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Abstract. We obtain the following dichotomy for accessible partially hy-
perbolic diffeomorphisms of 3-dimensional manifolds having compact center
leaves: either there is a unique entropy maximizing measure, this measure has
the Bernoulli property and its center Lyapunov exponent is 0, or there is a
finite number of entropy maximizing measures, all of them with nonzero center
Lyapunov exponent (at least one with negative exponent and one with positive
exponent), that are finite extensions of a Bernoulli system. In the first case
of the dichotomy we obtain that the system is topologically conjugated to a
rotation extension of a hyperbolic system. This implies that the second case of
the dichotomy holds for an open and dense set of diffeomorphisms in the hy-
pothesis of our result. As a consequence we obtain an open set of topologically
mixing diffeomorphisms having more than one entropy maximizing measure.

1. Introduction

Topological and metric entropy are among the most important invariants for
measuring the degree of unpredictability in a dynamical system on an exponen-
tial scale. By the variational principle for homeomorphisms defined on compact
spaces, the topological entropy is the supremum over the metric entropies of all
invariant probability measures. The study of invariant measures that attain the
highest entropy is a natural way of describing the behavior of most of the relevant
orbits of a system.

Uniformly hyperbolic dynamical systems admit entropy maximizing measures
and topological transitivity implies the uniqueness of such measures. The con-
struction of maximizing measures for hyperbolic systems is due to R. Bowen [4]
and G. Margulis [20] in two different approaches. By means of their proofs it
comes out that maximizing measures equidistribute periodic orbits of the dy-
namics and also have a local product structure.
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Beyond uniform hyperbolicity even the existence problem in general is not
clear. On the one hand, M. Misiurewicz [21] has constructed a class of exam-
ples of diffeomorphisms without any entropy maximizing measure. On the other
hand, the regularity of the dynamics is relevant to the regularity of the function
that attributes the metric entropy to each invariant measure. By a result of S.
Newhouse [23] this is an upper semicontinuous function in the case of C∞ diffeo-
morphisms of compact manifolds. Hence, any C∞ diffeomorphism admits entropy
maximizing measures. Howewer, if we are in the setting of partially hyperbolic
diffeomorphisms, W. Cowieson and L.-S. Young results in [9] (see also [10]) im-
ply that there are always entropy maximizing measures if the center bundle is
one-dimensional even if the diffeomorphism is only C1.

In this paper we address the problem of existence and uniqueness (finiteness)
of entropy maximizing measures in the partially hyperbolic context. Although,
as we have already mentioned above, it is known, we give a proof of the existence
because it is almost straightforward in our setting.

Let us mention some previous related works. In [24] S. Newhouse and L.
S. Young have shown that some partially hyperbolic examples on T4 have a
unique entropy maximizing measure (see for instance the examples in [31]). In
3-dimensional manifolds, J. Buzzi, T. Fisher, M. Sambarino and C. Vásquez [7]
proved that a certain DA construction due to R. Mañé (see [19]) also has this
uniqueness property. Moreover, thanks to new techniques recently developed
by M. Brin, D. Burago and Ivanov [5] and A. Hammerlindl [16] in the theory
of partially hyperbolic dynamics, R. Ures [34] announced a proof of the same
property for any absolutely partially hyperbolic diffeomorphism of the 3-torus
homotopic to a hyperbolic automorphism.

Theorem 1. Let f : M → M be a C1+α partially hyperbolic diffeomorphism
of a 3-dimensional closed manifold M . Assume that f is dynamically coherent
with compact one dimensional central leaves and has the accessibility property.
Then f has finitely many ergodic measures of maximal entropy. There are two
possibilities:

(1) f has a unique entropy maximizing measure µ. The central Lyapunov
exponent λc(µ) vanishes and (f, µ) is isomorphic to a Bernoulli shift,

(2) f has more than one ergodic entropy maximizing measure. all of which
with non vanishing central Lyapunov exponent. The central Lyapunov
exponent λc(µ) is nonzero and (f, µ) is a finite extension of a Bernoulli
shift for any such measure µ. Some of these measures have positive central
exponent and some have negative central exponent.

Moreover the diffeomorphisms fulfilling the conditions of the second item form a
C1−open and C∞−dense subset of the dynamically coherent partially hyperbolic
diffeomorphisms with compact one dimensional central leaves.
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In the proof of this theorem, we consider a partially hyperbolic diffeomorphism
with compact central leaves as a non linear cocycle over a uniformly hyperbolic
homeomorphism and apply an invariance principle proved by A. Avila and M.
Viana [1].

Let us mention that in the first item of the above theorem, based on ideas sim-
ilar to the ones of A. Avila, M. Viana and A. Wilkinson in [2], the dynamics will
be shown to be conjugate to an isometric extension of a hyperbolic homeomor-
phism implying that the subset of dynamics satisfying the first item is meager.
Observe that, as a corollary we obtain that for an open and dense subset of par-
tially hyperbolic diffeomorphisms satisfying the conditions of the above theorem
the ergodic maximizing measures are hyperbolic, i.e. the Lyapunov exponents
are non-vanishing.

In [24] S. Newhouse and L. S. Young introduced the definition of almost conju-
gacy. Let us recall that a system is intrinsically ergodic if it has a unique entropy
maximizing measure (see [35]). Let f : X → X and g : Y → Y be intrinsically
ergodic systems (that is having a unique entropy maximizing measure) with max-
imal measures µ and µ, respectively. Say that f and g are almost conjugated if
there are invariant sets A ⊂ X and B ⊂ Y such that µ(A) = µ(B) = 1 and f |A
is topologically conjugated to g|B. They formulated the following question: let
B(M) denote the set of Cr diffeomorphisms f such that

(1) f has only finitely many ergodic measures of maximal entropy.
(2) On each support of an ergodic measure of maximal entropy, f is almost

conjugate to the restriction of an Axiom A diffeomorphism to a topologi-
cally transitive basic set.

Is B(M) residual in Diffr(M)?
Observe that a positive answer to the Newhouse-Young question would imply

that generically the supports of entropy maximizing measures will not coincide.
Using Theorem 1 and the robustly (topologically) mixing diffeomorphisms ob-

tained by C. Bonatti and L. J. Dı́az [3] we get examples of robustly mixing systems
with more than one maximizing measure.

Theorem 2. There exist robustly mixing diffeomorphisms where the number of
entropy maximizing measures is larger than one.

This contrasts with the uniformly hyperbolic case and gives a negative answer
to a question of J. Buzzi and T. Fisher [7].

Here a natural question arises:

Question 1. Is the support of any of the measures given by Theorem 2 the whole
manifold?

A positive answer to this question would imply the existence of an open set
of diffeomorphisms having entropy maximizing measures with full support giving
a negative answer to the Newhouse-Young question. Although this is the most
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likely situation, we obtain that in our setting the answer will be positive if we
modify slightly the definition of almost conjugacy.

Corollary 1. Let C be the set of partially hyperbolic diffeomorphisms of 3-dimensional
manifolds that are dynamically coherent with compact one dimensional central
leaves. Then, there exists an open and dense subset C̃ of C such that for f ∈ C̃
we have

(1) f has a finite number of entropy maximizing measures.
(2) If µ is an entropy maximizing measure for f , there exist a transitive hy-

perbolic basic set of an Axiom A diffeomorphism g with entropy maxi-
mizing measure m, a subset A ⊂ supp(µ) with µ(A) = 1 and a subset
B ⊂ supp(m) with m(B) = 1 such that f |A is topologically conjugated to
g|B.

We observe that the only difference with the Newhouse-Young question is that
we do not require µ to be the unique measure maximizing entropy of f restricted
to its support.

We emphasize that in the category of smooth invariant measures µ, by Pesin’s
result, if all the Lyapunov exponents are non zero and (fn, µ) is ergodic for any
n ≥ 1 then (f, µ) is Bernoulli. Here we see that the entropy maximizing measure
with zero center Lyapunov exponent has the Bernoulli property by using profound
results of D. Rudolph [29] about isometric extensions of Bernoulli shifts.

The paper is organized as follows. In Section 2 we present some preliminaries
and definitions needed for the understanding of the paper. In Section 3 we de-
scribe the space of center leaves and, moreover, we show that the manifold M is
(finitely covered by) a nilmanifold. In Section 4 we give a proof of the existence
of entropy maximizing measures and we show that any such a measure projects
onto a measure with local product structure. In Section 5 we prove the first part
of the dichotomy of Theorem 1 and in Section 6 we prove the second part. In
Section 7 we prove Theorem 2 and Corollary 1. Finally, in Section 8 the reader
can find some questions and directions of development.
Acknowledgement. We are grateful to the anonymous referee for a thorough
reading of the paper and several useful comments.

2. Dynamic preliminaries

2.1. Partial Hyperbolicity. Throughout this paper we shall work with a par-
tially hyperbolic diffeomorphism f , that is, a diffeomorphism admitting a nontrivial
Tf -invariant splitting of the tangent bundle TM = Es ⊕ Ec ⊕ Eu, such that all
unit vectors vσ ∈ Eσ

x (σ = s, c, u) with x ∈ M satisfy:

∥Txfv
s∥ < ∥Txfv

c∥ < ∥Txfv
u∥
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for some suitable Riemannian metric. f also must satisfy that ∥Tf |Es∥ < 1 and
∥Tf−1|Eu∥ < 1. We also want to introduce a stronger type of partial hyperbolic-
ity. We will say that f is absolutely partially hyperbolic if it is partially hyperbolic
and

∥Txfv
s∥ < ∥Tyfv

c∥ < ∥Tzfv
u∥

for all x, y, z ∈ M .
For partially hyperbolic diffeomorphisms, it is a well-known fact that there are

foliations Wσ tangent to the distributions Eσ for σ = s, u . The leaf of Wσ

containing x will be called W σ(x), for σ = s, u.

2.2. Dynamical coherence. In general it is not true that there is a foliation
tangent to Ec. Sometimes there is no foliation tangent to Ec. Indeed, there
may be no foliation tangent to Ec even if dimEc = 1 (see [28]). We shall say
that f is dynamically coherent if there exist invariant foliations Wcσ tangent to
Ecσ = Ec ⊕ Eσ for σ = s, u. Note that by taking the intersection of these
foliations we obtain an invariant foliation Wc tangent to Ec that subfoliates
Wcσ for σ = s, u. In this paper all partially hyperbolic diffeomorphisms will be
dynamically coherent.

2.3. Accessibility. We shall say that a set X is σ-saturated if it is a union of
leaves of the strong foliations Wσ for σ = s or u. We also say that X is su-
saturated if it is both s- and u-saturated. The accessibility class of the point
x ∈ M is the minimal su-saturated set containing x. In case there is some x ∈ M
whose accessibility class is M , then the diffeomorphism f is said to have the
accessibility property. This is equivalent to say that any two points of M can be
joined by a path which is piecewise tangent to Es or to Eu.

2.4. Entropy. Let n ∈ N, δ > 0 and K ⊂ M a nonempty compact set. A finite
subset E is (n, δ)-separated if for x, y ∈ E, x ̸= y, we have maxi=0,...,n d(f

i(x), f i(x)) ≥
δ. Let

hn(f,K, δ) = sup{#E;E ⊂ K is (n, δ)− separated}
and

h(f,K) = lim
δ→0

lim sup
n→∞

1

n
log hn(f,K, δ).

When K = M call h(f,M) = htop(f) the topological entropy of f . It is a well-
known fact that h(f,K) = 0 if K is a subset of a curve having all its iterates
with uniformly bounded length.

The variational principle states that sup{hµ(f); µ isf−invariant} = htop(f) if f
is a continuous map of a compact metric space. We will say that an ergodic prob-
ability µ satisfying hµ(f) = htop(f) is an entropy maximizing measure. We remind
the reader that, for simplicity of the exposition, we are supposing that entropy
maximizing measures are ergodic. In fact if the metric entropy of a measure equals
the topological entropy, the ergodic decomposition and the variational principle
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imply that almost all ergodic components are entropy maximizing. Conversely,
the metric entropy of a convex combination of entropy maximizing measures has
maximum entropy. In other words, the measures whose metric entropies equal
the topological entropy form a convex set.

3. The Quotient Dynamics

One of the important issues in our work is the dynamics induced in the quotient
space M∗ := M/Wc. Let π : M → M∗ be the quotient map, M∗ be equipped
with the quotient topology and f ∗ be the dynamics induced on M∗. For a general
partially hyperbolic diffeomorphism with not necessarily compact central folia-
tion, this quotient space may be even non-Hausdorff. However, when all leaves
are compact we hope that M∗ (this result was recently proved by P. Carrasco
when the center bundle is one dimensional, see [8]). For three dimensional man-
ifolds Epstein proved that the volume of leaves of any one-dimensional foliation
W by compact leaves is uniformly bounded and every leaf has an arbitrarily small
saturated neighborhood [13]. Then, the quotient is Hausdorff and, moreover, it
is homeomorphic to a closed surface. In other words, W is a Seifert fibration
without boundary.

3.1. Simple example. Before going into the more general case, let us present a
simple example of diffeomorphisms satisfying the hypothesis of our theorem. Let

A :=

(
2 1
1 1

)
and ϕ : T2 → S1. Then the Skew product F : T2 × S1 → T2 × S1, F (x, θ) =
(A(x), θ + ϕ(x)) is a partially hyperbolic diffeomorphism with compact central
leaves. By standard Hirsch-Pugh-Shub theory, any C1−perturbation of F is
partially hyperbolic with compact central leaves and leaf conjugated to F. In
particular if G is C1−close to F then T3/F c(G) is homeomorphic to T2 and the
dynamics induced in the quotient is conjugate to A.

We mention that by a result of A. Hammerlindl [16] this leaf conjugacy can
be obtained not only for perturbations but also for any other absolutely partially
hyperbolic diffeomorphism having the same linear part. He has also announced a
similar result for the 3-dimensional nilmanifolds. In particular he obtained that
any absolutely partially hyperbolic diffeomorphism of one of these manifolds, that
is known to be dynamically coherent [5, 26], has compact center leaves.

The only hypothesis that a priori remains unsatisfied is the accessibility prop-
erty. But accessibility is an open and dense property in this context (see [25, 6]).

3.2. Orientability of bundles. From now on we will assume thatM, Eu, EsEc

are orientable and that f preserves the orientation of these bundles. Let us show
that these assumptions are not restrictive. Suppose that Theorem 1 is valid un-
der these conditions. Now, let g : N → N be a diffeomorphism satisfying the
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hypothesis of Theorem 1. By taking a finite covering we can obtain a diffeo-
morphism g : N → N such that N and the corresponding invariant bundles are
orientable and h = g2 preserves their orientations. Observe that accessibility of
g implies accessibility of g and so, accessibility of h. Then, h satisfies one of the
two possibilities of the dichotomy given by Theorem 1.

Suppose that µ is an entropy maximizing measure for h with zero center Lya-
punov exponent. Uniqueness of the entropy maximizing measure of h implies
that µ is g-invariant and, of course, it has null center Lyapunov exponent. More-
over, µ is the unique entropy maximizing measure for g. Thanks to the Rokhlin
disintegration µ projects onto a g-invariant measure ν. It is not difficult to see
that ν is an entropy maximizing measure of g. Uniqueness is a consequence of
the uniqueness of the entropy maximizing measure of g. Indeed let ν̃ be entropy
maximizing for g with null center Lyapunov exponent. Then, there exists µ̃ a
g-invariant lift of ν̃. On the one hand, the finiteness of the covering gives that
hν̃ = hµ̃ and hν = hµ. On the other hand, since ν̃ and ν are entropy maximizing
we have that hν̃ = hν leading to hµ = hµ̃. The uniqueness of the entropy maxi-
mizing measure of g implies µ̃ = µ. Bernoullicity of µ for h implies Bernoullicity
of µ for g and (g, ν) is also Bernoulli since it is a factor of (g, µ). Finally if g
has an entropy maximizing measure with zero center exponent then h also has an
entropy maximizing measure with zero center exponent. This implies uniqueness
for the maximizing measure of h and the previous argument gives the uniqueness
for g.

Assume now that h has two entropy maximizing measures, µ+ and µ− with
positive and negative center exponent, respectively. Now, (µσ+g∗µ

σ)/2, with σ =
+,−, are entropy maximizing measures for g with positive and negative center
exponent, respectively. As in the previous argument, these measures project onto
entropy maximizing measures for g that are different because the center exponent
of one of them is positive and the other one is negative. This gives the second
part of the dichotomy for g.

3.3. M is a nilmanifold. Let f : M → M be a partially hyperbolic diffeomor-
phism with dim(M) = 3. Recall that we are assuming that f is dynamically
coherent and that the center manifolds are compact i.e. W c(x) is diffeomorphic
to S1 for every x ∈ M . Moreover, as we have just showed, for our purposes it
is enough to consider that M, Eu, Es Ec are orientable and that f preserves the
orientation of these bundles.

Wc is a foliation by circles of a closed 3-manifold. As we have already said,
Epstein’s result [13] implies that Wc is a Seifert foliation. In our case we can
obtain more information from the partially hyperbolic structure. Since W c(x) is
diffeomorphic to S1 we have that W cs(x) = W s(W c(x)) is an immersed cylinder
(observe that Ws is orientable which prevents the presence of Möbius’ strips) and
thus the foliation Wc is locally trivial when restricted to W cs(x)). Analogously,
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Wc is locally trivial when restricted toW cu(x)). These facts and the transversality
of the foliations Wcs and Wcu imply that Wc is locally trivial, that is, for every
leaf W c(x) there exist a saturated neighborhood Vx and a homeomorphism φx :
Vx → D2×S1 such that φx sends leaves of Wc to circles of the form {w}×S1. This
implies that Wc is a Seifert fibration (as we mentioned before this was already
known for us by Epstein’s result) without singular leaves. Moreover, we have the
following result:

Theorem 3. Let M be a closed orientable 3-dimensional manifold and f : M →
M a partially hyperbolic diffeomorphism. Suppose that f is dynamically coherent
with compact center manifolds and that the bundles Es, Eu, Ec are orientable.
Then Wc is a Seifert fibration without singular leaves over T2. Moreover f ∗ is
conjugated to a hyperbolic automorphism of T2.

Proof. On the one hand, the comments above imply that Wc is a Seifert fibration
without singular leaves. On the other hand, center stable and center unstable
manifolds are cylinders that go via the quotient projection to lines of M∗. Partial
hyperbolicity implies that these lines are the stable and unstable “manifolds” of
a hyperbolic homeomorphism. By Franks’ results [14] we obtain that the base
surface of the Seifert fibration is a torus and the induced dynamics is conjugated
to a hyperbolic automorphism of T2. �

We observe that, due to the classification of Seifert fibrations, an M satisfying
the conclusions of Theorem 3 is diffeomorphic to a nilmanifold (including T3) or,

equivalently, to a mapping torus of

(
1 n
0 1

)
with n ∈ N (see, for instance, [15]).

As we have already mentioned, in case that n ̸= 0, Hammerlindl has announced
that he is able to prove that all center curves are compact if f is absolutely par-
tially hyperbolic. Moreover, in [27] it is shown that any partially hyperbolic dif-
feomorphism of a 3-dimensional nilmanifold has the accessibility property. These
two facts lead to the following corollary.

Corollary 2. Any absolutely partially hyperbolic diffeomorphism of a 3-dimensional
nilmanifold satisfies the dichotomy of Theorem 1.

4. Existence and structure of entropy maximizing measures

Take any invariant measure µ for f and let ν = µ◦π−1 (observe that ν is given
by Rokhlin disintegration). By the Ledrappier-Walters variational principle [18]

sup
µ̂:µ̂◦π−1=ν

hµ̂(f) = hν(f
∗) +

∫
M∗

h(f, π−1(y))dν(y).

Since π−1(y), y ∈ M∗, is a circle and its iterates have bounded length we have
that h(f, π−1(y)) = 0, that is, fibers does not contribute to the entropy. Hence,
by the above equality and the well-known fact that hµ(f) ≥ hν(f

∗) we conclude
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that hµ(f) = hν(f
∗). Using the usual variational principle this implies that the

topological entropies of f and f ∗ coincide. In particular, the set of entropy
maximizing measures of f coincides with the subset of ergodic measures which
projects down to an entropy maximizing measure for f ∗.

In general the existence of entropy maximizing measures is a nontrivial ques-
tion. However, by the comments above, in the setting of Theorem 1, it is easy to
see that entropy maximizing measures always exist. Indeed let M be the set of
probability measures on M and consider

M0 := {µ ∈ M : π∗(µ) = m}
where m is the entropy maximizing measure of f ∗.

It is clear thatM0 is a nonempty convex compact subset ofM and the operator
f∗ : M0 → M0 has a fixed point.

We finishes this section by recalling some properties of entropy maximizing
measures of the quotient dynamics. An invariant probability measure m has
local product structure if for every x in the support of m there exist measures
ms,mu on Bs(x), Bu(x) such that m|B(x) is equivalent to ms × mu. Let g be a
linear Anosov diffeomorphism on T2. Then g is topologically mixing and it is
well-known that it admits a unique maximizing measure m which is the Lebesgue
measure. Recall that in general by the Bowen and Margulis constructions of
maximizing measures, any topologically mixing Anosov diffeomorphism admits a
unique maximizing measure which has local product structure.

Now take any dynamics like f ∗ (quotient to central foliation dynamics) which
is topologically conjugate to a linear Anosov diffeomorphism. Let h be the conju-
gacy f ∗ ◦h = h◦g. Then h∗m is the unique maximizing measure of f ∗. Moreover,
as h carries the stable (unstable) manifolds of g to stable (unstable) sets of f ∗ we
easily conclude that h∗m also has local product structure.

5. Rigidity and zero Lyapunov exponents

Here we prove the first part of the theorem. Suppose that there exists an
entropy maximizing measure µ with λc(µ) = 0 or, more generally, there exists
a sequence of entropy maximizing measures µn such that λc(µn) → 0. In both
cases we prove that (f, µ) is isomorphic to a rotation extension of an Anosov
diffeomorphism A. In the second case µ stands for a weak accumulation point of
µn, which will also have maximum entropy.

To prove the above claim we apply firstly the invariance principle of Avila-Viana
[1] to conclude that µ admits a disintegration [x → µx] which is s-invariant and
u-invariant and x → µx varies continuously with x on supp(π∗(µ)) = M∗. We
state Avila-Viana result in a form adapted to our setting.

Theorem 4 (Theorem D, [1]). Let f : M → M be a partially hyperbolic dif-
feomorphism with one-dimensional compact center leaves. Assume that given
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y ∈ W σ(x) the naturally defined σ-holonomy between W c(y) and W c(x) is a
homeomorphism for σ = s, u. Let (mk)k be a sequence of f -invariant probability
measures all having the same projection µ∗ and suppose that µ∗ is a probabil-
ity measure that has local product structure. Assume the sequence converges to
some probability measure µ in the weak∗ topology and

∫
|λc(x)|dmk(x) → 0 when

k → ∞. Then µ admits a disintegration {µx∗ : x∗ ∈ M∗} which is s-invariant
and u-invariant and whose conditional probabilities µx∗ vary continuously with x∗

on the support of µ∗.

By accessibility and holonomy invariance of [x → µx] we conclude that
supp(µx) = W c(x) and µx is atom free. Suppose that Wc is orientable and
choose an orientation for it. Now using a method as in Avila-Viana-Wilkinson
we get an S1−action on M that commutes with f , i.e. ρθ : M → M such that
ρθ ◦ f = f ◦ ρθ, θ ∈ S1. We define ρ in the following way: ρθ(x) = y where y
is the point in W c(x) such that the arc of center manifold joining x with y has
conditional measure µx([x, y]c) = θ (we are identifying S1 with [0, 1] mod. 1) and
we are measuring in the positive direction.

5.1. Rigidity. We will show that this action is conjugated to an action that
is isometric on fibers. This will imply that (f, µ) is conjugated to an isometric
(rotation) extension of a Bernoulli shift.

Our next goal is to prove that f is conjugated to an isometric extension of
a hyperbolic automorphism of T2 if the center Lyapunov exponent of a entropy
maximizing measure µ is 0.

Recall that we used the invariance principle of Avila-Viana [1] to conclude
that µ admits a disintegration [x 7→ µx] which is s-invariant and u-invariant and
such that x 7→ µx varies continuously with x on supp(π∗(µ)) = M∗(= M/Wc).
Moreover, we have concluded that supp(µx) = W c(x) and the measures µx are
atom free. Now we want to obtain the desired conjugacy. The main difficulty
here is the absence of a global section of Wc (except in the case M = T3).

Proposition 1. Let W be a 1-dimensional foliation by compact leaves of a closed
manifold M and ρ : S1 ×M → M an (at least continuous) action such that

(1) W has no singular leaves, that is, every leaf has a neighborhood where the
foliation is a product.

(2) The leaves of W are the orbits of ρ.
(3) Given x ∈ M the map g 7→ ρ(g, x) is a homeomorphism between S1 and

W c(x).

Then, ρ is conjugated to an action ρ of S1 in a fiber bundle with fiber S1 and base
M/W (the principal bundle associated to the fiber bunddle W) Moreover, ρ acts
by isometries in the fibers.
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Remark 1. The regularity of ρ depends on the regularity of W and ρ. In the
case we are interested in both W and ρ are Hölder continuous and then we obtain
the same regularity for ρ.

Proof. We give an outline of the proof since the arguments are classical in fiber
bundle theory (see, for instance, [32]). Let p : M → M/W be the natural
projection. Take a covering {Vi} of M/W by balls such that the p−1(Vi) are
trivial. Let φi : Vi × S1 → p−1(Vi) be coordinate functions chosen in such a way
that p ◦ φi = π (where π is the projection on the first coordinate of Vi × S1) and
conjugate the restrictions of ρ to p−1(Vi) with the actions ((x, θ), α) 7→ (x, θ) on
Vi × S1.

Now, define the new bundle by taking the disjoint union
⊔

i Vi × S1 and the
quotient by the following relation of equivalence: (x, θ) with x ∈ Vi is equivalent
to (x, θ) with x ∈ Vj if φjφ

−1
i (x, θ) = (x, θ). This defines our new fiber bundle

and the identity map of
⊔

i Vi × S1 induces a homeomorphism between M and
the new bundle. It is not difficult to show that this homeomorphism conjugates
ρ and ρ. �

Since f commutes with ρ we obtain, using the conjugacy given by the propo-
sition above, a homeomorphism f conjugated to f that commutes with ρ. This
implies that f is an isometric extension of the dynamics f ∗ of f on M/Wc. As we
have shown before this quotient dynamics is conjugated to an Anosov dynamics
of T2. Let us call µ to the measure of M formed by the entropy maximizing
measure of f ∗ in the base and such that the conditional measures along the fibers
are Lebesgue. Then, µ is a rotation extension of a Bernoulli measure.

Accessibility of f and Brin’s theory on compact group extensions imply that
(f, µ) is weakly mixing (see, for instance, [12, Subsection 2.2]). A result of
Rudolph [29] implies that (f, µ) (and then (f, µ)) is Bernoulli.

5.2. Uniqueness. It only remains to show that µ is the unique entropy maxi-
mizing measure for f . Of course this is equivalent to showing that µ is the unique
unique entropy maximizing measure for f . Suppose that λ is an entropy max-
imizing measure for f . Then, as was shown before, λ projects onto the unique
entropy maximizing measure of f ∗ and accessibility implies that the conditional
measures along center leaves are supported on the whole S1, atom free and in-
variant by rotations (Avila-Viana Invariance Principle again [1]) This yields that
the conditional measures are Lebesgue and λ = µ.

Remark 2. In this paper we present a proof for dim(M) = 3. The reader can
easily verify that the same proof works for higher dimensions if one asks for the
following conditions:

(1) The center foliation is one-dimensional, by compact curves and without
singular leaves.
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(2) The quotient dynamics f ∗ is transitive.

Under these hypotheses f ∗ is a transitive hyperbolic homeomorphism and then,
it has a unique entropy maximizing measure for that is locally a product of mea-
sures of the stable and unstable manifolds (Bowen’s measure [4, 20])

In particular our results remain valid for accessible perturbations of a diffeo-
morphism of the form g× id|S1 where g is a transitive Anosov diffeomorphism of
a manifold of any dimension. Recall that accessibility is abundant in this setting
(see [6]).

6. Second part of the dichotomy

Now we suppose that there exists c0 > 0 that for all entropy maximizing mea-
sures |λc(µ)| > c0. If this were not the case we would have a sequence of entropy
maximizing measures (µn)n weakly∗ convergent to µ and such that λc(µn) → 0.
The arguments of the previous section would imply that f is conjugate to a ro-
tation extension and has a unique measure with null center Lyapunov exponent.

6.1. More than one measure. Our first step is to show that given an entropy
maximizing measure µ+ such that λc(µ

+) > 0 there exists a naturally associated
measure µ− with λc(µ)

− < 0.

Lemma 1. There exist a set S and k ∈ N such that µ+(S) = 1 and for every
x ∈ S, we have #S ∩ π−1(π(x)) = k.

Proof. The lemma is a corollary of Theorem II of [30]. We observe that since f
is C1+α and the center manifolds also vary continuously in the C1+α norm we are
in the conditions to apply the Ruelle-Wilkinson theorem. �

Lemma 1 implies that the conditional measures of almost every center manifold
are supported in k points. As a consequence of the ergodicity of µ+, we obtain
that the weight of each one of these points is 1

k
.

We can also suppose that S is contained in the set of Pesin’s regular points.
Then, each point x ∈ S has a two-dimensional Pesin unstable manifold W u

P (x)
and we will denote by Wλc(x) the intersection of this unstable manifold with the
center manifold of x, W u

P (x)∩W c(x) the Pesin center manifold of x. Since W c(x)
is diffeomorphic to S1 we have that Wλc(x) is an arc. Let x̃ denote the extreme
point of Wλc(x) in the positive direction (recall that we have an orientation for
Ec). Now we are in condition to define the measure µ−. We want µ− to be
an entropy maximizing measure, so it must project onto the same measure as
µ+. It will be enough to define the conditional measures of µ− along the center
manifolds. Given x ∈ S, we will assign weight 1

k
to x̃. This defines the conditional

measures of µ−. The invariance of µ+ and unstable manifolds imply invariance
of µ− and ergodicity of µ+ implies ergodicity of µ−.

Lemma 2. λc(µ
−) < 0.
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Proof. First of all observe that λc(µ
−) ̸= 0. Indeed, if it were not the case, the

arguments of Section 5 would imply that µ− is the unique entropy maximizing
measure. Now, if λc(µ

−) > 0 the Pesin unstable manifolds of x̃ coincide intersects
the Pesin unstable manifolds of x contradicting that x̃ is in the boundary of
Wλc(x). This implies the lemma. �

6.2. Finiteness. We have proved that we have more than one entropy maxi-
mizing measure if we have an entropy maximizing measure with nonzero center
exponent. All these entropy maximizing measures are trivially shown to be finite
extensions of Bernoulli shifts (the entropy maximizing measure of the quotient
dynamics is equivalent to a Bernoulli shift). Then, the only thing we have to
prove to finish the proof of the second item of Theorem 1 is the finiteness of the
entropy maximizing measures.

Lemma 3. Suppose that there is a sequence of entropy maximizing measures
(µ+

n )n with µ+
i ̸= µ+

j for i ̸= j. Moreover, suppose that λc(µ
+
n ) > 0 for all n

and that the sequence converges in the weak∗ topology to a measure µ. Then, the
sequence (µ−

n )n also converges to µ.

Proof. Since the µ+
n are infinitely many different measures we have that for almost

every center manifold the lengths of the Pesin center manifolds of the points
that support the corresponding conditional measures µ+

n (x) go to 0. For this
is important to observe that the Birkhoff Theorem implies that the supports of
these conditional measures do not intersect. Then, we have that given ε > 0 there
exists an N > 0 such that for n > N the length of the Pesin center manifold of x
is less than ε for every x in a set of center manifold of quotient measure greater
than 1 − ε. This implies that for any continuous ϕ : M → R we have that∫
ϕ dµ+

n −
∫
ϕ dµ−

n → 0. Thus µ−
n → µ if µ+

n → µ. �

Now let us show that there exists just a finite number of ergodic entropy max-
imizing measures. This means that the compact subset of measures that project
onto the entropy maximizing measure of f ∗ is a finite simplex.

Suppose by contradiction that we have infinitely many entropy maximizing
measures. As we have already shown the center Lyapunov exponents of these
measures are nonzero. Then, we can take a infinite sequence having the center
exponent with the same sign. Suppose that for this sequence the center exponent
is positive (if not take the inverse). Since the set of invariant probabilities is
sequentially compact we obtain a sequence of measures (µ+

n )n converging to a
measure µ and satisfying the hypothesis of Lemma 3. Then, (µ−

n )n also converges
to µ. On the one hand, as we have observed at the beginning of this section
|λc(µ

σ
n)| > c0, σ = +, −, then,∫

log ||Df |Ec || dµ = lim

∫
log ||Df |Ec|| dµ+

n = limλc(µ
+
n ) ≥ c0.
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On the other hand, thanks to the same observation we have∫
log ||Df |Ec || dµ = lim

∫
log ||Df |Ec|| dµ−

n = limλc(µ
−
n ) ≤ −c0.

These two inequalities obviously yield a contradiction, finishing the proof of
the second part of Theorem 1.

6.3. End of the proof. To finish the proof of Theorem 1 we only need the
following observations:

(1) Accessibility is an open and dense property for systems with one-dimensional
center (see [11, 6]).

(2) The quotient dynamics is conjugated to a hyperbolic automorphism, in
particular it is expansive (for any metric compatible with its topology).
This observation implies that there exists a constant α such that for any
pair of center leaves there is an iterate so that the distance between these
leaves is greater than α. Now, we can easily conclude that the center
foliation is plaque expansive. The Hirsch-Pugh-Shub theory on normally
hyperbolic foliations implies that, in this setting, dynamical coherence is
an open property.

(3) If we are in the first case of the dichotomy, f has no hyperbolic periodic
points. It is easy to see that in this setting (there are periodic leaves dif-
feomorphic to S1) the diffeomorphisms having hyperbolic periodic points
form an open and dense set.

7. Proof of Theorem 2 and Corollary 1

Proof of Theorem 2. Let A : T2 → T2 be a hyperbolic automorphism and con-
sider F := A× S1 : T2 × S1 → T2 × S1. Bonatti and Dı́az [3] have shown that F
can be approximated by robustly mixing diffeomorphisms. In other words there
exists an open set of mixing partially hyperbolic diffeomorphisms M such that
F belongs to its closure.

The set of accessible diffeomorphisms A is open and dense in the set of partially
hyperbolic diffeomorphisms with one dimensional center. Then, N = M∩A ̸= ∅.
The diffeomorphisms ofN satisfy the hypothesis of Theorem 1, which implies that
the diffeomorphisms of an open end dense subset of N satisfy the second item of
the dichotomy. This proves Theorem 2.

�

Proof of Corollary 1. If we neglect a set of null measure of fibers, the projection
π induces a conjugation between the support of an entropy maximizing measure
and a linear automorphism of the torus times a finite permutation. �
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8. Questions and Remarks

8.1. Noncompact center leaves. As we mentioned in the introduction there
are some advances in the case that the diffeomorphism is homotopic to Anosov
(see [7, 34]). In [34] Ures’ result uses that the invariant foliations are quasi-
isometric. Then, the following questions remain open:

Question 2. Let f be a partially hyperbolic diffeomorphism of T3 homotopic
to a hyperbolic automorphism. Is it always true that f has a unique entropy
maximizing measure? Or (which is presumingly equivalent in this case) is its
topological entropy equal to the entropy of its linear part?

A similar question, in the sense of generalizing Theorem 1, remains open for the
case that f is homotopic to a hyperbolic diffeomorphism of T2 times the identity
of S1 (or to a automorphism of a nilmanifold) in case that f is dynamically
incoherent. Observe that the dynamically incoherent examples of [28] are Axiom
A and satisfy the conclusions of the second part of Theorem 1.

A different direction of future development is the case of perturbations of the
time one map of an Anosov flow. One of the difficulties in this case seems to be
the fact that the entropy is not constant when the time varies. An interesting
question would be the following:

Question 3. Is the topological entropy generically locally constant in a neighbor-
hood of the time one map of an Anosov flow?

In [17], Y. Hua, R. Saghin and Z. Xia gave some topological conditions to
obtain that the entropy is locally constant but these conditions are not valid in
the neighborhood of the preceding question.

8.2. Symplectic case. There are many interesting problems in the symplectic
context (like the n-body problem) where a partially hyperbolic invariant subset
appears. By definition, a partially hyperbolic subset is a compact invariant subset
with a partially hyperbolic decomposition of the tangent space satisfying similar
conditions to the partially hyperbolic diffeomorphisms. As a simple and relevant
model consider a symplectic manifold N and g : N → N a symplectomorphism
close to the identity. Now take f : M → M any diffeomorphism with a transitive
hyperbolic invariant subset Λ & M. Then Λ × N is partially hyperbolic subset
for F := f × g. By Hirsch-Pugh-Shub theory this subset has a continuation after
C1−perturbations of F. (See [22] for mixing properties of these kind of subsets.)
Let N be a surface with a symplectic form. Then either both central Lyapunov
exponents of F (for any invariant measure) vanish or the sum of the central
Lyapunov exponents is equal to zero.

The invariant subsets under consideration have zero Lebesgue measure. The
class of entropy maximizing measures is a natural object of study for the dynamics
of such subsets. Tahzibi and Nassiri conjectured that F is in the closure of an open
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set U such that any G ∈ U has a partially hyperbolic set satisfying the following
dichotomy: Either there exists an ergodic entropy maximizing measure with zero
Lyapunov exponents (and in this case it is the unique maximizing measure) or
there are finitely many (more than one) ergodic maximizing measures all of them
with non zero Lyapunov exponents.

One of the difficulties in dealing with this conjecture is the lack of the acces-
sibility property in this context. However some strong transitivity property for
the holonomy (stable and unstable) semi group ([33]) is helpful to approach the
problem.

8.3. Number of maximizing measures in Theorem 1. In general, we can
obtain any even number of entropy maximizing measures by just taking the prod-
uct of an Anosov diffeomorphism of T2 and a Morse-Smale diffeomorphism of S1

(an odd number of measures can be obtained if, for instance, we allow that f does
not preserve the center orientation). Then, the relevant questions are in case f
is topologically mixing or transitive.

Question 4. Are there topologically mixing f satisfying the hypothesis of Theorem
1 and with more than 2 entropy maximizing measures? Is it true that generically
f has just 2 such measures?

8.4. Conservative case. According to [2] if f satisfies the hypothesis of The-
orem 1 and is conservative (it preserves a smooth measure m) we have three
possibilities (recall that accessibility implies K):

(1) m has nonzero center exponents, and then it is Bernoulli by well-known
Pesin’s results.

(2) The center exponent vanishes and the center foliation is absolutely contin-
uous. It is proved that f is smoothly conjugated to a rotation extension of
a Bernoulli system, and then it is Bernoulli thanks to a result of Rudolph
[29].

(3) The center exponent vanishes but the center foliation is not absolutely
continuous. The conditional measures along the center foliation are atomic
and the projection of m is not locally a product in the quotient dynamics.

In the third case it is unknown if m is Bernoulli. A negative answer would be
very interesting because there is no example of a conservative K-diffeomorphism
that is not Bernoulli in dimension 3.
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