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INTRINSIC ERGODICITY OF PARTIALLY HYPERBOLIC

DIFFEOMORPHISMS WITH HYPERBOLIC LINEAR PART

RAÚL URES

Abstract. We prove that any (absolutely) partially hyperbolic diffeomorphism f of T3

homotopic to a hyperbolic automorphism A is intrinsically ergodic, that is, it has a unique
entropy maximizing measure µ.

1. Introduction

A diffeomorphism f : M → M of a closed smooth manifold M is partially hyperbolic if TM
splits into three invariant bundles such that one of them is contracting, the other is expanding,
and the third, called the center bundle, has an intermediate behavior, that is, not as contracting
as the first, nor as expanding as the second. In this paper we consider (absolutely) partially
hyperbolic diffeomorphisms with one-dimensional center bundle homotopic to a hyperbolic au-
tomorphism of Tn (see Section 2 for precise definitions). Our main issue will be the study of
the properties of the entropy maximizing measures for these systems.

Entropies are quantities that measure the complexity of the orbits of a system. While the
topological entropy “sees” the whole complexity of the orbits of a system, the metric entropy
“sees” the complexity of the orbits that are relevant for a given measure. An entropy maximizing
measure (or just a maximizing measure) is an ergodic measure such that its metric entropy
equals the topological entropy of the system. In the previous informal words, the complexity
of the orbits that are seen by a maximizing measure is the same as the complexity of the orbits
of the whole system.

On the one hand, it is well-known that uniformly hyperbolic systems admit maximizing
measures and their topological transitivity implies uniqueness. See the works of R. Bowen [1]
and G. Margulis [14]. On the other hand, when the system is not hyperbolic the existence can
fail if it is not smooth enough (see [15] and [16]). Howewer, if we are in the setting of partially
hyperbolic diffeomorphism, the results of W. Cowieson and L.-S. Young in [6] (see also [7]) imply
that there are always entropy maximizing measures if the center bundle is one-dimensional even
if the diffeomorphism is C1.

Although existence is already provided by Cowieson-Young’s results our method gives it
immediately as a consequence of the properties of the semiconjugacy of f with its linear part.
Our main result is the uniqueness of the entropy maximizing measure. B. Weiss [21] called the
systems having this property intrinsically ergodic, that is, f is intrinsically ergodic if it has a
unique maximizing measure. Let us state our main result.

Theorem 1.1. Let f : T3 → T
3 be an absolutely partially hyperbolic diffeomorphism homotopic

to a hyperbolic linear automorphism. Then, f is intrinsically ergodic.
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The proof of this theorem depends on some new results about partially hyperbolic diffeomor-
phisms. The first one of these results is that an absolutely partially hyperbolic diffeomorphism
of T3 has quasi-isometric strong foliations (see [3]). The second result is a byproduct of A.
Hammerlindl’s leaf conjugacy (see [9]). Hammerlindl showed that the quasi-isometry property
for strong foliations implies the quasi-isometry property for the center foliation (see Lemma
3.3).

After Brin-Burago-Ivanov’s result [3] (see Theorem 2.1), Theorem 1.1 is a direct consequence
of the following.

Theorem 1.2. Let f : Tn → T
n be an absolutely partially hyperbolic diffeomorphism with one-

dimensional center having quasi-isometric strong foliations homotopic to a hyperbolic linear
automorphism A . Then, f is intrinsically ergodic.

Moreover, if µ is the maximizing measure of f and m is the Lebesgue measure, (f, µ) and
(A,m) are isomorphic.

This work is complementary to the joint paper of the author with F. Rodriguez Hertz, M.
A. Rodriguez Hertz and A. Tahzibi [18] where the maximizing measures of partially hyper-
bolic diffeomorphisms of 3-dimensional manifolds having compact center leaves are studied. In
contrast to Theorem 1.1, if the center leaves are compact, uniqueness of maximizing measures
holds for a meager set of diffeomorphisms (see comments below).

Let us mention the few related results known for partially hyperbolic diffeomorphisms. In
[17] S. Newhouse and L. S. Young have shown that some partially hyperbolic examples of
T
4 have a unique entropy maximizing measure (see for instance the examples in [20]). In

3-dimensional manifolds, J. Buzzi, T. Fisher, M. Sambarino and C. Vásquez [5] proved that
certain explicit DA construction due to R. Mañé (see [13]) also has this uniqueness property.
This result can also be obtained as a consequence of Theorem 1.2. Finally, there is [18] where
the authors studied, as we mentioned before, the case where the center leaves are compact, the
manifold is 3-dimensional and f is accessible. They obtained the following dichotomy: either
the center Lyapunov exponent is zero and there is a unique entropy maximizing measure or
there are at least two (but finite) maximizing measures. The first case holds for a meager set of
diffeomorphisms because if f is in this set, it is topologically conjugate to a rotation extension
of an Anosov diffeomorphism. In particular, if we are in the first case, there are no hyperbolic
periodic points.

Our results go beyond the existence and uniqueness of the maximizing measure µ and give
a detailed description of some properties of µ. The aim of this description is to show that the
system is, in some sense, “intrinsically Anosov”. On the one hand, in Section 5 we shall prove,
based on a Pesin-Ruelle-like inequality obtained by Y. Hua, R. Saghin and Z. Xia [10], that
the center exponent has absolute value greater or equal than the center exponent of its linear
part if we are in the conditions of Theorem 1.1. Observe that, in particular, this implies the
presence of many hyperbolic periodic points with large center eigenvalue. On the other hand,
in Section 6 we shall show that the strong stable foliation has a unique minimal set if the center
Lyapunov exponent of the linear part is positive. Moreover, this minimal set is the support of µ.
We conjecture that this set is the whole manifold which would imply that the diffeomorphisms
satisfying the hypothesis of Theorem 1.2 are topologically transitive (even mixing).

The paper is organized as follows. In Section 2 we present definitions and some previous
results needed for the rest of the paper. Sections 3 and 4 are devoted to the proof of Theorem
1.2. In Section 3 we prove some properties of the semiconjugacy h between f and its linear
part. In particular, we show that h can only collapse center arcs. In Section 4 we show how
the properties of h and Ledrappier-Walters’ formula [12] imply uniqueness of the maximizing
measure obtaining the proof of Theorem 1.2 at the end of the section. As we have already
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mentioned, Section 5 is devoted to show that the center exponent is nonzero and in Section 6
we prove that supp(µ) is the unique minimal set of the strong stable foliation (provided that
the center exponent is positive). Finally, in Section 7 we make some comments on the A.
Katok’s conjecture about the existence of measures with intermediate entropies and show that
the conjecture is true in the setting of this paper.

Acknowledgments. Part of this work was done during a visit of the author to the Department
of Mathematics of the Penn State University. The starting point was motivated by the question
of A. Katok about the validity of his conjecture, that I mentioned above, in the partially
hyperbolic setting. I am very grateful to A. Katok for many inspiring discussions and to him
and other members of the math department for their kind hospitality while I was visiting PSU.
I am also grateful to C. Pugh for his suggestions on this paper.

2. Preliminaries

Throughout this paper we shall work with a partially hyperbolic diffeomorphism f , that
is, a diffeomorphism admitting a nontrivial Tf -invariant splitting of the tangent bundle TM =
Es ⊕ Ec ⊕ Eu, such that all unit vectors vσ ∈ Eσ

x (σ = s, c, u) with x ∈ M satisfy:

‖Txfv
s‖ < ‖Txfv

c‖ < ‖Txfv
u‖

for some suitable Riemannian metric. f also must satisfy that ‖Tf |Es‖ < 1 and ‖Tf−1|Eu‖ < 1.
In fact we will use a stronger type of partial hyperbolicity. We will say that f is absolutely
partially hyperbolic if it is partially hyperbolic and

‖Txfv
s‖ < ‖Tyfv

c‖ < ‖Tzfv
u‖

for all x, y, z ∈ M and vσ ∈ Eσ
w unit vectors, σ = s, c, u and w = x, y, z respectively.

For partially hyperbolic diffeomorphisms, it is a well-known fact that there are foliations Wσ

tangent to the distributions Eσ for σ = s, u . The leaf of Wσ containing x will be called W σ(x),
for σ = s, u.

In general it is not true that there is a foliation tangent to Ec. It can fail to be true even
if dimEc = 1 (see [19]). We shall say that f is dynamically coherent if there exist invariant
foliations Wcσ tangent to Ecσ = Ec ⊕ Eσ for σ = s, u. Note that by taking the intersection
of these foliations we obtain an invariant foliation Wc tangent to Ec that subfoliates Wcσ for
σ = s, u. In T

3, Brin, Burago and Ivanov have shown the following:

Theorem 2.1 ([3]). Let f : T3 → T
3 be an absolutely partially hyperbolic diffeomorphism then

it is dynamically coherent.

This result is a consequence of a more general approach to the subject. A foliation W of
a simply connected Riemannian manifold is quasi-isometric if there are a, b ∈ R such that
dW (x, y) ≤ a d(x, y) + b for any x, y in the same leaf W of W . Here dW stands for the
distance induced by the restriction to W of the ambient Riemannian metric. Brin, Burago and
Ivanov showed that in T

3 the strong foliations are quasi-isometric in the universal cover. Then,
Theorem 2.1 is a consequence of the following result of Brin:

Theorem 2.2 ([2]). Let f be a partially hyperbolic diffeomorphism of a compact n-dimensional
Riemannian manifold M . Suppose the stable and unstable foliations of f are quasi-isometric
in the universal cover M̃ . Then, f is dynamically coherent.

Let n ∈ N and δ > 0. A finite subset E is (n, δ)-separated if for x, y ∈ E, x 6= y, we have
maxi=0,...,n d(f

n(x), fn(x)) ≥ δ. Let

hn(f,K, δ) = sup{#E;E ⊂ K is (n, δ)− separated}
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and

h(f,K) = lim
δ→0

lim sup
n→∞

1

n
log hn(f,K, δ).

When K = M call h(f,M) = htop(f) the topological entropy of f . It is a well-known fact
that h(f,K) = 0 if K is a subset of a curve having all its iterates with uniformly bounded
length.

Throughout the paper we shall suppose that the definition of entropy of an f−invariant
probability µ, hµ(f), is known among other basic concepts of ergodic theory.

The variational principle states that sup{hµ(f); µ is f -invariant} = htop(f) if f is a con-
tinuous map of a compact metric space. We will say that an invariant probability measure
µ satisfying hµ(f) = htop(f) is an entropy maximizing measure or shortly a maximizing
measure.

3. Properties of the semiconjugacy

Let f be an absolutely partially hyperbolic diffeomorphism homotopic to a hyperbolic au-
tomorphism A of Tn, with one-dimensional center and with quasi-isometric strong foliations.
By a well-known result of Franks [8] f is semiconjugate to A. More specifically, there exists
h : Tn → T

n homotopic to the identity such that A ◦ h = h ◦ f . This equality can be expressed
in R

n, the universal cover of Tn, by taking lifts in an adequate way obtaining Ã ◦ h̃ = h̃ ◦ f̃
with h̃ at bounded distance of the identity map. In this section we shall focus on the study of
the sets where the injectivity of h̃ fails. In fact, we shall prove the following result:

Proposition 3.1. For all z ∈ R
n, h̃−1(z) is a compact connected subset (i.e. an arc or a point)

of a center manifold.

We shall postpone a little bit the proof of this proposition.
One of the most important properties of h̃ is that h̃(x̃) = h̃(ỹ) if and only if there existsK > 0

such that d(f̃n(x̃), f̃n(ỹ)) < K for all n ∈ Z. Moreover, K can be taken to be independent of
x̃ and ỹ.

Before going into the proof of Proposition 3.1 we shall prove the following lemma.

Lemma 3.2. Suppose that h̃(x̃) = h̃(ỹ). Then, ỹ ∈ W c(x̃).

Proof. If ỹ /∈ W c(x̃) we have that either ỹ /∈ W cs(x̃) or ỹ /∈ W cu(x̃). Suppose that we are in the
first case (the other one being analogous). Let z̃ = Wu(ỹ)∩W cs(x̃) and call Dcs = dcs(x̃, z̃) and
Du = du(ỹ, z̃). The existence (and uniqueness) of z̃ was proved in [3] for T3 and Proposition 2.15
of Hammerlindl thesis [9] in our more general setting. Now, the absolute partial hyperbolicity

implies the existence of constants 1 < λc < λu such that ∀n > 0 d(f̃n(x̃), f̃n(z̃)) ≤ λn
cDcs

and du(f̃
n(ỹ), f̃n(z̃)) ≥ λn

uDu. Since Wu is quasi isometric we have that d(f̃n(ỹ), f̃n(z̃)) >
1
a
(λn

uDu − b). Finally, d(f̃n(x̃), f̃n(ỹ)) > 1
a
(λn

uDu − b)− λn
cDcs. This quantity goes to infinity

with n implying that h̃(x̃) 6= h̃(ỹ) and finishing the proof of the lemma. �

The following lemma proved in [9] will also be useful.

Lemma 3.3 (Hammerlindl, [9]). W c(f) is quasi-isometric in the universal cover (Rn).

Now we are ready to prove the proposition.

Proof of Proposition 3.1. h̃−1(z) is a compact set contained in a center manifold by Lemma 3.2.

Take x̃, ỹ ∈ h̃−1(z). On the one hand, we know that there exists K such that d(f̃n(x̃), f̃n(ỹ)) <
K. On the other hand, if we take w̃ in the center segment joining x̃ and ỹ, the quasi-isometry
property of the center foliation implies that there are constants a, b > 0 such that, ∀n ∈ Z,
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d(f̃n(x̃), f̃n(w̃)) ≤ dW c(f̃n(x̃), f̃n(w̃)) ≤ dW c(f̃n(x̃), f̃n(ỹ)) ≤ ad(f̃n(x̃), f̃n(ỹ)) + b ≤ aK + b.

Then, h̃(w̃) = h̃(x̃) = h̃(ỹ) implying that the whole center arc joining x̃ and ỹ is contained in

h̃−1(z). Thus, h̃−1(z) is connected. �

At this point we need to show that A has also a partially hyperbolic splitting similar to the
partially hyperbolic splitting of f . This was already proved in [3] and [9] but in our setting the
proof is easier and, for the sake of completeness, we include an outline of the proof.

Let ρ, ρ′ > 1 and δ, δ′ < 1 be such that

‖Txfv
s‖ < δ < δ′ < ‖Tyfv

c‖ < ρ′ < ρ < ‖Tzfv
u‖

for all x, y, z ∈ M and vσ ∈ Eσ
w unit vectors, σ = s, c, u and w = x, y, z respectively.

Lemma 3.4. Ã has a partially hyperbolic splitting Es
A ⊕ Ec

A ⊕ Eu
A = R

n such that dim(Ec
A) is

one dimensional and δ′ < Ãvc < ρ′ if vc is a unit vector in Ec
A.

Proof. Let x̃ be a fixed point for f̃ . h̃(W c(x̃)) is an Ã−invariant curve and therefore is contained

in the stable or unstable manifold of 0 (the unique fixed point of Ã). Suppose that h̃(W c(x̃)) ⊂
Wu

Ã
(0), the other case being analogous. On the one hand, the distance to 0 of any point z̃

in h̃(W c(x̃)) grows less that C(ρ′)n + K under Ã−iteration; where C,K are some positive

constants. Indeed the length of a center curve joining x̃ and an h̃−preimage of z̃ grows less
than C(ρ′)n and h̃ is within a finite distance of the identity. This implies that Ã has, at least,

one unstable eigenvalue with modulus less that ρ′. On the other hand, h̃(Wu(x̃)) ⊂ Wu
Ã
(0) and

a similar argument gives that distances grow more than Cρn +K. Then, it is not difficult to
conclude that there is a unique unstable eigenvalue with modulus less than ρ′ and this gives
the desired splitting.

�

Remark 3.5. Let us make some observations.

(1) The arguments of Lemma 3.4 imply that the h−image of a center manifold of f is a
center manifold (line) of A.

(2) Conversely, observe that Proposition 3.1 (actually Lemma 3.2) implies that h̃−1(W c
Ã
(x̃))

is contained in W c
f̃
(z̃) for any z̃ ∈ h̃−1(x̃). Moreover, we have that h̃−1(W c

Ã
(x̃)) =

W c

f̃
(z̃).

4. Uniqueness

In this section f will continue to be an absolutely partially hyperbolic diffeomorphism ho-
motopic to a hyperbolic automorphism A of Tn, with one-dimensional center and with quasi-
isometric strong foliations. We shall prove the uniqueness of the entropy maximizing measure
of f obtaining Theorem 1.2.

Let X̃ = {x̃ ∈ R
n; #h̃−1(x̃) > 1}. By the results of the previous section X̃ is the set of points

whose h−preimages are nontrivial center arcs. Let π : Rn → T
n be the covering projection and

X = π(X̃).

Lemma 4.1. m(X̃) = 0 (of course we also have that m(X) = 0)

Proof. Let W c
Ã
(x̃) be a center manifold for A that is one dimensional by Lemma 3.4. Remark

3.5 says that there exists z̃ such that h̃−1(W c
Ã
(x̃)) = W c

f̃
(z̃). Let X̃c

x̃ = W c
Ã
(x̃) ∩ X̃. Since

h̃−1(ỹ) is a nontrivial interval of W c
f̃
(z̃) for all ỹ ∈ X̃c

x̃, we have that X̃c
x̃ is a countable set. We
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obtained that X̃c
x̃ is countable ∀x̃ ∈ R

n and since Ã is linear we know that the center foliation

of A is a foliation by parallel straight lines. So, Fubini’s Theorem gives m(X̃) = 0. �

Certainly, the previous lemma implies the existence and uniqueness of a measure µ whose
h−image is m (existence was already known as we have already said in the Introduction).
Thanks to the Rokhlin’s disintegration it is also true that any f−invariant measure goes via h
onto an A−invariant measure. Thus, to obtain a proof of Theorem 1.2 it is enough to prove that
the h−image of an entropy maximizing measure is the Lebesgue measure m. Essentially this is
a consequence of the following Ledrappier-Walters formula and our previous results. Take any
invariant measure ν for f and let ν̂ = ν◦h−1 (observe that ν̂ is given by Rokhlin disintegration).
Then, Ledrappier-Walters variational principle [12] says

sup
µ̃:µ̃◦h−1=ν̂

hµ̃(f) = hν̂(A) +

∫
Tn

h(f, h−1(y))dν̂(y).

Proof of Theorem 1.2. First observe that, since the h−preimages of points are arcs of uniformly
bounded length and the partition by h−preimages is f−invariant, we obtain that h(f, h−1(y)) =
0 for any y ∈ T

n. This means, after Ledrappier-Walters formula, that hν(f) = hν̂(A) for any
f−invariant measure ν. As an easy consequence we have that any entropy maximizing measure
for f has as its h−image the Lebesgue measure m, i.e. the unique entropy maximizing measure
for A. The previous comments imply the uniqueness of such a measure giving the proof of
Theorem 1.2. That (f, µ) and (A,m) are isomorphic via h is clear from the construction. �

5. The center exponent

Let µ be the unique maximizing measure for an absolutely partially hyperbolic diffeomor-
phism homotopic to a hyperbolic automorphism A of Tn, with one-dimensional center and with
quasi-isometric strong foliations. We have shown that (f, µ) is isomorphic to (A,m). This shows
that looking to the maximizing measure we recover many important dynamical properties of
Lebesgue measure as an invariant measure for A. For instance we have that µ has the Bernoulli
property. In this section we shall study the center Lyapunov exponent of µ. In order to recover
the whole Anosov-like behavior we need to show that the center Lyapunov exponent of µ is
nonzero. This property is not the main issue of this paper and we have found some difficulties
in trying to state a relationship between the quasi-isometry of the strong leaves and its volume
when the dimension is greater than one. Then, we shall prove our result for diffeomorphisms
on T

3.

Theorem 5.1. Let f : T
3 → T

3 be a C1+α absolutely partially hyperbolic diffeomorphism
homotopic to a hyperbolic linear automorphism A with center Lyapunov exponent λc(A) > 0.
Let µ be the maximizing measure of f . Then, the center Lyapunov exponent of µ, λc(µ), satisfies

λc(µ) ≥ λc(A).

Of course we have an analogous result if λc(A) < 0.
The proof of this result is based in a Pesin-Ruelle-like inequality proved by Y. Hua, R. Saghin

and Z. Xia in [10]. Before going into the proof, let us introduce their result. Let W be a foliation
(in this paper it will be the strong stable or the strong unstable foliation). Let Wr(x) be the
ball of the leaf W (x) with radius r and centered at x. Let

χW(x, f) = lim sup
n→∞

1

n
log(Vol(fn(Wr(x)))),
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χW(x, f) is the volume growth rate of the foliation at x. Let

χW(f) = sup
x∈M

χ(x, f).

Then, χW(f) is the maximum volume growth rate of W under f . Let us denote χu(f) =
χWu(f) when f is a partially hyperbolic diffeomorphism. Then, the Hua-Saghin-Xia’s result is
the following.

Theorem 5.2 ([10]). Let f be a C1+α partially hyperbolic diffeomorphism. Let ν be an ergodic
measure and λc

i (ν) the Lyapunov exponents corresponding to Ec. Then,

hν(f) ≤ χu(f) +
∑
λc

i
>0

λc
i (ν).

With these ingredients we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. The first step is to estimate χu(f). Since Wu is 1-dimensional the
volume is the length. Then, consider

1

n
log(length(fn(Wu

r (x)))).

First of all observe that χu(f) = χu(f̃) where f̃ is any lift of f to universal cover. On the one
hand, since Wu is quasi-isometric, we have that

1

n
log(length(f̃n(Wu

r (x̃)))) ≤
1

n
log(a diam(f̃n(Wu

r (x̃))) + b)

for some constants a, b > 0.
On the other hand, h̃(f̃n(Wu

r (x̃))) = Ãn(h̃(Wu
r (x̃))). Let C = diam(h̃(Wu

r (x̃))). Then,

diam(Ãn(h̃(Wu
r (x̃)))) ≤ C exp(nλu(A)) where λu(A) is the strong unstable Lyapunov exponent

of A. Since h̃ is at bounded distance from the identity we have that there exists a constant K
such that diam f̃n(Wu

r (x̃)) ≤ C exp(nλu(A)) +K. Thus,

1

n
log(length(f̃n(Wu

r (x̃)))) ≤
1

n
log(a diam(f̃n(Wu

r (x̃))) + b) ≤

≤
1

n
log(a(C exp(nλu(A)) +K) + b) → λu(A).

Then, χu(f) ≤ λu(A).
Secondly, we have that

λc(A) + λu(A) = htop(A) = htop(f) = hµ(f) ≤ χu(f) + λc(µ).

So

λc(A) + λu(A) ≤ χu(f) + λc(µ) ≤ λu(A) + λc(µ)

and then,

λc(A) ≤ λc(µ)

proving the theorem.
�

After this result and the comments at the beginning of this section, a natural question is the
following.

Question 5.3. Does Theorem 5.1 remain true in higher dimensions?



8 RAÚL URES

6. Geometry of the support

In this section f will be again an absolutely partially hyperbolic diffeomorphism homotopic
to a hyperbolic automorphism A of Tn, with one-dimensional center and with quasi-isometric
strong foliations. By Theorem 1.2 we know that f has a unique maximizing measure µ. We want
to describe the support of µ. In this section assume that the center eigenvalue (see Lemma 3.4)
of A has modulus greater that one (if not, take f−1). We shall show that supp(µ) is saturated
by strong stable manifolds (s−saturated). That is, W s(x) ⊂ supp(µ) if x ∈ supp(µ). Moreover,
we will show that the strong stable foliation Ws has a unique minimal set and this minimal set
is supp(µ). Recall that a compact s−saturated set Γ is minimal if given x ∈ Γ we have that
W s(x) is dense in Γ.

Before showing the announced properties of supp(µ) we need to prove some results.

Proposition 6.1. supp(µ) is s−saturated.

Proof. The first step is that h(x) = h(y) implies h(W s(x)) = h(W s(y)) = W s
A(h(x)). Observe

that this property is not true for the strong unstable manifolds. Indeed the h−image of a
strong unstable manifold of f in general is not a strong unstable manifold of A (recall that the
situation is not symmetric, the center eigenvalue of A has modulus greater than one) 1 .

Our second step is to take x in the complement of supp(µ). This means that there is a
neighborhood U of x such that µ(U) = 0. This is equivalent to the following fact: if x ∈ U and
σ is an arc in U ∩ W c(x) then h(σ) is a singleton. Indeed suppose h−1(h(x)) = x. Suppose
that V is a foliation chart for Wc such that x ∈ V . Then, if V is small enough, continuity of
h implies that any maximal connected center arc C contained in V satisfies that there is y ∈ C
such that h−1(h(y)) = y. In particular, h(C) is not singleton. Now, Fubini’s easily gives that
m(h(V )) 6= 0 and so, µ(V ) 6= 0. The converse, that is the fact that µ(U) 6= 0 implies the
existence of a point x such that h−1(h(x)) = x, is easier.

Now take W s(U) the s−saturation of U . Recall that h(x) = h(y) implies that the whole
h−image of the center curve joining x and y is a unique point. Then, the first step of the proof
gives us that any point z ∈ W s(U) has a neighborhood where all center curves are collapsed
by h. This means that z is in the complement of the support of µ. Then, the complement of
supp(µ) is s−saturated finishing the proof of the proposition. �

The following is also an important property.

Lemma 6.2. Let Λ be a closed nonempty s−saturated and f−invariant set. Then, supp(µ) ⊂ Λ.

Proof. Since the h−image of a strong stable manifold is a stable manifold of A we have that
h(Λ) = T

n. It is not difficult to conclude that f |Λ has an invariant measure that goes via h to
Lebesgue. Uniqueness of the entropy maximizing measure implies that this measure is µ. This
clearly proves the lemma. �

Remark 6.3. Observe that the previous lemma remains valid if Λ is fn−invariant for some
n. Indeed fn has unique maximizing measure, and this measure is µ. Thus, for instance, the
closure of the strong stable manifold of a periodic point contains supp(µ).

The next observation is the minimality of the center-unstable foliation. This is a consequence
of Hammerlindl’s leaf conjugacy but in our case the proof is more direct.

Lemma 6.4. Wcu is a minimal foliation.

1Even in the simpler case where f is conjugated to A and M is three-dimensional, we will obtain that
the strong stable and strong unstable foliations would be jointly integrable if the h-images of strong unstable
manifolds of f be strong unstable manifolds of A. This is not generic (see [4]).
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Proof. It is an easy consequence of the following three facts:

(1) h−1(W cu
A (x)) = W cu(h−1(x)): On the one hand, since h only identifies points that

belong to the same center, we have that if W cu(y) 6= W cu(z) then h(W cu(y)) 6=
h(W cu(z)). On the other hand, h(W cu(h−1(x))) = W cu

A (x). These two observations
imply the first fact.

(2) W cu
A (x) is dense: W cu

A (x) is the unstable manifold of a linear hyperbolic automorphisms
of Tn.

(3) h|W s(z) is injective for all z: This is a corollary of Lemma 3.2 and the fact that no
strong stable manifold intersects twice the same center manifold.

Then, since a leaf of Wcu
A intersects densely each stable segment, the injectivity of h|W s(z)

gives that any center unstable leaf intersects any strong stable segment densely. �

The same argument proves the corresponding lemma for Wcs.

h−1(Q)

W cu(z)
z

f−1(z)

f−2(z)
f−n(z)

Figure 1. The α-limit of z

Theorem 6.5. Ws has a unique minimal set. This set is supp(µ).

Proof. Let us first show there are periodic points in supp(µ). Take W cu(y) to be a periodic
center unstable leaf. It is easy to see that there exist periodic leaves because h−preimages of
A−periodic leaves are periodic.

Now, since W cu(y) is dense and suppµ is s−saturated there is a point z ∈ suppµ∩W cu(y).
The α−limit of z (α(z)) is in supp(µ) by compactness and invariance. We shall show α(z) is a
periodic point. Since h is a semiconjugacy we have that h(α(z)) ⊂ α(h(z)). W cu(y) is periodic
so, h(W cu(y)) = h(W cu(z)) = W cu

A (h(z)) is periodic too. W cu
A (h(z)) is an unstable manifold

of A and thus, α(h(z)) is a periodic point. Suppose, for simplicity, that α(h(z)) = Q is a fixed
point. So, α(z) ⊂ h−1(Q) and h−1(Q) is an invariant center arc contained in W cu(z). This
implies that α(z) is a periodic point (see Figure 1).
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W cu
C (p)

ycu ∈ supp(µ)

xcu ∈ supp(µ)

f−N (xcu)
f−N (ycu)

X

V

Figure 2. The points of supp(µ) ∩W cu
C (p) enter simultaneously V .

Then, supp(µ) has a lot of periodic points.
Suppose that p ∈ supp(µ) is a fixed point. In our case, there is always a fixed point but,

anyway, if p is just periodic, the argument essentially does not change thanks to Remark 6.3.
On the one hand, the fact that supp(µ) is s-saturated (Lemma 6.1) and Lemma 6.2 imply

W s(p) = supp(µ). On the other hand, there exists C > 0 such that W s(x) ∩ W cu
C (p) 6= ∅

∀x ∈ T
n. Here W cu

C (p) is the set of points belonging to W cu(p) that are a distance less than C
with the distance induced by the restriction of the ambient Riemannian metric.

Let z ∈ supp(µ)∩W cu(p). Recall that α(z) is a periodic point contained in supp(µ)∩W c(p).

Call X = supp(µ)∩W c(p) ∩Per(f). X is a compact set such that W s(w) = supp(µ) ∀w ∈ X .
So, given ε > 0 there is a neighborhood V of X such that W s(z) is ε−dense in supp(µ) if
z ∈ V ∩ supp(µ).

Now we know that there is xcu ∈ W s(x)∩W cu
C (p) 6= ∅ and α(xcu) ⊂ X ∀x ∈ supp(µ). Then,

there is an N > 0 such that ∀n ≥ N and ∀x ∈ supp(µ) (see Figure 2)

∅ 6= f−n(W s(x) ∩W cu
C (p)) = f−n(W s(x)) ∩ f−n(W cu

C (p)) ⊂ f−n(W s(x)) ∩ V.

Since we obtain that the previous intersection is nonempty simultaneously for all x ∈ supp(µ)
we have indeed thatW s(x)∩V 6= ∅ ∀x ∈ supp(µ). Thus, every strong stable manifold in supp(µ)
is ε−dense and since ε was arbitrarily chosen we have that supp(µ) is minimal.

It only remains to show that supp(µ) is the unique minimal set for Ws. The argument is
very similar to the previous one. Instead of X consider the set Y = Per(f) ∩W c(p) (the set
of all periodic points in W c(p) even if they are not in supp(µ)). Then, Y has the property
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that supp(µ) ⊂ W s(w) ∀w ∈ Y . Now, mutatis mutandis the previous argument gives that

supp(µ) ⊂ W s(x) ∀x ∈ T
n. This implies that supp(µ) is the unique minimal set for Ws. �

This theorem yields to the following natural questions:

Question 6.6. Is supp(µ) = T
n? Similarly, are all absolutely partially hyperbolic diffeomor-

phisms homotopic to a hyperbolic linear automorphism of T3 transitive? What happens if f is
accessible? (Recall that accessibility is abundant, see [4])

7. Some comments on a Katok’s conjecture

This work started trying to answer, in the partially hyperbolic setting, a conjecture by A.
Katok. He conjectures that a system with positive topological entropy h must have invari-
ant measures whose entropies attain all values between 0 and h. This conjecture is true for
hyperbolic systems and for C1+α surface diffeomorphisms (see [11] for a proof).

In this section we want to do the following observation that applies to many systems. Suppose
that π semi-conjugates f : M → M and g : N → N (M and N are compact metric spaces).
That is, π : M → N is a continuous and surjective map such that π ◦ f = g ◦ π. Suppose
that the entropy of the “fibers” is 0, i.e. h(π−1(x), f) = 0 ∀x ∈ N . Suppose that g satisfies
the Katok’s conjecture then, it is also the case for f . This is direct consequence of Ledrappier-
Walters variational principle [12]. Then, the results in this paper gives that if f is an absolutely
partially hyperbolic diffeomorphism homotopic to a hyperbolic automorphism A of Tn, with
one-dimensional center and with quasi-isometric strong foliations we have that f satisfies the
above mentioned Katok’s conjecture.

Theorem 7.1. Let γ ∈ [0, htop(f)]. Then, there exists an f−invariant measure ν such that
hν(f) = γ.

Moreover, the same is true for the three dimensional partially hyperbolic diffeomorphisms
with compact center leaves considered in [18].
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[13] R. Mañé, Contributions to the stability conjecture. Topology, 17 (1978) 383̈ı¿396.
[14] G.Margulis, On some aspects of the theory of Anosov systems, With a survey by Richard Sharp:

Periodic orbits of hyperbolic flows, Springer Monographs in Mathe- matics. Springer-Verlag, 2004.
[15] M. Misiurewicz, Diffeomorphism without any measure with maximal entropy, Bull. Acad. Pol. Acad.

Sci. Math. 21 (1973), 903–910.
[16] S. Newhouse, Continuity properties of entropy. Ann. of Math. (2) 129 (1989), no. 2, 215–235.
[17] S. Newhouse, L. S. Young, Dynamics of certain skew products, Geometric dynamics (Rio de Janeiro,

1981), 611–629, Lecture Notes in Math., 1007, Springer, Berlin, 1983.
[18] F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi, R. Ures, Maximizing measures for partially

hyperbolic systems with compact center leaves, to appear in Ergodic Theory Dynam. Systems.
[19] F. Rodriguez Hertz, M. A. Rodriguez Hertz, R. Ures, A non-dynamical coherent example in T3,

preprint.
[20] M. Shub, Topologically transitive diffeomorphisms on T4. Lect. Notes on Math. 206 (1971), 39.
[21] B. Weiss, Intrinsically ergodic systems. Bull. Amer. Math. Soc. 76 (1970) 1266–1269.
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