Pasar al contenido principal

Conjugate stabilizers for non-free group actions

Fecha de inicio
Fecha de fin

Resumen: A classical assumption when studying group actions on compact spaces is freeness, meaning that all points have trivial stabilizers.
When the action is not free, one may ask how large the set of points with trivial stabilizer is, either from a topological or a measure-theoretic perspective.
This leads to the notions of topologically free and essentially free actions, respectively.
A natural next step is to consider actions in which points have only “few” distinct stabilizers.
In this talk, I will present conditions and results that connect dynamical properties of group actions with this phenomenon.

I will start by discussing minimal equicontinuous actions arising from subgroups of the automorphism group of d-ary trees, and in the second part of the talk, I will turn to group actions with almost normal stabilizers.

This is joint work with M. I. Cortez and O. Lukina.


Viernes 29/8 a las 14:30
Salón de seminarios del IMERL

Contacto: Santiago Martinchich - Luis Pedro Piñeyrúa - santiago.martinchich [at] fcea.edu.uy+-+lpineyrua [at] fing.edu.uy (santiago[dot]martinchich[at]fcea[dot]edu.uy - lpineyrua[at]fing[dot]edu[dot]uy)


El seminario será transmitido por el siguiente link si alguien manifiesta interés de que así ocurra hasta el día antes del seminario:

https://salavirtual-udelar.zoom.us/j/83020032334?pwd=djAxdmg2K3NDVEU0V3RZSXkxNW8xUT09