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Abstract. In [18] the authors proved the Pugh-Shub conjecture for partially
hyperbolic diffeomorphisms with 1-dimensional center, i.e. stably ergodic dif-
feomorphisms are dense among the partially hyperbolic ones and, in subsequent
results [20, 21], they obtained a more accurate description of this abundance of
ergodicity in dimension three. This work is a survey type paper of this subject.

1. Introduction

The purpose of this survey is to present the state of the art in the study
of the ergodicity of conservative partially hyperbolic diffeomorphisms in three
dimensional manifolds. In fact, we shall mainly describe the results contained in
[20, 21, 11]. The study of partial hyperbolicity has been one of the most active
topics on dynamics over the last years and we do not pretend to describe all the
related results, even for 3-manifolds. Some of the important themes excluded
in this survey are entropy maximizing measures, absolute continuity of center
foliations, co-cycles over partially hyperbolic systems, SRB-measures, dynamical
coherence, classification, etc.

A diffeomorphism f : M → M of a closed smooth manifold M is partially
hyperbolic if TM splits into three invariant bundles such that one of them is
contracting, the other is expanding, and the third, called the center bundle, has
an intermediate behavior, that is, not as contracting as the first, nor as expanding
as the second (see the Subsection 2.3 for a precise definition). The first and second
bundles are called strong bundles.

A central point in dynamics is to find conditions that guarantee ergodicity.
In 1994, the pioneer work of Grayson, Pugh and Shub [9] suggested that partial
hyperbolicity could be “essentially” a sufficient condition for ergodicity. Indeed,
soon afterwards, Pugh and Shub conjectured that stable ergodicity (open sets
of ergodic diffeomorphisms) is dense among partially hyperbolic systems. They
proposed as an important tool the accessibility property (see also the previous
work by Brin and Pesin [2]): f is accessible if any two points of M can be
joined by a curve that is a finite union of arcs tangent to the strong bundles.
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Essential accessibility is the weaker property that any two measurable sets of
positive measure can be joined by such a curve. In fact, accessibility will play a
key role in this survey.

Pugh and Shub split their Conjecture into two sub-conjectures: (1) essential
accessibility implies ergodicity, (2) the set of partially hyperbolic diffeomorphisms
contains an open and dense set of accessible diffeomorphisms.

Many advances have been made since then in the ergodic theory of partially
hyperbolic diffeomorphisms. In particular, there is a result by Burns and Wilkin-
son [4] proving that essential accessibility plus a bunching condition (trivially
satisfied if the center bundle is one dimensional) implies ergodicity. There is also
a result by the authors [18] obtaining the complete Pugh-Shub conjecture for
one-dimensional center bundle. See [19] for a survey on the subject.

We have therefore that almost all partially hyperbolic diffeomorphisms with
one dimensional bundle are ergodic. This means that the non-ergodic partially
hyperbolic systems are very few. Can we describe them? Concretely,

Question 1.1. Which manifolds support a non-ergodic partially hyperbolic dif-
feomorphism? How do they look like?

In this survey we give a description of what is known about this question for
three dimensional manifolds. We study the sets of points that can be joined by
paths everywhere tangent to the strong bundles (accessibility classes), and arrive,
using tools of geometry of laminations and the topology of 3-manifolds, to the
somewhat surprising conclusion that there are strong obstructions to the non-
ergodicity of a partially hyperbolic diffeomorphism. See Theorems 1.4, 1.7 and
1.8.

This gave us enough evidence to conjecture the following:

Conjecture 1.2 ([20]). The only orientable manifolds supporting non-ergodic
partially hyperbolic diffeomorphisms in dimension 3 are the mapping tori of dif-
feomorphisms of surfaces which commute with Anosov diffeomorphisms.

Specifically, they are (1) the mapping tori of Anosov diffeomorphisms of T2,
(2) T3, and (3) the mapping torus of −id where id : T2 →T2 is the identity map
on the 2-torus.

Indeed, we believe that for 3-manifolds, all partially hyperbolic diffeomorphisms
are ergodic, unless the manifold is one of the listed above.

In the case that M = T3 we can be more specific and we also conjecture that:

Conjecture 1.3. Let f : T3 → T3 be a conservative partially hyperbolic diffeo-
morphism homotopic to a hyperbolic automorphism. . Then, f is ergodic.

In [20] we proved Conjecture 1.2 when the fundamental group of the manifold
is nilpotent:
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Theorem 1.4. All the conservative C2 partially hyperbolic diffeomorphisms of
a compact orientable 3-manifold with nilpotent fundamental group are ergodic,
unless the manifold is T3.

A paradigmatic example is the following. Let M be the mapping torus of

Ak : T2 →T2, where Ak is the automorphism given by the matrix

(

1 k

0 1

)

, k

a non-zero integer. That is, M is the quotient of T2 × [0, 1] by the relation ∼,
where (x, 1) ∼ (Akx, 0). The manifold M has nilpotent fundamental group; in
fact, it is a nilmanifold. Theorem 1.4 then implies that all conservative partially
hyperbolic diffeomorphisms of M are ergodic.

Let us see that the above case, namely the case of nilmanifolds, is the only
one where Theorem 1.4 is non-void. The Geometrization Conjecture, gives, after
Perelman’s work:

Theorem 1.5. If M is a compact orientable manifold with nilpotent fundamental
group, then either M is a nilmanifold or else it is finitely covered by S3 or S2×S1.

The second case mentioned in Theorem 1.5 is ruled out by a remarkable result
by Burago and Ivanov:

Theorem 1.6 ([3]). There are no partially hyperbolic diffeomorphisms in S3 or
S2 × S1.

The proofs of most of the theorems of this survey involve deep results of the
geometry of codimension one foliations and the topology of 3-manifolds. In Sec-
tion 2.1 we shall include, for completeness, the basic facts and definitions that we
shall be using in this work. However, the interested reader is strongly encouraged
to consult [5], [6], [12] and [13] for a well organized and complete introduction to
the subject.

Let us explain a little bit our strategy. In the first place, it follows from the
results in [4, 18] that accessibility implies ergodicity. So, our strategy will be
to prove that all partially hyperbolic diffeomorphisms of compact 3-manifolds
except the ones of the manifolds listed in Conjecture 1.2 satisfy the (essential)
accessibility property.

In dimension 3, and in fact, whenever the center bundle is 1-dimensional, the
non-open accessibility classes are codimension one immersed manifolds [18]; the
set of non-open accessibility classes is a compact set laminated by the accessibility
classes (see Section 2.1 for definitions). So, either f has the accessibility property
or else there is a non-trivial lamination formed by non-open accessibility classes.

Let us first assume that the lamination is not a foliation (i.e. does not cover
the whole manifold). Then in [20] it is showed that it either extends to a true
foliation without compact leaves, or else it contains a leaf that is a periodic 2-torus
with Anosov dynamics. In the first case, we have that the boundary leaves of the
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lamination contain a dense set of periodic points [18], and that their fundamental
group injects in the fundamental group of the manifold. In the second case, let
us call any embedded 2-torus admitting an Anosov dynamics extendable to the
whole manifold, an Anosov torus. That is, T ⊂ M is an Anosov torus if there
exists a homeomorphism h : M →M such that h|T is homotopic to an Anosov
diffeomorphism. In [21] we obtained that the manifold must be again one of the
manifolds of Conjecture 1.2 if it has an Anosov torus.

Theorem 1.7. A closed oriented irreducible 3-manifold admits an Anosov torus
if and only if it is one of the following:

(1) the 3-torus
(2) the mapping torus of −id

(3) the mapping torus of a hyperbolic automorphism

Let us recall that a 3-manifold is irreducible if any embedded 2-sphere bounds
a ball. After the proof of the Poincaré conjecture this is the same of having
trivial second fundamental group. Three dimensional manifolds supporting a
partially hyperbolic diffeomorphism are always irreducible thanks to Burago and
Ivanov results in [3]. Indeed, the existence of a Reebless foliation implies that the
manifold is irreducible or it is S2 × S1.

Secondly suppose that there are no open accessibility classes. Then, accessibil-
ity classes must foliate the whole manifold. Let us see that this foliation can not
have compact leaves. Observe that any such compact leaf must be a 2-torus. So,
we have three possibilities: (1) there is an Anosov torus, (2) the set of compact
leaves forms a strict non-trivial lamination, (3) the manifold is foliated by 2-tori.
The first case has just been ruled out. In the second case, we would have that the
boundary leaves contain a dense set of periodic points, as stated above, and hence
they would be Anosov tori again, which is impossible. Finally, in the third case,
we conclude that the manifold is a fibration of tori over S1. This can only occur,
in our setting, only if the manifold is the mapping torus of a diffeomorphism
which commutes with an Anosov diffeomorphism as in Conjecture 1.2.

The following theorem is the first step in proving Conjectures 1.2 and 1.3. See
definitions in Subsection 2.1:

Theorem 1.8. Let f : M → M be a conservative partially hyperbolic diffeo-
morphism of an orientable 3-manifold M . Suppose that the bundles Eσ are also
orientable, σ = s, c, u, and that f is not accessible. Then one of the following
possibilities holds:

(1) M is the mapping torus of a diffeomorphism which commutes with an
Anosov diffeomorphism as in Conjecture 1.2.

(2) there is an f -invariant lamination ∅ 6= Γ(f) 6= M tangent to Es⊕Eu that
trivially extends to a (not necessarily invariant) foliation without compact
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leaves of M . Moreover, the boundary leaves of Γ(f) are periodic, have
Anosov dynamics and dense periodic points.

(3) there is a minimal invariant foliation tangent to Es ⊕ Eu.

The assumption on the orientability of the bundles and M is not essential, in
fact, it can be achieved by a finite covering. The proof of Theorem 1.8 appears
at the end of Section 5.

We do not know of any example satisfying (2) in the theorem above. We have
the following question.

Question 1.9. Let f : N → N be an Anosov diffeomorphism on a complete
Riemannian manifold N . Is it true that if Ω(f) = N then N is compact?

2. Preliminaries

2.1. Geometric preliminaries. In this section we state several definitions and
concepts that will be useful in the rest of this paper. From now on, M will be a
compact connected Riemannian 3-manifold.

A lamination is a compact set Λ ⊂ M that can be covered by open charts U ⊂ Λ
with a local product structure φ : U →Rn×T , where T is a locally compact subset
of Rk. On the overlaps Uα∩Uβ , the transition functions φβ◦φ−1

α : Rn×T →Rn×T

are homeomorphisms and take the form:

φβ ◦ φ−1
α (u, v) = (lαβ(u, v), tαβ(v)),

where lαβ are C1 with respect to the u variable. No differentiability is required
in the transverse direction T . The sets φ−1(Rn × {t}) are called plaques. Each
point x of a lamination belongs to a maximal connected injectively immersed
n-submanifold, called the leaf of x in L. The leaves are union of plaques. Observe
that the leaves are C1, but vary only continuously. The number n is the dimension

of the lamination. If n = dim M − 1, we say Λ is a codimension-one lamination.
The set L is an f -invariant lamination if it is a lamination such that f takes leaves
into leaves.

We call a lamination a foliation if Λ = M . In this case, we shall denote by
F the set of leaves. In principle, we shall not assume any transverse differen-
tiability. However, in case lαβ is Cr with respect to the v variable, we shall say
that the foliation is Cr. Note that even purely C0 codimension-one foliations
admit a transverse 1-dimensional foliation (see Siebenmann [25], ). In our case
the existence of this 1-dimensional foliation is trivial thanks to the existence of
the 1-dimensional center bundle Ec. These allows us to translate many local
deformation arguments, usually given in the C2 category, into the C0 category
as observed, for instance, by Solodov [26]. In particular, Theorems 2.1 and 2.3,
which were originally formulated for C2 foliations hold in the C0 case. We shall
say that a codimension-one foliation F , is transversely orientable if the transverse
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1-dimensional foliation mentioned above is orientable. An invariant foliation is a
foliation that is an invariant lamination.

Let Λ be a codimension-one lamination that is not a foliation. A complementary

region V is a component of M \ Λ. A closed complementary region V̂ is the
metric completion of a complementary region V with the path metric induced
by the Riemannian metric, the distance between two points being the infimum
of the lengths of paths in V connecting them. A closed complementary region is
independent of the metric. Note that they are not necessarily compact. If Λ does
not have compact leaves, then every closed complementary region decomposes
into a compact gut piece and non-compact interstitial regions which are I-bundles
over non-compact surfaces, and get thinner and thinner as they go away from
the gut (see [13] or [8]). The interstitial regions meet the gut along annuli. The
decomposition into interstitial regions and guts is unique up to isotopy. Moreover,
one can take the interstitial regions as thin as one wishes.

A boundary leaf is a leaf corresponding to a component of ∂V , for V a closed
complementary region. That is, a leaf is a non-boundary leaf if it is not contained
in a closed complementary region.

Figure 1. A Reeb component

The geometry of codimension-one foliations is deeply related to the topology of
the manifold that supports them. The following subset of a foliation is important
in their description. A Reeb component is a solid torus whose interior is foliated
by planes transverse to the of core of the solid torus, such that each leaf limits
on the boundary torus, which is also a leaf (see Figure 1). A foliation that has
no Reeb components is called Reebless.

The following theorems show better the above mentioned relation:

Theorem 2.1 (Novikov). Let M be a compact orientable 3-manifold and F a
transversely orientable codimension-one foliation. Then each of the following
implies that F has a Reeb component:

(1) There is a closed, nullhomotopic transversal to F
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(2) There is a leaf L in F such that π1(L) does not inject in π1(M)

The statement of this theorem can be found, for instance, in [6] Theorems 9.1.3.
9.1.4., p.288. We shall also use the following theorem

Theorem 2.2 (Haefliger). Let Λ be a codimension one lamination in M . Then
the set of points belonging to compact leaves is compact.

This theorem was originally formulated for foliations [10]. However, it also
holds for laminations, see for instance [13].

We have the following consequence of Novikov’s Theorem about Reebless foli-
ations. This theorem is stated in [24] as Corollary 2 on page 44.

Theorem 2.3. If M is a compact 3-manifold and F is a transversely orientable
codimension-one Reebless foliation, then either F is the product foliation of S2 ×
S1, or F̃ , the foliation induced by F on the universal cover M̃ of M , is a foliation
by planes R2. In particular, if M 6= S2 × S1 then M is irreducible.

This theorem was originally stated for C2 foliations, but it also holds for C0

foliations, due to Siebenmann’s theorem mentioned above.

2.2. Topologic preliminaries. Let M be a 3-dimensional manifold. A manifold
M is irreducible if every 2-sphere S2 embedded in the manifold bounds a 3-ball.
Recall that a 2-torus T embedded in M is an Anosov torus if there exists a
diffeomorphism f : M →M such that f(T ) = T and the action induced by f on
π1(T ), that is, f#|T : π1(T )→π1(T ), is a hyperbolic automorphism. Equivalently,
f restricted to T is isotopic to a hyperbolic automorphism.

We shall assume from now on, that M is an irreducible 3-manifold since this
is the case for 3-manifolds supporting partially hyperbolic diffeomorphisms. In
this subsection, we will focus on what is called the JSJ-decomposition of M (see
below). That is, we will cut M along certain kind of tori, called incompressible,
and will obtain certain 3-manifolds with boundary that are easier to handle, which
are, respectively, Seifert manifolds, and atoroidal and acylindrical manifolds. Let
us introduce these definitions first.

An orientable surface S embedded in M is incompressible if the homomorphism
induced by the inclusion map i# : π1(S) →֒ π1(M) is injective; or, equivalently,
if there is no embedded disc D2 ⊂ M such that D ∩ S = ∂D and ∂D ≁ 0 in S

(see, for instance, [12, Page 10]). We also require that S 6= S2.
A manifold with or without boundary is Seifert, if it admits a one dimensional

foliation by closed curves, called a Seifert fibration. The boundary of an orientable
Seifert manifold with boundary consists of finite union of tori. There are many
examples of Seifert manifolds, for instance S3, T1S where S is a surface, etc.

The other type of manifold obtained in the JSJ-decomposition is atoroidal
and acylindrical manifolds. A 3-manifold with boundary N is atoroidal if every
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incompressible torus is ∂-parallel, that is, isotopic to a subsurface of ∂N . A 3-
manifold with boundary N is acylindrical if every incompressible annulus A that
is properly embedded, i.e. ∂A ⊂ ∂N , is ∂-parallel, by an isotopy fixing ∂A.

As we mentioned before, a closed irreducible 3-manifold admits a natural de-
composition into Seifert pieces on one side, and atoroidal and acylindrical com-
ponents on the other:

Theorem 2.4 (JSJ-decomposition [14], [15]). If M is an irreducible closed ori-
entable 3-manifold, then there exists a collection of disjoint incompressible tori T
such that each component of M \T is either Seifert, or atoroidal and acylindrical.
Any minimal such collection is unique up to isotopy. This means, if T is a col-
lection as described above, it contains a minimal sub-collection m(T ) satisfying
the same claim. All collections m(T ) are isotopic.

Any minimal family of incompressible tori as described above is called a JSJ-
decomposition of M . When it is clear from the context we shall also call JSJ-
decomposition the set of pieces obtained by cutting the manifold along these tori.
Note that if M is either atoroidal or Seifert, then T = ∅.

2.3. Dynamic preliminaries. Throughout this paper we shall work with a par-

tially hyperbolic diffeomorphism f , that is, a diffeomorphism admitting a non-trivial
Tf -invariant splitting of the tangent bundle TM = Es ⊕ Ec ⊕ Eu, such that all
unit vectors vσ ∈ Eσ

x (σ = s, c, u) with x ∈ M verify:

‖Txfvs‖ < ‖Txfvc‖ < ‖Txfvu‖

for some suitable Riemannian metric. f also must satisfy that ‖Tf |Es‖ < 1 and
‖Tf−1|Eu‖ < 1. We shall say that a partially hyperbolic diffeomorphism f that
satisfies

‖Txfvs‖ < ‖Tyfvc‖ < ‖Tzfvu‖ ∀x, y, z ∈ M

is absolutely partially hyperbolic.

We shall also assume that f is conservative, i.e. it preserves Lebesgue measure
associated to a smooth volume form.

It is a known fact that there are foliations Wσ tangent to the distributions Eσ

for σ = s, u (see for instance [2]). The leaf of Wσ containing x will be called
W σ(x), for σ = s, u. The connected component of x in the intersection of W s(x)
with a small ε-ball centered at x is the ε-local stable manifold of x, and is denoted
by W s

ε (x).
In general it is not true that there is a foliation tangent to Ec. It is false even

in case dim Ec = 1 (see [22]). However, in Proposition 3.4 of [1] it is shown that
if dim Ec = 1, then f is weakly dynamically coherent. This means, for each x ∈ M

there are complete immersed C1 manifolds which contain x and are everywhere
tangent to Ec, Ecs and Ecu, respectively. We will call a center curve any curve
which is everywhere tangent to Ec. Moreover, we will use the following fact:
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Proposition 2.5 ([1]). If γ is a center curve through x, then

W s
ε (γ) =

⋃

y∈γ

W s
ε (y) and W u

ε (γ) =
⋃

y∈γ

W u
ε (y)

are C1 immersed manifolds everywhere tangent to Es ⊕ Ec and Ec ⊕ Eu respec-
tively.

We shall say that a set X is s-saturated or u-saturated if it is a union of leaves of
the strong foliations Ws or Wu respectively. We also say that X is su-saturated
if it is both s- and u-saturated. The accessibility class AC(x) of the point x ∈ M

is the minimal su-saturated set containing x. Note that the accessibility classes
form a partition of M . If there is some x ∈ M whose accessibility class is M , then
the diffeomorphism f is said to have the accessibility property. This is equivalent
to say that any two points of M can be joined by a path which is piecewise
tangent to Es or to Eu. A diffeomorphism is said to be essentially accessible if
any su-saturated set has full or null measure.

The theorem below relates accessibility with ergodicity. In fact it is proven in
a more general setting, but we shall use the following formulation:

Theorem 2.6 ([4],[18]). If f is a C2 conservative partially hyperbolic diffeomor-
phism with the (essential) accessibility property and dim Ec = 1, then f is ergodic.

In [20] it is proved that there are manifolds whose topology implies the ac-
cessibility property holds for all partially hyperbolic diffeomorphisms. In these
manifolds, all partially hyperbolic diffeomorphisms are ergodic.

Sometimes we will focus on the openness of the accessibility classes. Note that
the accessibility classes form a partition of M . If all of them are open then, in
fact, f has the accessibility property. We will call U(f) = {x ∈ M ; AC(x) is
open} and Γ(f) = M \ U(f). Note that f has the accessibility property if and
only if Γ(f) = ∅. We have the following property of non-open accessibility classes:

Proposition 2.7 ([18]). The set Γ(f) is a codimension-one lamination, having
the accessibility classes as leaves.

In fact, any compact su-saturated subset of Γ(f) is a lamination.

The above proposition is Proposition A.3. of [18]. The fact that the leaves of
Γ(f) are C1 may be found in [7]. The following proposition is Proposition A.5 of
[18]:

Proposition 2.8 ([18]). If Λ is an invariant sub-lamination of Γ(f), then each
boundary leaf of Λ is periodic and the periodic points are dense in it (with the
induced topology).

Moreover, the stable and unstable manifolds of each periodic point are dense in
each plaque of a boundary leaf of Λ.
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Observe that the proof of Proposition A.5 of [18] shows in fact that periodic
points are dense in the accessibility classes of the boundary leaves of V endowed
with its intrinsic topology. In other words, periodic points are dense in each
plaque of the boundary leaves of V .

We shall also use the following theorem by Brin, Burago and Ivanov, whose
proof is in [1], after Proposition 2.1.

Theorem 2.9 ([1]). If f : M3 →M3 is a partially hyperbolic diffeomorphism,
and there is an open set V foliated by center-unstable leaves, then there cannot
be a closed center-unstable leaf bounding a solid torus in V .

3. Anosov tori

In this section we will say a few words about the proof of Theorem 1.7. The
idea in its proof is that, given an Anosov torus T , we can “place” T so that either
T belongs to the family T given by the JSJ-decomposition (Theorem 2.4), or else
T is in a Seifert component, and it is either transverse to all fibers, or it is union
of fibers of this Seifert component. See Proposition 3.3.

It is important to note the following property of Anosov tori:

Theorem 3.1 ([20]). Anosov tori are incompressible.

An Anosov torus in an atoroidal component will then be ∂-parallel to a compo-
nent of its boundary. In this case, we can assume T ∈ T . On the other hand, the
Theorem of Waldhausen below, guarantees that we can always place an incom-
pressible torus in a Seifert manifold in a “standard” form; namely, the following:
a surface is horizontal in a Seifert manifold if it is transverse to all fibers, and
vertical if it is union of fibers:

Theorem 3.2 (Waldhausen [27]). Let M be a compact connected Seifert manifold,
with or without boundary. Then any incompressible surface can be isotoped to be
horizontal or vertical.

The architecture of the proof of Theorem 1.7 is contained in the following
proposition.

Proposition 3.3. Let T be an Anosov torus of a closed irreducible orientable
manifold M . Then, there exists a diffeomorphism f : M → M and a JSJ-
decomposition T such that

(1) f |T is a hyperbolic toral automorphism,
(2) f(T ) = T , and
(3) one of the following holds

(a) T ∈ T
(b) T is a vertical torus in a Seifert component of M \ T , and T is not

∂-parallel in this component.



ACCESSIBILITY AND ABUNDANCE OF ERGODICITY IN DIMENSION THREE 11

(c) M is a Seifert manifold (T = ∅), and T is a horizontal torus,

The proposition above allows us to split the proof of Theorem 1.7 into cases.
Note that case (3b) includes the case in which M is a Seifert manifold and T is
a vertical torus.

In the case that T is a vertical torus in a Seifert component we can cut this
component along T . Then we can suppose that T is in the boundary. We take
profit of the fact that in most manifolds the Seifert fibration is unique up to
isotopy. Since the dynamics restricted to T is Anosov we have that the manifold
has more than one Seifert fibration. This lead us to show that this Seifert com-
ponent must be T2 × [0, 1]. This gives that the whole manifold must be one of
the manifolds of Theorem 1.7.

If T is horizontal torus then the manifold M is Seifert and T intersects all the
fibers. This is discarded in a case by case study thanks to the fact that the Seifert
manifolds having horizontal torus a finite.

The last and more difficult case is when T is part of the JSJ-decomposition
but it is not the boundary of a Seifert component. The proof in this case is
complicated but a very rough idea is to take a properly embedded surface S

with an essential circle of T in its boundary. Taking a large iterate fn(S) and
considering S ∩ fn(S), it is possible to construct a non-parallel incompressible
cylinder as a union of a band in S and a band in fn(S). This leads to contradiction
because the component is not Seifert and then, it is acylindrical.

4. The su-lamination Γ(f)

Let f be a partially hyperbolic diffeomorphism of a compact 3-manifold M .
From Subsection 2.3 it follows that we have three possibilities: (1) f has the
accessibility property, (2) the set of non-open accessibility classes is a strict lam-
ination, ∅  Γ(f)  M or (3) the set of non-open accessibility classes foliates M :
Γ(f) = M .

Now, we shall distinguish two possible cases in situations (2) and (3):

(a) the lamination Γ(f) does not contain compact leaves
(b) the lamination Γ(f) contains compact leaves

In this section we deal with the case (2a). In fact, for our purposes it will be
sufficient to assume that there exists an f -invariant sub-lamination Λ of Γ(f)
without compact leaves. Section 5 treats the cases (2b) and (3b). Section 6
treats the case (3a).

In this section, we will prove that the complement of Λ consists of I-bundles.
To this end, we shall assume that the bundles Eσ (σ = s, c, u) and the manifold
M are orientable (we can achieve this by considering a finite covering).
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Theorem 4.1 ([20], Theorem 4.1). If ∅  Λ ⊂ Γ(f) is an orientable and trans-
versely orientable f -invariant sub-lamination without compact leaves such that
Λ 6= M , then all closed complementary regions of Λ are I-bundles.

Theorem 4.1 was proved by showing:

Proposition 4.2. Let Λ ⊂ Γ(f) be a nonempty f -invariant sub-lamination with-
out compact leaves. Then Ec is uniquely integrable in the closed complementary
regions of Λ.

The proof of this proposition is rather technical. The interested reader may
found a proof in [20].

Let us consider V̂ a closed complementary region of Λ, and call I(V ) the union

of all interstitial regions of V and G(V ) the gut of V̂ (see Subsection 2.1), so that

V̂ = I(V ) ∪ G(V ).

The following statement is rather standard:

Lemma 4.3. Let f : M →M be a partially hyperbolic diffeomorphism. If U is an
open invariant set such that U ⊂ Ω(f), then the closure of U is su-saturated.

Let us observe that if V̂ is connected then there are only two boundary leaves
of V̂ . Indeed, as we mentioned before periodic points are dense in boundary
leaves. This fact jointly with the local product structure imply, using standard
arguments, that the stable and unstable leaves of periodic points are dense too.
Take a periodic point p in a boundary leaf and in the intersticial region. There
are center curves joining the points in the local stable manifold of p with other
boundary curve L1 of V̂ (the same property holds for the local unstable manifold).
Invariance of the stable manifold of p and boundary leaves give that the center
curve of any point of the stable manifold joins the boundary leaf L0 containing
p with L1. Denseness of the stable and unstable manifolds of p implies that the
complement of the set of points such that their center manifold join L0 with L1

is totally disconnected. Then, it is not difficult to see that L0 and L1 are the
unique boundary leaves of V̂ .

Also, since periodic points are dense in the boundary leaves due to Proposition
2.8, there is an iterate of f that fixes all connected components of V̂ , so we will
assume when proving Theorem 4.1 that V̂ is connected and has two boundary
leaves L0 and L1.

Proof of Theorem 4.1. We will present a sketch of a different approach to a proof
than the one given in [20]. The strategy will be to show that all center leaves in

V̂ meet both L0 and L1. Let p be a periodic point in L0∩I(V ). As we mentioned
before its center leaf meets L1, and the same happens for all points in its stable
and unstable manifolds. Now stable and unstable manifolds of a periodic point
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are dense in each plaque of L0 (Proposition 2.8). So the set of points in L0 whose
center leaf does not reach L1 is contained in a totally disconnected set.

Let us suppose that x0 is a point in L0 whose center leaf does not reach L1.
Then, since center curves of points of the intersticial region clearly reach the
boundary, W c(x0) is contained in G(V ). Take a small rectangle R in L0 around
x0 formed by arcs of stable and unstable manifolds of a periodic point. Moreover,
we can assume that the center curves of the points of R0 reach L1. Of course,
the image is another rectangle R1 formed by stable and unstable arcs. Then,
the center arcs of the points of R0 and the interiors of R0 and R1 form a 2-
sphere S. Since Rosenberg’s theorem [23] remains valid in this setting and V̂ is

foliated by Wcs that is Reebless and transverse to the boundary, we have that V̂

is irreducible. Then, S bounds a ball B. Now, since W c(x0) does not reach L1

and is contained in B, it accumulates in B but Novikov’s Theorem implies the
existence of a Reeb component, a contradiction. �

Theorem 4.1 implies that any non trivial invariant sub-lamination Λ ⊂ Γ(f)
without compact leaves can be extended to a foliation of M without compact
leaves. Indeed, any complementary region V is an I-bundle, and hence it is
diffeomorphic to the product of a boundary leaf times the open interval: L0 ×
(0, 1). The foliation Ft = L0 × {t} induces a foliation of V .

This has the following consequence in case the fundamental group of M is
nilpotent:

Proposition 4.4. If M is a compact 3-manifold with nilpotent fundamental
group, and ∅ ( Λ ( M , is an invariant sub-lamination of Γ(f), then there
exists a leaf of Λ that is a periodic 2-torus with Anosov dynamics.

Proof. If Λ has a compact leaf, let us consider the set Λc of all compact leaves
of Λ. Λc is in fact an invariant sub-lamination, due to Theorem 2.2. Hence
Proposition 2.8 implies that the boundary leaves of Λc are periodic 2-tori with
Anosov dynamics, and we obtain the claim.

If, on the contrary, Λ does not have compact leaves, then due to Theorem
4.1 above, we can extend Λ to a foliation F of M without compact leaves. In
particular, F is a Reebless foliation. Item (2) of Theorem 2.1 implies that for all
boundary leaves L of Λ, π1(L) injects in π1(M), and is therefore nilpotent.

Now, this implies that the boundary leaves can only be planes or cylinders.
Theorem 2.8 implies that stable and unstable leaves of periodic points are dense
in those leaves, which is impossible for the case of the plane or the cylinder.
Therefore, Λ must contain a compact leaf, and due to what was shown above, it
must contain a periodic 2-torus with Anosov dynamics. �

In fact, Theorem 1.7 implies that periodic 2-tori with Anosov dynamics are not
possible in 3-manifolds with nilpotent fundamental group, unless the manifold is
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T3. Hence the hypotheses of Proposition 4.4 are not fulfilled, unless the manifold
is T3. This will eliminate case (2) mentioned at the beginning of this section.

5. The trichotomy of Theorem 1.8

In this section we will prove Theorem 1.8. This theorem and the results in this
section are valid for any 3-manifold M , and do not require that its fundamental
group be nilpotent. Moreover, Theorem 3.1 does not even require the existence
of a partially hyperbolic diffeomorphism.

Let T be an embedded 2-torus in M . We shall call T an Anosov torus if
there exists a homeomorphism g : M →M such that T is g-invariant, and g|T is
homotopic to an Anosov diffeomorphism.

Also, let S be a two-sided embedded closed surface of M3 other than the sphere.
S is incompressible if and only if the homomorphism induced by the inclusion map
i# : π1(S) →֒ π1(M) is injective; or, equivalently, after the Loop Theorem, if there
is no embedded disc D2 ⊂ M such that D ∩ S = ∂D and ∂D ≁ 0 in S (see, for
instance, [12]).

Recall that Theorem 3.1 says that Anosov tori are incompressible. We insist
that this theorem is general, and does not depend on the existence of a partially
hyperbolic dynamics in the manifold.

We also need the following fact about codimension one laminations.

Theorem 5.1. Let F be a codimension one C0-foliation without compact leaves
of a three dimensional compact manifold M . Then, F has a finite number of
minimal sets.

We are now in position to prove Theorem 1.8 of Page 4:

Proof of Theorem 1.8. If Γ(f) = M then there are no Reeb components. Indeed,
since f is conservative, if there were a Reeb component, then its boundary torus
should be periodic. We get a contradiction from Theorem ??. This gives case (3)
except the minimality.

Let us assume that Γ(f) 6= M . If Γ(f) contains a compact leaf then the set of
compact leaves is a sub-lamination Λ of Γ(f) by Theorem 2.2. Proposition 2.8
implies that the boundary leaves of Λ are Anosov tori, and we obtain case (1) as
a consequence of Theorem 1.7.

If Γ(f) 6= M and contains no compact leaves, then Theorem 4.1 and Proposi-
tion 2.8 give us case (2).

Finally we show minimality in case (3). On the one hand, if Γ(f) = M and
has a compact leaf we have two possibilities: either all leaves are compact or
not. If not then, the previous argument implies the existence of an Anosov torus
and we are in case (1). If all leaves are compact, as we mentioned before, the
manifold is a torus bundle and the hyperbolic dynamics on fibers implies that
we are again in case (1). On the other hand, if Γ(f) has no compact leaves and
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has a minimal sub-lamination L, we have that L is periodic (recall that minimal
sub-laminations of a codimension one foliation are finite, Theorem 5.1). Then,
we are again in case (2). �

6. Nilmanifolds

Let f : M →M be a conservative partially hyperbolic diffeomorphism of a
compact orientable three dimensional nilmanifold M 6= T3. As consequence of
Proposition 4.4 and Theorems 1.7 and 1.7 we have that Es ⊕ Eu integrates to a
minimal foliation F su if f does not have the accessibility property. Indeed the
only possibilities in the trichotomy of Theorem 1.8 are (2) and (3) and Proposi-
tion 4.4 says that there is an Anosov torus if we are in case (2). But this last
case is impossible for a nilmanifold M 6= T3. In this section we shall give some
arguments showing that the existence of such a foliation leads us to a contradic-
tion. In [20] the reader can find a different proof of the same fact. Without loss
of generality we may assume, by taking a double covering if necessary, that F su

is transversely orientable. Observe that the double covering of a nilmanifold is
again a nilmanifold.

The first step is that Parwani [16] proved (following Burago-Ivanov [3] argu-
ments) that the action induced by f in the first homology group of M is hyper-
bolic. By duality the same is true for the first cohomology group.

The second step is given by Plante results in [17] (see also [13]). Since F su is
a minimal foliation of a manifold whose fundamental group has non-exponential
growth there exists a transverse holonomy invariant measure µ of full support.
This measure is unique up to multiplication by a constant and represents an
element of the first cohomology group of M . The action of f leaves F su invariant
and induces a new transverse measure ν, an image of former one. The uniqueness
implies that ν = λµ for some λ > 0. Since of the action of f on H1(M) is
hyperbolic, then λ 6= 1. Suppose that λ > 1 (if the contrary is true take f−1).

The third step is to observe that λ > 1 implies that f is expanding the µ mea-
sure of center curves. Since µ has full support and the su−bundle is hyperbolic
we would obtain that f is conjugated to Anosov leading to contradiction with
the fact that M 6= T3.

7. M = T3

In this section we present the results announced by Hammerlindl and Ures on
Conjecture 1.3, that the nonexistence of nonergodic partially hyperbolic diffeo-
morphisms homotopic to Anosov in dimension 3. They are able to prove the
following result.

Theorem 7.1 ([11]). Let f : T3 → T3 be a C1+α conservative partially hyperbolic
diffeomorphism homotopic to a hyperbolic automorphism A. Suppose that f is
not ergodic. Then,
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(1) Es × Eu integrates to a minimal foliation.
(2) f is topologically conjugated to A and the conjugacy sends strong leaves

of f into the corresponding strong leaves of A.
(3) The center Lyapunov exponent is 0 a.e.

We remark that it is not known if there exists a diffeomorphism satisfying the
conditions of the theorem above.

Now, in order to prove Conjecture 1.3 we have two possibilities: either we
prove that a diffeomorphism satisfying the conditions of Theorem 7.1 is ergodic
or we prove that such a diffeomorphism cannot exist. Hammerlindl and Ures
announced that if f is C2 and the center stable and center unstable leaves of a
periodic point are C2 then, f is ergodic.
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