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Preface

In this book we present some aspects of the theory of partially
hyperbolic diffeomorphisms. A diffeomorphism on a compact man-
ifold is partially hyperbolic if it preserves a splitting of the tangent
bundle into three sub-bundles in such a way that one of them is uni-
formly contracted, other one is uniformly expanded and the last one,
called the center bundle, has an intermediate behavior, that is, it is
neither as contracting as the first one nor as expanding as the second
one. This concept is a natural generalization of the notion of uni-
formly hyperbolicity and its study goes back to the early seventies
(see for instance [73, 26]) but surely these issues were under discus-
sion since before. Hyperbolic behavior has proved to be a powerful
tool to get different types of chaotic properties from the ergodic and
topological viewpoints but at that time the need of relaxing the full
hyperbolicity hypothesis appeared (see for instance Shub’s examples
of non-hyperbolic robustly transitive diffeomorphisms [114])

Some works that appeared in the nineties opened the way for
making partial hyperbolicity one of the most active topics in dynam-
ics over the last decade. These works relate partial hyperbolicity with
two robust fundamental properties: stable ergodicity (see [53, 103])
and robust transitivity (see [13, 43]) This book will mainly be con-
centrated in the ergodic properties of these systems. We will maintain
the exposition of the topics in the simplest possible cases. Most of
the time in the simplest cases appears already the main insight of the
theory.

The book is divided in five chapters. The general intention is
that each chapter be self-contained. In the first chapter we give the
very basic definitions and we present the main examples of partially
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2 PREFACE

hyperbolic diffeomorphisms (we follow the presentation of the exam-
ples in [66]) Second chapter is devoted to the Pugh-Shub conjecture
about the abundance of ergodicity among the conservative partially
hyperbolic diffeomorphism. In particular, we explain the proof of the
conjecture for one dimensional center. In the third chapter we study
the relationship between partial hyperbolicity and entropy, entropy
maximizing measures, etc. The research in this area is growing re-
cently and there are many interesting open problems. Fourth chapter
is about co-cycles with partially hyperbolic (or even hyperbolic) base
dynamics. In this area there are new interesting results that relate the
regularity of the center “foliation” wit rigidity phenomena. Finally,
the last chapter is dedicated to explain the advances on our conjecture
about the ergodicity of conservative partially hyperbolic diffeomor-
phisms in dimension 3. Roughly speaking, this conjecture asserts
that non-ergodic partially hyperbolic diffeomorphisms can exist only
on a few 3-dimensional manifolds (essentially on those manifolds that
are torus bundles that fiber over the circle)

Significant advances in many aspects were recently obtained in
the theory of partial hyperbolicity through the work of many authors.
These advances deserve a systematic presentation. These notes are
an attempt to do so with part of this material.



CHAPTER 1

Introduction

1.1. First definitions

Throughout this book we shall work with a partially hyperbolic

diffeomorphism f : M →M where M is a compact riemannian mani-
fold.

Definition 1.1.1. A diffeomorphism f is partially hyperbolic if
it admits a nontrivial Tf -invariant splitting of the tangent bundle
TM = Es ⊕Ec ⊕Eu, such that all unit vectors vσ ∈ Eσ

x (σ = s, c, u)
with x ∈M satisfy:

‖Txfv
s‖ < ‖Txfv

c‖ < ‖Txfv
u‖

for some suitable Riemannian metric. f also must satisfy that ‖Tf |Es‖ <
1 and ‖Tf−1|Eu‖ < 1. There is also a stronger type of partial hyper-
bolicity. We will say that f is absolutely partially hyperbolic if it is
partially hyperbolic and

‖Txfv
s‖ < ‖Tyfv

c‖ < ‖Tzfv
u‖

for all x, y, z ∈ M and vσ ∈ Eσ
w unit vectors, σ = s, c, u and w =

x, y, z respectively.

There are two invariant foliations Fs and Fu, the strong stable

and the strong unstable foliations, that are tangent, respectively, to
Es and Eu. These are the only foliations with these features. But,
in general, there is no invariant foliation tangent to Ec; and, in case
there were, in general, it is not unique. We will discuss properties of
these foliations many times trough these notes.

Other important fact is that partial hyperbolicity is an open
property in the C1 topology. That is, if f is partially hyperbolic
there exists a neighborhood U ⊂ Diff1(M) of f such that ∀g ∈ U , g
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4 1. INTRODUCTION

is partially hyperbolic. A proof of this fact can be obtained by using
an argument with cones like in the hyperbolic case. Observe that
the invariance of suitable defined cones depends only in the relation
between the derivatives restricted to each invariant bundle.

1.2. Examples

In studying partially hyperbolic systems, one of the problems is
that it is not clear if the amount of existing examples is small, or
if it essentially includes all the examples. Thus we get two paral-
lel problems: the search of examples and the classification problem.
We would like to split the examples into two categories in nature, a
grosser or topological one and another finer or geometric one; or even
a measure theoretic one.

For the topological type we would be interested in knowing in
which manifolds and in which homotopy classes the partially hyper-
bolic dynamics can occur. For example, we say that two partially
hyperbolic systems f : M→M and g : N→N , both having a central
foliation F are centrally conjugated or conjugated modulo the central
direction [74] if there is a homeomorphism h : M→N such that

i) h (Ff (x)) = Fg (h(x))
ii) h (f (Ff(x))) = g (h (Ff (x))) or, which is equivalent,

Fg (h(f(x))) = Fg (g(h(x)))

It would be useful to classify partially hyperbolic systems modulo
central conjugacy. Some cases were indeed studied and will appear
in future chapters. It would be also interesting to have an analogous
concept when the central distribution is not integrable.

Bellow we give a list of some of the existing examples. We hope
that we had put there most of them.

The second type of examples typically live within the first type
and will be appearing along this notes.

1.2.1. Anosov Diffeomorphisms. A diffeomorphism f : M→M
is an Anosov diffeomorphism if its derivative Df leaves the splitting
TM = Es ⊕ Eu invariant, where Df contracts vectors in Es expo-
nentially fast, and Df expands vectors in Eu exponentially fast.

Anosov systems are the hallmark of hyperbolic and chaotic be-
haviors.



1.2. EXAMPLES 5

From the ergodic point of view, Anosov diffeomorphisms are very
much better understood.

Theorem 1.2.1. [3] Volume preserving Anosov diffeomorphisms
are ergodic.

The partially hyperbolic systems share lots of their properties
with the Anosov systems. Let us describe some of those properties.
There are two invariant foliations Fs and Fu tangent to Es and
Eu. Both foliations have smooth leaves (as smooth as the diffeomor-
phism), but the foliations themselves are not smooth a priori. In fact,
although there are some interesting cases where the invariant folia-
tions are smooth, the general case is that they are rarely smooth [5],
[60]. Thus, it became an interesting problem to study the transver-
sal regularity of these foliations. For example, it turned out that the
holonomies of these foliations are absolutely continuous [3], [4], [6],
[117] i.e. we say that a map h : Σ1 →Σ2 is absolutely continuous if
it sends zero measure sets into zero measure sets. The importance of
absolute continuity of the holonomies is that it implies that Fubini’s
theorem is true for these foliations, that is, a measurable set A has
zero measure if and only if for a.e. point x in M the intersection of
A with the leaf through x has zero leaf-wise measure. It is worth
mentioning that in smooth ergodic theory, when dealing with any
kind of hyperbolicity, the smooth regularity of the system is typically
required to be at least C1+Hölder. In fact, in the C1 category the
following is still unknown:

Problem 1.2.2. Are there examples of non ergodic volume pre-
serving Anosov diffeomorphisms?

Despite these results, Anosov diffeomorphisms are far from being
completely understood. For example, the following problem is still
open.

Problem 1.2.3. [118] Is every Anosov diffeomorphism conju-
gated to an infra-nil-manifold automorphism?

When the manifold underlying the dynamics is a nil-manifold or
if the unstable foliation has codimension one the answer is yes, [48],
[88], [93]. For expanding maps (when every vector is expanded by the
derivative) the answer also is yes, they are always conjugated to infra-
nil-manifold endomorphisms, [113], [54]. It would be interesting to
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get analogous results for partially hyperbolic diffeomorphisms, or at
least to have an answer to the following:

Problem 1.2.4. Let f be a partially hyperbolic diffeomorphism
on a nilmanifold. Is it true that its action in homology is partially
hyperbolic?

In dimension three the answer is yes, see [21],[27], [96].

1.2.2. Anosov Flows. We say that a flow φt on a manifold M
is an Anosov flow if admits an invariant splitting TM = Es⊕E0⊕Eu,
where, as usual, vectors in Es and Eu are respectively exponentially
contracted and exponentially expanded, and E0 is the space spanned
by the vector-field. One of the main difference between Anosov flows
and Anosov diffeomorphisms is that there are known examples of
Anosov flows where the non-wandering set is not the whole manifold,
[49]. In fact, this changes completely the hope of finding a complete
classification of Anosov flows like that stated in Problem 1.2.3. On
the other hand, when dealing with transitive Anosov flows, there is
a dichotomy, either they are mixing or else the bundle Es ⊕ Eu is
jointly integrable. In fact, in [98], it is proven that either the strong
unstable manifold is minimal or Es ⊕Eu is integrable. In this second
case J. Plante also proved that the flow is conjugated to a suspension
but possibly changing the time. In fact it is still an open problem
to know if the su−foliation is by compact leafs, and this is closely
related to the following long-standing problem

Problem 1.2.5. Is the action in homology of an Anosov diffeo-
morphism hyperbolic?

As already mentioned, volume preserving Anosov flows are er-
godic. Moreover, the following is proven in [31]:

Theorem 1.2.6. Let φ1 be the time-one map of a volume pre-
serving Anosov flow φ. If φ is mixing then it is stably ergodic.

Of course, the time-one map of the suspension of an Anosov
diffeomorphism by a constant roof function is not stably ergodic.

1.2.3. Geodesic Flows. Let V be an n-dimensional manifold
and let g be a metric on V . On TV it is defined the geodesic flow

as follows. Given a point x ∈ V and a vector v ∈ TxV there is a
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unique geodesic γ with γ(0) = x and γ̇(0) = v. For t ∈ R we define
φt(x, v) = (γ(t), γ̇(t)). It follows that |γ̇(t)| = |v| for every t ∈ R or
more precisely, gγ(t) (γ̇(t)) = gx(v) for every t ∈ R. Thus the geodesic
flow preserves the vectors of a given magnitude. Let M = T1V be the
bundle of unit vectors tangent to V and let us restrict the geodesic
flow to M . It turns out that if the sectional curvature is negative then
the geodesic flow is in fact an Anosov flow [3]. Indeed, for every unit
vector v in M , TvM may be identified with the orthogonal Jacobi
fields. Thus, if we call Es the set of orthogonal Jacobi fields that are
bounded for the future and Eu the set of orthogonal Jacobi fields that
are bounded for the past, then negative sectional curvature implies
that TM = Es ⊕ E0 ⊕ Eu and the vectors in Es are exponentially
contracted in the future, E0 is the one dimensional space spanned by
the vector-field defining the geodesic flow and the vectors in Eu are
exponentially contracted in the past.

The geodesic flow preserves a natural measure defined on M , the
Liouville measure Liou. Let us first define a one-form η over TV as
follows: if ω ∈ TV and χ ∈ TωTV then we define ηω(χ) as being
ω ·dωp(χ) where x = p(ω), p : TV →V is the canonical projection. It
turns out that dη is a symplectic 2-form on TV and that the geodesic
flow preserves this symplectic form. Thus, L = dη∧· · ·∧dη (n-times)
is a 2n-form. The restriction of L to M is the (2n− 1)-form defining
Liou.

It was for the geodesic flows on surfaces of negative curvature
that E. Hopf [75] developed the machinery now called the Hopf ar-
gument to prove ergodicity w.r.t. Liou and the antecedent for D.
Anosov work. For general manifolds of negative sectional curvature
D. Anosov proved that the geodesic flow is ergodic w.r.t. Liou. In
fact, he proved more generally that C2 volume preserving Anosov
systems are ergodic, thus, since being an Anosov flow is an open
condition, they form an open set of ergodic flows [3], [4], [6].

The time-one map of the geodesic flow on negative curvature,
i.e. φ1, is naturally a partially hyperbolic diffeomorphism. It was
not until 1992 that M. Grayson, C. Pugh and M. Shub, [53] proved
that the time-one map of the geodesic flow on a surface of constant
negative curvature is a stably ergodic diffeomorphism, that is, as in
the Anosov case, their perturbations remain ergodic, see Chapter 2.
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Later, A. Wilkinson proved the same result but for variable curvature
[125].

There is also a related topological question about robust transi-
tivity for partially hyperbolic systems that remains widely open. In
[13] it is proven that close to the time-one map of the geodesic flow
on a negatively curved surface there are whole open sets of transitive
diffeomorphisms. But the following is still open:

Problem 1.2.7. Is the time-one map of the geodesic flow on a
negatively curved surface robustly transitive?

1.2.4. Frame Flows. [18], [23], [24], [25], [30]. The frame

flow on a Riemannian manifold (V, g) fibers over its geodesic flow.

Let M̂ be the space of positively oriented orthonormal n-frames in
TV . Thus M̂ naturally fibers over M = T1V , where the projection
takes a frame to its first vector. The associated structure group
SO(n − 1) acts on fibres by rotating the frames keeping the first
vector fixed. In particular, we can identify each fiber with SO(n−1).

Let φ̂t : M̂→ M̂ denote the frame flow, which acts on frames by
moving their first vectors according to the geodesic flow and moving
the other vectors by parallel transport along the geodesic defined by

the first vector. The projection is a semi-conjugacy from φ̂t to φt.

In particular, φ̂t is an SO(n − 1)-group extension of φt. The frame
flow preserves the measure µ = Liou × νSO(n−1), where νSO(n−1) is
the (normalized) Haar measure on SO(n − 1). It turns out that the
time-t map of the frame flow is a partially hyperbolic diffeomorphism
[26]. The neutral direction has dimension 1 + dimSO(n − 1) and is
spanned by the flow direction and the fibre direction.

The frame flow on manifolds of negative sectional curvature is
known to be ergodic in lots of cases. The study of the ergodicity of
the frame flow restricts to the study of its accessibility classes (see
Chapter 2 for the notion of accessibility) and is a very interesting
example to begin with, in order to learn how to manage them. Finally
the frame flow is stably ergodic in the cases it is known to be ergodic.
But it is not always ergodic, Kähler manifolds with negative curvature
and real dimension at least 4 have non-ergodic frame flows because
the complex structure is invariant under parallel translation. We
suggest the reader to see [30] for a good account of the existing
results, problems and conjectures.
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1.2.5. Affine diffeomorphisms. Let G be a Lie group and
B ⊂ G a subgroup. Given a one parameter subgroup of G it defines
an homogeneous flow on G/B. Examples of homogeneous flows are
geodesic flows of hyperbolic surfaces. There are lots of interplays
between the dynamics of homogeneous flows and the algebraic prop-
erties of the groups involving it, see for example [120] for an account.

The time-t map of an homogeneous flow is a particular case of
an affine diffeomorphism. In fact affine diffeomorphisms and homo-
geneous flows are typically treated in a similar way. Let G be a
connected Lie group, A : G→G an automorphism, B a closed sub-
group of G with A(B) = B, and g ∈ G. Then we define the affine
diffeomorphism f : G/B→G/B as f(xB) = gA(x)B. We shall as-
sume that G/B supports a finite left G−invariant measure and call,
in this case, G/B a finite volume homogeneous space. If G/B is com-
pact and B is discrete the existence of such a measure is immediate,
but if B is not discrete the assumption is nontrivial.

The affine diffeomorphism f is covered by the diffeomorphism
f̄ = Lg ◦ A : G→G; where Lg : G→G the left multiplication by
g. If g is the Lie algebra of G, we may identify TeG = g where e
is the identity map. Let us fix a right invariant metric on G, i.e.
Rg is an isometry for every g where Rg is right multiplication by
g. Let us define the naturally associated automorphism a(f) : g→ g

by a(f) = Ad(g) ◦DeA where Ad(g) is the adjoint automorphism of
g, that is the derivative at e of x→ gxg−1. In other words, a(f) is
essentially the derivative of f̄ , but after right multiplication by g−1

(which is an isometry) in order to send TgG to TeG. So we have
the splitting g = gs ⊕ gc ⊕ gu w.r.t the eigenvalues of a(f) being
of modulus less than one, one, or bigger than one respectively and
similarly, gs is formed by the vectors going exponentially to 0 in the
future, gu is formed by the vectors going exponentially to 0 in the
past and gc is formed by the vectors that grow at most polynomially
for the future and the past. Observe that if vλ and vσ are eigenvectors
for a(f) w.r.t. λ and σ respectively then we have that

a(f) ([vλ, vσ]) = [a(f)(vλ), a(f)(vσ)] = λσ[vλ, vσ]

and hence if [vλ, vσ] 6= 0 then it is an eigenvector for λσ. As a
consequence we get that gs, gu, gc, gcs = gc ⊕ gs and gcu = gc ⊕ gu

are subalgebras tangent to connected subgroups Gs, Gu, Gc, Gcs and
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Gcu of G and their translates will define the stable, unstable, center,
center-stable and center-unstable foliations respectively.

Let h denote the smallest Lie subalgebra of g containing gs and
gu. Using Jacobi identity it is not hard to see that it is an ideal, h,
called the hyperbolic subalgebra of f̄ . Moreover, let us denote H ⊂
G the connected subgroup tangent to h and call it the hyperbolic
subgroup of f̄ . As h is an ideal in g, H is a normal subgroup of G.
Finally let us denote with b ⊂ g the Lie algebra of B ⊂ G. Then we
have the following:

Theorem 1.2.8. [105] Let f : G/B→G/B be an affine dif-
feomorphism as above, then f is partially hyperbolic if and only if
h 6⊂ b. Moreover, if f is partially hyperbolic then the left action of
Gσ, σ = s, u, c, cs, cu on G/B foliates G/B into the stable, unstable,
center, center-stable and center-unstable foliations respectively.

Problem 1.2.9. Is there an example of a non-Anosov affine dif-
feomorphism that is robustly transitive? Are they exactly the same as
the stably ergodic ones?.

1.2.6. Linear Automorphisms on Tori. A special case of
affine diffeomorphisms are the affine automorphisms on tori. In fact,
the torus TN may be seen as the quotient RN/ZN . Integer entry
N × N matrices with determinant ±1 define what we shall call lin-
ear automorphisms of tori simply via matrix multiplication. Thus,
given such a matrix A and a vector v ∈ RN , it is defined an affine
diffeomorphism of the torus f by f(x) = Ax + v. It is quite easy to
see that, conjugating by a translation, it is enough to study the case
where v belongs to the eigenspace corresponding to the eigenvalue 1,
E1. Observe also that E1 is a rational space, that is, it has a basis
formed by vectors of rational coordinates.

The corresponding splitting of the tangent bundle here, is the
splitting given by the eigenspaces of A. Thus, a not quite involved
argument proves that f is partially hyperbolic unless all the eigenval-
ues of A are roots of unity. Moreover, using a little bit of harmonic
analysis (Fourier series) it is seen [56] that f is ergodic if and only
if A has no eigenvalues that are roots of the identity other than one
itself and v has irrational slope inside E1. Finally, notice that if E1

is not trivial, we may always perturb in order to make v of rational
slope, thus in order to get that perturbations remain ergodic it is
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necessary that also 1 be not in the spectrum of A. Thus we reach to
the following problem:

Problem 1.2.10. [74], [64], Are the ergodic linear automor-
phisms stably ergodic?

Of course, an analogous problem may be posed in the topological
category, that is, are their perturbations also transitive? [74].

1.2.7. Direct Products. Given a partially hyperbolic diffeo-
morphism f : M→M and g : N→N a diffeomorphism, the product
f×g : M ×N→M×N is partially hyperbolic if the dynamics of g is
less expanding and contracting, respectively, than the expansions and
contractions of f . This is essentially the most trivial way a partially
hyperbolic dynamics appears, Anosov×identity. Besides, we can also
make the product of two partially hyperbolic diffeomorphisms.

It is quite interesting that by making perturbations of this prod-
uct dynamics, lots of nontrivial examples arises. For instance, the
first example of a robustly transitive non-Anosov diffeomorphism
constructed by M. Shub [114], although not a product, is a large
perturbation of a product. In fact direct products as well as the
construction of M. Shub are part of a more general type of construc-
tion, the partially hyperbolic systems that fiber over other partially
hyperbolic systems.

1.2.8. Fiberings over partially hyperbolic diffeomorphisms.

Let f : B→B be a partially hyperbolic diffeomorphism with split-
ting TM = Es

f ⊕ Ec
f ⊕ Eu

f . Let p : N→B be a fibration with fiber

F , let us call F (x) the fiber through x. Then any lift g : N→N of f
is a partially hyperbolic diffeomorphism if
∣

∣Dp(x)f |E
s
f

∣

∣ < m (Dxg|TxF (x)) ≤ |Dxg|TxF (x)| < m
(

Dp(x)f |E
s
f

)

.

where m(A) = |A−1|−1. As we said, M. Shub’s example of a robustly
transitive diffeomorphism is of this kind, and, in fact, many of the
existing examples are of this kind. It would be interesting to find the
minimal pieces over which partially hyperbolic systems are built. For
example:

Problem 1.2.11. Find all the partially hyperbolic diffeomorphisms
f such that no partially hyperbolic diffeomorphism g homotopic to fn,



12 1. INTRODUCTION

n > 0, fibers over a lower dimensional partially hyperbolic diffeomor-
phism. The geodesic flow on negative curvature as well as the ergodic
automorphisms of tori defined in [64] are examples of that building
blocks. Find other types of gluing technics to generate new partially
hyperbolic systems.

1.2.9. Skew products. Another type of systems that fiber over
lower dimensional partially hyperbolic diffeomorphisms are the skew

products: Let f : M→M be a partially hyperbolic diffeomorphism,
G a Lie group and θ : M→G a function. Define the skew product
fθ : M × G→M × G by fθ(x, g) = (f(x), θ(x)g). Skew products
where extensively studied in the context of partially hyperbolic dif-
feomorphisms, see for example [1], [18], [19], [26], [32], [47].



CHAPTER 2

Stable ergodicity of partially hyperbolic

diffeomorphisms

2.1. Introduction

One particularly relevant topic in partially hyperbolic dynamics
concerns the frequency of ergodicity among conservative diffeomor-
phisms. Let Diff1

m(M) denote the set of C1-diffeomorphisms pre-
serving a smooth volume. It is not known yet wether there exist
open sets in Diff1

m(M) of ergodic or of non-ergodic diffeomorphisms
if dimM ≥ 2. However, there are examples of stably ergodic diffeo-
morphisms in Diff1

m(M): A diffeomorphism f ∈ Diff1+α
m (M) is called

stably ergodic in Diff1
m(M) if there exists a C1-neighborhood U of f

in Diff1
m(M) such that all C1+α-diffeomorphisms in U are ergodic.

Examples of stably ergodic diffeomorphisms are C1+α Anosov
diffeomorphisms. Indeed, any C1+α Anosov diffeomorphism f is er-
godic [4], [6]. But the set of Anosov diffeomorphisms is C1-open, so
all nearby C1+α-diffeomorphisms are Anosov and hence ergodic, too.

Until 1993, Anosov diffeomorphisms were the only known exam-
ples of stably ergodic diffeomorphisms, but Grayson, Pugh and Shub
showed that the time-one map of the geodesic flow of a surface of
negative curvature is stably ergodic [53]. This example is a partic-
ular case of a partially hyperbolic diffeomorphism, and inspired the
following conjecture, which we shall develop in Section 2.2:

Conjecture 2.1.1. [106] [104] Stable ergodicity is open and
dense among conservative partially hyperbolic diffeomorphisms.

Now it is known that there are also examples of stably ergodic
diffeomorphisms that are not partially hyperbolic [121], though all
stably ergodic diffeomorphism have a global dominated splitting [7],

13



14 2. STABLE ERGODICITY

that is, there exists an invariant decomposition of the tangent bundle
TM = E ⊕ F , and a Riemannian metric for which all unit vectors
vE ∈ Ex and vF ∈ Fx satisfy

‖Df(x)vE‖ ≤
1

2
‖Df(x)vF ‖.

2.2. Pugh-Shub Conjecture

The first place where Charles Pugh and Mike Shub stated their
Conjecture 2.1.1 about the frequency of stable ergodicity among con-
servative partially hyperbolic diffeomorphisms was in the Interna-
tional Congress on Dynamical Systems, held in Montevideo in 1995,
in the memory of Ricardo Mañé [106]. Actually, we had completely
forgotten this fact, but it was reminded to us by Keith Burns in one
of his visits to Uruguay, while we were eating some chivitos in a small
bar by the sea.

The Pugh-Shub Conjecture states that stable ergodicity is C1-
open and Cr-dense among conservative partially hyperbolic diffeo-
morphisms. The C1-openness condition is trivial by definition.

In [103], Pugh and Shub propose a program to prove their con-
jecture. They claim that there is a property called accessibility that
implies ergodicity, and this property is essentially open and dense.
A diffeomorphism has the accessibility property if any two points of
the manifold can be joined by a path that is the concatenation of
segments that are contained in either in stable or unstable manifolds.
As long as we know, Sacksteder was the first to use accessibility to
establish ergodicity [111]. It was also used by Brin and Pesin in [25].
We describe better this phenomenon in Section 2.6, see also at the
end of this section.

As we have said, the plan of Pugh and Shub to establish Con-
jecture 2.1.1 is to split it into Conjecture 2.2.1 and Conjecture 2.2.2
below:

Conjecture 2.2.1 (Pugh-Shub A). Accessibility implies ergod-
icity.

After [63], however, it became plausible that a weaker property,
named essential accessibility would be enough to establish ergodicity.
A diffeomorphism is essentially accessible if the set of points x, y that
can be joined by paths that are piecewise tangent to either the stable
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or the unstable bundle have either full or zero measure. The other
conjecture of the program is:

Conjecture 2.2.2 (Pugh-Shub B). Stable accessibility is Cr-
dense.

A diffeomorphism is stably accessible if it belongs to a C1-neighborhood
of accessible diffeomorphisms.

In general, it is extremely difficult to work with Cr-perturbations
for r ≥ 2. We believe that the following certainly helps to establish
Conjecture 2.2.2:

Conjecture 2.2.3. Accessibility is C1-open.

The idea behind the Pugh-Shub program to establish stable er-
godicity is to extend in an audacious way the Hopf argument, origi-
nally used to prove ergodicity of the geodesic flow of a compact neg-
atively curved surface [75], and which we succinctly describe below,
see also Section 2.7.

2.2.1. The Hopf argument. It is not hard to see that the dif-
feomorphism f is ergodic if and only for every continuous observable
ϕ : M→R, its Birkhoff average

ϕ̃(x) = lim
|n|→∞

1

n

n−1
∑

k=0

ϕ ◦ fk(x) (2.1)

is almost everywhere constant. But ϕ̃(x) coincides almost everywhere
with

ϕ+(x) = lim
n→∞

1

n

n−1
∑

k=0

ϕ ◦ fk(x) (2.2)

which is constant on stable manifolds, see Section 2.7 for details.
Analogously, ϕ̃(x) coincides almost everywhere with ϕ−(x) (defined
likewise), which is constant on unstable manifolds.

To simplify ideas, assume f is a conservative Anosov C2 diffeo-
morphism, and suppose f is not ergodic. Then there would be a
continuous observable ϕ for which ϕ̃, and hence ϕ+ and ϕ− are not
almost everywhere constant. That is, there would be two invariant
sets A and B of positive measure such that ϕ+(x) ≥ α for all x ∈ A,
and ϕ−(x) < α for all x ∈ B.
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Figure 1. The Hopf argument

Let x be a point of A, such that almost all points w in its stable
manifold satisfy ϕ−(w) = ϕ+(w) = ϕ+(x). Such an x exists since
the stable foliation is absolutely continuous [6] and ϕ+(w) = ϕ−(w)
almost everywhere (more details in Section 2.7). And let y be a
Lebesgue density point of B. Since the stable foliation is minimal,
that is, every stable leaf is dense, the stable leaf of x gets very close
to y, and so the local unstable manifold of y intersects the stable
leaf of x. Since y is a density point of B, the 99% of points in a
small ball around y also belong to B, that is there is a set of measure
0.99m(Bδ(y)) in Bδ(y) of points belonging to B. The local unstable
manifold of all these points intersect the stable manifold of x. See
Figure 1.

As we said before, the local stable foliation is an absolutely
continuous partition of the ball Bδ(y), this means that the mea-
sure of a set A in Bδ(y) is the sum of the conditional measures
ms

x(A) over all leaves of the partition. This can be also written
as m(A) =

∫

W u

δ
(x)m

s
x(A)dm(x). In our particular case, this means

that there will be at least a point z in Bδ(y) such that the 99% of
the points in its local stable manifold belong to B. Call T1 the lo-
cal stable manifold of z, the local unstable manifold of z intersects
the stable manifold of x at a point z′. Hence there is a local stable
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manifold T2 of z′ (contained in the stable manifold of x), such that
the unstable holonomy between T1 and T2 is well defined (see Sec-
tion 2.6 for the definition of holonomy). But the unstable foliation is
transversely absolutely continuous. This means that it takes positive
measure sets in T1 into positive measure sets in T2.

We have that ms
z(T1 ∩B) > 0 and, since the unstable holonomy

hu is absolutely continuous, ms
z′(hu(T1 ∩ B)) > 0. But B was the

set of points z such that ϕ−(z) < α. Since ϕ is continuous, ϕ− is
constant over unstable manifolds. Hence, if z ∈ B, then Wu(z) ⊂ B.
In particular, hu(T1 ∩ B) = T2 ∩ B. So, we have ms

z′(T2 ∩ B) > 0.
This means, there is a positive measure set of points in the stable
manifold of x which belong to B. But this is absurd, since x was
chosen so that almost all points in its stable manifold belong to A!

In brief, there are three fundamental steps in the Hopf argument:

(1) every pair of points can be joined by a a concatenation of
stable and unstable leaves

(2) the stable and unstable foliations are absolutely continu-
ous, in the sense that the measure of a set is the sum of
conditional measures in the, respectively, stable or unstable
leaves.

(3) the stable and unstable foliations are transversely absolutely
continuous, in the sense that the stable and unstable leaves
take positive measure sets in a transversal, into a positive
measure set in another (close) transversal. That is, the sta-
ble and unstable holonomy maps are absolutely continuous.

We give more details of the Hopf argument in Section 2.7.

2.2.2. The Hopf argument for partially hyperbolic diffeo-

morphisms. If we liked to mimic the Hopf argument for the case
of partially hyperbolic diffeomorphisms, we would have to pay atten-
tion to Steps (1), (2) and (3) listed above. If the partially hyperbolic
system has the accessibility property, then item (1) is satisfied, that
is, every pair of points can be joined by an su-path.

The other two steps are more delicate. In fact, items (2) and (3)
are satisfied, in the sense that, indeed, stable and unstable foliations
are absolutely continuous and transversely absolutely continuous for
partially hyperbolic systems [26], see also [102]. But these absolutely
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continuous foliations are not transverse, due to the existence of a cen-
ter bundle, obstructing the direct application of the Hopf argument
in this case.

This problem can be overcome though, if the holonomies are
rigid enough. For instance, Sacksteder uses accessibility and Lips-
chitzness of the stable and unstable holonomies to prove ergodicity
of linear partially hyperbolic automorphisms of nil-manifolds [111].
More generally, Brin and Pesin proved that accessibility and Lips-
chitzness of the stable and unstable foliations imply ergodicity (in
fact, Kolmogorov), in the following way [26, Theorem 5.2,p.204], see
also [53]: if A and B are defined as in the previous subsection, con-
sider a density point x in A, and a density point y in B. Take an su-
path joining x and y. Call h a global holonomy map from x to y, that
is, h is a local homeomorphism that takes points in a neighborhood
U of x, slides them first along a stable segment, then along an unsta-
ble, then along a stable again, etc. until reaching a neighborhood V
of y, all the su-paths are near the original su-path joining x and y.
Since A is essentially su-saturated, we have that h(A ∩ U) = A ∩ V
modulo a zero set. Since h can be chosen to be Lipschitz, there exists
a constant C > 1 such that, for each measurable set E ⊂ U , and for
each sufficiently small r > 0, we have

1

C
m(E) < m(h(E)) < Cm(E) (2.3)

B r

C
(y) ⊂ h(Br(x)) ⊂ BCr(y). (2.4)

This implies that

m(BCr(y) ∩A)

m(BCr(y) \A)
≥

m(h(Br(x) ∩A))

m(h(BC2r(x) \A))
≥

1

C2.C′

m(Br(x) ∩A)

m(Br(x) \A)
→∞

sincem(BC2r(x)\A) ≤ C′m(Br(x)\A) for some positive constant C′.
From this we get that y is also a density point of A. This is absurd,
since y was a density point of B, complementary to A modulo a zero
set.

This is essentially how the Hopf argument would work in the
partially hyperbolic setting. However, Lipschitzness of the holonomy
maps is a very strong hypothesis, not satisfied for most of the partially
hyperbolic diffeomorphisms.
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The idea of Grayson, Pugh and Shub [53], later improved by
[125], [67], [33] is to show that the stable and unstable holonomies
do, in fact, preserve density points, but they preserve density points
according to another base, different from round balls Br(x). Assume
M is 3-dimensional for simplicity, and for a point x consider a small
center segment, locally saturate it first in a dynamic way by unsta-
ble leaves (better explained in Section 2.6), then by stable leaves.
This small prism is called s-julienne, and denoted by Jsuc

n (x). An
s-julienne density point of a set E is a point x such that:

lim
n→∞

m(Jsuc
n (x) ∩ E)

m(Jsuc
n (x))

= 1 (2.5)

The scheme is to consider the sets A and B we considered above, and
prove:

(1) the s-julienne density points of A (and of any essentially
u-saturated set) coincide with the Lebesgue density points
of A (Theorem 2.6.2)

(2) the s-julienne density points of A (and of any essentially s-
saturated set) are preserved by stable holonomies (Theorem
2.6.3)

Analogous statement is proved for A with respect to u-julienne den-
sity points, which are defined with respect to the local basis obtained
by locally saturating a small center segment first in a dynamic way
by stable leaves, and then by unstable leaves. Now, we have that the
stable and unstable holonomies preserve the Lebesgue density points
of A, hence, if the diffeomorphism has the accessibility property A
is all M modulo a zero set. This proves the system is ergodic. See
more details in Section 2.6.

The result above holds under an extra hypothesis on the center
bundle called center bunching [33], which essentially states that the
non-conformality of Df |Ec can be bounded by the hyperbolicity of
the strong bundles. This condition is always satisfied when the center
dimension is one. It is not known yet if accessibility implies ergodicity
for non-center bunched partially hyperbolic diffeomorphisms.
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2.3. Accessibility and accessibility classes

To simplify all the arguments, from now on, M will be a closed
Riemannian 3-dimensional manifold. For any point x in M , AC(x),
the accessibility class of x consists of all the points y such that x and
y can be joined by a concatenation of arcs tangent to either the stable
bundle Es or the unstable bundle Eu. This path is called an su-path
from x to y. Note that the accessibility classes form a partition of
M : if AC(x) ∩AC(y) 6= ∅, then AC(x) = AC(y). A diffeomorphism
f ∈ Diff1(M) has the accessibility property if AC(x) = M , for some

x. A diffeomorphism f ∈ Diff1
m(M) has the essential accessibility

property if any set E ⊂M consisting of accessibility classes, satisfies
either m(E) = 0 or m(E) = 1.

For any set A, let us denote by W s(A) the set of all stable leaves
W s(x), with x ∈ A, we call this set the s-saturation of A. Define
analogously Wu(A). A set A is s-saturated if W s(A) = A, and u-
saturated if Wu(A) = A. For instance, AC(x) is the minimal set
containing x which is both s- and u-saturated.

2.3.1. Properties of the accessibility classes. In this sub-
section we shall basically show the following property of accessibility
classes:

Theorem 2.3.1. Given f ∈ Diff1(M), for each x in M , the
accessibility class AC(x) of x is either an open set or an immersed
manifold. Moreover, Γ(f), the set of non-open accessibility classes of
f is a compact laminated set.

This theorem depends strongly on the hypothesis we made on
the dimension of M . It would be interesting to solve the following
question:

Question 2.3.2. Theorem 2.3.1 holds for partially hyperbolic dif-
feomorphisms whose center bundle is one-dimensional [67]. Does it
apply for diffeomorphisms with higher dimensional center bundle?

Let us begin by a local description of open accessibility classes,
which is valid for partially hyperbolic diffeomorphisms with center
bundle of any dimension:

Proposition 2.3.3. For any point x in M , the following state-
ments are equivalent:
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(1) AC(x) is open
(2) AC(x) has non-empty interior
(3) AC(x) ∩W c

loc(x) has non-empty interior for any choice of
W c

loc(x)

When the center bundle has higher dimension, W c
loc(x) does

not necessarily exist; however, statement (3) can be replaced by (4)
AC(x) ∩D has non-empty interior, for any disc D ∋ x transverse to
Es

x ⊕ Eu
x .

Proof. (2) ⇒ (1) Let y be in the interior of AC(x), and consider
any point z in AC(x). Then there is an su-path from y to z of the
form y = x0, x1, . . . , xN = z such that xn and xn+1 are either in
the same s-leaf or in the same u-leaf. Let U be a neighborhood of y
contained in AC(x), and suppose that, for instance y = x0 and x1

belong to the same s-leaf. Then U1 = W s(U) is an open set contained
in AC(x), that contains x1, so x1 is in the interior of AC(x). Indeed,
W s is a C0-foliation, so the s-saturation of an open set is open.

Now, x1 and x2 belong to the same u-leaf. If we consider U2 =
Wu(U1), then U2 is an open set contained in AC(x) and containing
x2 in its interior. Defining inductively Un as W s(Un−1) or Wu(Un−1)
according to whether xn belongs to the s- or the u-leaf of xn−1, we
obtain that all xn belong to the interior of AC(x). In particular, z.
This proves that AC(x) is open.

Figure 2. An su-path from y to z
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(1) ⇒ (3) is obvious, follows from the definition of relative topol-
ogy.

(3) ⇒ (2) Let V be an open set in AC(x) ∩ W c
loc(x), relative

to the topology of W c
loc(x). Then W s(V ) is contained in AC(x),

and contains a disc Dsc of dimension s + c transverse to Eu. This
implies that Wu(Dsc) is contained in AC(x) and contains an open
set. Therefore, AC(x) has non-empty interior. �

Let O(f) be the set of open accessibility classes, which is, obvi-
ously, an open set. Then its complement, Γ(f) is a compact set. Let
us see that is laminated by the accessibility classes of its points.

For any point x ∈M , consider a local center leafW c
loc(x). Locally

saturate it by stable leaves, that is, take the local stable manifolds
of all points y ∈ W c

loc(x), to obtain a small (s + c)-disc W sc
loc(x).

Now, locally saturate W sc
loc(x) by unstable leaves to obtain a small

neighborhood Wusc
loc (x). See, for instance, Figure 3. On Wusc

loc (x),

Figure 3. An open accessibility class

consider the map
pus : Wusc

loc (x)→W c
loc(x) (2.6)

defined in the following way: given y ∈ Wusc
loc (x), there exists a unique

point pu(y) in the disc W sc(x) that belongs to the local unstable
manifold of y. Since W sc

loc(x) is the local stable saturation of W c
loc(x),

then pu(y) ∈W sc
loc(x) is in the local stable manifold of a unique point

pus(y) in W c
loc(x). That is, pus(y) is the point obtained by first pro-

jecting along unstable manifolds onto W sc
loc(x), and then projecting

along stable manifolds onto W c
loc(x). Since the local stable and un-

stable foliations are continuous, psu is obviously continuous.
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Figure 4. An accessibility class in Γ(f)

Let ACx(y) be the connected component of AC(y)∩Wusc
loc (x) that

contains y. The points of ACx(y) are the points that can be accessed
by su-paths from y without getting out from Wusc

loc (x), see Figures 3
and 4. Then we have the following local description of accessibility
classes of points in Γ(f):

Lemma 2.3.4. For any y ∈ W c
loc(x) such that y ∈ Γ(f), we have

ACx(y) = p−1
su (y)

Proof. Let y be a point inW c
loc(x). Then p−1

su (y) = Wu
loc(W

s
loc(y)),

which is clearly contained in ACx(y). But also, we have psu(ACx(y)) =
y. Indeed, if psu(z) were different from y, for some z ∈ ACx(y), we
would have a situation as described in Figure 3. For, since psu is
continuous, and ACx(y) is connected, psu(ACx(y)) is connected. If
psu(ACx(y)) contained another point, then it would contain a seg-
ment, which has non-empty interior in W c

loc(x). Proposition 2.3.3
then would imply thatAC(y) is open, which is absurd, since y ∈ Γ(f).
This proves that also ACx(y) is contained in p−1

su (y). �

Hence, due to Lemma 2.3.4 above, we have that, for each x ∈
Γ(f):

ACx(x) = p−1
su (x) = Wu

loc(W
s
loc(x)) ≈Wu

loc(x) ×W s
loc(x)

W s
loc(x) and Wu

loc(x) are (evenly sized) embedded segments that vary
continuously with respect to x ∈ M (see Hirsch, Pugh, Shub [74]).
this implies that Γ(f) ∋ x 7→ ACx(x) is a continuous map that assigns
to each x an evenly sized 2-disc. More precisely:
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To simplify ideas, let us see the local stable and unstable man-
ifolds as orbits of flows ψs and ψu, in such a way that ψs

(−ε,ε)(x) =

W s
ε (x) and ψu

(−ε,ε)(x) = Wu
ε (x). [74] implies that ψs

t (x) and ψu
t (x)

are continuous with respect to (t, x). ε > 0 does not depend on x.
Now, for each x ∈ Γ(f), take the neighborhood Wusc

loc (x) ≈
W c

loc(x) ×W s
loc(x) ×Wu

loc(x), that is Wusc
loc (x) ≈ W c

loc(x) × ψs
I(x) ×

ψu
I (x), where I = (−ε, ε). And define φx : W c

loc(x)× I× I→Wusc
loc (x)

such that
φx(z, t, r) = ψu

r (ψs
t (z))

that is, φx(z, t, r) consists in taking z ∈ W c
loc(x), sliding time t in

the direction of the flow ψs and then sliding time r in the direction
of the flow ψu. It is easy to see that for each x, φx is continuous
and injective. It is also clear that psu(φx(z, t, r)) = z for all r, t ∈ I.
See Figures 3 and 4. Moreover, for all x, z ∈ Γ(f) φx({z} × I2) =
p−1

su (z) = ACx(z). Hence

φx : [Γ(f) ∩W c
loc] × I2 →Wusc

loc (x)

is a chart of the lamination of Γ(f). To finish the description of
accessibility classes, let us introduce the following definition:

Definition 2.3.5. The foliations W s and Wu are jointly inte-
grable at a point x ∈ M if there exists δ > 0 such that for each
z ∈W s

δ (x) and y ∈ Wu
δ (x), we have

Wu
loc(z) ∩W

s
loc(y) 6= ∅

See Figure 4 for an illustration of a point of joint integrability of W s

and Wu.

Then Lemma 2.3.4 and discussion above imply the following:

Proposition 2.3.6. A point x belongs to Γ(f) if and only if W s

and Wu are jointly integrable at all points of AC(x).

Indeed, if x belongs to Γ(f), then for all y ∈ AC(x) ⊂ Γ(f), we
have psu(ACy(x)) = {y}. In particular, if z ∈Wu

δ (y) and w ∈ W s
δ (y),

then W s
loc(z) ∩W

u
loc(w) 6= ∅. On the other hand, if W s and Wu are

jointly integrable at all points of AC(x), then AC(x) is a lamina, due
to the explanation above (the coherence of the charts φx defined above
depend only on the joint integrability of W s and Wu). Moreover,
this 2-dimensional lamina is transverse to W c

loc(x), AC(x) ∩W c
loc(x)
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cannot be open. Proposition 2.3.3 implies AC(x) is not open, so
x ∈ Γ(f).

The following lemma shows that, in fact, the laminae of Γ(f),
that is, the accessibility classes of points in Γ(f) are C1.

Lemma 2.3.7. [44, Lemma 5] If W s and Wu are jointly integrable
at x, then the set

W su
loc(x) = {Wu(z) ∩W s(y) : with z ∈W s

δ (x)andy ∈ Wu
δ (x)}

where δ > 0 is as in the definition of joint integrability (Definition
2.3.5), is a 2-dimensional C1-disc that is everywhere tangent to Es⊕
Eu.

In order to prove Lemma 2.3.7 we shall use the following result
by Journé:

Theorem 2.3.8. [79] Let Fh and F v be two transverse folia-
tions with uniform smooth leaves on an open set U . If η : U→M is
uniformly C1 along Fh and F v, then η is C1 on U .

Proof of Lemma 2.3.7. LetD be a small smooth 2-dimensional
disc containing x and transverse to Ec

x. Consider a one-dimensional
smooth foliation of a small neighborhood N of x, transverse to D.
If D is sufficiently small, there is a smooth map π : N→D, which
consists in projecting along this smooth one-dimensional foliation.
Note that W su

loc(x) can be seen as the graph of a continuous function
η : D→N .

We produce a grid on D in the following way: the horizontal lines
are the projections of the stable manifolds W s(y), with y ∈ Wu

δ (x),
that is, the horizontal lines are of the form π(W s

loc(η(v))), with v ∈ D.
Analogously, the vertical lines are the projections of the unstable
manifolds Wu

loc(z), with z ∈ W s
δ (x), that is, the vertical lines are of

the form π(Wu
loc(η(w))), with w ∈ D.

Now, v 7→W s
loc(η(v)) and w 7→Wu

loc(η(w)) are continuous in the
C1-topology, that is, for close v we obtain close W s

loc(η(v)) in the
C1-tolopology (Es is a continuous bundle). Since π is smooth, we
also obtain that Fh = {π(W s

loc(η(v)))}v∈D, the horizontal partition
of D, and F v = {Wu

loc(η(w))}w∈D, the vertical partition of D, are
transverse foliations continuous in the C1-topology.

But η is uniformly C1 along Fh, since η along a leaf Fh(v0) =
π(W s

loc(η(v0))) is exactlyW s
loc(η(v0)). Indeed, η◦π : W su

loc(x)→W su
loc(x)
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is the identity map, and W s
loc(η(v0)) is a smooth manifold. Analo-

gously, we obtain that η is uniformly C1 along F v. Hence, by Theo-
rem 2.3.8 η is C1. �

2.4. Accessibility is C1-open

Let us assume, as in the previous section, that M is a closed Rie-
mannian 3-manifold. Call PHr(M) and PHr

m(M) the set of partially
hyperbolic diffeomorphisms in Diffr(M) and Diffr

m(M) respectively.
PHr(M) and PHr

m are open subsets of Diffr(M) and Diffr
m(M) re-

spectively. This section is devoted to the following theorem:

Theorem 2.4.1 (Didier, [44]). The set of f ∈ PH1(M) satisfying
the accessibility property is open.

As we mentioned in Section 2.2, this result is not known for par-
tially hyperbolic diffeomorphisms with arbitrary center bundle di-
mension. It only known to be true for center dimension equal one.
We shall not follow the proof of Didier [44], but the scheme in Burns,
Rodriguez Hertz, Rodriguez Hertz, Talitskaya and Ures [29].

Recall that Γ(f), the set of non-open accessibility classes is a
compact laminated set (Section 2.6, Theorem 2.3.1). The strategy of
our proof is to show that the set Γ(f) varies semi-continuously:

Proposition 2.4.2. Let K(M) be the set of compact sets endowed
with the Hausdorff metric. For each r ∈ [1,∞] the assignment

Γ : PHr(M)→K(M)

such that f 7→ Γ(f) is upper semi-continuous.

Proposition 2.4.2 implies Theorem 2.4.1, due to the following: if
f has the accessibility property, then there is only one accessibility
class, which is open AC(x) = M ; hence Γ(f) = ∅. Now assume
there exists fn → f in PHr(M) such that Γ(fn) 6= ∅. Since K(M) is
a compact space when endowed with the Hausdorff topology, there
exists a subsequence nk such that Γ(fnk

) converges to a compact set
K 6= ∅. Since f 7→ Γ(f) is upper semi-continuous, we have ∅ 6=
K ⊂ Γ(f), which is absurd. So Theorem 2.4.1 is reduced to proving
Proposition 2.4.2.

To prove Proposition 2.4.2, let fn → f in PHr(M), and consider
xn ∈ Γ(fn) such that xn →x0. If x0 /∈ Γ(f), then by Proposition
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2.3.6 there exists x ∈ AC(x0) such that W s
f and Wu

f are not jointly
integrable at x.

Figure 5. W s and Wu are non-jointly integrable
at x

By definition of joint integrability, ifW s andWu are non-integrable
at x, there are y ∈ Wu

δ (x) and z ∈ W s
loc(x) such that W s

loc(y) ∩
Wu

loc(z) = ∅. See Figure 5. Consider a fixed local center manifold
W c

loc(x). Then, as it can be clearly seen in Figure 5, if we take the
local unstable manifold of any point in W s

loc(y)\ {y}, it will not meet
W s

loc(x). Moreover this local unstable manifold of a point in W s
loc(y)

will meet the discW sc
loc(x) at a point w, and then the local stable man-

ifold of w, W s
loc(w) ⊂ W sc

loc(x) will meet W c
loc(x) at a point x1 6= x,

see Figure 5. As we saw in last section, continuity of psu and connect-
edness of ACx(x) implies that the whole segment [x, x1] ⊂W c

loc(x) is
contained in ACx(x), and then in the accessibility class of x.

On the other hand, if we call W s
n(y) = W s

fn,loc(y) and Wu
n (y) =

Wu
fn,loc(y), we have that if ε > 0 is small, then for all sufficiently

large n, if Bε(x) = U , then Vn = W s
n(Wu

n (W s
n(Wu

n (U)))) satisfies
Vn ∩ U 6= ∅. In particular, if ξ ∈ U = Bε(x), then W s

fn
and Wu

fn
are

not jointly integrable at ξ.
Now, since x ∈ AC(x0), there is an su-path joining x0 with x.

This implies that if n is large enough, there is an su-path joining
xn with a point ξn belonging to Bε(x). But then we would have a
point of non-joint integrability in ACn(xn), which would imply that
xn /∈ Γ(fn), absurd. This ends the proof of Proposition 2.4.2, and
then of Theorem 2.4.1, which was the goal of this section.

For further use, we state the following corollaries:
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Corollary 2.4.3. If ACf (x) is open, there exists an open neigh-

borhood U ⊂ PH1(M), and ε > 0 such that all ACg(ξ) is open for all
g ∈ U and ξ ∈ Bε(x).

Since PHr(M) and PHr
m(M) are Baire spaces for all r ∈ [1,∞],

and Γ is an upper semi-continuous function when restricted to each
of these spaces, we also obtain:

Corollary 2.4.4. The continuity points of f 7→ Γ(f) are resid-
ual in PHr(M) and PHr

m(M) for each r ∈ [1,∞].

2.5. Accessibility is C∞-dense

The result in this section, Theorem 2.5.1, holds for partially hy-
perbolic diffeomorphisms with one-dimensional center bundle. For
simplicity, we shall consider a 3-dimensional ambient manifold M , so
that the three invariant bundles Es, Ec and Eu are one-dimensional.
In [67], Theorem 2.5.1 was proved for volume preserving partially
hyperbolic diffeomorphisms, and in [29], the result was extended for
the non-conservative case. We follow a combination of both papers
in this section.

A partially hyperbolic diffeomorphism f satisfies the stable ac-
cessibility property if there exists a neighborhood U ⊂ PH1(M) of f
such that all diffeomorphisms g in U satisfy the accessibility property.

Theorem 2.5.1. [67], [29] Stable accessibility is C∞-dense both
in PH1(M) and in PH1

m(M).

For higher dimensional center bundle, this result is only known
in the C1-topology [46]. See Theorem 2.8.5 in Section 2.8.

The strategy of the proof is to show the following theorem:

Theorem 2.5.2. If f is a continuity point of f 7→ Γ(f), then
Γ(f) = ∅.

Since, by Corollary 2.4.4, the set of continuity points of Γ is
residual in PH∞(M) and PH∞

m (M); we have a residual, and then
dense, set of smooth diffeomorphisms for which Γ(f) is empty, or,
equivalently, f has the accessibility property. In this section, let us
denote PHr

∗(M) to mean indistinctly PHr(M) or PHr
m(M).

In the first place, we show that there is a Cr-dense set of dif-
feomorphisms of PHr

∗(M) for which the accessibility class of every
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periodic point is open, that is, Γ(g) ∩ Per(g) = ∅ for a Cr-dense set
of g ∈ PHr

∗(M) (Subsections 2.5.1 and 2.5.2). On the other hand, in
Subsections 2.5.3 and 2.5.4, we prove that if f is a continuity point
of Γ with Γ(f) 6= ∅, then there is an open set U ⊂ PHr

∗(M) such that
every h ∈ U has a periodic point with non-open accessibility class,
that is, Γ(h) ∩ Per(h) 6= ∅ for every h ∈ U . We therefore obtain a
contradiction.

In order to prove that there is a Cr-dense set of g in PHr
∗(M) such

that Γ(g) ∩ Per(g) = ∅, recall that that if a point x is in Γ(g), then
W s

g and Wu
g are jointly integrable at x. So, in order to get this dense

set we use an unweaving method (Subsection 2.5.2), which allows us
to break up the joint integrability of W s and Wu on periodic orbits.
In this way, we “open” the accessibility class of a periodic point by
means of a Cr-small perturbation. The unweaving method, in turn,
is based on the Keepaway Lemma (Lemma 2.5.3) which may be found
in Subsection 2.5.1.

2.5.1. The Keepaway Lemma. The keepaway lemma is es-
sential in unweaving the accessibility class of periodic points and, in
fact, of an arbitrary point x ∈ M . It essentially states that if a cer-
tain ball B does not return to itself too soon in the future, then all
local unstable manifolds contain a point that never enters B in the
future.

We say that Wu is uniformly expanded by f if ‖Df−1(x)|Eu‖ <
µ−1 < 1. Observe that if Wu is µ-uniformly expanded by f , then for
each x ∈M , k ∈ N and δ > 0, we have

Wu
δ (fk(x)) ⊂Wu

µkδ(f
k(x)) ⊂ fk(Wu

δ (x)) (2.7)

Given a point x0, and given local center-stable manifold of x0,W
sc
loc(x0),

we denote by Vε(x0) the set Wu
ε (W sc

loc(x0)).

Lemma 2.5.3 (Keepaway Lemma). Let µ > 1 be such that Wu

is µ-uniformly expanded by f . And let x0 ∈ M , ε > 0 and N > 0 be
such that

(1) µN > 5
(2) fn(V5ε(x0)) ∩ Vε(x0) = ∅ for all n = 1, . . . , N

then there exists z ∈ Wu
ε (x0) such that o+(z) ∩ Vε(x0) = ∅, that is,

fn(z) /∈ Vε(x0) for all n ≥ 1.
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Proof. We construct inductively a family of discsDn ⊂Wu(fn(x0))
such that

• D0 = Wu
ε (x0)

• Dn ⊂ f(Dn−1) for all n ∈ N, and
• Dn ∩ Vε(x0) = ∅.

Then, any point

z ∈
∞
⋂

n=0

f−n(Dn)

will satisfy the claim.
We shall proceed inductively, in the following way:

(1) Let D0 = Wu
ε (x0).

(2) For all n < N take Dn = f(Dn−1). By hypothesis we have
Dn ∩ Vε(x0) = ∅.

(3) For n = N , we have, due to (2.7) and the fact that µN > 5,
that

Wu
5ε(f

N(x0)) ⊂Wu
µN ε(f

N (x0)) ⊂ fN (D0)

and by hypothesis fN (D0)∩Vε(x0) = ∅. SetDN = Wu
5ε(f

N (x0)).
Then:

• DN ⊂ f(DN−1) = fN (D0)
• DN ∩ Vε(x0) = ∅.

(4) Let n1 > N be the first integer such that Wu
5ε(f

n1(x0)) ∩
Vε(x0) 6= ∅. For all N ≤ n < n1, set

Dn = Wu
5ε(f

n(x0))

Then, for all N ≤ n ≤ n1

• by (2.7), we have Dn ⊂ f(Dn−1).
• by the choice of n1, we have Dn ∩ Vε(x0) = ∅.

(5) For n = n1, there exists xn1
∈ Wu

4ε(f
n1(x0)) such that

Wu
ε (xn1

) ∩ Vε(x0) = ∅. This is because of the choice of n1,
see Figure 6. Set Dn1

= Wu
ε (xn1

). Then:
• by the choice of xx1

, we have Dn1
= Wu

ε (xn1
) ⊂

Wu
5ε(f

n1(x0)). Then,

f(Dn1−1) = f(Wu
5ε(f

n1−1(x0))) ⊃Wu
5ε(f

n1(x0)) ⊃ Dn1

• Also, by the choice of xn1
, we have Dn1

∩ Vε(x0).
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(6) Now, go to Step (1), replace D0 by Dn1
, and continue the

construction with the obvious modifications.

Figure 6. Keepaway lemma

This algorithm gives the sequence of discs Dn, and a point z (which
in fact is unique), proving the lemma. �

Remark 2.5.4. With the same hypothesis, the proof of the Keep-
away Lemma gives that, in fact, all local unstable manifolds contain
a point that never enters Vε(x0) in the future.

We have the following corollary:

Corollary 2.5.5. For all f ∈ PH1
∗(M),

(1) the set of non-recurrent points in the future, {z : z ∈ ω(z)}
are dense in the unstable leaf Wu(x) of each x ∈M , and

(2) the set of non-recurrent points in the past, {y : y ∈ α(y)}
are dense in the stable leaf W s(x) of each x ∈M .

Proof. If x0 is not periodic, then there are ε > 0 and N > 0
such that we are in the hypothesis of Lemma 2.5.3. So x0 can be
approximated by points zn in its unstable local leaf that never enter
Vε(x0) in the future, hence zn cannot be recurrent in the future.

If x0 is periodic, then it is approximated by non-periodic points
in its local unstable leaf, so it is also approximated by points which
are non-recurrent in the future. �
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2.5.2. The Unweaving Lemma. The proof of the Unweaving
Lemma uses the existence of a certain quadrilateral satisfying some
technical conditions (see Lemma 2.5.6), which, in turn, are based on
the Keepaway lemma. We defer the proof of Lemma 2.5.6 until the
end of this subsection, and show how to use it to prove the Unweaving
Lemma.

Lemma 2.5.6 (Existence of a quadrilateral). Let K be a minimal
set contained in Γ(f). Then there exist x ∈ K, y /∈ K, z, w ∈ M ,
and ε > 0 such that

(1) Bε(y) ∩K = ∅
(2) y ∈Wu

loc(x),
(3) z ∈ W s

loc(x),
(4) w ∈W s

loc(y) ∩W
u
loc(z). See Figure 7

(5) fn(W s
loc(y)) ∩Bε(y) = ∅ for all n ≥ 1

(6) f−n(Wu
loc(z)) ∩Bε(y) = ∅ for all n ≥ 0

(7) f−n(Wu
loc(x)) ∩Bε(y) = ∅ for all n ≥ 1

(8) fn(W s
loc(x)) ∩Bε(y) = ∅ for all n ≥ 0

Figure 7. Unweaving Lemma: before perturbing
(Lemma 2.5.6)

Using the points obtained in the lemma above, we can establish
the following lemma:

Lemma 2.5.7 (Unweaving Lemma). Let K be a minimal set con-
tained in Γ(f), then f can be Cr-approximated in PHr

∗(M) by diffeo-
morphisms g such that
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• f |K = g|K, and
• ACg(x) is open for each x ∈ K.

Proof of the Unweaving Lemma. Let x ∈ K, y, z, w ∈ M
and ε > 0 be chosen as in Lemma 2.5.6. Then, there is a Cr-
perturbation in PHr

∗(M) of the form g = f ◦h, with supp(h) ⊂ Bε(y),
such that

W s
g,loc(w) ∩Wu

f,loc(y) = ∅ (2.8)

(see Figure 8). The fact that supp(h) ⊂ Bε(y) implies that f |K =
g|K .

Figure 8. Unweaving Lemma: after perturbing

Now Properties (5)-(8) in Lemma 2.5.6 imply:

• Wu
f,loc(x) = Wu

g,loc(x)

• W s
f,loc(x) = W s

g,loc(x), and

• Wu
f,loc(z) = Wu

g,loc(z).

Hence y ∈ Wu
f,loc(x) = Wu

g,loc(x) and w ∈ Wu
f,loc(z) = Wu

g,loc(z) are

close points that are in the same accessibility class ACg(x). But, due
to (2.8), and first item above, we have W s

g,loc(w) ∩ Wu
g,loc(y) = ∅.

Hence x is a point of non-joint integrability of W s
g and Wu

g . Propo-
sition 2.3.6 implies that x is not in Γ(g), so ACg(x) is open.

Now, since K is minimal for f , and g coincides with f on K,
then K is minimal for g and all points ξ in K have an iterate gn(ξ)
in ACg(x). Then gn(ξ) /∈ Γ(g) for some n ∈ Z. This implies K ⊂
M \ Γ(g), due to the fact that Γ(g) is g-invariant. �
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Let us finish this subsection with the proof of Lemma 2.5.6. This
is a technical proof, and is independent of the rest of the topics, so it
can be skipped.

Proof of Lemma 2.5.6. Let x be any point of K. By Corol-
lary 2.5.5, there exists y ∈ Wu

loc(x) such that y is not forward re-
current (in particular, y /∈ K). Hence, there exists ε > 0 such that
fn(y) /∈ Bε(y) for all n ≥ 1 and Bε(y) ∩K = ∅. Moreover, since y is
not periodic, we can consider ε > 0 such that fn(W s

loc(y))∩Bε(y) = ∅
for all n ≥ 1. This proves items (1) and (5).

Now, fn(x) /∈ Bε(y) for all n ∈ Z, since fn(Bε(y)) ∩K = ∅. We
can reduce ε > 0 so that fn(W s

loc(x)) ∩ Bε(y) = ∅ for all n ≥ 0 and
f−n(Wu

loc(x)) ∩ Bε(y) = ∅ for all n ≥ 1. This proves items (2), (7)
and (8).

Since y satisfies item (1), y is not periodic, then we can reduce
ε > 0 and Wuc

loc(y) so that Vε(y) (as constructed after Equation (2.7))
is in the hypothesis of Lemma 2.5.3 applied to f−1. Remark 2.5.4
implies that there is z ∈ W s

loc(x) such that f−n(z) /∈ Vε(y) for all
n ≥ 0, and so f−n(Wu

loc(z)) ∩ Bε(y) = ∅ for all n ≥ 0. This proves
items (3) and (6).

We have that x belongs to Γ(f), and hence it is a point of joint
integrability (Proposition 2.3.6). On the other hand, y ∈ Wu

loc(x)
and z ∈ W s

loc(x) are arbitrarily close to x, hence there exists w =
W s

loc(y) ∩W
u
loc(z). This proves item (4), and the lemma. �

2.5.3. The conservative setting. In Subsection 2.5.4, we give
the general proof of Theorem 2.5.1. However, since it is illustrative
and there are some interesting particularities that are used in other
settings (see, for instance, Chapter 5). Let us begin by proving the
following theorem:

Theorem 2.5.8. The set of diffeomorphisms f such that Γ(f) =
M is a closed set with empty interior in PHr

∗(M) for all r ∈ [1,∞]

Proof. Since f 7→ Γ(f) is upper semi-continuous in PHr
∗(M),

for all r ∈ [1,∞], due to Proposition 2.4.2, the set of diffeomorphisms
satisfying Γ(f) = M is clearly closed.

Now let f be a diffeomorphism with Γ(f), and letK be a minimal
set in Γ(f). Then, by the Unweaving Lemma 2.5.7, f is approximated



2.5. ACCESSIBILITY IS C∞-DENSE 35

in PHr
∗(M) by diffeomorphisms g for which ACg(x) is open if x ∈ K.

In particular, Γ(g) 6= M . �

Definition 2.5.9. If Γ(f) is a strict non-empty subset of M ,
the accessible boundary of Γ(f) is the set of points x ∈ Γ(f) for
which there exists an arc α with α(0) = x and α ∩ Γ(f) = {x}. The
accessible boundary of Γ(f) is denoted by ∂aΓ(f).

Observe that the name accessible boundary does not have to do
with the accessibility property, but with the fact of being accessed
by an arc from the exterior of the set. Also, note that the accessible
boundary is an invariant set, but it is not closed. In particular, it
does not coincide with the boundary of Γ(f). Finally, note that α in
Definition 2.5.9 can always be chosen to be contained in W c

loc(x).

Theorem 2.5.10. If f ∈ PHr
m(M), and ∅ 6= Γ(f) 6= M , then

Per(f) ∩ Γ(f) 6= ∅. Moreover, Per(f) is dense in each local leaf
W su

loc(x) of the accessible boundary ∂aΓ(f).

We shall assume that f preserves the orientation of a local folia-
tion transverse to Γ(f) at x ∈ ∂aΓ(f).

Proof. Let x ∈ ∂aΓ(f) and consider a small arc αx ⊂ W c
loc(x)

such that αx(0) = x, and αx ∩Γ(f) = {x}, as in Definition 2.5.9. We
can assume αx is so small that if U = W s

loc(W
u
loc(α)(x)), then

U ∩ Γ(f) = W su
loc(x).

We can also consider U so small that the local center manifolds of all
y ∈ U meet Γ(f).

Since f is conservative, the non-wandering set of f is M . So,
there exists y ∈ U and n > 0 arbitrarily large such that fn(y) ∈
U . Let ay ∈ W su

loc(x) be such that (ay, y)
c ⊂ U ∩ W c

loc(y), then
fn(ay, y)

c = (fn(ay), fn(y))c ⊂ U ∩W c
loc(f

n(y)). But ay ∈ ∂aΓ(f),
and the accessible boundary of Γ(f) is invariant, so fn(ay) ∈ ∂aΓ(f),

hence fn(ay) ∈W su
loc(x) = U ∩ Γ(f).

This implies that there are arbitrarily large iterates of ay in
W su

loc(x). The proof of Theorem 2.5.10 finishes now with the following:

Lemma 2.5.11 (Anosov Closing Lemma). There exists n0 > 0
and ε > 0 such that if z ∈W su

ε (x) is such that fn(z) ∈ W su
ε (x) with

n ≥ n0, then there is a periodic point in W su
ε (x) of period n.
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�

The following proposition holds both in the conservative and the
non-conservative setting:

Proposition 2.5.12. For each r ∈ [1,∞] there exists a Cr-dense
set of diffeomorphisms in PHr

∗(M) with the property that the acces-
sibility class of every periodic point is open.

Proof. For k ≥ 1, let Uk denote the set of all diffeomorphisms
in PHr

∗(M) with the property that the periodic points of period k
are all periodic. Each Uk is an open and dense set in PHr

∗(M) by the
Kupka-Smale theorem. The number of periodic points of period k is
finite and constant on each component of Uk. From the Unweaving
Lemma 2.5.7 it follows that Uk has a Cr-dense subset Vk such that
the accessibility class of every periodic point with period k is open if
the diffeomorphism is in Vk. The set Vk is open, by Corollary 2.4.3.
Then Vk is open and dense in PHr

∗(M) for each k ≥ 1. Then the
set R =

⋃

k≥1 Vk is a residual set since PHr
∗(M) is a Baire space,

in particular it is Cr-dense. All f ∈ R have the property that the
accessibility class of every periodic point is open. �

Let us show the conservative version of Theorem 2.5.2:

Theorem 2.5.13 (Conservative setting). If f is a continuity
point of f 7→ Γ(f), then Γ(f) = ∅.

Proof. Let us first see that Γ(f) can not be a non-empty strict
subset of M . If f is a continuity point of f 7→ Γ(f) such that ∅ 6=
Γ(f) 6= M , then there is a neighborhood U in PHr

∗(M) such that
all g ∈ U satisfy ∅ 6= Γ(g) 6= M . Now, Theorem 2.5.10 implies that
Per(g)∩Γ(g) 6= ∅ for all g ∈ U , but, on the other hand, by Proposition
2.5.12 there is a dense set in PHr

∗(M) for which the accessibility class
of every periodic orbit is open. This is a contradiction.

Then, if f is a continuity point, we have that either Γ(f) = M or
Γ(f) = ∅, but in Theorem 2.5.8, we have shown that the set of f for
which Γ(f) = M has empty interior. Since, by Corollary 2.4.4, the
continuity points of Γ are a residual, and in particular, dense, f is
approximated by fn for which Γ(fn) = ∅ (otherwise, semi-continuity
would imply there is an open set of g such that Γ(g) = M). But
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this implies that if Γ(f) = M then f is not a continuity point. This
proves the theorem. �

2.5.4. The non-conservative setting. Let us state the fol-
lowing stronger version of the Anosov Closing Lemma. It holds since
the global stable and unstable bundle vary continuously in a neigh-
borhood of any f ∈ PHr(M), and they form uniform angles.

Lemma 2.5.14 (Anosov Closing Lemma). For each f ∈ PHr(M)
there exists a neighborhood U ⊂ PHr(M) of f , an integer N > 0
and a small number ε > 0, such that if x ∈ Γ(g) is such that gn(x) ∈
W su

g,ε(x), with n ≥ N , then there exists a point of period n in W su
g,ε(x).

Proposition 2.5.15. If f ∈ PHr(M) is a continuity point of Γ,
for which Γ(f) 6= ∅, there exists an open set V ⊂ PHr(M) arbitrarily
close to f such that for all h ∈ V:

Per(f) ∩ Γ(h) 6= ∅

After proving this proposition, the proof of Theorem 2.5.1 fol-
lows exactly as the proof of Theorem 2.5.13, using Proposition 2.5.15
instead of Theorem 2.5.10.

Proof. Let f be a continuity point of Γ. And consider U ⊂
PHf (M), N > 0 and ε > 0 as in the Anosov Closing Lemma 2.5.14.
We can reduce U , so that for some δ > 0 we have the following
properties:

(1) dH(Γ(f),Γ(g)) < δ/2 for all g ∈ U , where dH is the Haus-
dorff distance.

(2) W c
g,loc(x) ∩ Γ(g) 6= ∅ if d(x,Γ(g)) < δ. Call bx ∈ Γ(g)

the first point in W c
g,loc(x) ∩ Γ(g), once we have chosen a

local center leaf and an orientation (coherent in a whole
neighborhood of x)

(3) if x, y ∈ Bδ(Γ(g)), d(x, y) < δ, then by ∈W su
g,ε(bx).

Γ(f) contains a minimal set K. By the Unweaving Lemma 2.5.7,
there exists g ∈ U coinciding with f over K, for which ACg(x) is
open for all x ∈ K.

There exists x0 ∈ K and n > N such that gn(x0) ∈ Bδ/2(x0), and
gn preserves the orientation of the local center leaves near x0. Now,
there is V(g) ⊂ U so that all h ∈ V(g) satisfy that hn(x0) ∈ Bδ(x0),
and ACh(x0) is open (Corollary 2.4.3).
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Choose an orientation of the center leaves in Bδ(x0). Then, by
(3), bhn(x0) ∈ W su

h,ε(bx0
). Now, the center arc [x0, bx0

]c meets Γ(h)

only at bx0
. Hence hn(x0, bx0

)c = ∅, and hn(bx0
) ∈ Γ(h), due to the

invariance of Γ(h). This implies that bhn(x0) = hn(bx0
). So, by the

Anosov Closing Lemma 2.5.14, there exists an n-periodic point in
W su

h,ε(bx0
) ⊂ Γ(h). This proves the claim. �

2.6. Accessibility implies ergodicity

In this Section we shall consider f ∈ Diff1+α
m (M), and M of di-

mension 3. The hypothesis on the differentiability can not be removed
so far, since it is essential to the absolute continuity of the stable and
unstable foliations. Theorem 2.6.1 as it is stated here is valid for any
C1+α volume preserving diffeomorphism with one-dimensional center
bundle [67]. The strongest version so far, is Theorem 2.8.3, by Burns
and Wilkinson [33].

Theorem 2.6.1. If f ∈ Diff1+α
m (M3) satisfies the accessibility

property, then it is ergodic.

In fact, the weaker property of essential accessibility property
(see its definition at the beginning of Section ) is already enough to
establish Theorem 2.6.1. See below.

As we said in the introduction, in order to prove Theorem 2.6.1,
we shall introduce two new Vitali bases, called s-juliennes and u-
juliennes. This is done in Subsection 2.6.1. We shall prove that
the density points according to these bases are the Lebesgue density
points if we consider essentially s- and essentially u-saturated sets.
A is an essentially s-saturated set if it coincides modulo a zero set
with an s-saturated set As, that is m(A△As) = 0. Essentially u-
saturated sets are defined analogously. An essentially bi-saturated
set is a set that is both essentially s- and essentially u-saturated.
The density points according to these new bases bases satisfy the
following theorems:

Theorem 2.6.2. Let f ∈ PH1+α
m (M3). Then

(1) The s-julienne density points of an essentially u-saturated
set coincide with the Lebesgue density points of this set.

(2) The u-julienne density points of an essentially s-saturated
set coincide with the Lebesgue density points of this set.
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which will be proved in Subsection 2.6.3

Theorem 2.6.3. Let f ∈ Diff1+α
m (M3). Then:

(1) The s-julienne density points of an essentially s-saturated
set are preserved by stable holonomies; hence, they form an
s-saturated set.

(2) The u-julienne density points of an essentially u-saturated
set are preserved by stable holonomies; hence, they form an
u-saturated set.

which will be proved in Subsection 2.6.2.
As a conclusion, for each continuous observable ϕ : M→R, since

the set

A = {x : ϕ̂(x) ≥

∫

ϕdm}

is essentially s- and essentially u-saturated, its Lebesgue density points
are s- and u-saturated. Then essential accessibility implies that the
Lebesgue density points of A have measure 1, thus ϕ̂(x) ≥

∫

ϕdm for
m-almost every x. But

∫

ϕ̂dm =
∫

ϕdm, so ϕ̂(x) =
∫

ϕdm for m-
almost every x. This implies that f is ergodic, and proves Theorem
2.6.1.

2.6.1. Juliennes. In this section we shall construct a Vitali ba-
sis {Jsuc

n (x)}x∈M which is dynamically defined. The density points
of a set A according to this basis, will be called s-julienne density
points; namely, the points x satisfying:

lim
n→∞

m(Jsuc
n (x) ∩A)

m(Jsuc
n (x))

= 1 (2.9)

As we said above, in Subsection 2.6.2 we shall prove that the s-
julienne density points of an essentially u-saturated set form an s-
saturated set, that is, are preserved under stable holonomies (Theo-
rem 2.6.3); and in Subsection 2.6.3 we shall see that the s-julienne
density points are the Lebesgue density points of any s-saturated set.

For the sake of simplicity, we shall assume that f is absolutely
partially hyperbolic, that is, there exist constants λ < 1, µ > 1, and
γ, ν such that for all unit vectors vs ∈ Es, vc ∈ Ec and vu ∈ Eu, we
have:

‖Df(x)vs‖ < λ < γ < ‖Df(x)vc‖ < ν < µ < ‖Df(x)vu‖ (2.10)
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The difference with a (non-absolutely) partially hyperbolic diffeomor-
phism is that in the latter λ, µ, γ and ν are not necessarily fixed. The
proof of the general case is not much more complicated, in fact, there
are almost no differences; but the notation becomes substantially
lighter, helping to see the essential ideas.

Since Ec is one-dimensional, there is essentially one unit vector
in Ec, ±vc, so γ and ν in (2.10) can be taken so that γ

ν ∼ 1, in
particular, we may require:

λ <
γ

ν
< 1 <

ν

γ
< µ (2.11)

This is called the center bunching condition. Now, let σ > 0 be chosen
so that:

λ

γ
< σ < min

(

1,
1

ν

)

(2.12)

Let us denote byW c
n(x) the setW c

σn(x), for any local center manifold.
Also define:

Ju
n (x) = f−n(Wu

λn(fn(x))) (2.13)

Then we introduce the following dynamically defined local u-saturation
of W c

n(x):

Juc
n (x) = Ju

n (W c
n(x)) =

⋃

y∈W c
n
(x)

Ju
n (y) (2.14)

that is, over each point y ∈W c
n(x), we consider a local unstable mani-

fold of a variable length, which dynamically depends on y. The Vitali
basis that gives the s-julienne density points defined in Equation (2.9)
is given by:

Jsuc
n (x) = W s

σn(Jcu
n (x)) (2.15)

That is, the s-juliennes are the local stable saturation of the dynam-
ically defined cu-disc Juc

n (x), given in (2.14).

2.6.2. Proof of Theorem 2.6.3. First of all let us recall the
notion of stable holonomy. Given y ∈W s

loc(x), there exists a homeo-
morphism hs : Wuc

loc(x)→Wuc
loc(y) such that, for each ξ ∈Wuc

loc(x)

hs(ξ) = W s
loc(ξ) ∩W

uc
loc(y) (2.16)
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For each fixed Wuc
loc(x), let us denote muc(A) the induced Riemannian

volume of A∩Wuc
loc(x) in the local manifold Wuc

loc(x). As we have men-
tioned in the introduction, stable foliation is absolutely continuous,
as proven by Brin and Pesin [26]. Concretely, we have the following:

Proposition 2.6.4 (Absolute continuity of the stable foliation
[26]). There exists K > 1 such that for each x ∈ M and for all
measurable sets A,

1

K
≤
muc(h

s(A ∩Wuc
loc(x)))

muc(A ∩Wuc
loc(x))

≤ K (2.17)

In fact, the stable holonomy can be defined between any two
small discs transverse to W s

loc(x), and it continues to be absolutely
continuous; this means, (2.17) continues to hold if we replace muc

by mD and mD′ , where D and D′ are two small discs transverse to
W s

loc(x). As a corollary, we have the following lemma:

Lemma 2.6.5. For each x ∈M , and K > 1 obtained in Proposi-
tion 2.6.4, we have, for sufficiently large n, and any s-saturated set
As:

1

K
≤

m(As ∩ Jsuc
n (x))

2σnmuc(As ∩ Juc
n (x))

≤ K (2.18)

To see this, take a foliation of a neighborhood of x, that is trans-
verse to W s

loc(x), and contains Wuc
loc(x). Abusing notation, call muc

the induced Riemannian volume on each leaf of this local foliation.
Call ms the induced Riemannian volume on W s

loc(x). We have:

m(As ∩ J
suc
n (x)) =

∫

W s

σn (x)

mcu(hs(As ∩ J
uc
n (x)))dms(y)

Then, by Proposition 2.6.4 above, we get (2.18).
Let us note that if A is an essentially s-saturated set, and As

is an s-saturated set such that m(A△As) = 0, then the s-julienne
density points of A coincide with the set of s-julienne density points
of As. Indeed, for any x ∈ M , m(A ∩ Jsuc

n (x)) = m(As ∩ Jsuc
n ),

so the quotients (2.9) are the same for A and for As. So, Theorem
2.6.3 is reduced to proving that the s-julienne density points of an
s-saturated set form an s-saturated set, that is, they are invariant
under stable holonomies hs.
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Lemma 2.6.5 and the previous discussion tell us that in order to
prove Theorem 2.6.3 it suffices to control the distortion of As∩Juc

n (x)
under the action of stable holonomies. This is essentially the content
of Proposition 2.6.6 below, whose proof we defer for a while. This
proposition is the most substantial step in the proof of Theorem 2.6.3.

Proposition 2.6.6. There exists k ≥ 1 such that, for every
x ∈ M , the stable holonomy map between Wuc

loc(x) and Wuc
loc(h

s(x))
satisfies:

Juc
n+k(hs(x)) ⊂ hs(Juc

n (x)) ⊂ Juc
n−k(hs(x)) ∀n ≥ k (2.19)

Assume the validity of Proposition 2.6.6 for now, and let us finish
the proof of Theorem 2.6.3. As we stated above, it suffices to see that
the s-julienne density points of an s-saturated set As are invariant
under stable holonomies. We shall instead consider an s-julienne
density point x of the complement of As and see that hs(x) is also
an s-julienne density point of M \As. By our assumption we have:

lim
n→∞

m(As) ∩ Jsuc
n (x)

Jsuc
n (x)

= 0

so, by our bounds (2.18), we obtain:

lim
n→∞

muc(As ∩ Juc
n (x))

muc(Juc
n (x))

= 0

Now, Proposition 2.6.6 implies that, for some fixed k ≥ 1, and all
n ≥ k

muc(h
s(As∩J

uc
n+k(x))) ≤ muc(As∩J

uc
n (hs(x))) ≤ muc(h

s(As∩J
uc
n−k(x)))

Then, by the absolute continuity of the stable holonomy, Lemma
2.6.4, we obtain that

1

K
muc(As∩J

uc
n+k(x)) ≤ muc(As∩J

uc
n (hs(x))) ≤ Kmuc(As∩J

uc
n−k(x))

These inequalities hold for the particular case As = M , hence we
obtain that:

muc(As ∩ Juc
n+k(x))

Kmuc(Juc
n−k(x))

≤
muc(As ∩ Juc

n (hs(x)))

muc(Juc
n (hs(x)))

≤
Kmuc(As ∩ Juc

n−k(x))

muc(Juc
n+k(x))
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Since k ≥ 1 is fixed, by definition of Jcu
n (x) there exists N > 0 such

that for all n ≥ N , we have

muc(J
uc
n−k(x))

muc(Juc
n+k(x))

≤ K

Hence we obtain that

lim
n→∞

muc(As ∩ Juc
n (hs(x)))

muc(Juc
n (hs(x)))

= 0

Lemma 2.6.5 again, implies that

lim
n→∞

m(As ∩ Jsuc
n (x))

m(Jsuc
n (x))

= 0

what ends the proof of Theorem 2.6.3.
To finish this section let us proceed to prove Proposition 2.6.6.

Proof of Proposition 2.6.6. The proof consists in two main
steps:

(1) showing that hs does not distort much the central base
W c

n(x) of Juc
n (x)

(2) showing that hs does not distort much each fiber Ju
n (y) with

y ∈W c
n(x)

Obviously these two claims together imply hs(Juc
n (x)) ⊂ Juc

n−k(hs(x))
for some fixed k independent of x, and for every stable holonomy map.
Since the inverse of the holonomy map is another holonomy map, we
get the claim.

The proof of Step (1) involves the following crucial lemma, which
we shall not prove, see for instance [33].

Lemma 2.6.7 (C1-stable holonomies within local center stable
leaves). The stable holonomy is C1 with uniform bounds (not depend-
ing on x), when restricted to each local center stable leaf W sc

loc(x). In
particular, there exists L > 1 such that for all x ∈M

d(hs(y), hs(z)) ≤ Ld(x, y) ∀y, z ∈W c
loc(x) (2.20)

As a consequence of this we get:

Proposition 2.6.8 (Step 1). There exists k ≥ 1 such that for all
x ∈M and n ≥ k, we have:

hs(W s
n(x)) ⊂W c

n−k(hs(x))
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Proof. Let y ∈ W c
n(x), then by definition y ∈ W c

loc(x) with
d(x, y) ≤ σn. Lemma 2.6.7 above implies:

d(hs(x), hs(y)) ≤ Ld(x, y) ≤ Lσn ≤ σn−k

for some fixed k ≥ 1, which can be obviously chosen independent of
x. �

�

Proposition 2.6.9 (Step 2). There exists k ≥ 1 such that for all
x ∈M and n ≥ k, if z ∈ W c

n(x), then

hs(Ju
n (z)) ⊂ Juc

n−k(hs(x)) (2.21)

As a consequence, hs(Juc
n (x)) ⊂ Juc

n−k(hs(x)).

Proof. Let W c
loc(x) be given, and choose a local center leaf

W c
loc(h

s(x)) contained in W sc
loc(x). This always exists, it suffices to

consider any local center unstable leaf Wuc
loc(h

s(x)), then its intersec-
tion with W sc

loc(x) gives the desired local center leaf.
Let z ∈W c

n(x) and y ∈ Ju
n (z), then by definition we have:

• d(fn(y), fn(z)) ≤ λn with fn(y) ∈ Wu
loc(f

n(z)), and
• d(z, x) ≤ σn with W c

loc(x)

Recall that hs(y) ∈W s
loc(y) and W s

loc(z), so

d(fn(hs(x)), fn(hs(z))) ≤ d(fn(hs(y)), fn(y)) + d(fn(y), fn(z))

+d(fn(z), fn(hs(z))) ≤ 3λn

Let hs(w) ∈ Wu
loc(h

s(y)) ∩W c
loc(h

s(x)), with w ∈ W c
loc(x). Since the

angle between Ec and Eu is uniformly bounded from below, and since
the unstable holonomy is uniformly C1 in the local center unstable
leaves, in particular in Wuc

loc(f
n(hs(x))), by Lemma 2.6.7, there exists

C > 0 such that:

• d(fn(hs(y)), fn(hs(w))) ≤ Cλn

• d(fn(hs(w)), fn(hs(z))) ≤ Cλn

Note that this happens for this fixed n, both y and w depend on n,
also that C > 0 does not depend on n or x. Let k > 0 be greater
than the one found in Proposition 2.6.8, and such that:

max(C + 1, 3) ≤ λ−k (2.22)
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Then, since fn(hs(w)) ∈Wu
Cλn(fn(hs(y))),

d(fn−k(hs(w)), fn−k(hs(y))) ≤ d(fn(hs(w)), fn(hs(y))) ≤ λn−k

which implies that hs(y) ∈ Ju
n−k(hs(w)). Also, by the second item

above and Equations (2.10) and (2.12), we have:

d(hs(w), hs(z)) ≤ Cλnν−n ≤ Cσn

Now, since z ∈ W c
n(x), Proposition 2.6.8 implies d(hs(z), hs(x)) ≤

σn−k, from our choice of k it follows:

d(hs(w), hs(x)) ≤ (C + 1)σn ≤ σn−k

Hence, we got that hs(y) ∈ Ju
n−k(hs(w)), with hs(w) ∈W c

n−k(hs(x)),
which means that hs(y) ∈ Juc

n−k(hs(x)). This finishes the proof of
Step 2, and of Theorem 2.6.3. �

2.6.3. Proof of Theorem 2.6.2. For each n ≥ 1, and each
x ∈M , define

W sc
n (x) = W s

σ(W c
n(x)) ∼W sc

σn(x) (2.23)

Use definition above to introduce the following Vitali basis:

JWusc
n (x) = Ju

n (W sc
n (x)) =

⋃

y∈W sc
n

(x)

Ju
n (y) (2.24)

Let us first prove the following proposition

Proposition 2.6.10. The s-julienne density points of any set
coincide with the JWusc

n -density points

Proof. We shall find k ≥ 1 and K > 11 such that for each
x ∈M and n ≥ k

(1) Jsuc
n−k(x) ⊂ JWusc

n (x) ⊂ Jsuc
n−k(x), and

(2)
m(JW usc

n+k
(x))

JW usc
n

(x) ≥ 1
K

Let z ∈ JWusc
n (x), then z ∈ Ju

n (y), with y ∈ W sc
n (x). If we choose

k greater than the one obtained in Propositions 2.6.8 and 2.6.9, then
we have that y ∈ W c

n−k(hs(x)), where hs is the holonomy map
from W c

loc(x) to W c
loc(y). In particular, z ∈ Jcu

n−k(hs(x)). If we
consider now the stable holonomy map going from W cu

loc(h
s(x)) to

W cu
loc(x), and call it hs abusing notation, we have, by our choice of

k, that hs(Juc
n−k(hs(x))) ⊂ Jcu

n−2k(x). Since the angle between Es,
Ec and Eu is bounded from below, there exists j ≥ 2k such that
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z ∈ Juc
n−k(hs(x)) ⊂ Jsuc

n−j(x). Rename j and call it our new k. This

proves one of the inclusions in (1).
To prove the other one, take z ∈ Jsuc

n (x), then z ∈ W s
σn(y),

with y ∈ Juc
n (x). If we call hs(x) = W s

loc(x) ∩ Wuc
loc(z), then by

Proposition 2.6.9 we have that z ∈ hs(Juc
n (x)) ⊂ Juc

n−k(hs(x)). Then
z ∈ Ju

n−k(ξ), with ξ ∈ W c
n−k(hs(x)). Since the angles between Es,

Ec and Eu are uniformly bounded from below, there exists l ≥ k
such that W c

n−k(hs(x)) ⊂W sc
n−l(x). Rename l and call it our new k.

This finishes the proof of (1).
To prove (2), let us use that, by the absolute continuity of the

stable and unstable holonomies (Proposition 2.6.4), there is K > 1
such that:

1

K
<

m(JWusc
n (x))

mu(Ju
n (x))ms(W s

σ(x))m(W c
n(x))

< K (2.25)

we shall modify K, but will keep its name. Now, due to (2.25), it
suffices to find a bound independent of x and n for

mu(Ju
n+k(x))ms(W

s
σn+k(x))mc(W

c
n+k(x))

mu(Ju
n (x))ms(W s

σn(x))mc(W c
n(x))

But
ms(W

s
n+k)(x)

ms(W s
σn(x))

=
2σn+k

2σn
= σk

analogously, mc(W
c
n+k(x))/mc(W

c
n(x)) = σk, and to bound the last

quotient observe that, by definition of Ju
n (x) there exists K > 1 such

that:

1

K

2λn

Jac(fn)′(x)|Eu

≤ mu(Ju
n (x)) ≤ K

2λn

Jac(fn)′(x)|Eu

(2.26)

So, taking K > 1 such that all the bounds work, we get (2). It is left
as an exercise to the reader to show that this implies that the density
points of both bases are equal. (Hint: show that points of density
zero coincide) �

To finish the proof of Theorem 2.6.2, let us introduce the follow-
ing Vitali basis, for each x ∈M and n ≥ 1:

Wusc
n (x) = Wu

σn(W sc
n (x)) (2.27)
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Since the angles between Es, Ec and Eu are uniformly bounded from
below, it is easy to see that density points according to the Vitali basis
defined in (2.27) are the same as the Lebesgue density points. The
proof is then finished with the following proposition:

Proposition 2.6.11. The Wusc
n -density points of an essentially

u-saturated set coincide with the JWusc
n density points of this set.

Proof. Let us assume that Xu is an u-saturated set (see Ex-
ercise 2.6.12). Call msc(A) the induced Riemannian volume of A
on W sc

loc. Then, due to the absolute continuity of the local unstable
foliation (Proposition 2.6.4) we have:

(1) m(Xu ∩Wusc
n (x)) =

∫

Xu∩W sc
n

(x)mu(Wu
σn(y))dmsc(y)

(2) m(Xu ∩ JWusc
n (x)) =

∫

Xu∩W sc
n

(x)
mu(Ju

n (y))dmsc(y)

Now, by Equation (2.26), there exists K > 1 such that for all y ∈
W sc

loc(x):

1

K
<
mu(Ju

n (x))

mu(Ju
n (y))

< K

This implies that:

.
1

K2

msc(Xu ∩W sc
n (x))

msc(W sc
n (x))

≤
m(Xu ∩ JWusc

n (x))

m(JWusc
n (x))

≤ K2msc(Xu ∩W sc
n (x))

msc(W sc
n (x))
(2.28)

On the other hand, from Item (1), it is easy to see that, by possibly
modifying K > 1, we get:

1

K2

msc(Xu ∩W sc
n (x))

msc(W sc
n (x))

≤
m(Xu ∩Wusc

n (x))

m(Wusc
n (x))

≤ K2msc(Xu ∩W sc
n (x))

msc(W sc
n (x))

(2.29)
Then, joining Equations (2.28) and (2.29), we obtain

1

K4

m(Xu ∩Wusc
n (x))

m(Wusc
n (x))

≤
m(Xu ∩ JWusc

n (x))

m(JWusc
n (x))

≤ K2m(Xu ∩Wusc
n (x))

m(Wusc
n (x))

This proves that their density points are the same (see Exercise
2.6.13) �

Exercise 2.6.12. Prove that the density points of X according
to any Vitali basis Vn coincide with the density points of any set Y
such that m(X△Y ) = 0.
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In particular, to calculate the density points of an essentially u-
saturated set according to any Vitali basis, we may always assume it
is u-saturated.

Exercise 2.6.13. Finish the details of Proposition 2.6.11. To
prove that the density points coincide, show that the zero density
points according to both bases coincide.

2.7. A Criterion to establish ergodicity

Here we present a refinement of the Hopf argument (Subsection
2.2.1) which provides a more accurate description of the hyperbolic
ergodic components of a smooth invariant measure.

An invariant set E is an ergodic component of f if m(E) > 0
and f |E is ergodic, that is, if F ⊂ E is a positive measure invariant
set, then m(E△F ) = 0. Equivalently, all f -invariant measurable
functions are a.e. constant on E.

An ergodic component E is hyperbolic if all Lyapunov exponents
are different from zero on E, that is, if for almost all x ∈ E and
v ∈ TxM \ {0}, we have:

λ(x, v) = lim
|n|→∞

log
1

n
‖Dfn(x)v‖ 6= 0 (2.30)

The number λ(x, v) defined in Equation (2.30) above is the Lyapunov
exponent of x in the v-direction, that is, the exponential growth rate
of Df along v. The Lyapunov exponents are well defined for every
vector almost everywhere on M . Moreover, since they are measurable
invariant functions, they are almost everywhere constant over ergodic
components, see next subsection.

2.7.1. Pesin Theory. We review some facts about Pesin the-
ory, a good summary of which may be found, for instance, in Pugh
and Shub’s paper[102], Ledrappier and Young’s paper [86], Katok’s
paper [80] and the book by Barreira and Pesin [12].

Given x ∈M , let Eλ(x) be the subspace of TxM consisting of all
v such that the Lyapunov exponent of x in the v-direction is λ. Then
we have the following:

Theorem 2.7.1 (Osedelec [95]). For any C1 diffeomorphism
f : M→M there is an f -invariant Borel set R of total probabil-
ity, that is, µ(R) = 1 for all invariant probability measures µ, with
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the following properties. For each ε > 0 there is a Borel function
Cε : R→(1,∞) such that for all x ∈ R, v ∈ TxM and n ∈ Z

(1) TxM =
⊕

λ Eλ(x) (Oseledec’s splitting)
(2) For all v ∈ Eλ(x)

Cε(x)
−1exp[(λ− ε)n]|v| ≤ |Dfn(x)v| ≤ Cε(x)exp[(λ + ε)n]|v|

(3) ∠ (Eλ(x), Eλ′ (x)) ≥ Cε(x)
−1 if λ 6= λ′

(4) Cε(f(x)) ≤ exp(ε)Cε(x)

The set R is called the set of regular points. For simplicity, we
will assume that all points in R are Lebesgue density points. We
also have that Df(x)Eλ(x) = Eλ(f(x)). If an f -invariant measure µ
is ergodic then the Lyapunov exponents and dimEλ(x) are constant
µ-a.e.

In short, what Oseledets proved is that for almost every point in
M , there exists a splitting of the tangent bundle

TxM = E1(x) ⊕ · · · ⊕El(x)(x)

and numbers λ̂1(x) > · · · > λ̂l(x)(x) describing all the exponential
growth rates of ‖Df‖ in TxM , that is, all vectors in the subspace

Ei(x) have Lyapunov exponent λ̂i(x). We can group this splitting as
the zipped Oseledets splitting:

TxM =
⊕

λ<0

Eλ(x) ⊕ E0(x)
⊕

λ>0

Eλ(x) = E−(x) ⊕ E0(x) ⊕ E+(x)

(2.31)
where E0(x) is the subspace generated by the vectors having zero

Lyapunov exponents. For every f ∈ Diff1
m(M), the Pesin region of f

is defined as the set

Nuh(f) = {x ∈M : TxM = E−(x) ⊕ E+(x)} (2.32)

This is an invariant set, and all ergodic components contained in the
Pesin region are hyperbolic ergodic components.

From now on, we assume that f ∈ Diff1+α
m (M). Given a regular

point x ∈ R, we define its stable Pesin manifold by

W s(x) =

{

y : lim sup
n→+∞

1

n
log d(fn(x), fn(y)) < 0

}

(2.33)

The unstable Pesin manifold of x, Wu(x) is the stable Pesin mani-
fold of x with respect to f−1. Stable and unstable Pesin manifolds of
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points in R are immersed manifolds [97]. We stress that C1+α regu-
larity is crucial for this to happen. In this way we obtain a partition
x 7→W s(x) , which we call stable partition. The unstable partition is
defined analogously. The stable and unstable partitions are invariant.

For each fixed ε > 0 and l > 1, we define the Pesin blocks:

Λ(ε, l) = {x ∈ R : Cε(x) ≤ l} .

Note that Pesin blocks are not necessarily invariant. However f(Λ(ε, l)) ⊂
Λ(ε, exp(ε)l). Also, for each ε > 0, we have

R =

∞
⋃

l=1

Λ(ε, l) (2.34)

We loose no generality in assuming that the Λ(ε, l) are compact. On
the Pesin blocks we have a continuous variation: Let us call W s

loc(x)
the connected component ofW s(x)∩Br(x) containing x, where Br(x)
denotes the Riemannian ball of center x and radius r > 0, which is
sufficiently small but fixed. Then

Theorem 2.7.2 (Stable Pesin Manifold Theorem [97]). Let f :
M→M be a C1+α diffeomorphism preserving a smooth measure m.
Then, for each l > 1 and small ε > 0, if x ∈ Λ(ε, l):

(1) W s
loc(x) is a disk such that TxW

s
loc(x) =

⊕

λ<0Eλ(x)

(2) x 7→W s
loc(x) is continuous over Λ(ε, l) in the C1 topology

In particular, the dimension of the disk W s
loc(x) equals the num-

ber of negative Lyapunov exponents of x. An analogous statement
holds for the unstable Pesin manifold.

2.7.2. The Pesin homoclinic classes. Let f ∈ Diff1+α
m (M).

Given a hyperbolic periodic point p, we define the s-Pesin homoclinic
class of p by:

Phcs(p) = {x ∈ R : W s(x) ⋔ Wu(o(p))} (2.35)

where o(p) denotes the orbit of p, and ⋔ denotes non-empty trans-
verse intersection. Analogously we define the u-Pesin homoclinic
class Phcu(p). Phcs(p) is an s-saturated set, and Phcu(p) is a u-
saturated set. Both sets are f -invariant. We define the Pesin homo-
clinic class of p by:

Phc(p) = Phcs(p) ∩ Phcu(p) (2.36)
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Phc(p) is f -invariant, but is not necessarily s- or u-saturated.. See
Figure 9.

Figure 9. A point x in the Pesin homoclinic class
of p

2.7.3. Criterion. We have the following criterion to recognize
hyperbolic ergodic components of a smooth measure:

Theorem 2.7.3. [71] Let f ∈ Diff1+α
m (M). If p is a hyperbolic

periodic point such that m(Phcs(p)) > 0 and m(Phcu(p)) > 0, then
Phc(p) is a hyperbolic ergodic component of f and

Phc(p) ⊜ Phcs(p) ⊜ Phcu(p)

With this Criterion, and Katok’s Closing lemma [80], we obtain
the following version of Pesin’s Ergodic Component Theorem:

Theorem 2.7.4 (Pesin’s Ergodic Component Theorem [97], [80],
[71]). Let f ∈ Diff1+α

m (M), then there exist hyperbolic periodic points
pn such that

Nuh(f) ⊜ Phc(p1) ∪ Phc(p2) ∪ · · · ∪ Phc(pn) ∪ . . .

2.7.4. Proof. The proof of this criterion follows the line of the
Hopf argument, and it is split in two parts. First, it is proved that if
Phc(p) has positive measure, then it is a hyperbolic ergodic compo-
nent of the measure. A more delicate proof is required to show that if
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Phcs(p) and Phcu(p) have positive measure then they coincide mod-
ulo a zero set.

We prove that Phc(p) is a hyperbolic ergodic component by show-
ing that all continuous functions ϕ : M→R have almost constant
forward Birkhoff limits ϕ+ on Phc(p). To do this, we consider two
typical points x and y in Phc(p) and try to see that ϕ+(x) = ϕ+(y).
Observe that ϕ+ is constant on stable Pesin leaves, due to continu-
ity of ϕ. Since x, y are typical, mx

u-a.e. point in Wu(x) takes the
value ϕ+(x), and my

u-a.e. point in Wu(y) takes the value ϕ+(y). We
may consider iterates of x and y so large that they are very close to
Wu(p). We will therefore find two disks Dx and Dy, one contained
in Wu(fk(x)) and the other contained in Wu(fm(y)), such that they
are very close. The stable holonomy takes positive measure sets on
Dx into positive measure sets in Dy. In particular it takes the set of
points in Dx for which the value is ϕ+(x) into a set of positive mea-
sure in Dy. The fact that ϕ+ is constant along stable Pesin leaves,
together with the fact that my

u-a.e. point in Dy has the value ϕ+(y)
prove that ϕ+(x) = ϕ+(y).

The proof that Phcs(p) coincides modulo zero with Phcu(p) re-
quires more delicate steps. Indeed, we want to prove that a typical
point x in Phcu(p) is contained in Phcs(p). In order to do that, we
take a typical point y in Phcs(p). The fact that x is typical implies
that x belongs to Phcs(p) if and only if mx

u-a.e. point in Wu(x)
belongs to Phcs(p). Proceeding as in the previous proof, one takes
suitable iterates of x and y so that they are very close to Wu(p). We
would like to follow as in the proof above, by taking holonomies be-
tween close unstable disks; however, the dimension of Wu(x) might
be less than dim(Wu(y)). We shall therefore sub-foliate Wu(y) with
disks of dimension dim(Wu(x)), and choose a disk Dy ⊂ Wu(y)
such that mD-a.e. point in Dy belongs to Phcs(p), where mD is the
Lebesgue measure induced on Dy. This is possible due to a Fubini
argument, since y is a typical point in Phcs(p).

Now, Phcs(p), is an f -invariant and s-saturated set. This means
that if x ∈ Phcs(p), then W s(x) ⊂ Phcs(p). An analogous statement
holds for Phcu(p). See Figure 10. By Birkhoff Ergodic Theorem,
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Figure 10. Phcu(p) is u-saturated

the limit defined in Equation (2.1) exists and coincides almost ev-
erywhere with ϕ+(x) (defined in Equation (2.2)), and ϕ−(x), defined
analogously. ϕ̃ and ϕ± are f -invariant.

Lemma 2.7.5 (Typical points for continuous functions). There
exists an invariant set T0 of typical points with m(T0) = 1 such that
for all ϕ ∈ C0(M) if x ∈ T0 then ϕ+(w) = ϕ+(x) for all w ∈ W s(x)
and mx

u-a.e. w ∈ Wu(x).

Proof. Let us consider the full measure set:

S0 = {x ∈M : ∃ϕ+(x) = ϕ−(x)}

For almost all x ∈ S0, we have that mx
u-a.e. ξ ∈ Wu

loc(x), ξ ∈ S0.
Otherwise, there would exist a positive measure set A ⊂M such that
for all x ∈ A there is a subset Bx ⊂ Wu

loc(x) \ S0 with mx
u(Bx) > 0.

Considering a density point y of A and integrating along a transverse
small disk T , we would obtain a set B ⊂M \ S0 such that

m(B) =

∫

T

mx
u(Bx)dmT (x) > 0

which is an absurd. As we have seen, the following is a full measure
set:

S1 = {x ∈ S0 : mx
u-a.e. ξ ∈Wu

loc(x), ξ ∈ S0}

For all x ∈ S1 there exists ξx such that mx
u-a.e. ξ ∈ Wu

loc(x),
ϕ+(ξ) = ϕ−(ξ) = ϕ−(ξx) = ϕ+(ξx). But almost every x ∈ S1
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satisfies ϕ+(x) = ϕ+(ξx). Otherwise, we would obtain a positive
measure set C ⊂ S1 such that mx

u(C ∩Wu
loc(x)) = 0 for almost ev-

ery x, which contradicts absolute continuity. The invariance of ϕ+

yields a set T0 ⊂ S1, with m(T0) = 1 and such that if x ∈ T0 then
mx

u-a.e. ξ ∈ Wu(x) satisfies ϕ+(x) = ϕ+(ξ). Since ϕ is continuous,
we obviously have that ϕ+ is constant on W s(x). �

Assume for simplicity that p is a fixed point. Given a continuous
function ϕ : M→R, let T0 be the set of typical points obtained in
Lemma 2.7.5 and R be the set of regular points. We will see that ϕ+

is constant on Phc(p)∩T0∩R, and hence almost everywhere constant
on Phc(p). This will prove that Phc(p) is an ergodic component of
f .

For any ε > 0 and l > 1 such that m(Λ(p) ∩ Λ(ε, l)) > 0, let us
call Λ = Phc(p) ∩ Λ(ε, l) ∩ T0. Without loss of generality, we may
assume that all points in Λ are Lebesgue density points of Λ, and
return infinitely many times to Λ in the future and the past. Note
that there exists δ > 0 such that W s

loc(x) contains an s-disc of radius
δ for all x ∈ Λ.

Take x, y ∈ Λ, and consider n > 0 such that yn = fn(y) ∈ Λ and
d(yn,W

u(p)) < δ/2. We have W s
loc(yn) ⋔ Wu(p).

As a consequence of the λ-lemma, there exists k > 0 such that
xk = fk(x) ∈ Λ and Wu(xk) ⋔ W s

loc(yn). See Figure 11.

Figure 11. Phc(p) is an ergodic component of f
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Since yn is a typical point for ϕ, for myn

u -a.e. w in Wu(yn) we
have ϕ+(w) = ϕ+(yn). Also we have ϕ+(z) = ϕ+(xk). Since yn is
a Lebesgue density point of Λ, applying Fubini’s theorem we get a
point ξ near yn such that the stable holonomy between Wu

loc(ξ) and
Wu

loc(yn) is defined for a set of myn

u -positive measure in Wu
loc(yn).

The λ-lemma implies that the stable holonomy between Wu
loc(yn)

and Wu
loc(z) is defined for a myn

u -positive measure set, where z is a
point in Wu(xk), see Figure 11.

Now, ϕ+ is constant along stable Pesin manifolds. And due to
absolute continuity, stable holonomy takes the set of points w in
Wu

loc(yn) for which ϕ+(w) = ϕ+(yn) into a set of positive measure in
Wu

loc(z) for which the value of ϕ+ will be ϕ+(yn). The fact that xk is
a typical point of ϕ then implies that ϕ+(x) = ϕ+(xk) = ϕ+(yn) =
ϕ+(y). This proves that Phc(p) is an ergodic component of f .

Exercise 2.7.6. Prove that Phc(p) is a hyperbolic ergodic compo-
nent. Hint: use the ergodicity and prove that dimW s + dimWu = n
for almost every x in Phc(p).

In order to prove that Phcs(p) and Phcu(p) coincide modulo a
zero set, we shall need a refinement of Lemma 2.7.5:

Lemma 2.7.7 (Typical points for L1 functions). Given ϕ ∈ L1

there exists an invariant set T ⊂ M of typical points of ϕ, with
m(T ) = 1 such that if x ∈ T then ϕ+(z) = ϕ+(x) for ms

x-a.e.
z ∈ W s(x) and mu

x-a.e. z ∈Wu(x).

Proof. Given ϕ ∈ L1 take a sequence of continuous functions
ϕn converging to ϕ in L1. Now, ϕ+

n converges in L1 to ϕ+, so there
exists a subsequence ϕ+

nk
converging a.e. to ϕ+. Call S this set of

a.e. convergence. Then the set T is the intersection of the set T0

obtained in Lemma 2.7.5 with S. �

Let T be the set of typical points for the characteristic function
1Phcs(p) of the set Phcs(p). Take x ∈ Phcu(p) ∩ T such that all
iterates of x are Lebesgue density points of Phcs(p) and x returns
infinitely many times to Phcs(p). We shall see that x ∈ Phcs(p).

This will prove Phcu(p)
◦
⊂ Phcs(p). The converse inclusion follows

analogously.
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Let ε > 0, l > 1 be such that m(Phcs(p) ∩ Λ(ε, l)) > 0, and let
δ > 0 be such that for all z ∈ Λs(p)∩Λ(ε, l), the set W s

loc(z) contains
an s-disc of radius δ > 0. Consider a Lebesgue density point y of
Λs = Phcs(p) ∩ Λ(ε, l) ∩ T such that d(y,Wu(p)) < δ/2.

As a consequence of the λ-lemma, there exists k > 0 such that
xk = fk(x) ∈ Phcu(p) ∩ T and Wu(xk) ⋔ W s

loc(y). Note that this
intersection could a priori have positive dimension. See Figure 12.

Figure 12. Proof of Phcs(p) ⊜ Phcu(p)

Since y is a Lebesgue density point of Λs, we have m(Λs ∩
Bδ(y)) > 0. Take a smooth foliation L inBδ(y) of dimension uy = n−
dimW s

loc(y) and transverse to W s
loc(y). Note that uy ≤ dimWu(p).

We can also ask that the leaf Lw of L containing a point w ∈Wu(xk)
be contained in Wu(xk). See Figure 12.

By Fubini’s theorem we have:

m(Λs ∩Bδ(y)) =

∫

W s

loc
(y)

mξ
L(Lξ ∩ Λs)dms

y(ξ)

so mξ
L(Lξ ∩ Λs) > 0 for my

s -a.e. ξ ∈ W s
loc(y). Take L ∈ L such that

mξ
L(L ∩ Λs) > 0, this means that there is a mξ

L-positive measure set
of points w ∈ Lξ such w ∈ Λs(p). The stable holonomy takes this

mξ
L-positive measure set into a mw

L -positive measure set in Lw for all
w ∈Wu(xk)∩Bδ(y). But Phcs(p) is a set saturated by stable leaves.
This means that mw

L(Lw ∩ Λs) > 0 for all w ∈Wu(fk(x)) ∩Bδ(y).
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If Wu(xk)∩W s
loc(y) is zero dimensional, this readily implies that

mxk

u (Wu(xk) ∩ Phcs(p)) > 0, and hence, since xk is a typical point,
xk and x belong to Phcs(p).

Otherwise, take an open submanifold T of Wu(xk) ⋔ W s
loc(y).

Then, by Fubini again:

mxk

u (Λs ∩Wu(xk) ∩Bδ(x)) ≥

∫

T

mw
L(Lw ∩ Λs)dmT (w) > 0

We have that a mu
xk

-positive measure set of w ∈ Wu(xk) satisfies
1Phcs(p)(w) = 1. Since xk is a typical point, this implies that xk and

hence x are in Phcs(p). Therefore, Phcu(p)
◦
⊂ Phcs(p). The converse

inclusion follows in an analogous way.

Remark 2.7.8. As an immediate consequence of the λ-lemma,
we have that if p and q are two hyperbolic points such that Wu(p) ⋔

W s(q) then Phcu(p) ⊂ Phcu(q) and Phcs(q) ⊂ Phcs(p).

2.8. State of the art in 2011

Let us briefly describe the state of the art in these days with
respect to partial hyperbolicity and stable ergodicity. The Pugh-Shub
conjecture has been solved with the highest possible differentiability
for one-dimensional center bundle:

Theorem 2.8.1 (Rodriguez Hertz, Rodriguez Hertz, Ures [67]).
Stable ergodicity is C∞-dense among partially hyperbolic diffeomor-
phisms with one-dimensional center bundle.

For two-dimensional center bundle we have the following result:

Theorem 2.8.2 (Rodriguez Hertz, Rodriguez Hertz, Tahzibi,
Ures). Stable ergodicity is C1-dense among partially hyperbolic dif-
feomorphisms with two-dimensional center bundle.

With respect to the Conjecture 2.2.1, we have the following re-
sults:

Theorem 2.8.3 (Burns, Wilkinson [33]). In PH1+α
m (M), essen-

tial accessibility and center bunching condition (2.11) imply ergodic-
ity.
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A number λ is a center Lyapunov exponent of f if λ is a Lyapunov
exponent in the direction of a vector in the center bundle, that is if
λ = λ(x, v) (as defined in Equation (2.30)) for some v ∈ Ec.

Theorem 2.8.4 (Burns, Dolgopyat, Pesin [28]). If f ∈ PH1+α
m (M)

has the accessibility property and all the center Lyapunov exponents
have the same sign on a set of positive measure, then f is stably
ergodic.

With respect to Conjecture 2.2.2 the advances are the following:

Theorem 2.8.5 (Dolgopyat, Wilkinson [46]). Stable accessibil-
ity is C1-dense among partially hyperbolic diffeomorphisms, volume
preserving or not, and symplectic.

The following higher differentiability version holds for one-dimensional
center bundle:

Theorem 2.8.6 (Burns, Rodriguez Hertz, Rodriguez Hertz, Tal-
itskaya, Ures [67], [29]). Stable accessibility is C∞-dense among par-
tially hyperbolic diffeomorphisms, volume preserving or not.



CHAPTER 3

Partial hyperbolicity and entropy

3.1. Introduction

In this chapter, our main issue will be the study of the properties
of the entropy maximizing measures for partially hyperbolic systems.
Recall that an ergodic invariant measure µ is entropy maximizing
if its metric entropy coincides with the topological entropy of the
system.

Entropies are quantities that measure the complexity of the or-
bits of a system. While the topological entropy “sees” the whole
complexity of the orbits of a system, the metric entropy “sees” the
complexity of the orbits that are relevant for a given measure. An
entropy maximizing measure (or just a maximizing measure) is an
ergodic measure such that its metric entropy equals the topological
entropy of the system. In the previous informal words, the complex-
ity of the orbits that are seen by a maximizing measure is the same
as the complexity of the orbits of the whole system.

On the one hand, it is well-known that uniformly hyperbolic sys-
tems admit maximizing measures and their topological transitivity
implies uniqueness. See the works of R. Bowen [15] and G. Mar-
gulis [90]. On the other hand, when the system is not hyperbolic
the existence can fail if it is not smooth enough (see [92] and [94]).
Howewer, if we are in the setting of partially hyperbolic diffeomor-
phism, the results of W. Cowieson and L.-S. Young in [41] (see also
[42]) imply that there are always entropy maximizing measures if the
center bundle is one-dimensional even if the diffeomorphism is C1.

Although existence is already provided by Cowieson-Young’s re-
sults our method gives it immediately as a consequence of the exis-
tence of a (especial type of) semiconjugacy with a hyperbolic system.

59
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Along these notes we are mostly focussed on three dimensional
partially hyperbolic diffeomorphisms. In this chapter we will mainly
study properties of entropy maximizing measures for two families of
3-dimensional partially hyperbolic diffeomorphisms. The first type of
examples are the partially hyperbolic diffeomorphisms isotopic to an
hyperbolic automorphism of T3. The second ones are the partially
hyperbolic diffeomorphisms with compact center manifolds, that is,
it is dynamically coherent and every center leaf is compact.

Let us state the results. For the diffeomorphisms isotopic to
Anosov we obtain the following:

Theorem 3.1.1 ([122]). Let f : T3 → T3 be an absolutely par-
tially hyperbolic diffeomorphism homotopic to a hyperbolic linear au-
tomorphism A. Then, f has a unique (entropy) maximizing measure
µ. Moreover, the pair (f, µ) is isomorphic to (A,m) where m is the
volume measure on T3.

A natural question arises:

Problem 3.1.2. Even in dimension three, what is the situation
for the other cases? In particular, what does it happen with the per-
turbations of time-one maps of (transitive) Anosov flows?

This theorem contrast with the following result for the case hav-
ing center compact leaves:

Theorem 3.1.3 ([72]). Let f : M →M be a partially hyperbolic
diffeomorphism, dynamically coherent with compact one dimensional
central leaves and satisfying accessibility property. Then one and only
one of the following occurs

(1) f admits a unique entropy maximizing measure µ and λc(µ) =
0. Moreover (f, µ) is isomorphic to a Bernoulli shift,

(2) f has a finite number (strictly greater than one) of ergodic
maximizing measure all of which with non vanishing central
Lyapunov exponent. Moreover (f, µ) is a finite extension of
Bernoulli shift for any entropy maximizing measure µ.

Moreover, the diffeomorphisms fulfilling the conditions of the second
item form a C1−open and C∞−dense subset of the dynamically co-
herent partially hyperbolic diffeomorphism with compact one dimen-
sional central leaves.
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One of the main differences between Theorems 3.1.1 and 3.1.3
and the situation of Problem 3.1.2 is the presence of an especial
semiconjugacy. In fact, in both theorems the partially hyperbolic
diffeomorphisms are semiconjugate to a hyperbolic automorphism of
a torus. Moreover, this semiconjugacies have the particular property
of preserving the topological entropy, that is, the partially hyperbolic
diffeomorphisms have the same entropy than the corresponding linear
Anosov diffeomorphism of the torus. In particular this implies that
the entropy of this systems is a locally constant function. In the case
of the time-one map of an Anosov flow the situation is very different.
On the one hand, there is no semicunjugacy to a simpler model and
on the other hand, entropy is not locally constant.

3.2. The Ledrappier-Walters entropy formula

Leddrapier-Walters formula (LW formula, [84]) is an important
generalization of the variational principle. The variational principle
states that the topological entropy is the supremum of the metric
entropies of the invariant measures of the system. Essentially states
the following: suppose that our space is a fibration preserved by the
dynamics (our diffeomorphisms sends fibers to fibers) Then, we have
a dynamics induced on the base space of the fibration. Consider an
invariant measure µ defined on the fibration. Then, Rokhlin disinte-
gration theorem implies that µ projects onto ν, an invariant measure
of the base dynamics. Then, the LW formula says that the entropy
of mu (hµ) is not greater that the entropy of ν plus the ν average
of the topological entropy of he fibers. Moreover, this sum (hν plus
average of entropy of fibers) is the supremum of the entropies of the
invariant measures whose projection is ν.

Before stating precisely the theorem that gives the LW formula
we need some previous definitions.

Consider T : X → X , a continuous map on a compact metric
space X . Recall that, given K ⊂ X , C ⊂ K is an (n, ε)-spanning set
for K if ∀y ∈ K there is x ∈ C such that for all j ∈ {0, . . . n} we have
dist(T j(x), T j(y)) < ε. Another way of understanding what is the
meaning of an (n, ε)-spanning set for K is to define, for each n a new
distance dn(x, y) = mini=0,...n dist(T i(x), T i(y)). An (n, ε)-spanning
set for K is a set such that its dn-balls of radius ε cover K. Let
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Spn(K, ε) be the minimal cardinality of an (n, ε)-spanning set for K.
Then, we define the entropy of T in K as

h(T,K) = lim
ε→ 0

lim sup
1

n
logSpn(K, ε).

There is a dual definition using (n, ε)-separated sets and it is a
classical result that both definitions coincide (see, for instance, [81])
Also observe that in case of having K = X we obtain the classical
definition of htop(T ), the topological entropy of T . Denote hµ(T ) the
metric entropy of a T -invariant probability µ and MT the space of all
T -invariant probabilities. A fundamental result in Ergodic Theory is
the Variational Principle.

Theorem 3.2.1. htop(T ) = supMT
hµ(T ).

As we have already said, LW formula is a nontrivial generalization
of the Variational Principle. Suppose that we have T : X → X
and S : Y → Y continuous maps of compact metric spaces X,Y .
Additionally suppose that the map π : X → Y is a semiconjugacy
between T and S, that is, π is a continuous surjective map such that
π ◦ T = S ◦ π.

Theorem 3.2.2 (LW-formula [84]).

sup
{µ:µ◦π−1=ν}

hµ(T ) = hν(S) +

∫

Y

h(T, π−1(y))dν(y).

To understand Theorem 3.2.2 recall that Rokhlin disintegration
theorem says that given a probability µ defined on X there ex-
ist a family of probabilities µy, y ∈ Y , supported on the corre-
sponding fibers π−1(y) and a probability ν defined on Y such that
µ =

∫

Y µydν(Y ). It is not difficult to see that ν is S-invariant if
µ is T -invariant. Dually, if ν is an S-invariant probability it can be
shown that there is at least one measure µ such that µ◦π−1 = ν. The
existence of such a measure µ can be shown by using Hahn-Banach
Theorem. Although in the cases that we will need its existence , in
the present notes, it can be obtained more directly.

Observe that Theorem 3.2.1 (Variational Principle) is a conse-
quence of Theorem 3.2.2. Indeed, if Y is a singleton (i.e. consists of
one point) we have that hν(S) = 0,

∫

Y h(T, π
−1(y))dν(y) = htop(T )

and {µ : µ ◦ π−1 = ν} = MT .
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Another corollary that can be easily obtained from Theorem 3.2.2
is the following formula of Bowen.

Corollary 3.2.3 ([16]).

htop(T ) ≤ htop(S) + sup
y∈Y

h(T, π−1(y)).

In fact we will apply the LW formula to the case when the entropy
of each fiber is zero, that is h(T, π−1(y)) = 0 ∀y ∈ Y . That means
that the dynamics along the fibers does not contribute to the topo-
logical entropy. Then, we have that htop(T ) = htop(S). Moreover, we
have the following corollary:

Corollary 3.2.4. Suppose that h(T, π−1(y)) = 0 ∀y ∈ Y . Then,
µ is an entropy maximizing measure for T if and only if ν = µ ◦ π−1

is an entropy maximizing measure for S.

A way to ensure that a set K has null entropy is to show that its
dynamics is, in some sense, one-dimensional. The following lemma
will be very useful.

Lemma 3.2.5. Suppose that C is an arc, for some L > 0,
length(T n(C)) < L for all n ≥ 0 and K ⊂ C. Then, h(T,K) = 0.

Proof. Of course, K ⊂ C implies that h(T,K) ≤ h(T,C).
Then, it is enough to prove the lemma for K = C.

For each n ≥ 0 consider Hn = {x1, . . . xkn
} ⊂ T n(C) in such a

way that

• the length of all the subarcs of T n(C) determined by the
points of Hn is less than ε,

• #Hn = kn ≤ L
ε + 1.

Define the set Jn =
⋃

j=0,...,n T
−j(Hn).

Observe that #Jn ≤ (n + 1)(L
ε + 1). We shall prove that Jn is

an (n, ε)-spanning set. Let x ∈ C, xr ∈ Jn be the closest point to
x on the right and xl on the left. Take j ∈ {0, . . . , n}. Then, there
are xi, xi+1 ∈ Jj such that T−j(xi) ≤ xl < x < xr ≤ T−j(xi+1)
(where the inequalities correspond to the natural order of C) So, xi ≤
T j(xl) < T j(x) < T j(xr) ≤ xi+1 (or with the inverse inequalities
in case T reverse orientation) Since the arc joining xi and xi+1 has
length less than ε we have that the length of the arc joining T j(x) and
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T j(xr) (or T j(xl)) is less than ε. Hence, dist(T j(x), T j(xr)) < ε (and
dist(T j(x), T j(xr)) < ε) for all j ∈ {0, . . . , n} implying, as claimed,
that Jn is an (n, ε)-spanning set.

Since #Jn ≤ (n+1)(L
ε +1) we have that Spn(C, ε) ≤ #Jn ≤ (n+

1)(L
ε +1). Finally, we have that h(T,C) = limε→ 0 lim sup 1

n logSpn(C, ε) ≤

limε→ 0 lim sup 1
n log[(n+1)(L

ε +1)] = 0. This proves the lemma. �

3.3. Isotopic to Anosov

In this section we present an sketch of the proof of the main result
of [122]. See also [36] for similar results.

Theorem 3.3.1 (see Theorem 3.1.1). Let f : T3 → T3 be an ab-
solutely partially hyperbolic diffeomorphism homotopic to a hyperbolic
linear automorphism A. Then, f has a unique (entropy) maximizing
measure µ. Moreover, the pair (f, µ) is isomorphic to (A,m) where
m is the volume measure on T3.

The proof of this theorem depends on some new results about
partially hyperbolic diffeomorphisms. The first one of these results
is that an absolutely partially hyperbolic diffeomorphism of T3 has
quasi-isometric strong foliations (see [22]). The second result is a
byproduct of A. Hammerlindl’s leaf conjugacy (see [57]). Hammer-
lindl showed that the quasi-isometry property for strong foliations im-
plies the quasi-isometry property for the center foliation. We can talk
about the center foliation because Brin [20] has shown that having
quasi-isometric strong foliations implies dynamical coherence. Recall
that we say that f is dynamically coherent if there exist invariant fo-
liations Wcσ tangent to Ecσ = Ec ⊕ Eσ for σ = s, u. Note that by
taking the intersection of these foliations we obtain an invariant foli-
ation Wc tangent to Ec that subfoliates Wcσ for σ = s, u. In order
to understand these results we need the definition of quasi-isometry.

Definition 3.3.2. A foliation W of a simply connected Rie-
mannian manifold is quasi-isometric if there are a, b ∈ R so that
dW (x, y) ≤ a d(x, y) + b for any x, y in the same leaf W of W. Here
dW stands for the distance induced by the restriction to W of the
ambient Riemannian metric.
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When we say that the strong (or the center) foliations of a par-
tially hyperbolic diffeomorphism are quasi-isometric we are meaning
that their lifts to the universal cover are quasi-isometric.

As we have already said a result of Brin, Burago and Ivanov
states that the strong foliations of an absolute partially hyperbolic
diffeomorphism on T3 are quasi-isometric (in the universal cover) and
this implies dynamical coherence.

Theorem 3.3.3 ([22, 20]). Let f : T3 → T3 be an absolutely
partially hyperbolic diffeomorphism. Then, the strong foliations are
quasi-isometric and therefore, it is dynamically coherent.

We observe that this is not true for general partially hyperbolic
diffeomorphisms. In fact, there are non-dynamically coherent par-
tially hyperbolic diffeomorphisms on T3 (see [69]) Of course, the
strong foliations of these diffeomorphisms are not quasi-isometric.
However, the examples there in are not homotopic to a hyperbolic
diffeomorphism. Then, we have the following questions.

Problem 3.3.4. Are there dynamically incoherent partially hy-
perbolic diffeomorphisms on T3? What about other manifolds (for
instance nilmanifolds)? See [96, 58].

Related with this problem, we observe that the construction of
the examples in [69] heavily relies on the existence of an invariant 2-
torus with hyperbolic dynamics. Obviously, this kind of torus cannot
exist for diffeomorphisms homotopic to Anosov. The main result in
[70] implies that they cannot exist in many manifolds too, in partic-
ular in nilmanifolds (see also Chapter 5)

The following lemma proved in [57] will also be useful.

Lemma 3.3.5 (Hammerlindl, [57]). W c(f) is quasi-isometric in
the universal cover.

3.3.1. Properties of the semiconjugacy. As we have previ-
ously said our strategy is to apply LW formula to a semiconjugacy,
with a simpler model, such that its fibers have null entropy. In the
case we are studying now there is a semiconjugacy between the diffeo-
morphism and the hyperbolic automorphism A. This is a well-known
result of Franks [48].
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Theorem 3.3.6 ([48]). Let f : Tn →Tn be a diffeomorphism
homotopic to a hyperbolic automorphism A. Then, there exists a
continuous surjection h : Tn →Tn homotopic to the identity such
that A ◦ h = h ◦ f .

Franks’ Theorem is of great help in our strategy. On the one
hand, m, the Lebesgue (volume) measure, is the unique entropy max-
imizing measure for A. Then, if we were able to prove that the fibers
of h have null entropy we would have that the entropy maximizing
measures of f would be the ones that projects via h onto m. On
the other hand, one way of characterize h is the following: given
lifts to the universal cover x̃ of x and h̃ of h, h̃(x̃) is the (unique)
point of R3 such that there exists K > 0 with the property that
dist(f̃n(x̃), f̃n(h̃(x̃))) < K for all n ∈ Z and f̃ a lift of f . Moreover,
K can be chosen independently of x. This, in particular, implies
that given to points x, y, they have the same h-image if they have
lifts to universal cover x̃, ỹ such that its h̃-orbits remain a bounded
distance and K > 0 can be chosen in such a way that two points
x̃1, x̃2 ∈ R3 are in the same h̃-preimage of a point z̃ ∈ R3 if and
only if dist(h̃n(x̃1), h̃

n(x̃2)) < K ∀n ∈ Z. In particular the diame-

ter of h̃−1(z̃) is smaller than K for all z̃ ∈ R3. Also observe that

f̃(h̃−1(z̃)) = h̃−1(f̃(z̃)) and p(h̃−1(z̃)) = h−1(z) with p : R3 →T3 is
the covering projection.

Now, we want to show that for every z̃, h̃−1(z̃) is a closed arc
of center manifold (possible a singleton) If we are able to prove this
then we are almost done. All the ”fibers” of the semiconjugacy h are
center arcs and its iterates have uniformly bounded diameter. Then,
since the center foliation is quasi-isometric the lengths of these center
arcs are uniformly bounded too. This implies that the entropy of the
fibers is zero and so, the entropy maximizing measures are the ones
that project onto the volume measure m. Let explain this with more
detail.

Our first lemma states that if h(x) = h(y) then, x and y are in
the same center (y ∈ W c(x)) Of course, it is enough to prove it in
the universal cover.

Lemma 3.3.7. ỹ ∈W c(x̃) if h̃(x̃) = h̃(ỹ).
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Proof. Suppose that ỹ /∈ W c(x̃). In this case we can suppose
that ỹ /∈ W cs(x̃) (the case when ỹ /∈ W cu(x̃) being analogous)

Let z̃ = Wu(ỹ) ∩ W cs(x̃) and call Dcs = dcs(x̃, z̃) and Du =
du(ỹ, z̃). With du and dcs we are denoting the intrinsic distances in
Wu and W cs, that is, the distances induced by the restriction of the
ambient Riemannian metric to the corresponding manifolds. The ex-
istence (and uniqueness) of z̃ was proved in [22] (see also Proposition
2.15 of Hammerlindl thesis [57]) Now, the absolute partial hyperbol-
icity implies the existence of constants 1 < λc < λu such that ∀n > 0
d(f̃n(x̃), f̃n(z̃)) ≤ λn

cDcs and du(f̃n(ỹ), f̃n(z̃)) ≥ λn
uDu. Since Wu is

quasi isometric we have that d(f̃n(ỹ), f̃n(z̃)) > 1
a (λn

uDu−b). Finally,

d(f̃n(x̃), f̃n(ỹ)) > 1
a (λn

uDu − b)−λn
cDcs. This quantity goes to infin-

ity with n implying that h̃(x̃) 6= h̃(ỹ) and finishing the proof of the
lemma. �

Remark 3.3.8. Similar arguments give that the constants of the
partial hyperbolicity of f and A are comparable. Moreover, this im-
plies that the center manifolds of f goes through h into center mani-
folds (lines) of A. See Lemma 3.4 and Remark 3.5 of [122].

The next step is to show that when h̃(x̃) = h̃(ỹ) the whole
center arc determined by x̃ and ỹ, call it [x̃, ỹ]c, is contained in

h̃−1(̃(x̃)), that is, h̃(x̃) = h̃(z̃) for all z̃ ∈ [x̃, ỹ]c. But this is a
consequence of the fact that the center foliation is quasi-isometric.
Suppose that z̃ ∈ [x̃, ỹ]c and h̃(x̃) 6= h̃(z̃). This implies that the

sequence dist(f̃n(x̃), f̃n(z̃)) is unbounded. In particular, there is an

n0 ∈ Z for which length(f̃n0([x̃, ỹ]c)) is larger than aK+b, where a, b
are the constants given by the quasi-isometric property of the center
foliation. Finally, the quasi-isometry property gives that

dc(f̃
n0(x̃), f̃n0(ỹ)) ≤ a dist(f̃n0(x̃), f̃n0(ỹ)) + b < aK + b

which leads to contradiction. Observe that this argument implies that
the lengths of this center arcs are smaller than aK + b because the
ambient distance between any two points, in particular its extremes,
is less than K. Then, we have proved the following

Proposition 3.3.9. The fibers of h are center arcs of uniformly
bounded length. In particular, h(f, h−1(x)) = 0 for all x ∈ T3.
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3.3.2. Uniqueness of the entropy maximizing measure.

In the previous subsection we have arrived to the conclusion that
the entropy maximizing measures of f projects onto the volume m
measure that is the unique entropy maximizing measure of A. We
also have proved that the fibers of the semiconjugacy h are uniformly
bounded center arcs. In this subsection we will show that this is
enough to guarantee the uniqueness of the entropy maximizing mea-
sure of f .

We can classify the points of T3 into two classes according to
their h-preimage. Let R = {x ∈ T3 : #h−1(x) = ∞}. Recall that the
alternatives are: either #h−1(x) = 1 or #h−1(x) = ∞, since in the
second case it is a non-degenerate center arc.

On each center manifold there is at most a countable number of
disjoint non-degenerate arcs. Since h sends f -center manifolds into
A-center manifolds we have that the intersection of R with a center
manifold of A is a countable set. The center foliation of A is formed
by parallel lines then, using Fubini we obtain that m(R) = 0. Hence,
to obtain the measures that project onto m it is enough to restrict h
to h−1()T3 \R), but on this set h is injective. This clearly gives the
uniqueness of the entropy maximizing measure µ of f and h itself is
the desired isomorphism between (f, µ) and (A,m).

3.4. Compact center leaves

In this section we present a sketch of the proof of the main result
of [72].

Theorem 3.4.1 (See Theorem 3.1.3). Let f : M → M be a par-
tially hyperbolic diffeomorphism, dynamically coherent with compact
one dimensional central leaves and satisfying accessibility property.
Then one and only one of the following occurs

(1) f admits a unique entropy maximizing measure µ and λc(µ) =
0. Moreover (f, µ) is isomorphic to a Bernoulli shift,

(2) f has a finite number (strictly greater than one) of ergodic
maximizing measure all of which with non vanishing central
Lyapunov exponent. Moreover (f, µ) is a finite extension of
Bernoulli shift for any entropy maximizing measure µ.
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Moreover, the diffeomorphisms fulfilling the conditions of the second
item form a C1−open and C∞−dense subset of the dynamically co-
herent partially hyperbolic diffeomorphism with compact one dimen-
sional central leaves.

Recall that a partially hyperbolic diffeomorphism satisfies the ac-
cessibility property if any pair of points can be joined by a continuous
curve that is formed by a finite number of arcs that are tangent ei-
ther to Es or to Eu. In other words, the only nonempty set that is
simultaneously saturated by stable and unstable leaves is the whole
manifold.

In this section we will present all the result for one type of ex-
amples. This examples are the perturbations of A × Id : T2 × S1 =
T3 →T3 where A : T2 →T2 is a hyperbolic automorphism and Id :
S1 → S1 is the identity map. Certainly, A × Id is partially hyper-
bolic and then, its perturbations so are. Moreover, the results of
the classical book by Hirsch, Pugh and Shub [74] imply that if f is
close enough to A × Id it has a center foliations that is conjugate
(in particular homeomorphic) to the center foliations of A × Id by
a homeomorphism nearby the identity. That means that the center
foliation of f is formed by circles, the space of leaves is homeomor-
phic to T2 and the dynamics induced by f on the space of the center
leaves is conjugate to A.

These last comments can be translated in terms of the LW for-
mula. Call MC to the space of center leaves (recall that MC is home-
omorphic to T2) Then, we have the natural projection p : T3 →MC

that sends a point x ∈ T3 to its center manifoldsW c(x) ∼= S1. Since f
sends center leaves into center leaves we have a naturally defined map
on MC , that is, we have a homeomorphism g : MC

∼= T2 →MC
∼= T2.

Moreover, g is conjugate to A. Joining all these observations together
it is not difficult to conclude that f is semiconjugate to A. We will
call π to this semiconjugacy. The fibers of this semiconjugacy are the
center manifolds of f that are homeomorphic to circles and therefore,
have null entropy. Since A has a unique entropy maximizing measure
(that is the area form on T2) we have the following proposition.

Proposition 3.4.2. µ is an entropy maximizing measure for f
if and only if its π-projection is the area measure of T2. Moreover,
htop(f) = htop(A× Id) = htop(A).
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3.4.1. Null center Lyapunov exponent. The proof of The-
orem 3.1.3 naturally splits into two cases according with the center
behavior. We will see that the sign of the center Lyapunov exponent
is the key property that determines whether f has a unique entropy
maximizing measure or not. In this subsection we will, most of the
time, assume that the center Lyapunov exponent is zero and we will
conclude that this implies that f is, in a certain sense, rigid and has
a unique entropy maximizing measure.

The proofs in this subsection use an invariant principle proved

by Ávila and Viana [10] (see also Chapter 4) Although this principle
is more general we will state it in our context. With this aim we
introduce some concepts and observations.

Recall that we are assuming that f is a perturbation of A × Id.
Take a point x ∈ T3, then its center manifold W c(x) is homeomorphic
to S1. We haveW cs(x) = W s(W c(x)) = ∪y∈W c(x)W

s(y). In fact, the
first equality is given by the dynamical coherence. It is not difficult
to see that W cs(x) is an injectively immersed cylinder for any x and
is equal to π−1(W s(π(x))) where W s(π(x) here stands for the A-
stable manifold of the π-image of x. Since W s(π(x) is an injectively
immersed line and the fibers are homeomorphic to S1 we obtain that
W cs(x) = π−1(W s(π(x))) is an injectively immersed cylinder.

The cylinder W cs(x) is subfoliated by both center and stable
manifolds. Moreover, the reader can show that these foliations are
such that any center circle is intersected at exactly one point by every
stable leaf. Then, if C1 andC2 are two center leaves in the same center
stable leaf there exists a homeomorphism hs : C1 →C2 sending a
point x ∈ C1 to the intersection of W s(x) with C2 (hs(x) = W s(x)∩
C2) This homeomorphism is called the stable holonomy (inside the
center stable manifold) In fact this homeomorphism is C1 is f is C2

(see, for instance, [101]) Obviously, there is an analogous definition
of unstable holonomies hu using the unstable and center unstable
leaves.

Now, we can “travel” from one center leaf C′ to another C′′ using
stable and unstable holonomies. For this we only need to choose a
path of stable and unstable leaves (like in the definition of accessibil-
ity) joining C′ and C′′ and travel using stable or unstable holonomies
as appropriate. Observe that on the one hand, there is not a unique
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way of traveling from C′ to C′′, it depends on the choose of the stable-
unstable path. On the other hand, there is always a path joining C′

and C′′ (if you suppose that f is accessible it is obvious, if not there
is always a path of this kind joining C′ and C′′ as points of MC and
it is sufficient to lift this path in an adequate way) We will call to all
these homeomorphisms (diffeomorphisms) holonomies of f .

As we have already said, given a probability measure µ on T3

we have defined automatically a probability ν = µ ◦ π−1 on T2 (the
codomain of π) and a family of probabilities µz, z ∈ T2 that are
defined on each center leaf π−1(z). Rokhlin Disintegration Theorem
states that there exists a unique (ν-a.e. z) such decomposition such
that µ =

∫

T2 µzdν(z). The µ invariance by f implies the invariance of
ν and the uniqueness of Rokhlin disintegration implies that νz = νg(z)

for ν-a.e. z. Ávila-Viana’s invariance principle gives conditions under
which the conditional measures µz are holonomy invariant. We state
Avila-Viana result adapted to our setting.

Theorem 3.4.3 (Theorem D, [10]). Let f be a perturbation of
A × Id and (mk)k be a sequence of f -invariant probability measures
whose projection ν is a probability measure that has local product
structure. Assume the sequence converges to some probability mea-
sure µ in the weak∗ topology and

∫

|λc(x)|dmk(x) → 0 when k → ∞.
Then, µ admits a disintegration {µz : z ∈ T2} which is invariant by
holonomies and whose conditional probabilities µz vary continuously
with z on the support of ν.

This statement needs more explanation. Firstly, in this subsec-
tion, we will apply it to the case when the sequence of probability
measures is constant and the measure itself has center Lyapunov ex-
ponent equal to 0. Secondly, we have to explain the meaning of the
local product structure of ν. Observe that on T2 we have defined
the automorphism A that has local product structure. That means
that there are local neighborhoods of the form (it is enough home-
omorphic to) W s

loc(z) ×Wu
loc(z). ν has local product structure if its

restriction to all these neighborhoods is a product of a measure on
W s

loc(z) times a measure on Wu
loc(z). In fact, it is enough that ν

restricted to W s
loc(z) ×Wu

loc(z) be equivalent to a product measure.
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Then, if we suppose that µ is an entropy maximizing measure
for f , it projects onto m, the area measure, that clearly has local
product structure. These observations imply:

Proposition 3.4.4. Let µ be an entropy maximizing measure
for f with null center Lyapunov exponent. Then, the conditional
measures µz can be chosen in such a way that they vary continuously
with z in the weak∗ topology and are invariant by holonomies.

Observe in both statements, the theorem of Ávila-Viana and the
last proposition, there an election of the conditional measures. Of
course, since Rokhlin disintegration is unique a.e. this freedom of
election involves only a set of null measure but there is a unique
election that makes the conditional measures vary continuously.

The next conclusion is a consequence of the accessibility and the
holonomy invariance. Recall that the accessibility property holds for
an open and dense set of partially hyperbolic diffeomorphisms with
one-dimensional center [29].

Proposition 3.4.5. Let f be a perturbation of A × Id with the
accessibility property and suppose that µ is an entropy maximizing
measure for f with null center Lyapunov exponent. Then, the support
of any conditional measure µz is the whole center manifold π−1(z).
Moreover, µz is non-atomic.

Indeed, let x, y ∈ π−1(z). Then, the accessibility property im-
plies that there is an su-path joining x with y. This implies that there
is a holonomy h̄ : π−1(z) = W c(x)→W c(x) with h̄(x) = y. If x were
an atom for µz holonomy invariance would imply that y would also
be an atom. But since y ∈ W c(x) is arbitrary this leads to a con-
tradiction with the fact that µz is a probability measure (moreover,
it contradicts the fact of being σ-finite, µz would be the counting
measure!)

Now, an argument of Ávila, Viana and Wilkinson [11] gives that
f is conjugate to an accessible rotation extension of A. What do
we mean by a rotation extension of A? It is a homeomorphism (in
fact, it is needed more regularity that is included in the definition)
F : T2 × S1 →T2 × S1 such that F (x, θ) = (Ax, θ + ϕ(x)) for some
Hölder function ϕ : T2 →S1. In other words, we have a rotation on
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each fiber while A acts on the “base” T2. For this kind of diffeo-
morphisms with the accessibility property it was already known by
Brin (see, for instance, [45]) that the volume measure on T3 is the
unique invariant probability that projects onto the area measure m
of T2. Of course, this implies that F that the volume measure is the
unique entropy maximizing measure for F and then, modulo proving
that f is conjugate to F , we have that it also has a unique entropy
maximizing measure (the measure µ with null center Lyapunov ex-
ponent) Observe that the accessibility of F is a consequence of the
accessibility of f and the fact that the conjugacy sends stable and
unstable manifolds of f to stable and unstable manifolds of F .

Then. we are done with the first part of Theorem 3.1.3 if we
prove the following lemma.

Lemma 3.4.6. f is conjugate to a rotation extension.

Proof. Consider the 2-torus T = T2 × {0}. Since f is a per-
turbation of A × Id and the center leaves vary continuously in the
C1-topology, T intersect transversely each center leaf in unique point.
In other words, T is a transverse section of the center foliation. We
want to define a homeomorphism h : T3 →T3 = T2 × S1 that con-
jugates f with a rotation extension. First of all, take h|T as the
conjugacy between z 7→ π(f(π−1(z)∩ T )) (observe that this gives an
homeomorphism of the base T2) and A. We will call hT to this home-
omorphism. Secondly, take an orientation of the center foliation. Let
x ∈ T , y ∈W c(x) and [x, y]c the center segment contained in W c(x)
going from x to y in the positive direction. We will define h(y) as
the point such that [hT (x), h(y)] ⊂ S1 has length equal to µπ(x). It is
left as an exercise for the reader to verify that this homeomorphism
h conjugates f with a rotation extension F . �

We would like to mention that in this case the entropy maxi-
mizing measure is Bernoulli. It is enough to show this for F and the
volume measure. But, in this case, the volume measure is Fn-ergodic
for all n and F is a rotation extension of A for which the area is a
Bernoulli probability. Then, a result of Rudolph [109] implies the
Bernoulli property for F . Then, finally we have:
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Proposition 3.4.7. Let f be a perturbation of A × Id with the
accessibility property. If f has an entropy maximizing measure µ with
zero center exponent then,

• µ is the unique entropy maximizing measure for f
• f has no hyperbolic periodic points (it is conjugated to a

rotation extension)
• µ is Bernoulli

Moreover, the same argument leads to a slightly more general
(and more useful) statement (see the Ávila-Viana Theorem 3.4.3)

Proposition 3.4.8. Let f be a perturbation of A × Id with the
accessibility property. If f has a sequence of entropy maximizing
measures µn with center exponents converging to 0 and µ is a limit
of this sequence then,

• µ is the unique entropy maximizing measure for f
• f has no hyperbolic periodic points (it is conjugated to a

rotation extension)
• µ is Bernoulli

Finally, observe that the diffeomorphisms that satisfy the condi-
tions of Proposition 3.4.8 form a meager set. Although the accessi-
bility property is open and dense, it is not difficult to see that the
perturbations of A× Id having a hyperbolic periodic point also form
an open and dense set.

3.4.2. Non-vanishing center exponents. In this part we will
show the second part of Theorem 3.1.3. On the one hand, we will
prove that if there is one maximizing measure with nonzero, say nega-
tive, center exponent then, there at least another entropy maximizing
measure with positive center exponent. On the other hand, we will
show that the number of entropy maximizing measures is finite.

Firstly we claim that there exists c > 0 such |λc(µ)| > c for ev-
ery entropy maximizing measure µ. Here λc(µ) stands for the center
Lyapunov exponent of the measure µ. Indeed, if this claim were false
it would exist a sequence of maximizing measures µn that we can
suppose that converges to a measure µ. Observe that our previous
considerations imply that, since the µn are entropy maximizing prob-
ability measures, all the µn project through π onto the same measure
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m, namely the area measure of T2. Then, the same argument of
the previous subsection gives that this limit measure µ is the unique
entropy maximizing measure of f and it is conjugate to a rotation ex-
tension. This contradicts the fact that there is a sequence of entropy
maximizing measures (with nonzero center exponent) converging to
µ.

The second step is to show that the existence of an entropy max-
imizing measure µ+ with λc(µ

+) > 0 implies that existence of an
entropy maximizing measure µ− with λc(µ

−) < 0. The proof of the
existence of such a measure µ− is based in the following lemma.

Lemma 3.4.9. There exists a set S and k ∈ N such that µ+(S) =
1 and for every x ∈ S, we have #S ∩ π(π−1(x)) = k.

In other words, the center conditional measures of µ+, µ+
z z ∈ T2,

have finite support for m almost every point z. The fact that this
number is the constant k is a consequence of the ergodicity of m.

This lemma is a corollary of the results of Ruelle and Wilkinson
in [110]. Intuitively one has that in the unstable Pesin manifold of
almost every point intersected with a center the conditional measure
must have an atom (the manifolds are exponentially contacted for
the past) Then, Lemma 3.4.9 means that almost every conditional
measure is supported in k points with weight 1

k by ergodicity. We
also can suppose, by intersecting with the Pesin regular points, that
the points in S have an unstable manifold and we call Wu

P (x) that
is two dimensional. Call W c

λc
(x) = Wu

P (x) ∩W c(x). Since W c(x) is

diffeomorphic to S1 we have that W c
λc

(x) is an arc. We are supposing

that x ∈ S is an atom of the conditional measure µ+
π(x). Now, call x̄ to

the boundary point of the arc W c
λc

(x) that is in the positive direction

with respect to x and we will proceed to define the measure µ−. Since
we want that µ− be an entropy maximizing measure its projection
must be m. So, it is enough to define the conditional measures for
almost every fiber and we do this in the following way: given x ∈ S
we will assign weight 1

k to x̄. This is definition of µ−.
It is left to the reader the proofs of the invariance of µ− and its

ergodicity (recall that, after satisfying these properties it is entropy
maximizing by definition, it projects ontom) Then, we will show that
µ− has negative center exponent.
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Lemma 3.4.10. λc(µ
−) < 0.

Proof. First of all observe that λc(µ
−) 6= 0. Indeed, if it were

not the case, the arguments in the preceding subsection would im-
ply that µ− is the unique entropy maximizing measure. Now, if
λc(µ

−) > 0 the Pesin unstable manifolds of x̄ coincide intersects the
Pesin unstable manifolds of x contradicting that x̄ is in the boundary
of Wλc

(x). This implies the lemma. �

Remark 3.4.11. Observe that we have proved that all entropy
maximizing measures with nonzero center Lyapunov exponent are
equivalent to finite extensions of Bernoulli shifts. We can not expect
more that this. A × Id can be approximated by an f that is A × R
where R is a Morse-Smale diffeomorphism of S1 having two periodic
(not fixed) orbits one attracting and the other one repelling. Then,
A×R has exactly two entropy maximizing measures, i.e. the product
of the area measure of the 2-torus times the Dirac measure defined
on each periodic orbit of R, but these measures are not equivalent to
a Bernoulli shift (they are not even mixing since there is an iterate
such that are not ergodic)

3.4.3. Finitely many maximizing measures. We have proved
that we have more than one entropy maximizing measure if we have
an entropy maximizing measure with nonzero center exponent. The
only thing we have to prove in order to finish the proof of the second
item of Theorem 3.1.3 is the finiteness of the entropy maximizing
measures.

With this aim suppose that we have infinitely many entropy max-
imizing measures with nonzero center Lyapunov exponent.

Lemma 3.4.12. Suppose that there is a sequence of entropy max-
imizing measures (µ+

n )n with µ+
i 6= µ+

j for i 6= j. Moreover, suppose

that λc(µ
+
n ) > 0 for all n and that the sequence converges in the weak∗

topology to a measure µ. Then, the sequence (µ−
n )n also converges to

µ.

Proof. Since the µ+
n , n ∈ N, are infinitely many different mea-

sures we have that for almost every center manifold the lengths of
the Pesin center manifolds of the points that supports the corre-
sponding conditional measures (µ+

n )z go to 0. For this is important
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to observe that the Birkhoff Theorem implies that the support of
these conditional measures do not intersect. Then, we have that
given ε > 0 there exists an N > 0 such that for n > N the length
of the Pesin center manifold of x is less than ε for every x in a
set of center manifold of quotient measure m greater than 1 − ε.
This implies that for any continuous φ : M → R we have that
|
∫

φ dµ+
n −

∫

φ dµ−
n | < (1 − ε)ε+ 2εmax |φ| → 0 with ε→ 0. Then,

we obtained that µ−
n → µ if µ+

n → µ. �

Now let us show that there exists just a finite number of ergodic
entropy maximizing measures, that is, the compact subset of mea-
sures that project onto m is a finite simplex.

Suppose by contradiction that we have infinitely many entropy
maximizing measures. As we have already shown the center Lya-
punov exponents of these measures are nonzero. Then, we can take
an infinite sequence having the center exponent with the same sign.
Suppose that for this sequence the center exponent is positive (if not
take the inverse). Since the set of invariant probabilities is sequen-
tially compact we obtain a sequence of measures (µ+

n )n converging to
a measure µ and satisfying the hypothesis of Lemma 3.4.12. Then,
(µ−

n )n also converges to µ. On the one hand,
∫

log ||Df |Ec || dµ = lim

∫

log ||Df |Ec || dµ+
n = lim λc(µ

+
n ) ≥ 0

and analogously we have that
∫

log ||Df |Ec || dµ = lim

∫

log ||Df |Ec || dµ−
n = limλc(µ

−
n ) ≤ 0.

These two in equalities clearly imply that
∫

log ||Df |Ec || dµ = 0.

Then, limλc(µ
+
n ) = 0 and this yields to a contradiction with the

observation done at the beginning of this subsection that there is
c > 0 such that |λc(µ

+
n )| > c.

This finishes the proof of the second part of Theorem 3.1.3.

Remark 3.4.13. Bonatti and Dı́az have shown in [13] that there
are perturbations of A×Id that are robustly transitive. In other words,
there exists an open set of diffeomorphisms U such that A × Id ∈ U
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and f ∈ U implies that f is transitive. Moreover, the results in
[14] (see also [65] in greater dimensions) imply that there is an open
(and C1 dense) set of topologically mixing diffeomorphisms in U .
Then, Theorem 3.1.3 imply the existence of an open set of topologi-
cally mixing diffeomorphisms with more than one entropy maximizing
measure.

This remark naturally leads to some questions. For instance:

Problem 3.4.14. There are topologically mixing perturbations of
A× Id with more than two entropy maximizing measures?

3.5. Miscellany of results on entropy and maximizing

measures

In this section we will roughly present some results related with
topological entropy and maximizing measures. We will concentrate
our presentation on the known results in the three dimensional set-
ting. Then, we will not describe the very recent results of [35, 51].

3.5.1. h-expansiveness and maximizing measures. A suf-
ficient condition for the existence of entropy maximizing is that the
system be h-expansive (in fact it is enough with asymptotically h-
expansiveness)

Given ε > 0 and x ∈M call Φ(x, ε) = {y ∈M ; dist(fn(x), fn(y)) ≤
ε} for all n ∈ Z. In other words Φ(x, ε) is the set of points belonging
to the closed ε-ball of x whose iterates remain forever a distance less
or equal than ε of the orbits for the future and the past. Φ(x, ε)
is a compact set and then, we have that its entropy is well defined.
Denote h̃f (x, ε) = h(Φ(x, ε), f) and h̃f (ε) = supx∈M h̃f (x, ε).

Intuitively, h̃f (ε) measures how much of the entropy is generated
locally. If this quantity does not go to 0 with ε then the system
is producing a bounded from bellow amount of entropy at smaller
and smaller scales. If we want certain simplicity of the system from
this point of view we will need that this quantity be zero. Then,
the following are natural definitions (see the Bowen and Misiurewicz
papers [17, 92])

Definition 3.5.1. f is h-expansive (or entropy expansive)if there

exists ε0 such that h̃f (ε) = 0 for any 0 < ε < ε0. It is asymptotically

h-expansive if limε→ 0 h̃f (ε).
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Asymptotic h-expansiveness is enough for the existence of en-
tropy maximizing measures and the C∞ diffeomorphisms are asymp-
totically h-expansive [34] (in fact, Buzzi result gives the existence of
symbolic extensions that implies the existence of entropy maximizing
measures, the existence of such a measure was already known, see
Newhouse and Yomdin results [94, 126])

The natural questions is what happens when the diffeomorphism
is less regular. Then, if the center dimension is one we have the
following result of Cowieson and Young.

Theorem 3.5.2 ([41]). If f is a partially hyperbolic diffeomor-
phism with one dimensional center then it is h−expansive.

The idea of the proof is quite simple. Take y ∈ Φ(x, ε) with ε
small enough. If y /∈ W cs

ε (x) then, iterating for the future it goes
away from the ε-neighborhood. Then, y ∈ W cs

ε (x). Analogously,
taking backward iterates we obtain y ∈ W cu

ε (x). Hence, y ∈ W c
ε (x)

and therefore Φ(x, ε) ⊂ W c
ε (x). Since the center is one dimensional

this implies that h(Φ(x, ε), f) = 0 for all x.
The argument is obviously false if the center has dimension greater

or equal than 2. In fact, Buzzi and Jana Rodriguez Hertz have an
example of a partially hyperbolic diffeomorphism with 4-dimensional
center and having no entropy maximizing measure [37].

3.5.2. Center Lyapunov exponent of entropy maximiz-

ing measures. In this subsection we will describe an estimation
of the center Lyapunov exponents given in [76]. In this work the
authors give some topological conditions on the strong foliations in
order that the topological entropy be locally constant for C∞ par-
tially hyperbolic diffeomorphisms with one-dimensional center and
be a continuous function if the center dimension is two. We will only
present, without proofs a refined Pesin-Ruelle-like inequality for the
one-dimensional case.

We need to define the volume growth of f on a foliation W . For
our purposes W will be the strong unstable (stable) foliation.

Definition 3.5.3.

Let χW(x, r) = lim sup
1

n
log Vol(fn(W (x, r)))
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where W (x, r) is the ball of center x and radius r of the leaf W through
x. Define the volume growth of f on W as

χW(f) = sup
x∈M

χW(x, r).

it is not difficult to show that χW(f) does not depend on r.
Suppose that f is a C1+α partially hyperbolic diffeomorphism

with one dimensional center Hua, Saghin and Xia proved the follow-
ing.

Theorem 3.5.4 ([76]). Let ν be an ergodic f -invariant mea-
sure and λc(ν) its center Lyapunov exponent then, hν(f) ≤ λc(ν) +
χWu(f).

We present here an example of how one can apply this result.
We will suppose that f is as in Section 3.3. That is, f is an ab-
solutely partially hyperbolic diffeomorphism isotopic to a hyperbolic
automorphism A of T3. We will assume that the unstable dimension
of A is two. If this were not the case then replace f with f−1 in the
following considerations.

The first thing we have is that htop(f) = htop(A) = λu(A)+λc(A)
where λu(A) > 0 and λc(A) > 0 are the Lyapunov exponents ofA cor-
responding to the strong unstable and center direction respectively.
Observe that the Lyapunov exponents of A do not depend on the
measure because A is linear. Then, if ν = µ is the entropy maximiz-
ing measure of f (uniqueness was shown in Section 3.3) we want to
apply Theorem 3.5.4 to estimate the center Lyapunov exponent of µ.
With this aim we will estimate the volume (length) growth of f on
its strong unstable foliation.

Let h̃ be a lift of the semi-conjugacy of f with A. Observe that
the volume growth does not change if we calculate it in the universal
cover.

Take an strong unstable arc γ. On the one hand, the diameter of
f̃n(γ), diam(f̃n(γ)), can be estimated in function of the diameter of

Ãn(h(γ)) and a constant K that bounds the distance between h̃ and

the identity. We have that diam(f̃n(γ)) ≤ diam(Ãn(h(γ))) + 2K ≤
exp(nλu(A)) diam(h(γ)) + 2K.

On the other hand, the strong unstable foliation is quasi-isometric
that is, there are constants a, b such that distu(x, y) ≤ adist(x, y) + b
for x, y in the same strong unstable manifold.
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Then, if we put all these considerations together we obtain

distu(fn(x), fn(y)) ≤ a dist(fn(x), fn(y)) + b

≤ a exp(nλu(A))dist(h̃(x), h̃(y)) + b

and this easily implies that

χWu(f) ≤ λu(A).

Now, we are in conditions to apply Theorem 3.5.4 and obtain that
the center Lyapunov exponent of the entropy maximizing measure is
positive (see [122]):

λu(A) + λc(A) = htop(f) ≤ λc(µ) + χWu(f) ≤ λc(µ) + λu(A)

Then, λc(µ) ≥ λc(A) > 0.

3.5.3. The Entropy Conjecture. The arguments of this sub-
section follow [51] for the case that the center is one-dimensional case.
They obtain the Entropy Conjecture for diffeomorphisms C1-far from
tangencies. The Entropy Conjecture for the case of one-dimensional
center was firstly proved by Saghin and Xia in [112] using the volume
growth of the strong unstable foliation.

Firstly, let us explain what the entropy conjecture is. If one has
a diffeomorphism f : Mm →Mm it induces, for any k = {0, . . . ,m}
a linear operator of the real homology group Hk(M,R). The spectral
radius of f is the maximum on the spectral radius of these induced
operators. More precisely, the spectral radius is

sp(f) = max
k={0,...,m}

spk(f)

where spk(f) is the spectral radius of the linear operator of the k ho-
mology group induced by f . Shub has conjectured that the logarithm
of the spectral radius of a C1-diffeomorphism f is a lower bound of
its topological entropy [115].

Conjecture 3.5.5 (Entropy Conjecture).

log(sp(f)) ≤ htop(f).

It is well-known that the Entropy Conjecture is true for C∞

diffeomorphisms, see [126], and false for Lipschitz homeomorphisms
(at least if the dimension is great enough), see [100]. It is also known
to be true for 3-dimensional homeomorphisms [89].
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Then, one of the ideas in [51] is to show that, in their setting, the
topological entropy is an upper semi-continuous function of f . This
implies the entropy conjecture. Indeed, as we have already mention,
we know that the entropy conjecture is true for the C∞ diffeomor-
phisms [126]. Then, take a sequence fl of partially hyperbolic dif-
feomorphisms with one-dimensional center that converges to f . Of
course, we have that sp(fl) = sp(f) and htop(fl) ≥ sp(fl) since the
diffeomorphisms fl are C∞. Finally the upper semi-continuity of the
entropy gives

sp(f) = sp(fl) ≤ lim suphtop(fl) ≤ htop(f).

Then, the proof of the entropy conjecture in this setting is re-
duced to the proof of the following proposition:

Proposition 3.5.6. f 7→ htop(f) is upper semi-continuous in
the set of C1 diffeomorphisms with one-dimensional center.

On the one hand, observe that the arguments we give in the
proof of Theorem 3.5.2 showing the h-expansivity of f remain true in
a whole neighborhood. More precisely, there is an ε such that, for any
g close enough to f , h̃(g, ε) = 0 (i.e. the entropy of the set of points
of whose g-orbits that ε-shadow the g-orbit of x has null entropy and
this is true for any g close enough to f and for any x ∈M)

On the other hand, Bowen proved [16, Theorem 2.4] that if we
have an ε given by the h-expansiveness we obtain that htop(g) =
lim sup 1

nSpn(M, ε) i.e. we do not need to take the limit when ε goes
to 0.

In order to relate this Bowen’s result with the semi-continuous
variation of the topological entropy we need an equivalent definition
of it. Suppose that U is an open covering of M . Denote by r(U) the
minimum number of elements of U needed to cover M . Given two
coverings U1 and U2 denote U1 ∨U2 the covering formed by the open
sets U ∩ V with U ∈ U1 and V ∈ U2 and define

h(f,U) = lim
1

n
log r(U ∨ f−1(U) ∨ · · · ∨ f−n(U))

= inf
n≥1

1

n
log r(U ∨ f−1(U) ∨ · · · ∨ f−n(U)).

Observe that r(U ∨ f−1(U) ∨ · · · ∨ f−n(U)) ≤ r(U)n+1.
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Then, one can define htop(f) = supU h(f,U). In fact, it is known
that this definition coincides with the one we have previously used
and, moreover, it was the original definition given in [2]. For the
equivalence between both definitions see [87, Page 315, Exercise 7.1].

It is not difficult to convince yourself that Spn(M, ε) ≤ r(U ∨
f−1(U)∨· · ·∨f−n(U)) if the maximum diameter of a set belonging to
U is less than ε. Then, htop(f) = lim sup 1

n logSpn(M, ε) ≤ h(f,U) ≤
htop(f) if ε is a constant of h-expansiveness. The first equality is
given by the Bowen’s result mentioned earlier and the last inequality
is because the topological entropy is the supremum on the coverings
U of h(f,U). So, htop(f) = h(f,U) if the diameter of the covering U
is less than ε.

Finally, we know that h(f,U) = infn≥1
1
n log r(U ∨f−1(U)∨· · · ∨

f−n(U)). The functions r(U ∨f−1(U)∨· · ·∨f−n(U)) are upper semi-
continuous functions of f for each n and then, so are 1

n log r(U ∨
f−1(U) ∨ · · · ∨ f−n(U)). The infimum of upper semi-continuous is
an upper semi-continuous function. This finishes the proof of the
upper semi-continuity of the topological entropy and then, the proof
of the Entropy Conjecture for partially hyperbolic diffeomorphisms
with one dimensional center.





CHAPTER 4

Partial hyperbolicity and cocycles

4.1. Introduction

Much of the richness of partially hyperbolic dynamics appears al-
ready in the dynamics of cocycles over hyperbolic maps. Such cocycle
maps may sometimes be seen as partially hyperbolic diffeomorphisms.

We will try to maintain the discussion in the lowest possible di-
mensional level and in the simplest models. We think that most of
the complexity already appears in this rather simple setting.

Let us give some flavor of what will happen along this chapter.
Let f : M→M be a diffeomorphism and let g : M→Diff(S1) be a
smooth map so that F : M × S1 →M × S1 given by

F (x, θ) = (f(x), gx(θ))

(here gx(θ) stands for g(x)(θ)) be a diffeomorphism (we shall discuss
smoothness later). Let ω0,M be a smooth volume form on M and
dθ the standard arclength in S1 and consider ω0 = ω0,M ∧ dθ on
M × S1. So, a continuous volume form on M × S1 would be of
the form ω = uω0 where u : M × S1 →(0,∞) is a continuous map.
Hence, in order that F leave invariant a continuous volume form ω it
is necessary and sufficient that

u

u ◦ F
= JDF, (4.1)

where JDF is the jacobian of F w.r.t. ω0. Now

JDF (x, θ) = JDf(x)g′x(θ), (4.2)

where JDf is the jacobian of f w.r.t. ω0,M and g′x is derivative of
the diffeomorphism gx w.r.t. θ. So that putting 4.1 and 4.2 together
we get

u(x, θ) = JDf(x)u(f(x), gx(θ))g′x(θ) (4.3)

85
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Defining

v(x) =

∫

S1

u(x, θ)dθ,

and integrating 4.3 on both sides w.r.t. θ plus the chain rule we get
that

v(x) =

∫

S1

u(x, θ)dθ = JDf(x)

∫

S1

u(f(x), gx(θ))g′x(θ)dθ

= JDf(x)

∫

S1

u(f(x), θ)dθ = JDf(x)v(f(x))

So we get that defining ωM = vω0,M , f preserves the volume
form ωM . This a much more general results that basically says that
if we have a smooth fibering dynamics, i.e. p below is a smooth onto
submersion,

N
F

−−−−→ N

p





y

p





y

M
f

−−−−→ M
and F leaves invariant a volume then f also leaves invariant a volume
form and p essentially intertwine the volume forms.

Exercise 4.1.1. Make precise this generalization. (You will need
to consider corresponding volume forms on the fibers.)

Let us follow with our analysis. So we have that f leaves invariant
the form ωM = vω0,M and that ω = aωM ∧dθ where a = u/v (we are
assuming all volume forms positive everywhere). Hence, equation 4.3
and our condition gives that

a(x, θ) = a(f(x), gx(θ))g′x(θ). (4.4)

Now, integrating w.r.t. θ we get a function

A(x) =

∫

S1

a(x, θ)dθ

which by the change of variable formula satisfies that A ◦ f ≡ A. A
very mild condition (less than ergodicity since A is continuous) will
warrant that A ≡ const and we may assume (and do assume) that
this constant is 1.
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Exercise 4.1.2. Show that without any assumption a can be
modified to a continuous function ã satisfying equation 4.4 and whose
corresponding integral over the circles Ã is constant 1.

Now, let us define a continuous Riemannian metric on M × S1.
For a point p = (x, θ) we have that T(x,θ)M × S1 = TxM × TθS

1, so

we will ask that TxM be orthogonal to TθS
1 at p, that the volume of

an orthonormal basis in TxM be 1 w.r.t. ωM and that for v ∈ TθS
1

(i.e. with 0 coordinate in TxM), |v|(x,θ) = a(x, θ)|v|, where |v| is

standard length in TθS
1.

Restricting this Riemannian metric to each circle gives us a no-
tion of length and hence of distance. Let us denote with dx the
distance on the circle {x} × S1. Then equation 4.4 gives us that for
θ and θ′ in S1,

df (x)(gx(θ), gx(θ′)) = dx(θ, θ′).

In other words, F may be seen us an isometric extension of f . Indeed,
identifying S1 to R/Z we can take 0 ∈ R/Z and define the map

hx : S1 →S1 by hx(θ) =
∫ θ

0 a(x, u)du. (Prove that this map is well
defined, i.e. it does not depend on the particular lift of a(x, ·) to a
map from R to R after we project the integral to the circle.)

hx is clearly a C1 diffeomorphism varying continuously with x
(prove). If we define H : M × S1 →M × S1 by H(x, θ) = (x, hx(θ))
then H is a homemorphism that is smooth along the circle coordinate
and preserve the circles. Moreover, if we conjugate F by H we get
that G = H ◦ F ◦ H−1 = (f(x), kx(θ)). Using the change rule and
equation 4.4 we get that k′x(θ) ≡ 1 (prove, it will be easier to consider
the second coordinate of H ◦F vs the second coordinate of H). Then
kx(θ) ≡ θ + α(x) where α(x) is a continuous function (why?). So
finally we got that F is conjugated to the map

G(x, θ) = (f(x), θ + α(x))

which is a rotation extension of f . Moreover, the conjugacy H was
smooth along the circles and is identity in the baseM and its smooth-
ness depends directly on the smoothness of a. Indeed, looking at the
proof it follow that if the volume form preserved by F , ω, is smooth
then a is smooth and hence H is smooth.

Observe that if f has a fixed point (i.e. a circle invariant by F )
then the dynamics over this circles has to be equivalent to a rotation.
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In this chapter we will see that when f presents some sort of
hyperbolicity, and under very mild conditions on the foliation by cir-
cles, or maybe even more general foliations the same type of rigidity
applies, i.e. the volume preserving property of F implies the dynam-
ics is smoothly conjugated to some cocycle dynamics. We hope the
reader recognize the above example in most of the discussions of this
chapter.

Let now F : N→N be a diffeomorphism. Assume F preserves
a foliation by circles F , the foliation yet need not be smooth, but
we will assume that the leafs, i.e. the circles are smooth (at least
C1). Let µ be a measure, invariant by F . Since the foliation by
circles form a measurable partition, Rokhlin decomposition theorem
will disintegrate µ over this foliation to give conditional probability
measures µF

x over the circle F(x) for µ a.e. x. Uniqueness of the
Rokhlin decomposition gives that F∗µ

F
x = µF

F (x). Define on the circle

F(x), dx(a, b) = inf µF
x (A) where the infimum is taken over all open

arcs A containing a and b. If µF
x is non atomic then dx is a pseudo-

distance, i.e. it is symmetric, satisfies triangular inequality, dx(a, b) ≥
0 and dx(a, a) = 0 but dx(a, b) = 0 with a 6= b may happens. If µF

x is
moreover fully supported then dx is a distance. If µx has atoms, then
one may take an orientation on the circle and work with semi-open
arcs. Let us assume for a moment that the measure has no atoms
and follow with the argument.

Exercise 4.1.3. Prove the assertions above about the properties
of dx.

The invariance property of µF
x gives that F behaves as an isom-

etry along the circles w.r.t. dx, i.e.

dF (x)(F (a), F (b)) = dx(a, b)

for a.e. x and for every a, b ∈ F(x). Also it follows that x→ dx

is a measurable map since x→µF
x is measurable. If x→µF

x were
continuous, then x→ dx would be also continuous (prove this).

So, the outcome is that if µF
x has no atoms and is fully supported

on F(x) then F is an isometry w.r.t. dx. So, considering the quotient
M = N/F with the quotient measure µM it can be seeing that F is an
isometric extension of the quotient dynamics f : M→M , of course
this is only from a measurable viewpoint. Since isometries on the



4.1. INTRODUCTION 89

circle are essentially rotations (some orientation should be assumed,
for instance let us assume that the circles can be oriented and that F
preserves this orientation) we can see that at a measurable level we
get the same as before, i.e.

Proposition 4.1.4. If the conditional measures µF
x have no atoms

and are fully supported then F : (N,µ)→(N,µ) is measurably conju-
gated to G : (M ×S1, µM ×λ)→(M ×S1, µM ×λ) given by G(x, θ) =
(f(x), θ + c(x)) where c : M→S1 is a measurable map. (Here λ is
Lebesgue measure on the circle). Moreover, if x→µF

x is continuous
and the foliation by circles is a trivial fibration then the conjugacy and
c (and hence G) can be taken continuous. If moreover µF

x is abso-
lutely continuous with continuous Radon Nikodym derivative, x→µF

x

is differentiable and N is a smooth trivial fibration then the conjugacy
and G are smooth.

Exercise 4.1.5. Prove that if µF
x have no atoms for µ a.e. x

then the Proposition holds without the assumption that µF
x be fully

supported.

To understand (or try to understand) the case that µF
x have

atoms, let us assume that µ is ergodic. Now, ergodicity implies the
following:

Proposition 4.1.6. There is and integer n ≥ 1 such that for µ
a.e. x, there is a set of n points F (x) ⊂ F(x) and µF

x is the mea-
sure supported in F (x) with equal mass 1

n on each atom. Moreover,
F : (N,µ)→(N,µ) is measurably conjugated to G : (M × Zn, µM ×
λn)→(M × Zn, µM × λn) given by G(x, θ) = (f(x), θ + c(x)mod n)
where c : M→Zn is a measurable map (here, λn is equally distributed
measure in Zn = {0, 1, . . . , n− 1}).

Hence in the measurable category, F is a finite extension of f .

Exercise 4.1.7. Prove the proposition.

The type of phenomenon we described above holds in more gen-
eral situations but as we said we only try to give a glimpse of this. In
the measurable category, we saw that the properties of F are mostly
governed by the properties of a cocycle map G(x, θ) = (f(x), θ+c(x)).

Let us try to translate the measurable properties of G in terms
of that of F and some properties of c.
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4.2. Ergodic properties of cocycles

Let f : M→M be a diffeomorphism preserving a measure µ and
c : M→S1 be a continuous map. Define the F : M×S1 →M×S1 by
F (x, θ) = (f(x), θ+c(x)). Clearly G preserves the measure µ×λ. Let
us conjugate F by a map H : M × S1 →M × S1 given by H(x, θ) =
(x, θ+u(x)) where u : M→S1. Then G = H−1 ◦F ◦H has the form

G(x, θ) = (f(x), θ + c(x) + u(x) − u(f(x))).

Consider the equation

u(f(x))) − u(x) = c(x) − c0, (4.5)

where c0 is a constant, here we are taking the equation mod 1. Equa-
tion 4.5 is known as a cohomological equation with values in S1. Ob-
serve that even if u and c take values in S1 it make sense to integrate
them and the result will be an element in S1. If we integrate both
sides of equation 4.5 we get that to have a measurable solution u
we need that

∫

S1 c(x)dµ(x) = c0, this determines the value of c0.
Moreover we can see the following,

Proposition 4.2.1. If equation 4.5 has a measurable, continuous
or smooth solution then F is measurably, topologically or smoothly
conjugated to G(x, θ) = (f(x), θ+ c0). Moreover, in this case, if c0 is
rational, then F is not ergodic and in any case, F is not weakmixing.

What can be said if equation 4.5 has no solution? Assuming
f is weakmixing, mixing, Kolomogorov, Bernoulli, is it true that F
will be weakmixing, mixing, Kolmogorov, Bernoulli? Although we
could follow this analysis in this general framework and we encourage
the reader to do so, we want to concentrate now in the case f is a
hyperbolic diffeomorphism. Indeed, in this case it follows that F
is a partially hyperbolic diffeomorphism and hence the accessibility
property for F would imply that F is Kolmogorov. Hence let us jump
into the next section.

4.3. Accessibility

Let by now f : M→M be an Anosov diffeomorphism and con-
sider F : M × S1 →M × S1 by F (x, θ) = (f(x), θ + c(x)) where
c : M→S1 is Hölder continuous function, here we are identifying
S1 = R/Z with its inherited group structure. Let 0 be the neutral
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element of S1. We are not making any assumption on the transitivity
of f yet. Then the stable manifold of the point (x, θ) is given by:

W s(x, θ) = {(y, θ +
∑

k≥0

c(fn(x)) − c(fn(y))) : y ∈W s(x)}

Here W s(x) stands for the stable manifold of x w.r.t. f . Similarly

Wu(x, θ) = {(y, θ +
∑

k≤−1

c(fn(x)) − c(fn(y))) : y ∈ Wu(x)}.

Observe that

W σ(x, θ′) = θ′ − θ +W σ(x, θ).

for σ = s, u. This helps to compute the accessibility class of a point
(x, θ) since we get a nice structure for the stable and unstable mani-
folds. Indeed, let us define for y ∈W s(x),

P s(x, y) =
∑

k≥0

c(fn(x)) − c(fn(y))

and for y ∈Wu(x),

Pu(x, y) =
∑

k≤−1

c(fn(x)) − c(fn(y)).

Let x ∈ M and y ∈ W s(x) then we can define the stable holo-
nomy map

Hs
x,y : {x} × S1 →{y} × S1

by

Hs
x,y(x, θ) = W s(x, θ) ∩ {y} × S1.

It follows that

Hs
x,y(x, θ) = (y, θ + P s(x, y)).

So, given an su-path γ = [x0, x1, . . . , xn] in M (remember the dy-
namics in M is Anosov) we can concatenate the holonomies and get
a map

Hγ : {x0} × S1 →{xn} × S1

by

Hγ(x0, θ) = (xn, θ + a(γ)).

If in particular we take the Γx the set of su-paths starting and ending
in x then we a map a : Γx →S1. This map behaves very nicely
under the operation of concatenating paths in Γx, i.e. γ1 ∗ γ2 is the
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concatenation of the path γ1 and γ2. We can also define the inverse
path, γ−1 is the same path traveled in opposite direction. Even
though Γx is not a group under this operations, we have easily that
a(γ1 ∗ γ2) = a(γ1) + a(γ2) and a(γ−1) = −a(γ). Hence H(x) :=
{a(γ) : γ ∈ Γx} is a subgroup of S1.

Proposition 4.3.1. H(x) does not depend on x.

Proof. Indeed, since f : M→M is Anosov, any to points can
be joined by an su-path (prove this). Then, if a = a(γ) ∈ H(x) for
some γ ∈ Γx, we can take γx,y an su-path joining x and y and then
we get that γx,y ∗ γ ∗ γ−1

x,y ∈ Γy and a(γx,y ∗ γ ∗ γ−1
x,y) = a(γ), hence

a = a(γ) ∈ H(y). the other inclusion follows as well. �

It is a very nice exercise to work also in the case M is only a
(possibly totally disconnected) hyperbolic set.

So let us call H(x) simply by H . Now let Γ0
x ⊂ Γx be the set of

su-paths in M that can be deformed by an homotopy inside Γx to the
constant path, i.e. γ ∈ Γ0

x if there is a continuous map H : I×I→M
such that H(t, ·) ∈ Γx for every t ∈ I, H(0, ·) = γ and H(1, ·) ≡ x
(here I = [0, 1]). It is not hard to see that given an su-path γx,y

joining to points x and y, γ−1
x,y ∗ γx,y ∈ Γ0

x.

Exercise 4.3.2. Prove that Γ0
x is the same as the set of su-paths

in Γx homotopic to constant. Prove this by showing that any path is
homotopic to a an su path through su-paths (use uniform local product
structure).

So, we can define H0 = {a(γ) : γ ∈ Γ0
x} and the same proof gives

that H0 is a group and H0 does not depend on x (repeat the proof
to make sure it follows as well). Clearly

{0} ⊂ H0 ⊂ H ⊂ H̄ ⊂ S1.

Now we have the following:

Theorem 4.3.3. H0 is connected and moreover it coincides with
the connected component of the identity of H. F has the accessibility
property if and only if H0 = S1 if and only if H = S1. F has the
essential accessibility property if and only if H̄ = S1.

Observe that so far everything works under the milder assump-
tion that f be a hyperbolic homeomorphism plus some irreducibility.
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In the proof of the theorem we will use thatM is a manifold, although
some more general result should follow. Also for more general groups
than S1 there is a counterpart. The interested reader may found
more on this subject in [19], [32], both are very enjoyable papers.

Proof. Connectedness of H0 follows from connectedness of Γ0
x

plus continuous dependence of holonomy maps on base points. Let us
skip the second assertion until the end of the proof. Now, if H = S1

then any two points in the same circle can be joined by an su-path
in M × S1. So, let (x, θ) and (y, θ′) be two points in M × S1, take
and su- path γ1 joining (y, θ′) with a point (x, θ′′) this can be done
by first chosing an su-path in M joining y with x and then taking the
corresponding su-path in M × S1. Now, since H = S1 there should
be an su-path joining (x, θ′′) with (x, θ) and we are done.

Let us see that if F has the accessibility property then H0 = S1.
Consider small 4 legged su-paths in M contained in a local product
structure neighborhood this paths are in Γx

0 . If for such paths the
corresponding elements in H0 are always 0, i.e. the corresponding su-
paths in M × S1 are closed, then it is not hard to see as in previous
section that the accessibility class of x is a manifold, i.e. W s and Wu

are jointly integrable and hence F has not the accessibility property.
Hence for one of such quadrilaterals the corresponding element in H0

is non trivial. But there are not nontrivial connected subgroups of
S1, hence we get that H0 = S1. And we are done. Now the prove
that H0 coincides with the connected component of the identity of H
is an exercise.

FInally, that F has the essential accessibility property means
that any su-saturated set has either full or null Lebesgue measure.
Assume first that H̄ 6= S1, then H = H̄ is discrete and hence finite,
so there is a set A ⊂ S1 with intermediate measure (0 < |A| < 1)
such that A+H = A, i.e. A+ a = A for every a ∈ H . Take a point
x ∈ M consider the su-saturation of {x} × A, i.e. all the points in
M × S1 that can be joined with {x} ×A by an su-path, call this set
U . This set can be taken measurable since A can be taken an open
set on S1 and hence U will be open. Now, given any y ∈M we have
that there is a map Hx,y : {x} × S1 →{y} × S1 that is a translation
on the circle (holonomy along an su-path joining x and y) such that
Hx,y({x} × A = U ∩ {y} × S1 hence, the Lebesgue measure λ1

S of
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U ∩ {y} × S1 is the same as λS1(A) which is positive and less than
1 for every y ∈ M . Then U canhave neither full measure nor null
measure and hence F has not the essential accessibility property.

Assume now that F has not the essential accessibility property
and take U an su-saturated set of intermediate measure. Then if we
consider Ux ⊂ S1 such that U ∩ {x} × S1 = {x} × Ux then Ux is
invariant by H . Moreover, for some x, Ux needs to have intermediate
measure and hence H leaves invariant a set of intermediate measure,
so H cannot be dense. �

It is a nice exercise to analyze the accessibility classes for dy-
namics of the type F (x, θ) = (f(x), g(x, θ)), where f : M→M is an
Anosov diffeomorphism and g : M × S→S is a smooth map such
that F is a partially hyperbolic diffeomorphism with center space
{0}×TS. Particularly interesting is the case when S = S1 is a circle.

4.4. Holonomy invariance and continuity of conditional

measures

In this section we follow the analysis of maps F : M×S→M×S
of the form F (x, θ) = (f(x), g(x, θ)), let us denote E = M × S and
p : E→M the projection. Although the general context works with
different types of S we will focus in the case S = S1 and comment
about the generalizations. Everything we would say in this section
essentially goes back to the work of F. Ledrappier [83] on random
product of matrices that was later extended by A. Avila and M Viana
[9] to a framework closer to what we will be working here and in [8]
by A. Avila, J. Santamaria and M Viana [9] where the case f is
partially hyperbolic was addressed.

Returning to the discussion of the introduction of the chapter, let
us assume that f is hyperbolic (again a hyperbolic homeomorphism
will be good enough, say a shift of finite type). Let us assume that for
every x ∈M and y ∈ W s(x) there is a homeomorphism Hs

x,y : S→S
that we shall call the stable holonomy such that if y, z ∈W s(x) then

Hs
x,z = Hs

x,y ◦Hs
y,z,

Hs
x,y = (Hs

y,x)−1

and
Hs

f(x),f(y) ◦ F = F ◦Hs
x,y.
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Moreover we want that (x, y)→Hs
x,y depends continuously in the

appropriate topology (compact-open should be ok, uniform). Sim-
ilarly we shall assume the existence of unstable holonomies. Also
we will assume that the map θ→ g(x, θ) =: gx(θ) is a smooth dif-
feomorphism. The dependence on x may be milder, measurable or
continuous, depending on the result we are looking for.

Let ν be a probability measure invariant by F , let µ be the pro-
jected measure, i.e p∗ν = µ or µ(A) = ν(p−1(A)). The partition
{x} × S is a measurable partition, hence we can apply Rokhlin de-
composition and get a measurable map M→P (S), x→ νx, where
P is the set of probability measures on S with the weak∗ topology
that disintegrates ν. We call νx the conditional measures. The map
x→ νx is defined only a.e. We say that the Rokhlin decomposition is
continuous if it coincides a.e. with a continuous map.

We want to understand how νx looks like and also the dependence
on x. In particular, in the case S = S1 we want to recover the work
of the introduction. We want to prove for instance that if y ∈ W s(x)
then (Hs

x,y)∗νx = νy for µ a.e. x, y ∈ M , in such a case we say that
the disintegration is s-invariant, similarly for u-holonomies. Also we
would like to know continuity of the disintegration. To this end, let
us introduce some quantities.

First the extremal Lyapunov exponents along the fiber S. Let
us denote with gn

x = gfn−1(x) ◦ . . . gx. Let us denote for an invert-

ible linear map A, m(A) = ‖A−1‖−1. Assuming that the maps
(x, θ)→ log ‖Dθgx‖ and (x, θ)→ logm(Dθgx) are integrable let us de-
fine

λ+(x, θ) = lim
n→+∞

1

n
log ‖Dθg

n
x‖ (4.6)

λ−(x, θ) = lim
n→+∞

1

n
logm(Dθg

n
x ) (4.7)

The limits exist ν a.e. by the multiplicative ergodic theorem and
λ− ≤ λ+ (exercise). Let us define the integrated extremal Lyapunov
exponents

λ±(ν) =

∫

λ±(x, θ)dν (4.8)

Observe that if ν is ergodic then λ±(ν) = λ±(x, θ) for ν a.e. (x, θ).
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We will make a first very important assumption on the measure
µ, the invariant measure for the hyperbolic map. The assumption is
that such a measure has local product structure, this means that Fu-
bini holds for such a measure w.r.t. to stable and unstable foliations
and hence the Hopf argument can be applied to this measure. To
be more precise, let us denote with µs

x and µu
x the stable and unsta-

ble conditional measures. We say that µ has local product structure
if stable holonomy map between unstable manifolds are absolutely
continuous w.r.t. conditional measures, i.e. there is a set R of full µ
measure such that if x, y ∈ R, y ∈W s

loc(x) and

hol : Wu
loc(x)→Wu

loc(y)

is stable holonomy (hol(z) = W s
loc(z) ∩W

u
loc(y)), then for every set

A ⊂Wu
loc(x), if µu

x(A) = 0 then µu
y(hol(A)) = 0.

Theorem 4.4.1. Let F : M×S→M×S, F (x, θ) = (f(x), gx(θ))
be as above with f hyperbolic and let µ be an ergodic measure invariant
by f with local product structure. Let νk be a sequence of measures
invariant by F projecting to µ and assume that

∫

|λ±(x, θ)|dνk → 0

as k→∞. If νk → ν then the disintegration νx is continuous and s−
and u−invariant.

The proof is in two steps, first one proves s- and u−invariance,
this holds without the assumption of local product structure in µ.
Then proves that s- and u−invariance implies continuity when µ has
local product structure.

Let us begin with this second part.

Proof. s- and u−invariance implies continuity Assume ν
is s− and u− invariant. This means that there is a set R of full µ
measure such that if x, y ∈ R and y ∈ W s(x) then (Hs

x,y)∗νx = νy

and if x, y ∈ R and y ∈ Wu(x) then (Hu
x,y)∗νx = νy. Now continu-

ity of holonomy maps plus holonomy invariance implies continuity of
conditional measures when moving along stable and unstable mani-
folds, i.e. chose a metric defining the weak∗ topology on measures,
then for any ε > 0 there is a δ > 0 such that if x, y ∈ R, y ∈W s

loc(x),
or y ∈Wu

loc(x) and d(x, y) < δ then d(νx, νy) < ε.
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Now we will apply Hopf argument to prove that there is a set R′

of full measure such that x→ νx on R′ is uniformly continuous. Let
R′ ⊂ R be the set of points x such thatR∩Wu(x) has full µu

x measure.
Take ε > 0 and take δ > 0 as above. Let δ′ > 0 be small to be
determined later, it will depend on continuity of holonomy maps for
f . Take x, y ∈ R such that d(x, y) < δ′, we assume δ′ is small enough
so that hol : Wu

loc(x)→Wu
loc(y) is well defined. Since hol is absolutely

continuous and R∩Wu(x) has full µu
x and R∩Wu(y) has full µu

y there
is a point z ∈ R ∩Wu(x) such that hol(z) ∈ R ∩Wu(y). We may
assume, if δ′ is small enough than d(x, z), d(z, hol(z)), d(hol(z), y)
are all less than δ. We get that since x, z ∈ R, z ∈ W s

loc(x) and
d(x, z) < δ, hence d(µx, µz) < ε. Similarly with z and hol(z) along
unstables and hol(z) and y again along stables so we get that

d(µx, µy) ≤ d(µx, µz) + d(µz, µhol(z)) + d(µhol(z), µy) < 3ε

and we get the uniform continuity. Hence it extends to a continuous
map. �

Let us go into the prove of u− invariance. Let us assume for
simplicity that νk = ν for every k, that ν is ergodic, that λ+(ν) ≤ 0
but no assumption on the projected measure µ.

Let us see a somewhat more geometric proof that is inspired in
a related theorem by F. Ledrappier and J-S. Xie, [85], see also [82].

Proof. u−holonomy invariance

Let ξ be an increasing measurable partition of M subordinated
to Wu. Given a measurable set A ⊂ {x} × S let us define

ξ(A) = {(y,Hu
x,y(θ)) : (x, θ) ∈ A and y ∈ ξ(x)}

a local unstable saturation of A in M × S. Let us consider the
partition of M × S given by ξcu(x) = ξ({x} × S) = ξ(x) × S, ob-
serve that if y ∈ ξ(x) then ξcu(x) = ξcu(y). Recall that νx are the
conditional measure w.r.t. the partition {x}×S. Let νξcu

x be the con-
ditional measures w.r.t. the partition ξcu and observe that if y ∈ ξ(y)
then νξcu

x = νξcu

y . u−invariance is equivalent to prove that for x-a.e.
point w.r.t. µ and for every measurable set A ⊂ {x} × S,

νx(A) = νξcu

x (ξ(A)).
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We shall prove that for any such increasing partition ξ, for µ-
a.e. x and for any measurable set A ⊂ {x} × S,

νξcu

x (ξ(A)) = ν(f−1ξ)cu

x ((f−1ξ)(A)) (4.9)

where the partition f−1ξ is given by (f−1ξ)(x) = f−1(ξ(f(x))). Ob-
serve that F−1ξcu = (f−1ξ)cu. Since ξ is increasing, f−1ξ > ξ and
hence F−1ξcu > ξcu. Invariance of ν gives that

νF−1ξcu

x = F−1
∗ νξcu

f(x)

and hence, the right hand side of 4.9 is equal to

ν(f−1ξ)cu

x ((f−1ξ)(A)) = νξcu

f(x)(ξ(F (A))).

Let us fix by now an increasing partition ξ and let us put for

A ⊂ {x}×S, ν0
x(A) = νξcu

x (ξ(A)) and ν1
x(A) = ν

(f−1ξ)cu

x ((f−1ξ)(A)).
Using Lebesgue-Radon-Nycodim decomposition we get that ν1

x =
ρxν

0
x + ηx. Let us define the entropy of ν1

x w.r.t. ν0
x as

H(ν1
x, ν

0
x) = −

∫

log ρx(θ)dν0
x(θ)

and

h(F, ν, ξ) =

∫

H(ν1
x, ν

0
x)dµ(x).

Jensen’s inequality gives that H(F, ν, ξ) = 0 if and only if ν1
x = ν0

x

for µ a.e. x. So we have to prove that H(F, ν, ξ) = 0, this is some
kind of fiber entropy. The vanishing of the fiber entropy follows from
a kind of Ruelle inequality, i.e.

Proposition 4.4.2. There is a constant C > 0 such that H(F, ν, ξ) ≤
Cmax{0, λ+(ν)}.

We omit here the proof of this lemma although as we said this is
a kind of fiber Ruelle’s inequality. Indeed, the following seems to be
true: if f is a hyperbolic map then

h(F, ν) = h(f, µ) +H(F, ν, ξ)

and hence Ledrappier-Young entropy formula essentially implies an
improvement of the proposition. �
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Let us state now the partially hyperbolic case. We will not show
a proof here, we only mention that the proof is somehow a mix of
the above proof combined with the technics of jullienes. Let λ denote
volume measure.

Theorem 4.4.3. [8] Let f : M→M be a partially hyperbolic,
volume preserving diffeomorphism with the accessibility property and
center-bunched. Let F : M×S→M×S such that F (x, θ) = (f(x), gx(θ))
be as before. Let νk be a sequence of measures projecting into λ and
such that

∫

|λ±(x, θ)|dνk → 0. Then, if νk → ν then the disintegration
x→ νx is s− and u−invariant and continuous.

Again the proof splits in two steps. The first step is to prove s−
and u−invariance. This part works the same as the previous case, so
essentially the same proof works. But the proof of continuity is more
subtle since a priori the measure λ has not local product structure.
The idea is to use Hopf-Pugh-Shub argument using Jullienes instead
of the standard Hopd argument using local product structure.

4.5. Absolute continuity of center foliations and rigidity

4.5.1. Conservative systems. In the present section we want
to discuss the following problem. Let f : M→M be a volume
preserving partially hyperbolic diffeomorphism with the accessibil-
ity property and assume that the centre bundle integrates to a C0

foliation is by circles. We would like to study the absolute continu-
ity of this centre foliation. We addressed this problem in our survey
[66]. In [11], based in the work of [8], A. Avila, M. Viana and A.
Wilkinson solved this problem, let us see the outcome.

Theorem 4.5.1. [11] Let F : N→N be a volume preserving par-
tially hyperbolic diffeomorphism with the accessibility property whose
center bundle integrates to a foliation by circles. Assume that the
centre foliation is absolutely continuous, then F : N→N is smoothly
conjugated to an isometric (or rotation) extension of an Anosov dif-
feomorphism. In particular if the foliation is trivializable, e.g. N is a
torus, then F is smoothly conjugated to a map G : M ×S1 →M ×S1

of the form G(x, θ) = (f(x), θ+ c(x)) where f is a volume preserving
Anosov diffeomorphism and x→ c(x) is a smooth map.
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Observe that this implies automatically that absolute continuity
is a very rare property among such systems. The volume preserving
hypothesis is very important since there are examples of partially
hyperbolic, accessible diffeomorphisms on T3 whose central foliation
by circles is robustly absolutely continuous. Of course this are non
volume preserving systems, but they present an SRB measure. See
Subsection 4.5.2.

Let us briefly explain the proof. First of all, let us see that the
central Lyapunov exponents vanish. If this were not the case, then an
argument like the ones in the entropy maximizing case proves that
conditional measures along the central foliation are atomic contra-
dicting absolute continuity.

Let us assume by now, for simplicity in the exposition, that
N = T3. Then it turns out that the central foliation is trivial
(see [40]). Let us consider the map of the 4 dimensional mani-

fold F̂ : N × S1 →N × S1 given by F̂ (x, θ) = (F (x), gx(θ)) where
gx(θ) is the diffeomorphism (after a fixed parametrization of center
leaves) between the circle through x and the circle through F (x),
i.e. if γ : N→Emb(S1, N) is a parametrization of the circles then
gx = γ(F (x))−1 ◦ F ◦ γ(x). Since γ is Hölder continuous gx depends
Hölder continuously on x. We shall consider the following invari-
ant measure for F̂ . On the base N , ν equals λ =volume. On the
fiber through x, νx = γ(x)−1

∗ λx is the conditional measure which is
absolutely continuous w.r.t. Lebesgue, i.e.

∫

φ(x, θ)dν(x, θ) =

∫ ∫

φ(x, γ(x)−1(t))dλx(t)dλ(x).

ν is F̂ invariant and projects to Lebesgue= λ (exercise), hence, since
the central exponents vanishes, we can apply Theorem 4.4.3 and get
that x→ νx varies continuously.

We have that λx = γ(x)∗νx for λ a.e. x and hence x→λx varies
continuously, also, Theorem 4.4.3 gives that λx is s- and u− holo-
nomy invariant. Once we get this, we can follow the same proof
of the introduction and get that F is topologically conjugated to
(x, θ)→(f(x), θ + c(x)).

In the case the foliation is not by compact leaves, also there are
some cases that can be understood. In the same paper [11] the au-
thors deal with perturbations of the geodesic flow on a negatively
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curved surface. Also, the work of A. Gogolev [52] for Anosov diffeo-
morphisms of three manifolds and its extension by F. Micena, [91]
to partially hyperbolic diffeomorphisms in dimension 3 homotopic to
Anosov diffeomorphisms prove the rigidity of the absolute continu-
ity of the center foliation. Let A be an Anosov linear map on T3

and consider f : T3 →T3 a volume preserving partially hyperbolic
diffeomorphism homotopic to A with the accessibility property.

Theorem 4.5.2. [52, 91] Assume that the central Lyapunov ex-
ponent λc > 0 then there is a λu such that for every invariant mea-
sure µ the unstable Lyapunov exponent λu(µ) = λu. In particular all
periodic orbits have the same Lyapunov exponents.

4.5.2. Dissipative systems. As we already mentioned, the vol-
ume preserving condition in the previous subsection is necessary. M.
Viana and J. Yang [123] constructed an example of a partially hy-
perbolic diffeomorphism robustly presenting an absolutely continuous
central foliation.

Theorem 4.5.3. [123] Let g : M→M be a transitive Anosov dif-
feomorphism. And let F0 : M×S1 →M×S1, F0(x, θ) = (f(x), gx(θ))
be a diffeomorphism such that for some fixed point p of f , gp is north-
south pole map. Then there is an open set U such that F0 is in the
closure of U and every F in U has absolutely continuous center-stable,
center-unstable and central foliation.

The idea is to perturb F to get an open set of diffeomorphisms
wich are simultaneously mostly contracting for F and for F−1. Here
we say that a diffeomorphism is mostly contracting if for Lebesgue a.e.
point x,

lim sup
n→∞

1

n
log |DxF

n|Ec| < −λ < 0.

Of course if F is Lebesgue preserving, it is impossible to be mostly
contracting for both F and F−1 but since for dissipative systems,
SRB measures for F and for F−1 are singular, this is not at all
impossible to get such diffeomorphisms. Indeed under very mild as-
sumptions, one gets that for a mostly contracting diffeomorphism
there is only one SRB measure and this is a robust property. So,
once there is an example the example is robust.
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What happens when one get a diffeomorphism which is mostly
contracting for F and for F−1?. As we mentioned, under mild con-
ditions there is an SRB measure µ+ for F and an SRB measure µ−

for F−1 . This SRB measure has negative central exponents hence,
Pesin theory gives that the Pesin stable manifolds of F form an ab-
solutely continuous foliation and the Pesin stable manifolds of F−1

form an absolutely continuous foliation. Now, for µ+ a.e. point and
for Lebesgue a.e. point x, the Pesin stable manifold for F coincide
with an open set of the center-stable manifold through x. Similarly,
for µ− a.e. point and for Lebesgue a.e. point x, the Pesin unstable
manifold for F (which equals Pesin stable manifold for F−1) coincide
with an open set of the center-unstable manifold through x. The next
step is to go from this a.e. absolute continuity to full absolute conti-
nuity, so, one needs to bypass some possible holes. In the case of the
center-stable foliation, this can be done for instance if the unstable
foliation is minimal, though much milder condition will suffices.



CHAPTER 5

Partial hyperbolicity in dimension 3

5.1. Introduction

The purpose of this chapter is to present the state of the art
in the study of the ergodicity of conservative partially hyperbolic
diffeomorphisms on three dimensional manifolds. In fact, we shall
mainly describe the results contained in [68, 70]. The study of partial
hyperbolicity has been one of the most active topics on dynamics over
the last years and we do not pretend to describe all the related results,
even for 3-manifolds.

A diffeomorphism f : M → M of a closed smooth manifold
M is partially hyperbolic if TM splits into three invariant bundles
such that one of them is contracting, the other is expanding, and the
third, called the center bundle, has an intermediate behavior, that
is, not as contracting as the first, nor as expanding as the second
(see Subsection 5.2.3 for a precise definition). The first and second
bundles are called strong bundles.

A central point in dynamics is to find conditions that guarantee
ergodicity (see also Chapter 2 in this book) In 1994, the pioneer work
of Grayson, Pugh and Shub [53] suggested that partial hyperbolicity
could be “essentially” a sufficient condition for ergodicity. Indeed,
soon afterwards, Pugh and Shub conjectured that stable ergodicity
(open sets of ergodic diffeomorphisms) is dense among partially hy-
perbolic systems. They proposed as an important tool the accessibil-
ity property (see also the previous work by Brin and Pesin [26]): f
is accessible if any two points of M can be joined by a curve that is a
finite union of arcs tangent to the strong bundles. Essential accessi-
bility is the weaker property that any two measurable sets of positive
measure can be joined by such a curve. In fact, accessibility will play
a key role in this chapter.

103
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Pugh and Shub split their Conjecture into two sub-conjectures:
(1) essential accessibility implies ergodicity, (2) the set of partially
hyperbolic diffeomorphisms contains an open and dense set of acces-
sible diffeomorphisms.

Many advances have been made since then in the ergodic the-
ory of partially hyperbolic diffeomorphisms. In particular, there is
a result by Burns and Wilkinson [33] (Theorem 2.8.3) proving that
essential accessibility plus a bunching condition (trivially satisfied if
the center bundle is one dimensional) implies ergodicity. There is also
a result by the authors [67] obtaining the complete Pugh-Shub con-
jecture for one-dimensional center bundle (Theorem 2.8.1) See [66]
for a survey on the subject.

We have therefore that almost all partially hyperbolic diffeomor-
phisms with one dimensional bundle are ergodic. This means that
the non-ergodic partially hyperbolic systems are very few. Can we
describe them? Concretely,

Question 5.1.1. Which manifolds support a non-ergodic par-
tially hyperbolic diffeomorphism? How do they look like?

In this chapter we give a description of what is known about
this question for three dimensional manifolds. We study the sets of
points that can be joined by paths everywhere tangent to the strong
bundles (accessibility classes), and arrive, using tools of geometry of
laminations and topology of 3-manifolds, to the somewhat surprising
conclusion that there are strong obstructions to the non-ergodicity
of a partially hyperbolic diffeomorphism. See Theorems 5.1.4, 5.1.6
and 5.1.7.

This gave us enough evidence to conjecture the following:

Conjecture 5.1.2 ([68]). The only orientable manifolds sup-
porting non-ergodic partially hyperbolic diffeomorphisms in dimension
3 are the mapping tori of diffeomorphisms of surfaces which commute
with Anosov diffeomorphisms.

Specifically, they are (1) the mapping tori of Anosov diffeomor-
phisms of T2, (2) T3, and (3) the mapping torus of −id where id :
T2 →T2 is the identity map on the 2-torus.
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Indeed, we believe that for 3-manifolds, all partially hyperbolic
diffeomorphisms are ergodic, unless the manifold is one of the listed
above.

In the case that M = T3 we can be more specific and we also
conjecture that:

Conjecture 5.1.3. Let f : T3 → T3 be a conservative partially
hyperbolic diffeomorphism homotopic to a hyperbolic automorphism.
Then, f is ergodic.

In [68] we proved Conjecture 5.1.2 when the fundamental group
of the manifold is nilpotent:

Theorem 5.1.4. All the conservative C2 partially hyperbolic dif-
feomorphisms of a compact orientable 3-manifold with nilpotent fun-
damental group are ergodic, unless the manifold is T3.

A paradigmatic example is the following. Let M be the mapping
torus of Ak : T2 →T2, where Ak is the automorphism given by the

matrix

(

1 k
0 1

)

, k a non-zero integer. That is, M is the quotient

of T2 × [0, 1] by the relation ∼, where (x, 1) ∼ (Akx, 0). The mani-
fold M has nilpotent fundamental group; in fact, it is a nilmanifold.
Theorem 5.1.4 then implies that all conservative partially hyperbolic
diffeomorphisms of M are ergodic.

In fact, the above case, namely the case of nilmanifolds, is the
only one where Theorem 5.1.4 is non-void (see [68]). Moreover, the
other cases of Theorem 5.1.4 are ruled out by a remarkable result by
Burago and Ivanov [27]:

Theorem 5.1.5 ([27]). There are no partially hyperbolic diffeo-
morphisms in S3 or S2 × S1.

The proofs of most of the theorems of this chapter involve deep
results of the geometry of codimension one foliations and the topology
of 3-manifolds. In Subsection 5.2.1 we shall include, for completeness,
the basic facts and definitions that we shall be using in this work.
However, the interested reader is strongly encouraged to consult [38],
[39], [61] and [62] for a well organized and complete introduction to
the subject.

Let us explain a little bit our strategy. In the first place, it fol-
lows from the results in [33, 67] that accessibility implies ergodicity.
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So, our strategy will be to prove that all partially hyperbolic diffeo-
morphisms of compact 3-manifolds except the ones of the manifolds
listed in Conjecture 5.1.2 satisfy the (essential) accessibility property.

In dimension 3, and in fact, whenever the center bundle is 1-
dimensional, the non-open accessibility classes are codimension one
immersed manifolds (see [67] and Theorem 2.3.1, Chapter 2 in this
book); the union of all non-open accessibility classes is a compact set
laminated by the accessibility classes (see Subsection 5.2.1 for defini-
tions). So, either f has the accessibility property or else there is a
non-trivial lamination formed by non-open accessibility classes.

Let us first assume that the lamination is not a foliation (i.e. does
not cover the whole manifold). Then in [68] it is showed that it either
extends to a true foliation without compact leaves, or else it contains
a leaf that is a periodic 2-torus with Anosov dynamics. In the first
case, we have that the boundary leaves of the lamination contain a
dense set of periodic points, see [67] and Theorem 2.5.10, Chapter
2 in this book. Moreover, the fundamental group of any boundary
leaf injects in the fundamental group of the manifold. In the second
case, let us call any embedded 2-torus admitting an Anosov dynamics
extendable to the whole manifold, an Anosov torus. That is, T ⊂ M
is an Anosov torus if there exists a homeomorphism h : M→M
such that h|T is homotopic to an Anosov diffeomorphism. In [70]
we obtained that the manifold must be again one of the manifolds of
Conjecture 5.1.2 if it has an Anosov torus.

Theorem 5.1.6. A closed oriented irreducible 3-manifold admits
an Anosov torus if and only if it is one of the following:

(1) the 3-torus
(2) the mapping torus of −id
(3) the mapping torus of a hyperbolic automorphism

Let us recall that a 3-manifold is irreducible if any embedded 2-
sphere bounds a ball. After the proof of the Poincaré conjecture
this is the same of having trivial second fundamental group. Three
dimensional manifolds supporting a partially hyperbolic diffeomor-
phism are always irreducible thanks to Burago and Ivanov results in
[27]. Indeed, the existence of a Reebless foliation implies that the
manifold is irreducible or it is S2 × S1.
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Secondly suppose that there are no open accessibility classes.
Then, accessibility classes must foliate the whole manifold. Let us
see that this foliation can not have compact leaves. Observe that any
such compact leaf must be a 2-torus. So, we have three possibilities:
(1) there is an Anosov torus, (2) the set of compact leaves forms a
strict non-trivial lamination, (3) the manifold is foliated by 2-tori.
The first case has just been ruled out. In the second case, we would
have that the boundary leaves contain a dense set of periodic points,
as stated above, and hence they would be Anosov tori again, which is
impossible. Finally, in the third case, we conclude that the manifold
is a fibration of tori over S1. This can only occur, in our setting,
only if the manifold is the mapping torus of a diffeomorphism which
commutes with an Anosov diffeomorphism as in Conjecture 5.1.2.

The following theorem is the first step in proving Conjectures
5.1.2 and 5.1.3. See definitions in Subsection 5.2.1:

Theorem 5.1.7. Let f : M → M be a conservative partially
hyperbolic diffeomorphism of an orientable 3-manifold M . Suppose
that the bundles Eσ are also orientable, σ = s, c, u, and that f is not
accessible . Then one of the following possibilities holds:

(1) M is the mapping torus of a diffeomorphism which com-
mutes with an Anosov diffeomorphism as in Conjecture 5.1.2.

(2) there is an f -invariant lamination ∅ 6= Γ(f) 6= M tangent to
Es ⊕ Eu that trivially extends to a (not necessarily invari-
ant) foliation without compact leaves of M . Moreover, the
boundary leaves of Γ(f) are periodic, have Anosov dynamics
and dense periodic points.

(3) there is a minimal invariant foliation tangent to Es ⊕ Eu.

The assumption on the orientability of the bundles and M is not
essential, in fact, it can be achieved by a finite covering. The proof
of Theorem 5.1.7 appears at the end of Section 5.5.

We do not know of any example satisfying (2) in the theorem
above. We have the following question.

Question 5.1.8. Let f : N → N be an Anosov diffeomorphism
on a complete Riemannian manifold N . Is it true that if Ω(f) = N
then N is compact?
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5.2. Preliminaries

5.2.1. Geometric preliminaries. In this section we state sev-
eral definitions and concepts that will be useful in the rest of this
paper. From now on, M will be a compact connected Riemannian
3-manifold.

A lamination is a compact set Λ ⊂M that can be covered by open
charts U ⊂ Λ with a local product structure φ : U→Rn × T , where
T is a locally compact subset of Rk. On the overlaps Uα ∩ Uβ, the
transition functions φβ ◦φ−1

α : Rn×T →Rn×T are homeomorphisms
and take the form:

φβ ◦ φ−1
α (u, v) = (lαβ(u, v), tαβ(v)),

where lαβ are C1 with respect to the u variable. No differentiability
is required in the transverse direction T . The sets φ−1(Rn ×{t}) are
called plaques. Each point x of a lamination belongs to a maximal
connected injectively immersed n-submanifold, called the leaf of x
in L. The leaves are union of plaques. Observe that the leaves are
C1, but vary only continuously. The number n is the dimension of
the lamination. If n = dimM − 1, we say Λ is a codimension-one

lamination. The set L is an f -invariant lamination if it is a lamination
such that f takes leaves into leaves.

We call a lamination a foliation if Λ = M . In this case, we shall
denote by F the set of leaves. In principle, we shall not assume
any transverse differentiability. However, in case lαβ is Cr with re-
spect to the v variable, we shall say that the foliation is Cr. Note
that even purely C0 codimension-one foliations admit a transverse
1-dimensional foliation (see Siebenmann [116], ). In our case the
existence of this 1-dimensional foliation is trivial thanks to the ex-
istence of the 1-dimensional center bundle Ec. These allows us to
translate many local deformation arguments, usually given in the C2

category, into the C0 category as observed, for instance, by Solodov
[119]. In particular, Theorems 5.2.1 and 5.2.3, which were originally
formulated for C2 foliations hold in the C0 case. We shall say that a
codimension-one foliation F , is transversely orientable if the transverse
1-dimensional foliation mentioned above is orientable. An invariant

foliation is a foliation that is an invariant lamination.
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Let Λ be a codimension-one lamination that is not a foliation. A
complementary region V is a component of M \ Λ. A closed comple-

mentary region V̂ is the metric completion of a complementary region
V with the path metric induced by the Riemannian metric, the dis-
tance between two points being the infimum of the lengths of paths in
V connecting them. A closed complementary region is independent
of the metric. Note that they are not necessarily compact. If Λ does
not have compact leaves, then every closed complementary region
decomposes into a compact gut piece and non-compact interstitial re-

gions which are I-bundles over non-compact surfaces, and get thinner
and thinner as they go away from the gut (see [62] or [50]). The in-
terstitial regions meet the gut along annuli. The decomposition into
interstitial regions and guts is unique up to isotopy. Moreover, one
can take the interstitial regions as thin as one wishes.

A boundary leaf is a leaf corresponding to a component of ∂V , for
V a closed complementary region. That is, a leaf is a non-boundary
leaf if it is not contained in a closed complementary region.

Figure 1. A Reeb component

The geometry of codimension-one foliations is deeply related to
the topology of the manifold that supports them. The following sub-
set of a foliation is important in their description. A Reeb component

is a solid torus whose interior is foliated by planes transverse to the
of core of the solid torus, such that each leaf limits on the boundary
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torus, which is also a leaf (see Figure 1). A foliation that has no Reeb
components is called Reebless.

The following theorems show better the above mentioned rela-
tion:

Theorem 5.2.1 (Novikov). Let M be a compact orientable 3-
manifold and F a transversely orientable codimension-one foliation.
Then each of the following implies that F has a Reeb component:

(1) There is a closed, nullhomotopic transversal to F
(2) There is a leaf L in F such that π1(L) does not inject in

π1(M)

The statement of this theorem can be found, for instance, in
[39, Theorems 9.1.3 & 9.1.4., p.288]. We shall also use the following
theorem

Theorem 5.2.2 (Haefliger). Let Λ be a codimension one lami-
nation in M . Then the set of points belonging to compact leaves is
compact.

This theorem was originally formulated for foliations [55]. How-
ever, it also holds for laminations, see for instance [62].

We have the following consequence of Novikov’s Theorem about
Reebless foliations. This theorem is stated in [108] as Corollary 2 on
page 44.

Theorem 5.2.3. If M is a compact 3-manifold and F is a trans-
versely orientable codimension-one Reebless foliation, then either F
is the product foliation of S2 × S1, or F̃ , the foliation induced by
F on the universal cover M̃ of M , is a foliation by planes R2. In
particular, if M 6= S2 × S1 then M is irreducible.

This theorem was originally stated for C2 foliations, but it also
holds for C0 foliations, due to Siebenmann’s theorem mentioned
above.

5.2.2. Topologic preliminaries. Let M be a 3-dimensional
manifold. A manifold M is irreducible if every 2-sphere S2 embedded
in the manifold bounds a 3-ball. Recall that a 2-torus T embedded
in M is an Anosov torus if there exists a diffeomorphism f : M→M
such that f(T ) = T and the action induced by f on π1(T ), that is,
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f#|T : π1(T )→π1(T ), is a hyperbolic automorphism. Equivalently,
f restricted to T is isotopic to a hyperbolic automorphism.

We shall assume from now on, thatM is an irreducible 3-manifold
since this is the case for 3-manifolds supporting partially hyperbolic
diffeomorphisms. In this subsection, we will focus on what is called
the JSJ-decomposition of M (see below). That is, we will cut M
along certain kind of tori, called incompressible, and will obtain cer-
tain 3-manifolds with boundary that are easier to handle, which are,
respectively, Seifert manifolds, and atoroidal and acylindrical mani-
folds. Let us introduce these definitions first.

An orientable surface S embedded in M is incompressible if the
homomorphism induced by the inclusion map i# : π1(S) →֒ π1(M) is
injective; or, equivalently, if there is no embedded disc D2 ⊂M such
that D ∩ S = ∂D and ∂D ≁ 0 in S (see, for instance, [61, Page 10]).
We also require that S 6= S2.

A manifold with or without boundary is Seifert , if it admits a one
dimensional foliation by closed curves, called a Seifert fibration. The
boundary of an orientable Seifert manifold with boundary consists of
finite union of tori. There are many examples of Seifert manifolds,
for instance S3, T1S where S is a surface, etc.

The other type of manifold obtained in the JSJ-decomposition is
atoroidal and acylindrical manifolds. A 3-manifold with boundary N
is atoroidal if every incompressible torus is ∂-parallel, that is, isotopic
to a subsurface of ∂N . A 3-manifold with boundary N is acylindrical
if every incompressible annulusA that is properly embedded, i.e. ∂A ⊂
∂N , is ∂-parallel, by an isotopy fixing ∂A.

As we mentioned before, a closed irreducible 3-manifold admits
a natural decomposition into Seifert pieces on one side, and atoroidal
and acylindrical components on the other:

Theorem 5.2.4 (JSJ-decomposition [77], [78]). If M is an irre-
ducible closed orientable 3-manifold, then there exists a collection of
disjoint incompressible tori T such that each component of M \ T is
either Seifert , or atoroidal and acylindrical. Any minimal such col-
lection is unique up to isotopy. This means that if T is a collection as
described above, it contains a minimal sub-collection m(T ) satisfying
the same claim. All collections m(T ) are isotopic.
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Any minimal family of incompressible tori as described above is
called a JSJ-decomposition ofM . When it is clear from the context we
shall also call JSJ-decomposition the set of pieces obtained by cutting
the manifold along these tori. Note that if M is either atoroidal or
Seifert, then, T = ∅.

5.2.3. Dynamic preliminaries. Throughout this paper we shall
work with a partially hyperbolic diffeomorphism f , that is, a diffeomor-
phism admitting a non-trivial Tf -invariant splitting of the tangent
bundle TM = Es ⊕ Ec ⊕ Eu, such that all unit vectors vσ ∈ Eσ

x

(σ = s, c, u) with x ∈M verify:

‖Txfv
s‖ < ‖Txfv

c‖ < ‖Txfv
u‖

for some suitable Riemannian metric. f also must satisfy that ‖Tf |Es‖ <
1 and ‖Tf−1|Eu‖ < 1. We shall say that a partially hyperbolic dif-
feomorphism f that satisfies

‖Txfv
s‖ < ‖Tyfv

c‖ < ‖Tzfv
u‖ ∀x, y, z ∈M

is absolutely partially hyperbolic.

We shall also assume that f is conservative, i.e. it preserves
Lebesgue measure associated to a smooth volume form.

It is a known fact that there are foliations Wσ tangent to the
distributions Eσ for σ = s, u (see for instance [26]). The leaf of Wσ

containing x will be called W σ(x), for σ = s, u. The connected com-
ponent of x in the intersection of W s(x) with a small ε-ball centered
at x is the ε-local stable manifold of x, and is denoted by W s

ε (x).
In general it is not true that there is a foliation tangent to Ec. It

is false even in case dimEc = 1 (see [69]). However, in Proposition
3.4 of [21] it is shown that if dimEc = 1, then f is weakly dynami-

cally coherent. This means that for each x ∈ M there are complete
immersed C1 manifolds which contain x and are everywhere tangent
to Ec, Ecs and Ecu, respectively. We will call a center curve any
curve which is everywhere tangent to Ec. Moreover, we will use the
following fact:

Proposition 5.2.5 ([21]). If γ is a center curve through x, then

W s
ε (γ) =

⋃

y∈γ

W s
ε (y) and Wu

ε (γ) =
⋃

y∈γ

Wu
ε (y)
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are C1 immersed manifolds everywhere tangent to Es ⊕Ec and Ec ⊕
Eu respectively.

We shall say that a set X is s-saturated or u-saturated if it is
a union of leaves of the strong foliations Ws or Wu respectively.
We also say that X is su-saturated if it is both s- and u-saturated.
The accessibility class AC(x) of the point x ∈ M is the minimal su-
saturated set containing x. Note that the accessibility classes form a
partition of M . If there is some x ∈M whose accessibility class is M ,
then the diffeomorphism f is said to have the accessibility property.
This is equivalent to say that any two points of M can be joined by
a path which is piecewise tangent to Es or to Eu. A diffeomorphism
is said to be essentially accessible if any su-saturated set has full or
null measure.

The theorem below relates accessibility with ergodicity. In fact
it is proven in a more general setting, but we shall use the following
formulation:

Theorem 5.2.6 ([33],[67]). If f is a C2 conservative partially
hyperbolic diffeomorphism with the (essential) accessibility property
and dimEc = 1, then f is ergodic.

In [68] it is proved that there are manifolds whose topology im-
plies the accessibility property holds for all partially hyperbolic dif-
feomorphisms. In these manifolds, all partially hyperbolic diffeomor-
phisms are ergodic.

Sometimes we will focus on the openness of the accessibility
classes. Note that the accessibility classes form a partition of M .
If all of them are open then, in fact, f has the accessibility property.
We will call U(f) = {x ∈ M ;AC(x) is open} and Γ(f) = M \ U(f).
Note that f has the accessibility property if and only if Γ(f) = ∅.
We have the following property of non-open accessibility classes:

Proposition 5.2.7 ([67]). The set Γ(f) is a codimension-one
lamination, having the accessibility classes as leaves.

In fact, any compact su-saturated subset of Γ(f) is a lamination.

The above proposition is Proposition A.3. of [67]. The fact that
the leaves of Γ(f) are C1 may be found in [44]. See also Chapter 2
in this book. The following proposition is Proposition A.5 of [67]:
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Proposition 5.2.8 ([67]). If Λ is an invariant sub-lamination of
Γ(f), then each boundary leaf of Λ is periodic and the periodic points
are dense in it (with the induced topology).

Moreover, the stable and unstable manifolds of each periodic point
are dense in each plaque of a boundary leaf of Λ.

Observe that the proof of Proposition A.5 of [67] shows in fact
that periodic points are dense in the accessibility classes of the bound-
ary leaves of V endowed with its intrinsic topology. In other words,
periodic points are dense in each plaque of the boundary leaves of V .

We shall also use the following theorem by Brin, Burago and
Ivanov, whose proof is in [21], after Proposition 2.1.

Theorem 5.2.9 ([21]). If f : M3 →M3 is a partially hyperbolic
diffeomorphism, and there is an open set V foliated by center-unstable
leaves, then there cannot be a closed center-unstable leaf bounding a
solid torus in V .

5.3. Anosov tori

In this section we will say a few words about the proof of Theorem
5.1.6. The idea in its proof is that, given an Anosov torus T , we can
“place” T so that either T belongs to the family T given by the JSJ-
decomposition (Theorem 5.2.4), or else T is in a Seifert component,
and it is either transverse to all fibers, or it is union of fibers of this
Seifert component. See Proposition 5.3.3.

It is important to note the following property of Anosov tori:

Theorem 5.3.1 ([68]). Anosov tori are incompressible.

An Anosov torus in an atoroidal component will then be ∂-
parallel to a component of its boundary. In this case, we can assume
T ∈ T . On the other hand, the Theorem of Waldhausen below, guar-
antees that we can always place an incompressible torus in a Seifert
manifold in a “standard” form; namely, the following: a surface is
horizontal in a Seifert manifold if it is transverse to all fibers, and
vertical if it is union of fibers:

Theorem 5.3.2 (Waldhausen [124]). Let M be a compact con-
nected Seifert manifold, with or without boundary. Then any incom-
pressible surface can be isotoped to be horizontal or vertical.
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The architecture of the proof of Theorem 5.1.6 is contained in
the following proposition.

Proposition 5.3.3. Let T be an Anosov torus of a closed irre-
ducible orientable manifold M . Then, there exists a diffeomorphism
f : M →M and a JSJ-decomposition T such that

(1) f |T is a hyperbolic toral automorphism,
(2) f(T ) = T , and
(3) one of the following holds

(a) T ∈ T
(b) T is a vertical torus in a Seifert component of M \ T ,

and T is not ∂-parallel in this component.
(c) M is a Seifert manifold (T = ∅), and T is a horizontal

torus,

The proposition above allows us to split the proof of Theorem
5.1.6 into cases. Note that case (3b) includes the case in which M is
a Seifert manifold and T is a vertical torus.

In the case that T is a vertical torus in a Seifert component we
can cut this component along T . Then we can suppose that T is in
the boundary. We take profit of the fact that in most manifolds the
Seifert fibration is unique up to isotopy. Since the dynamics restricted
to T is Anosov we have that the manifold has more than one Seifert
fibration. This lead us to show that this Seifert component must be
T2 × [0, 1]. This gives that the whole manifold must be one of the
manifolds of Theorem 5.1.6.

If T is horizontal torus then the manifold M is Seifert and T
intersects all the fibers. This is discarded in a case by case study
thanks to the fact that the Seifert manifolds having horizontal torus
a finite.

The last and more difficult case is when T is part of the JSJ-
decomposition but it is not the boundary of a Seifert component.
The proof in this case is complicated but a very rough idea is to take
a properly embedded surface S with an essential circle of T in its
boundary. Taking a large iterate fn(S) and considering S ∩ fn(S),
it is possible to construct a non-parallel incompressible cylinder as a
union of a band in S and a band in fn(S). This leads to contradiction
because the component is not Seifert and then, it is acylindrical.
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5.4. The su-lamination Γ(f)

Let f be a partially hyperbolic diffeomorphism of a compact 3-
manifold M . From Subsection 5.2.3 it follows that we have three
possibilities: (1) f has the accessibility property, (2) the union of all
non-open accessibility classes is a strict lamination, ∅  Γ(f)  M or
(3) the union of all non-open accessibility classes foliates M : Γ(f) =
M .

Now, we shall distinguish two possible cases in situations (2) and
(3):

(a) the lamination Γ(f) does not contain compact leaves
(b) the lamination Γ(f) contains compact leaves

In this section we deal with the case (2a). In fact, for our purposes
it will be sufficient to assume that there exists an f -invariant sub-
lamination Λ of Γ(f) without compact leaves. Section 5.5 treats the
cases (2b) and (3b). Section 5.6 treats the case (3a).

In this section, we will prove that the complement of Λ consists
of I-bundles. To this end, we shall assume that the bundles Eσ

(σ = s, c, u) and the manifold M are orientable (we can achieve this
by considering a finite covering).

Theorem 5.4.1 ([68], Theorem 4.1). If ∅  Λ ⊂ Γ(f) is an ori-
entable and transversely orientable f -invariant sub-lamination with-
out compact leaves such that Λ 6= M , then all closed complementary
regions of Λ are I-bundles.

Theorem 5.4.1 was proved by showing:

Proposition 5.4.2. Let Λ ⊂ Γ(f) be a nonempty f -invariant
sub-lamination without compact leaves. Then Ec is uniquely inte-
grable in the closed complementary regions of Λ.

The proof of this proposition is rather technical. The interested
reader may found a proof in [68].

Let us consider V̂ a closed complementary region of Λ, and call
I(V ) the union of all interstitial regions of V and G(V ) the gut of V̂
(see Subsection 5.2.1), so that

V̂ = I(V ) ∪ G(V ).

The following statement is rather standard:
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Lemma 5.4.3. Let f : M→M be a partially hyperbolic diffeo-
morphism. If U is an open invariant set such that U ⊂ Ω(f), then
the closure of U is su-saturated.

Let us observe that if V̂ is connected then there are only two

boundary leaves of V̂ . Indeed, as we mentioned before periodic points
are dense in boundary leaves. This fact jointly with the local product
structure imply, using standard arguments, that the stable and un-
stable leaves of periodic points are dense too. Take a periodic point
p in a boundary leaf and in the intersticial region. There are center
curves joining the points in the local stable manifold of p with other
boundary curve L1 of V̂ (the same property holds for the local unsta-
ble manifold). Invariance of the stable manifold of p and boundary
leaves give that the center curve of any point of the stable manifold
joins the boundary leaf L0 containing p with L1. Denseness of the
stable and unstable manifolds of p implies that the complement of
the set of points such that their center manifold join L0 with L1 is
totally disconnected. Then, it is not difficult to see that L0 and L1

are the unique boundary leaves of V̂ .
Also, since periodic points are dense in the boundary leaves due

to Proposition 5.2.8, there is an iterate of f that fixes all connected
components of V̂ , so we will assume when proving Theorem 5.4.1
that V̂ is connected and has two boundary leaves L0 and L1.

Proof of Theorem 5.4.1. We will present a sketch of a dif-
ferent approach to a proof than the one given in [68]. The strategy

will be to show that all center leaves in V̂ meet both L0 and L1. Let
p be a periodic point in L0∩I(V ). As we mentioned before its center
leaf meets L1, and the same happens for all points in its stable and
unstable manifolds. Now stable and unstable manifolds of a periodic
point are dense in each plaque of L0 (Proposition 5.2.8). So the set
of points in L0 whose center leaf does not reach L1 is contained in a
totally disconnected set.

Let us suppose that x0 is a point in L0 whose center leaf does
not reach L1. Then, since center curves of points of the intersticial
region clearly reach the boundary, W c(x0) is contained in G(V ). Take
a small rectangle R in L0 around x0 formed by arcs of stable and
unstable manifolds of a periodic point. Moreover, we can assume
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that the center curves of the points of R0 reach L1. Of course, the
image is another rectangle R1 formed by stable and unstable arcs.
Then, the center arcs of the points of R0 and the interiors of R0

and R1 form a 2-sphere S. Since Rosenberg’s theorem [107] remains

valid in this setting and V̂ is foliated by Wcs that is Reebless and
transverse to the boundary, we have that V̂ is irreducible. Then,
S bounds a ball B. Now, since W c(x0) does not reach L1 and is
contained in B, it accumulates in B but Novikov’s Theorem implies
the existence of a Reeb component, a contradiction. �

Theorem 5.4.1 implies that any non trivial invariant sub-lamination
Λ ⊂ Γ(f) without compact leaves can be extended to a foliation of M
without compact leaves. Indeed, any complementary region V is an
I-bundle, and hence it is diffeomorphic to the product of a boundary
leaf times the open interval: L0 × (0, 1). The foliation Ft = L0 × {t}
induces a foliation of V .

This has the following consequence in case the fundamental group
of M is nilpotent:

Proposition 5.4.4. If M is a compact 3-manifold with nilpotent
fundamental group, and ∅ ( Λ ( M , is an invariant sub-lamination
of Γ(f), then there exists a leaf of Λ that is a periodic 2-torus with
Anosov dynamics.

Proof. If Λ has a compact leaf, let us consider the set Λc of all
compact leaves of Λ. Λc is in fact an invariant sub-lamination, due to
Theorem 5.2.2. Hence Proposition 5.2.8 implies that the boundary
leaves of Λc are periodic 2-tori with Anosov dynamics, and we obtain
the claim.

If, on the contrary, Λ does not have compact leaves, then due to
Theorem 5.4.1 above, we can extend Λ to a foliation F of M without
compact leaves. In particular, F is a Reebless foliation. Item (2)
of Theorem 5.2.1 implies that for all boundary leaves L of Λ, π1(L)
injects in π1(M), and is therefore nilpotent.

Now, this implies that the boundary leaves can only be planes
or cylinders. Theorem 5.2.8 implies that stable and unstable leaves
of periodic points are dense in those leaves, which is impossible for
the case of the plane or the cylinder. Therefore, Λ must contain a
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compact leaf, and due to what was shown above, it must contain a
periodic 2-torus with Anosov dynamics. �

In fact, Theorem 5.1.6 implies that periodic 2-tori with Anosov
dynamics are not possible in 3-manifolds with nilpotent fundamental
group, unless the manifold is T3. Hence the hypotheses of Proposition
5.4.4 are not fulfilled, unless the manifold is T3. This will eliminate
case (2) mentioned at the beginning of this section.

5.5. A trichotomy for non-accessible diffeomorphisms

In this section we will prove Theorem 5.1.7. This theorem and
the results in this section are valid for any 3-manifold M , and do not
require that its fundamental group be nilpotent. Moreover, Theorem
5.3.1 does not even require the existence of a partially hyperbolic
diffeomorphism.

Let T be an embedded 2-torus in M . We shall call T an Anosov

torus if there exists a homeomorphism g : M→M such that T is
g-invariant, and g|T is homotopic to an Anosov diffeomorphism.

Also, let S be a two-sided embedded closed surface of M3 other
than the sphere. S is incompressible if and only if the homomorphism
induced by the inclusion map i# : π1(S) →֒ π1(M) is injective; or,
equivalently, after the Loop Theorem, if there is no embedded disc
D2 ⊂ M such that D ∩ S = ∂D and ∂D ≁ 0 in S (see, for instance,
[61]).

Recall that Theorem 5.3.1 says that Anosov tori are incompress-
ible. We insist that this theorem is general, and does not depend on
the existence of a partially hyperbolic dynamics in the manifold.

We also need the following fact about codimension one lamina-
tions.

Theorem 5.5.1. Let F be a codimension one C0-foliation with-
out compact leaves of a three dimensional compact manifold M . Then,
F has a finite number of minimal sets.

We are now in position to prove Theorem 5.1.7 of Page 107:

Proof of Theorem 5.1.7. If Γ(f) = M then there are no
Reeb components. Indeed, since f is conservative, if there were a
Reeb component, then its boundary torus should be periodic. We
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get a contradiction from Theorem 5.3.1. This gives case (3) except
the minimality.

Let us assume that Γ(f) 6= M . If Γ(f) contains a compact leaf
then the set of compact leaves is a sub-lamination Λ of Γ(f) by The-
orem 5.2.2. Proposition 5.2.8 implies that the boundary leaves of Λ
are Anosov tori, and we obtain case (1) as a consequence of Theorem
5.1.6.

If Γ(f) 6= M and contains no compact leaves, then Theorem 5.4.1
and Proposition 5.2.8 give us case (2).

Finally we show minimality in case (3). On the one hand, if
Γ(f) = M and has a compact leaf we have two possibilities: either
all leaves are compact or not. If not then, the previous argument
implies the existence of an Anosov torus and we are in case (1). If all
leaves are compact, as we mentioned before, the manifold is a torus
bundle and the hyperbolic dynamics on fibers implies that we are
again in case (1). On the other hand, if Γ(f) has no compact leaves
and has a minimal sub-lamination L, we have that L is periodic
(recall that minimal sub-laminations of a codimension one foliation
are finite, Theorem 5.5.1). Then, we are again in case (2). �

5.6. Nilmanifolds

This section deals with the proof of Theorem 5.1.4. Let f :
M→M be a conservative partially hyperbolic diffeomorphism of a
compact orientable three dimensional nilmanifold M 6= T3. As con-
sequence of Proposition 5.4.4 and Theorems 5.1.6 and 5.1.7 we have
that Es ⊕ Eu integrates to a minimal foliation Fsu if f does not
have the accessibility property. Indeed the only possibilities in the
trichotomy of Theorem 5.1.7 are (2) and (3) and Proposition 5.4.4
says that there is an Anosov torus if we are in case (2). But this
last case is impossible for a nilmanifold M 6= T3. In this section we
shall give some arguments showing that the existence of a minimal
foliation tangent to Es ⊕ Eu leads us to a contradiction. In [68] the
reader can find a different proof of the same fact. Without loss of
generality we may assume, by taking a double covering if necessary,
that Fsu is transversely orientable. Observe that the double covering
of a nilmanifold is again a nilmanifold.
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The first step is that Parwani [96] proved (following Burago-
Ivanov [27] arguments) that the action induced by f in the first
homology group of M is hyperbolic. By duality the same is true for
the first cohomology group.

The second step is given by Plante results in [99] (see also [62]).
Since Fsu is a minimal foliation of a manifold whose fundamental
group has non-exponential growth there exists a transverse holonomy
invariant measure µ of full support. This measure is unique up to
multiplication by a constant and represents an element of the first
cohomology group of M . The action of f leaves Fsu invariant and
induces a new transverse measure ν, an image of former one. The
uniqueness implies that ν = λµ for some λ > 0. Since of the action
of f on H1(M) is hyperbolic, then λ 6= 1. Suppose that λ > 1 (if the
contrary is true take f−1).

The third step is to observe that λ > 1 implies that f is expanding
the µ measure of center curves. Since µ has full support and the
su−bundle is hyperbolic we would obtain that f is conjugated to
Anosov leading to contradiction with the fact that M 6= T3.

5.7. Homotopic to Anosov on T3

In this section we present the results announced by Hammerlindl
and Ures on Conjecture 5.1.3, that the nonexistence of nonergodic
partially hyperbolic diffeomorphisms homotopic to Anosov in dimen-
sion 3. They are able to prove the following result.

Theorem 5.7.1 ([59]). Let f : T3 → T3 be a C1+α conservative
partially hyperbolic diffeomorphism homotopic to a hyperbolic auto-
morphism A. Suppose that f is not ergodic. Then,

(1) Es × Eu integrates to a minimal foliation.
(2) f is topologically conjugated to A and the conjugacy sends

strong leaves of f into the corresponding strong leaves of A.
(3) The center Lyapunov exponent is 0 a.e.

We remark that it is not known if there exists a diffeomorphism
satisfying the conditions of the theorem above.

Now, in order to prove Conjecture 5.1.3 we have two possibilities:
either we prove that a diffeomorphism satisfying the conditions of
Theorem 5.7.1 is ergodic or we prove that such a diffeomorphism
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cannot exist. Hammerlindl and Ures announced that if f is C2 and
the center stable and center unstable leaves of a periodic point are
C2 then, f is ergodic.
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