M to obtain M ⊔ M and glue along the
corresponding boundary components. In this way we obtain a closed orientable
irreducible 3-manifold N . Now, N is in the hypotheses of Theorem 1.1, so if we
cut N along T we obtain T cross the interval. All the incompressible tori in the
boundary of M are hence isotopic to T , this implies that M is in fact T cross the
interval. This proves Theorem 1.2.
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