Resumen: In this talk, we give a complete topological classification 
of non-invertible Anosov maps on torus. We show that two 
non-invertible Anosov maps on torus are topologically conjugate if and 
only if their corresponding periodic points have the same Lyapunov 
exponents on the stable bundles. As a corollary, if two non-invertible 
Anosov maps on torus are topologically conjugate, then the conjugacy 
is smooth along the stable foliation. We also give a smooth 
classification via Jacobian on corresponding periodic points.
This is a joint work with Ruihao Gu.
(El seminario se transmite por el siguiente link si alguien manifiesta
interés hasta el día antes del seminario:
https://salavirtual-udelar.zoo
 
Topological and smooth classification of Anosov maps on torus.
Fecha de inicio
              Fecha de fin
              