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Abstract. We prove, for f a partially hyperbolic diffeomorphism with center
dimension one, two results about the integrability of its central bundle. On
one side, we show that, if Ω(f) = M and dim(M) = 3, the absence of periodic
points implies its unique integrability. On the opposite side, we prove that any
periodic point p ∈ Per(f) of large enough period N has an fN -invariant center
manifold (everywhere tangent to the center bundle).

We also obtain, as a consequence of the last result, that there is an open
and dense subset of C1 robustly transitive and partially hyperbolic diffeomor-
phisms with center dimension 1, such that either the strong stable or the strong
unstable foliation is minimal. This generalizes a result obtained in [BDU] for
three-dimensional manifolds to any dimension.

1. Introduction

In this paper we shall consider partially hyperbolic diffeomorphisms with one
dimensional center direction Ec. By a partially hyperbolic diffeomorphism we
mean f ∈ Diff(M), M a closed manifold, admitting a non trivial Df -invariant
splitting of the tangent bundle TM = Es ⊕ Ec ⊕ Eu, such that all unit vectors
vσ ∈ Eσ

x with σ = s, c, u and x ∈ M verify:

‖Df(x)vs‖ < ‖Df(x)vc‖ < ‖Df(x)vu‖
for some suitable Riemannian metric, which we call adapted. It is also required
that the norm of the operators Df(x)|Es and Df−1(x)|Eu be strictly less than 1.
We shall denote PHr(M) the family of Cr partially hyperbolic diffeomorphisms
of M . Along this paper we will consider only the case dim Ec = 1 and we denote
the set of such diffeomorphisms by PHr

1(M).
On one hand, it is well known by classical invariant manifold theory that

the bundles Es and Eu are uniquely integrable thus obtaining two foliations
called the strong stable and the strong unstable foliations. On the other hand,
it is not known in general whether either the center bundle, the center stable
(Ecs = Es ⊕ Ec) or the center unstable (Ecu = Eu ⊕ Ec) are integrable. The
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hypothesis of integrability of this bundles has played an important role in par-
tial hyperbolicity theory, see for instance [HHU2]. Although recent work shows
that the integrability assumption can be bypassed to obtain ergodicity (see [BW],
[HHU1]) it seems that it remains to play a crucial role if one looks for a topologi-
cal description or even classification of partially hyperbolic diffeomorphisms (see
for instance [BBI]).

In this paper we prove two results about the integrability of the center bundle.
In our first theorem we prove that, if dim(M) = 3 and the nonwandering set is
the whole manifold, the absence of periodic points implies its unique integrability
and, in the second, that periodic points of period N high enough have central
curves (tangent at every point to Ec) invariant by fN .

Theorem 1. Let f ∈ PHr
1(M) be such that Per(f) = ∅ and Ω(f) = M and

assume that dim(M) = 3. Then, Ec is uniquely integrable.

Theorem 2. Let f ∈ PHr
1 . There exists K > 0 such that for any p ∈ Per(f)

with period N > K there exists, through p, an fN invariant curve tangent to Ec

at every point.

A Cr, r ≥ 1, robustly transitive diffeomorphism is a diffeomorphism having a
neighborhood in Diffr(M) such that every g in this neighborhood is transitive.
We show as a consequence of Theorem 2 a generalization of a result in [BDU]
to M of any dimension. In the cited paper the same result is proved for any
f ∈ PHr

1(M) and dim(M) = 3 or for M of any dimension but assuming unique
integrability of the center bundle.

Theorem 3. Let T (M) be the set of C1 robustly transitive diffeomorphisms.
Then, there exists an open and dense subset of T (M)∩PHr

1(M) such that either
the strong stable or the strong unstable foliation is minimal.

Acknowledgements. The authors want to thank the Fields Institute for warm
hospitality and financial support during their visit in January 2006.

2. Preliminaries

It is a known fact that, for f ∈ PHr(M), there are foliations Wσ tangent to
the distributions Eσ for σ = s, u (see for instance [BP]).

Due to Peano’s Theorem, for each x ∈ M there are curves αx(t) such that
αx(0) = x and α̇x(t) ∈ Ec(αx(t)) \ {0} for some open interval of parameters t
containing 0. We shall call these curves central curves through x, and denote by
W c

loc(x) the component of a central curve through x intersected by a small ball.
It is easy to see that f takes central curves into central curves.

Denoting the leaf of Wσ through x by W σ(x), with σ = s, u, we write, as usual,
W σ

loc(x) for the connected component of W σ(x)∩B(x), where B(x) is a small ball
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around x. Observe that for any choice of W c
loc(x), the sets

W σ
loc(W

c
loc(x)) =

⋃

y∈W c
loc(x)

W σ
loc(y) σ = s, u

are C1 (local) manifolds tangent to the bundle Ecσ = Eσ ⊕ Ec (with σ = s, u)
at every point (see, for instance [BBI]). For further use we will call, respectively,
W cs

loc(x) and W cu
loc(x) the sets obtained as above depending, as it is obvious, on

the choice of W c
loc(x).

Remark 2.1. Moreover, given x, y ∈ M , for all W cs
loc(x) such that y ∈ W cs

loc(x),
there exists a central curve W c

loc(y) through y contained in W cs
loc(x) (see [BBI])

Let us say that a set Γ is σ-saturated if Γ is union of leaves of Wσ, σ = s, u
and let as call the accessibility class of x, AC(x), the minimal s- and u- saturated
set that contains the point x (that is, the set of points that can be joined to x
by a us-path). If f has only one accessibility class we say that it satisfies the
accessibility property.

3. Absence of periodic points

Lemma 3.1. Let f ∈ PHr
1(M) be such that Per(f) = ∅ and Ω(f) = M . Then,

either f has the accessibility property or Es and Eu are jointly integrable.

Proof. Let Γ(f) be the set of points such that its accessibility class is not open
and suppose that ∅ 6= Γ(f) 6= M . Thus, Lemma A.5.1 of [HHU1] implies the
existence of a periodic point in Γ(f) contradicting that Per(f) = ∅.

Γ(f) = M is equivalent to the joint integrability of Es and Eu (see [HHU1])

Remark 3.2. Observe that the same proof gives that, for f ∈ PHr
1(M) such

that Per(f) = ∅ and Ω(f) = M , every closed invariant su-saturated set is either
empty or the whole M .

The following lemma generalizes (with essentially the same proof) Brin’s result
([B1]) stating that accessibility implies transitivity. For the sake of completeness
we include the proof here.

Lemma 3.3. Let f ∈ PHr(M) be such that Ω(f) = M and assume that every
closed invariant su-saturated set is either empty or the whole M . Then f is
transitive.

Proof. Let U and V be two open sets. For all x ∈ M the set K = ∩∞i=0∪n≥iAC(fn(x))
is invariant, closed, su-saturated and nonempty (observe that AC(fn(x)) =
fn(AC(x))) and so, K = M . Then, by taking x ∈ U , we can chose N ∈ N
such that AC(fN(x)) ∩ V 6= ∅. Call UN = fN(U).
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We shall show that there exists n ∈ N such that fn(UN)∩V 6= ∅ which implies
fN+n(U) ∩ V 6= ∅. Since U and V are arbitrary open sets the transitivity of f
follows from this last property.

The considerations above imply that there is an su-path [z0, . . . , zk] with z0 ∈
UN and zk ∈ V . By continuity of the strong stable and unstable foliations we can
choose V0, V1, . . . , Vk open sets such that:

• zi ∈ Vi ∀i = 0, . . . , k.
• V0 ⊂ UN and Vk ⊂ V
• for each point of x ∈ Vi there exists a su-path [x = xi, xi+1, . . . , xk] joining

x with a point of Vk with xj ∈ Vj ∀j = i, . . . , k.

Suppose that the path [z0, z1] is tangent to the stable bundle (the unstable case
is a little bit easier), then there exists a neighborhood B ⊂ V1 of z1 such that each
point in it can be joined with V0 by an s-path of uniformly bounded length (in fact
its length can be chosen approximately of the length of [z0, z1]) and we can chose
B in such a way that there exists ρ > 0 such that W s(x) ∩ V1 ⊃ W s

ρ (x) ∀x ∈ B.
Since Ω(f) = M , there exists an arbitrarily large m ∈ N and a point w ∈ B
such that f−m(w) ∈ B. This implies that, if m is large enough, f−m(W s(w))
contains the path joining f−m(w) and V0. Thus f−m(V1)∩UN 6= ∅ which implies
fm(UN) ∩ V1 6= ∅.

Now substitute V1 by V1 ∩ fm(UN) and repeat the procedure. By induction we
obtain that there is n ∈ N such that fn(UN) ∩ V 6= ∅.

Remark 3.4. It is not the issue of this work to achieve the minimal hypothesis
to obtain transitivity by using Brin’s argument. However, let us mention that
almost the same proof works if one substitutes the hypothesis on the density of
every invariant saturated nonempty set by the weaker one demanding the exis-
tence of an accessibility class whose orbit by f is dense ( there exists x such that

∪{fn(AC(x)); n ∈ Z} = M).

The following theorem is a direct corollary of Remark 3.2 and Lemma 3.3.

Theorem 3.5. Let f ∈ PHr
1(M) be such that Per(f) = ∅ and Ω(f) = M . Then,

f is transitive.

Before proving Theorem 1 let us state the following lemma, which is a conse-
quence of continuity and transversality of the invariant bundles:

Lemma 3.6. For ε > 0 there exists δ > 0 such that if d(x, y) < δ and z ∈ W c
δ (x),

then W c
loc(y)∩W s

ε (W u
ε (z)) 6= ∅, regardless of the choice of center leaves for x and

y.
In particular, if W c

loc(y) ⊂ W cu
loc(x) then W c

loc(y)∩Wu
ε (z) 6= ∅ for all z ∈ W c

δ (x)
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Remark 3.7. As a corollary of lemma above, if Ec, restricted to some W cu
loc(x),

is non uniquely integrable at x, then for sufficiently small δ > 0, and for each
connected central subsegment containing x, say c, in one of the two separatrix,
there is N > 0 for which fn(c) 6⊂ Bδ(f

n(x)) for all n ≥ N .

Proof of Remark 3.7. Take c1 and c2 two different center curves, contained in
the same component of W cu

loc(x) \W u
loc(x) and having x as endpoint. Since c1 and

c2 are different, there exist y1 6= y2 such that y2 ∈ W u
loc(y1) and yi ∈ ci, i = 1, 2.

The exponential growth of W u(y1) under the action of f implies that there exists
N > 0 such that fn(y2) /∈ W u

ε (fn(y1)) for all n ≥ N and, by lemma above, we
obtain that fn(c2) 6⊂ Bδ(f

n(x)).

Observe that one can prove without using Lemma 3.6 that either c1 or c2 should

grow but, in fact, what is proved in Remark 3.7 is that both center curves grow.
Proof of Theorem 1. By Theorem 3.5 we know that f is transitive.

As unique integrability is a local property we can suppose, by taking a double
covering and f 2 if necessary, that Ec is oriented and its orientation is preserved
by f .

Suppose that Ec is not uniquely integrable at x. Then, there are two different
arcs α and β tangent to Ec beginning at x with the same (positive) orientation.
By taking intersections of W cs

loc(α) and W cs
loc(β) with some W cu

loc(x) we can assume
that both arcs are contained in the same W cu

loc(x) (in case W cs
loc(α) ⊂ W cs

loc(β) we
can do the same argument for f−1)

Since W cu
loc(x) is two dimensional α, β and a conveniently chosen unstable arc

bound an open region U of W cu
loc(x) and, for every point z in U , there is a center arc

γ inside W cu
loc(x) joining (in the positive orientation) x with z. As f is transitive,

taking the intersection of the strong stable manifold of a point with dense forward
orbit with U , we can choose z such that its forward orbit is dense and γ with
length much less than the δ of Remark 3.7.

Now Remark 3.7 implies that for n > N the length of fn(γ) is larger than δ.
We can take from z a center continuation of γ in the positive direction and a
point w in it, close to z, but not in γ.

Consider C = W u
ε (γ) for ε small.

Then there is K very large (in particular larger that N) such that fK(z) is
very close to w. Since the length of fK(γ) is larger than δ and the unstable
manifolds growth exponentially, the projection of fK(C) to W cu

loc(x) contains C.
This implies that there is a fK-invariant strong stable manifold and thus, we
obtain a periodic point.

Remark 3.8. In fact with the same argument can be proved that if f ∈ PHr
1(M)

satisfies dim(Es) = 1, Ω(f) = M and Per(f) = ∅, Ecu is uniquely integrable.
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If Es and Eu are jointly integrable the assumptions on the dimension of the
the strong bundles and the nonwandering set are not needed to obtain the unique
integrability of the one dimensional center bundle Ec.

In order to prove next theorem we need the following standard lemma:

Lemma 3.9. There is ε0 > 0 such that if x ∈ Γ(f) verifies fk(Bsu
ε0

(x))∩Bsu
ε0

(x) 6= ∅
for some k > 0, then there is a periodic point in Bsu

ε0
(x).

Theorem 3.10. Let f ∈ PHr
1(M) be such that Per(f) = ∅ and Es and Eu are

jointly integrable. Then Ec is uniquely integrable.

Proof. If Ec is not uniquely integrable at x ∈ M then there exist two central
curves α and β through x. As in the proof of Theorem 1, by possibly taking
intersections, we may assume, for instance that β ⊂ W u

loc(α).
Consider three different points w2 < w1 < w3 in ω(x), such that d(wi, wj) <

δ/4, i, j = 1, 2, 3. This is possible since f has no periodic points, and Es ⊕Eu is
a codimension one bundle, so we can suppose that w1 is locally between W su(w2)
and W su(w3), integral manifolds of Es ⊕ Eu. Take n1 such that d(fn1(x), w1) <
δ/16 (δ as in Remark 3.7) We are assuming that Ec is oriented and that f
preserves its orientation (modulo taking a double covering and f 2, if necessary).
Take a small arc γ in fn1(α) beginning at fn1(x). As Ec is not uniquely integrable
at fn1(x) the previous observation implies that, we may take n2 large enough so
that fn2(x) be δ/16-near w2, and the length of fn2−n1(γ) be greater than δ. Now,
projecting locally via the su-foliation we obtain a map of the interval and as a
consequence there is a point e in an su-leaf such that fn2−n1(e) is in the same
su-leaf. This can be made so that Lemma 3.9 applies, whence we would have a
periodic point.

This implies the unique integrability at fn1(x) and, of course, at x on one di-
rection of Ec. To obtain the unique integrability on the other direction we argue
in the same way with w3 instead of w2.

We remark that in Theorems 1 and 3.10 we prove not only the existence of a
foliation tangent to Ec but its uniqueness.

4. Existence of central curves for periodic points

This section is devoted to prove Theorem 2.

Proof of Theorem 2. By the standard Center Manifold Theorem, through any
periodic point p there exists an immersed, invariant by the period N of p, curve γ
such that it is tangent at p to Ec(p) and it is invariant when it make sense. After
that, take a connected component of γ \ p say γ1. Suppose for a while that the
center eigenvalue at p is positive. Then, we have to situations: either fN(γ1) ⊂ γ1

or f−N(γ1) ⊂ γ1 (the simultaneous occurrence of both situations is possible).
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Suppose that we are in the first case. Then, as in [BBI], W s
loc(γ1) = ∪x∈γ1W

s
loc(x)

is a C1 fN -invariant manifold tangent to Ecs at every point. Analogously, for
the second case and W u

loc(γ1). As a conclusion we have that associated to each
component of γ we obtain either a center stable or a center unstable manifold
invariant by fN or f−N respectively. In case the center eigenvalue were negative
we can do the same procedure for f 2N obtaining that either W s

loc(γ) or W u
loc(γ) is

respectively fN or f−N -invariant. In fact, if for example W s
loc(γ1) is invariant by

f 2N then W s
loc(γ1) ∪ fN(W s

loc(γ1)) is invariant by fN .
Suppose that, without loss of generality, W s

loc(γ1) is fN -invariant.
We shall make use of the following property: given ε > 0 there exist ρ > 0

and τ > 0 such that if y ∈ W c
ρ (x) for some center manifold of x, any center

curve beginning at W s
τ (y) and contained in W cs(x) intersects (with length near

ρ) W s
ε/2(x). Moreover, given α > 0 there exists ε > 0 such that if x ∈ W cs

α (y)

then W s
ε (x) intersects any center manifold W c(y) contained in W cs(y).

Fix a small α > 0 and take ε with the preceding property and ρ < α and τ as
above. Finally, take K such that λKε < τ/3, where λ is such that the norm of
Df(x)|Es is less than λ < 1.

Now suppose that N > K and take x ∈ W c
r (p), x 6= p, and r < α so small that

the length of fN(W c
r (p)) is smaller than ρ.

Then,

• W s
ε (x) intersects any center curve beginning at p.

• fN(W s
ε (x)) cuts a center manifold that contains x in a point y

• fN(W s
ε (x)) ⊂ W s

τ (y)

Let {Xn} be a sequence of C1 line fields defined in W cs
loc(p) and converging

in the C0 topology to Ec. Observe that, for n big enough, the integral curves
of Xn intersecting W s

τ (y) also cut W s
ε (x). Then, consider the following maps

ϕn : W s
ε (x) → W s

ε (x). First, for z ∈ W s
ε (x), take fN(z) and, after this, since

fN(z) ∈ W s
τ (y), take the point of intersection of the solution of Xn through fN(z)

with W s
ε (x). By Brower’s Theorem ϕn has a fixed point. This means that there

exists wn ∈ W s
ε (x) such that fN(wn) and wn are in the same integral curve for

Xn. Arzela-Ascoli’s Lemma implies that we have a limit center curve and a point
w in it such that fN(w) ∈ W c

loc(w). If fkN(w) →k→∞ p we obtain the invariant
center curve through p by iteration of the obtained above. If fkN(w) does not
converge to p then, it is easy to prove, that there is another periodic point p1 in
γ1 and a center arc joining p and p1 that verifies the theorem.

5. Minimality of strong foliations

The proof of Theorem 3 is identical to that of the corresponding Theorem of
[BDU] by observing that Theorem 2 substitutes Lemma 5.2 of [BDU].
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All the discussion in [BDU] about the non orientability of the center bundle is
nowadays solved thanks to the open and denseness of the diffeomorphisms with
the accessibility property among the ones with one dimensional center bundle
(see [DW], [HHU1])
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