Welcome to the site of the shared task FACT: Factuality Analysis and Classification Task, a task to classify events in Spanish texts, according to their factuality status. This task is part of IberLEF 2019.

The FACT shared task is organized by Grupo PLN-InCo (UdelaR - Uruguay), Grupo de Procesamiento del Lenguaje Natural (FaMAF, UNC, Argentina), and GRIAL (UB-UAB-UDL, España).



In order to analyze event references in texts, it is crucial to determine whether they are presented as having taken place or as potential or not accomplished events. This information can be used for different applications like Question Answering, Information Extraction, or Incremental Timeline Construction.

Despite its centrality for Natural Language Understanding, this task has been underresearched, with the work by Saurí and Pustejovsky (2009) as a reference for English and Wonsever et al. (2009) for Spanish. The bottleneck to advance on this task has usually been the lack of annotated resources, together with its inherent difficulty. Currently PLN-InCo and GRIAL both have ongoing research projects on this topic, which are producing and will produce such annotated resources. This makes the proposal of this task even more interesting.

A number of categories have been proposed to classify different modes of (non-)accomplishment of events. Most of these are too fine-grained for automatic procedures. That is why the dataset for this task has been annotated with a simplified schema, using the values R (Realizado - accomplished), NR (No Realizado - not accomplished), and I (Indefinido - undefined), a class that includes a number of other values like different kinds of Future, Potential or Undefined (Wonsever et al., 2016). An excerpt of the corpus is shown below:

El fin de semana <evento factividad="R">llegó</evento> a Uruguay el segundo avión de la aerolínea BQB de Juan Carlos López Mena. El plan de negocios <evento factividad="R">incluye</evento> <evento factividad="I">volar</evento> a partir de mayo hacia Salto, Porto Alegre y en junio hacia Rivera. Los vuelos <evento factividad="I">tendrán</evento> una frecuencia de dos veces semanales y <evento factividad="I">saliendo</evento> desde Punta del Este. En septiembre <evento factividad="R">prevén</evento> <evento factividad="I">volar</evento> hacia otros destinos de Brasil. El ministro de Economía y Finanzas, Fernando Lorenzo, <evento factividad="R">dijo</evento> que "no <evento factividad="NR">tenemos</evento> ningún exceso de reservas", <evento factividad="R">entrevistado</evento> por La Nación.

Task description

Factuality is understood, following Sauri (2008), as the category that determines the factual status of events, that is, whether events are presented or not as certain. The goal of this task is the determination of the status of verb events with respect to factuality in Spanish texts.

In this task facts are not verified in regard to the real world, just assessed with respect to how they are presented by the source (in this case the writer), that is, the commitment of the source to the truth-value of the event. In this sense, the task could be conceived as a core procedure for other tasks such as fact-checking and fake-news, making it possible, in future tasks, to compare what is narrated in the text (fact tagging) to what is happening in the world (fact-checking and fake-news).

We establish three possible categories:

  • Facts: current and past situations in the world that are presented as real.
  • Counterfacts: current and past situations that the writer presents as not having happened.
  • Possibilities, future situations, predictions, hypothesis and other options: situations presented as uncertain since the writer does not commit openly to the truth-value either because they have not happened yet or because the author does not know.
  • And their respective tags:

  • F: Fact
  • CF: CounterFact
  • U: Undefined
  • The systems will have to automatically propose a factual tag for each event in the text. The events are already annotated in the texts. The structure of the tags used in the annotation is the following:

    <event factuality=”F”>verb</event>

    For example, in a sentence such as:

    El fin de semana <event factuality = “”> llegó </event> a Uruguay el segundo avión.

    The systems outcome should be:

    El fin de semana <event factuality = “F”> llegó </event> a Uruguay el segundo avión.

    The expected target audience is NLP researchers interested in providing understanding and advances in event detection and modeling, temporal text analysis, and Information Extraction in general.

    The performance of this task will be measured against the evaluation corpus using these metrics:

  • Precision, Recall and F1 score for each category.
  • Macro-F1.
  • Global accuracy.
  • The main score for evaluating the submissions will be Macro-F1.


    The corpus contains Spanish texts with approximately 5,000 verbal events classified as F (Fact), CF (Counterfact), U (Undefined). There are two subcorpora: the training corpus, with 4,000 events, and the evaluation corpus, with 1,000 events for testing. The texts belong to the journalistic register and most of them are from the political sections from Spanish and Uruguayan newspaper. An annotation guide is provided in order to explain the meaning of the tags and the scope of the annotation.

  • Training data
  • Test data (no annotations)
  • Important Dates

  • March 18th, 2019: team registration page.
  • March 25th, 2019: 4,000 events for training.
  • May 20th, 2019: 1,000 events for testing.
  • June 3rd, 2019: results submission page.
  • June 10th, 2019: publication of results.
  • June 17th, 2019: paper submission.
  • June 24th, 2019: notification of acceptance.
  • July 1st, 2019: camera ready paper submission.
  • Contact

    If you want to participate in this task or have any question, please join the Google Group factiberlef2019. We will be sharing news and important information about the task in that group.

    FACT shared task is organized by:

  • PLN-InCo (FIng, UdelaR, Uruguay)
  • Grupo de Procesamiento de Lenguaje Natural (FaMAF, UNC, Argentina)
  • GRIAL (UB-UAB-UDL, España)

  • Bibliography

    (Alonso et al., 2018) Alonso, L., I. Castellón, H, Curell, A. Fernández-Montraveta, S. Oliver, G. Vázquez (2018). "Proyecto TAGFACT: Del texto al conocimiento. Factualidad y grados de certeza en español", Procesamiento del Lenguaje Natural, 61, p. 151-154. ISSN: 1135-5948

    (Saurí 2008) Saurí, Roser. 2008. A Factuality Profiler for Eventualities in Text. Ph.D. Thesis. Brandeis University.

    (Saurí and Pustejovsky 2009) Saurí, Roser and James Pustejovsky. 2009. FactBank: A Corpus Annotated with Event Factuality. In: Language Resources and Evaluation.

    (Wonsever et al., 2009) Wonsever, D., Malcuori, M., & Rosá Furman, A. (2009). Factividad de los eventos referidos en textos. Reportes Técnicos 09-12, Pedeciba.

    (Wonsever et al., 2016) Wonsever, D., Rosá, A., & Malcuori, M. (2016). Factuality Annotation and Learning in Spanish Texts. In LREC.